201
|
Okla MK, Alatar AA, Al-amri SS, Soufan WH, Ahmad A, Abdel-Maksoud MA. Antibacterial and Antifungal Activity of the Extracts of Different Parts of Avicennia marina (Forssk.) Vierh. PLANTS (BASEL, SWITZERLAND) 2021; 10:252. [PMID: 33525519 PMCID: PMC7911470 DOI: 10.3390/plants10020252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Increased problems associated with side effects and bacterial resistance of chemical drugs has prompted the research focus on herbal medicines in the past few decades. In the present investigation, the antimicrobial activity of the various parts of Avicennia marina (AM), a mangrove plant, has been evaluated. The plants were collected from the Jazan area of the Kingdom of Saudi Arabia. Primary extracts of roots, stem, leaves, fruits, and seeds were made in ethanol and fractioned in ethanol, ethyl acetate, petroleum ether, chloroform, and water. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts were determined against Bacillussubtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. It has been observed that the chloroform extract of roots of the AM exhibited inhibitory effects against both S. aureus (MIC = 1.5 ± 0.03 mg/mL) and E. coli (MIC = 1.7 ± 0.01 mg/mL). The ethanolic extract of the AM roots has shown antibacterial activity against Pseudomonas aeruginosa (MIC = 10.8 ± 0.78 mg/mL), Bacillussubtilis (MIC = 6.1 ± 0.27 mg/mL), Staphylococcus aureus (MIC = 2.3 ± 0.08 mg/mL), and Escherichia coli (MIC = 6.3 ± 0.28 mg/mL). The leaf extract of the AM in ethyl acetate showed antibacterial activity against S. aureus and E. coli. Antifungal activity of these extracts was also investigated against Aspergillus fumigatus and Candida albicans. Ethanolic extract of roots and seeds of the AM has shown antifungal activity against Aspergillus fumigatus when applied individually. Ethanolic extract of the AM fruits has shown an inhibitory effect on the growth of Aspergillus fumigatus and Candida albicans. It is suggested that the plant extracts of AM have tremendous antimicrobial activity against a group of microbes, and this effect depends on both the plant part and the solvent used for extraction. Therefore, this plant can be considered to treat various diseases caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Mohammad K. Okla
- Department of Botany, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.A.-a.)
| | - Abdulrahman A. Alatar
- Department of Botany, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.A.-a.)
| | - Saud S. Al-amri
- Department of Botany, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.A.-a.)
| | - Walid H. Soufan
- Department of Plant Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
202
|
Mota MN, Martins LC, Sá-Correia I. The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering. J Fungi (Basel) 2021; 7:90. [PMID: 33513997 PMCID: PMC7911966 DOI: 10.3390/jof7020090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Methanol is a promising feedstock for metabolically competent yeast strains-based biorefineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 °C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, such as chromatin remodeling, DNA repair and fatty acid biosynthesis. Several genes involved in DNA repair (eight RAD genes), identified as specific for methanol toxicity, were previously reported as tolerance determinants for formaldehyde, a methanol detoxification pathway intermediate. This study provides new valuable information on genes and potential regulatory networks involved in overcoming methanol toxicity. This knowledge is an important starting point for the improvement of methanol tolerance in yeasts capable of catabolizing and copying with methanol concentrations present in promising bioeconomy feedstocks, including industrial residues.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
203
|
Ahmadi S, Hivechi A, Bahrami SH, Milan PB, Ashraf SS. Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. Int J Biol Macromol 2021; 173:580-590. [PMID: 33513421 DOI: 10.1016/j.ijbiomac.2021.01.156] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/11/2023]
Abstract
This study develops chitosan/gelatin nanofiber membranes with sustained release capacity to prevent infection by delivering cinnamon extract (CE) in the implanted site. The effects of the incorporation of CE content (2-6%) on the properties of the nanofibers were evaluated. Morphological studies using SEM indicated that loading the extract did not affect the average diameter of nanofiber mats, which remained around 140-170 nm. TGA and FTIR spectroscopy results confirmed successful CE loading. Furthermore, the results showed that incorporating extract into the nanofibers enhanced their degradation behavior, antibacterial activity, and biocompatibility. Cultured cells attached to and proliferate on the nanofiber membrane with high cell viability capacity until the CE content reached 4%. The extract release profile consisted of a burst release in the first 6 h, followed by a controlled release in the next 138 h. Therefore, CE loaded chitosan/gelatin nanofiber is an excellent construct for biomedical applications.
Collapse
Affiliation(s)
- Soroush Ahmadi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ahmad Hivechi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Peiman B Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Ashraf
- Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
204
|
Mustila H, Kugler A, Stensjö K. Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus. Metab Eng Commun 2021; 12:e00163. [PMID: 33552898 PMCID: PMC7856465 DOI: 10.1016/j.mec.2021.e00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 ± 9 ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 ng l−1 OD750−1 h−1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts. Photosynthetic isobutene production is demonstrated in a cyanobacterium. A Synechocystis strain capable of continuous direct conversion of CO2 to isobutene. α-ketoisocaproate dioxygenase from R. norvegicus (RnKICD) is determined to form isobutene. RnKICD can convert α-ketoisocaproate to isobutene both in vitro and in vivo.
Collapse
Affiliation(s)
- Henna Mustila
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| |
Collapse
|
205
|
Meena BR, Meena S, Chittora D, Sharma K. Antifungal efficacy of Thevetia peruviana leaf extract against Alternaria solani and characterization of novel inhibitory compounds by Gas Chromatography-Mass Spectrometry analysis. Biochem Biophys Rep 2021; 25:100914. [PMID: 33506117 PMCID: PMC7815652 DOI: 10.1016/j.bbrep.2021.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/07/2022] Open
Abstract
Alternaria solani, a plant pathogenic fungus causes significant economical losses of potato crop. The disease is controlled primarily through some traditional methods and most commonly via the application of chemical fungicides. Fungicides treatment is not protected as chemicals pollute environment, effect health vulnerability in humans and when these harmful chemicals enter into the food chain become hazardous to all living entities. Recent efforts have focused on developing environmentally safe, long-lasting, and effective biocontrol methods for the management of plant diseases. Present research focus on screening of crude and partially purified leaf extract of Thevetia peruviana for the presence of antifungal efficacy against Alternarai solani. It was observed that 100% alcoholic crude and alcoholic fraction of partially purified extract showed maximum inhibitory activity which is due to the presence of different secondary metabolites, revealed by phytochemical screening. Active column fraction (possess best antifungal activity against Alternaria solani) was subjected to Gas Chromatography-Mass Spectrometry (GS-MS) analysis. On the basis of peaks matching of GC-MS chromatogram with available data base showed the presence of benzoic acid and oxo-benzoate in active fraction of Thevetia peruviana leaf extract which is already known chemical among the phytochemicals described for antimicrobial activity. Further research on development of herbal formulation from the same would be very helpful environment friendly approach to manage concern crop disease. Isolation of active principle compound was found maximum in Alcohol extract of Thevetia peruviana leaf extract. Phytochemical tests suggest that Alkaloids, steroids, volatile oils, flavonoids, and tannins were found to be present in alcohol extract of Thevetia peruviana leaf extract. In vitro assay of antifungal activity of all column fractions fraction no. F9 which exhibited most significant antifungal activity against the test fungus. GC–MS analysis of column fraction showed the occurrence of total 1 constituent.
Collapse
Affiliation(s)
- Bhanu Raj Meena
- Microbial Research Laboratory, Department of Botany, Mohanlal Sukhadia University Udaipur, 313001, Rajasthan, India
| | - Sanjeev Meena
- Microbial Research Laboratory, Department of Botany, Mohanlal Sukhadia University Udaipur, 313001, Rajasthan, India
| | - Deepali Chittora
- Microbial Research Laboratory, Department of Botany, Mohanlal Sukhadia University Udaipur, 313001, Rajasthan, India
| | - Kanika Sharma
- Microbial Research Laboratory, Department of Botany, Mohanlal Sukhadia University Udaipur, 313001, Rajasthan, India
| |
Collapse
|
206
|
Jodlbauer J, Rohr T, Spadiut O, Mihovilovic MD, Rudroff F. Biocatalysis in Green and Blue: Cyanobacteria. Trends Biotechnol 2021; 39:875-889. [PMID: 33468423 DOI: 10.1016/j.tibtech.2020.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Recently, several studies have proven the potential of cyanobacteria as whole-cell biocatalysts for biotransformation. Compared to heterotrophic hosts, cyanobacteria show unique advantages thanks to their photoautotrophic metabolism. Their ability to use light as energy and CO2 as carbon source promises a truly sustainable production platform. Their photoautotrophic metabolism offers an encouraging source of reducing power, which makes them attractive for redox-based biotechnological purposes. To exploit the full potential of these whole-cell biocatalysts, cyanobacterial cells must be considered in their entirety. With this emphasis, this review summarizes the latest developments in cyanobacteria research with a strong focus on the benefits associated with their unique metabolism. Remaining bottlenecks and recent strategies to overcome them are evaluated for their potential in future applications.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, research area Biochemical Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria.
| |
Collapse
|
207
|
A physico-chemical study of the interaction of ethanolic extracts of propolis with bacterial cells. Colloids Surf B Biointerfaces 2021; 200:111571. [PMID: 33476953 DOI: 10.1016/j.colsurfb.2021.111571] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
In the present study, an effort has been made to understand the interaction mode of propolis, a natural substance produced by honey bees, with gram-positive and gram-negative bacterial cells by measuring alterations in cell surface physico-chemical properties following the incubation of the cells with different sub-inhibitory concentrations of this antimicrobial agent. Electrophoretic mobility and surface hydrophobicity measurements revealed for the first time that propolis induced substantial changes in the volumetric charge density, electrophoretic softness and degree of hydrophobicity characterizing the outermost surface layer of cells. These changes, which appear to be dose-dependent, seem to be consistent with the increasing accumulation and penetration of the propolis antimicrobial components through the cells extracellular layer. Moreover, electron microscopy observation and the determination of the cell constituents' release demonstrated that propolis at sub-bactericidal concentrations already provoked (at least localized) cell wall damage and/or perturbations. These findings thus suggest that the initial mechanism of action of propolis is most likely structural, resulting from sufficient interaction between the different propolis components and bacterial cell wall structures.
Collapse
|
208
|
Galitskaya P, Biktasheva L, Blagodatsky S, Selivanovskaya S. Response of bacterial and fungal communities to high petroleum pollution in different soils. Sci Rep 2021; 11:164. [PMID: 33420266 PMCID: PMC7794381 DOI: 10.1038/s41598-020-80631-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Petroleum pollution of soils is a major environmental problem. Soil microorganisms can decompose a significant fraction of petroleum hydrocarbons in soil at low concentrations (1-5%). This characteristic can be used for soil remediation after oil pollution. Microbial community dynamics and functions are well studied in cases of moderate petroleum pollution, while cases with heavy soil pollution have received much less attention. We studied bacterial and fungal successions in three different soils with high petroleum contents (6 and 25%) in a laboratory experiment. The proportion of aliphatic and aromatic compounds decreased by 4-7% in samples with 6% pollution after 120 days of incubation but remained unchanged in samples with 25% hydrocarbons. The composition of the microbial community changed significantly in all cases. Oil pollution led to an increase in the relative abundance of bacteria such as Actinobacteria and the candidate TM7 phylum (Saccaribacteria) and to a decrease in that of Bacteroidetes. The gene abundance (number of OTUs) of oil-degrading bacteria (Rhodococcus sp., candidate class TM7-3 representative) became dominant in all soil samples, irrespective of the petroleum pollution level and soil type. The fungal communities in unpolluted soil samples differed more significantly than the bacterial communities. Nonmetric multidimensional scaling revealed that in the polluted soil, successions of fungal communities differed between soils, in contrast to bacterial communities. However, these successions showed similar trends: fungi capable of lignin and cellulose decomposition, e.g., from the genera Fusarium and Mortierella, were dominant during the incubation period.
Collapse
Affiliation(s)
- Polina Galitskaya
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| | - Liliya Biktasheva
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| | - Sergey Blagodatsky
- grid.9464.f0000 0001 2290 1502Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, 70599 Stuttgart, Germany ,grid.451005.5Institute of Physico-Chemical and Biological Problems of Soil Science, Pushchino, 142290 Russia
| | - Svetlana Selivanovskaya
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| |
Collapse
|
209
|
Samba N, Aitfella-Lahlou R, Nelo M, Silva L, Coca. R, Rocha P, López Rodilla JM. Chemical Composition and Antibacterial Activity of Lippia multiflora Moldenke Essential Oil from Different Regions of Angola. Molecules 2020; 26:molecules26010155. [PMID: 33396345 PMCID: PMC7795161 DOI: 10.3390/molecules26010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to determine the chemical composition and antibacterial activity of Lippia multiflora Moldenke essential oils (EOs) collected in different regions of Angola. Antibacterial activity was evaluated using the agar wells technique and vapour phase test. Analysis of the oils by GC/MS identified thirty-five components representing 67.5 to 100% of the total oils. Monoterpene hydrocarbons were the most prevalent compounds, followed by oxygenated monoterpenes. The content of the compounds varied according to the samples. The main components were Limonene, Piperitenone, Neral, Citral, Elemol, p-cymene, Transtagetone, and Artemisia ketone. Only one of the eleven samples contained Verbenone as the majority compound. In the vapour phase test, a single oil was the most effective against all the pathogens studied. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of components of the selected EOs and inhibition zone diameter values of agar wells technique allowed us to identify a variability between the plants from the two provinces, but also intraspecific variability between sub-groups within a population. Each group of essential oils constituted a chemotype responsible for their bacterial inhibition capacity. The results presented here suggest that Angolan Lippia multiflora Moldenke has antibacterial properties and could be a potential source of antimicrobial agents for the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Department of Clinical Analysis and Public Health, University Kimpa Vita, Uige 77, Angola
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| | - Radhia Aitfella-Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Laboratory of Valorisation and Conservation of Biological Resources, Biology Department, Faculty of Sciences, University M’Hamed Bougara, 35000 Boumerdes, Algeria
| | - Mpazu Nelo
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Lucia Silva
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Rui Coca.
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Pedro Rocha
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Jesus Miguel López Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| |
Collapse
|
210
|
Al-Mnaser AA, Woodward MJ. Sub-lethal Concentrations of Phytochemicals (Carvacrol and Oregano) Select for Reduced Susceptibility Mutants of Escherichia coli O23:H52. Pol J Microbiol 2020; 69:1-5. [PMID: 32067440 PMCID: PMC7256741 DOI: 10.33073/pjm-2020-003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
In vitro studies aimed at studying the mechanism of action of carvacrol and oregano as natural anti-bacterial agents to control multiple antibiotic-resistant avian pathogenic Escherichia coli (APEC) strain O23:H52 isolated from chicken were performed. Derivatives with increased minimum inhibitory concentrations (MIC) to the phytochemicals were selected after growing Escherichia coli (E. coli) strain O23:H52 at sub-lethal concentrations of carvacrol and oregano for a period of 60 days. Whole-genome sequencing (WGS) of two derivatives revealed a missense mutation in cadC and marR: the genes responsible for survival mechanisms and antibiotic resistance by efflux, respectively. In vitro studies aimed at studying the mechanism of action of carvacrol and oregano as natural anti-bacterial agents to control multiple antibiotic-resistant avian pathogenic Escherichia coli (APEC) strain O23:H52 isolated from chicken were performed. Derivatives with increased minimum inhibitory concentrations (MIC) to the phytochemicals were selected after growing Escherichia coli (E. coli) strain O23:H52 at sub-lethal concentrations of carvacrol and oregano for a period of 60 days. Whole-genome sequencing (WGS) of two derivatives revealed a missense mutation in cadC and marR: the genes responsible for survival mechanisms and antibiotic resistance by efflux, respectively.
Collapse
|
211
|
Soares-Castro P, Soares F, Santos PM. Current Advances in the Bacterial Toolbox for the Biotechnological Production of Monoterpene-Based Aroma Compounds. Molecules 2020; 26:molecules26010091. [PMID: 33379215 PMCID: PMC7794910 DOI: 10.3390/molecules26010091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Monoterpenes are plant secondary metabolites, widely used in industrial processes as precursors of important aroma compounds, such as vanillin and (-)-menthol. However, the physicochemical properties of monoterpenes make difficult their conventional conversion into value-added aromas. Biocatalysis, either by using whole cells or enzymes, may overcome such drawbacks in terms of purity of the final product, ecological and economic constraints of the current catalysis processes or extraction from plant material. In particular, the ability of oxidative enzymes (e.g., oxygenases) to modify the monoterpene backbone, with high regio- and stereo-selectivity, is attractive for the production of "natural" aromas for the flavor and fragrances industries. We review the research efforts carried out in the molecular analysis of bacterial monoterpene catabolic pathways and biochemical characterization of the respective key oxidative enzymes, with particular focus on the most relevant precursors, β-pinene, limonene and β-myrcene. The presented overview of the current state of art demonstrates that the specialized enzymatic repertoires of monoterpene-catabolizing bacteria are expanding the toolbox towards the tailored and sustainable biotechnological production of values-added aroma compounds (e.g., isonovalal, α-terpineol, and carvone isomers) whose implementation must be supported by the current advances in systems biology and metabolic engineering approaches.
Collapse
|
212
|
Jung S, Hemmatian T, Song E, Lee K, Seo D, Yi J, Kim J. Disinfection Treatments of Disposable Respirators Influencing the Bactericidal/Bacteria Removal Efficiency, Filtration Performance, and Structural Integrity. Polymers (Basel) 2020; 13:E45. [PMID: 33374397 PMCID: PMC7796291 DOI: 10.3390/polym13010045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
In the outbreak of COVID-19, the extended wear of single-use, disposable respirators was inevitable due to limited supplies. As a respirator is front-line protection against particulate matter, including bioaerosol and droplets, a comprehensive understanding for the reuse strategy is needed. In this study, eight different disinfection methods commonly applied for the reuse of respirators were compared for their influence on the filtration and bactericidal/bacteria removal performance, with in-depth discussion on the cause of effects. Treatments including oven-dry, ultraviolet irradiation (UV), microwaving, laundering with and without detergent, and immersion in hypochlorite, isopropanol, and ethanol were performed to respirators. Immersion in ethanol or isopropanol was effective for inactivation and removal of bacteria, yet such a treatment significantly deteriorated the filtration efficiency in about 20-28%, dissipating the surface charges. Laundering, while effective in removing the attached bacteria, triggered physical damage, leading to a possible reduction of filtration performance. A short-term oven-dry, UV irradiation, and microwaving mostly preserved the filtration performance, yet the drawback lied in the incomplete bactericidal efficiency. This study would contribute to the public health and safety by providing scientific background on the effect of disinfection treatment methods for respirators.
Collapse
Affiliation(s)
- Seojin Jung
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.J.); (T.H.); (E.S.); (K.L.); (J.Y.)
| | - Tahmineh Hemmatian
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.J.); (T.H.); (E.S.); (K.L.); (J.Y.)
| | - Eugene Song
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.J.); (T.H.); (E.S.); (K.L.); (J.Y.)
| | - Kyeongeun Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.J.); (T.H.); (E.S.); (K.L.); (J.Y.)
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Korea;
| | - Dongwan Seo
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Korea;
| | - Jehyung Yi
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.J.); (T.H.); (E.S.); (K.L.); (J.Y.)
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (S.J.); (T.H.); (E.S.); (K.L.); (J.Y.)
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
213
|
Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms 2020; 9:microorganisms9010003. [PMID: 33374976 PMCID: PMC7822026 DOI: 10.3390/microorganisms9010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.
Collapse
|
214
|
A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int J Mol Sci 2020; 21:ijms21249653. [PMID: 33348921 PMCID: PMC7765853 DOI: 10.3390/ijms21249653] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Origanum vulgare L. is a widely used aromatic plant, especially due to its content in essential oil, mainly rich in carvacrol and thymol. The ethnopharmacological uses of Origanum vulgare L. essential oil (OEO) comprise digestive, respiratory, or dermatological disorders. The review focuses on the increasing number of recent studies investigating several biological activities of OEO. The bioactivities are in tight relation to the phytochemical profile of the essential oil, and also depend on taxonomic, climatic, and geographical characteristics of the plant material. The antibacterial, antifungal, antiparasitic, antioxidant, anti-inflammatory, antitumor, skin disorders beneficial effects, next to antihyperglycemic and anti-Alzheimer activities were reported and confirmed in multiple studies. Moreover, recent studies indicate a positive impact on skin disorders of OEO formulated as nanocarrier systems in order to improve its bioavailability and, thus, enhancing its therapeutic benefits. The review brings an up to date regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil, underlining also the most successful pharmaceutical formulation used for skin disorders.
Collapse
|
215
|
Connolly JPR, Roe AJ, O'Boyle N. Prokaryotic life finds a way: insights from evolutionary experimentation in bacteria. Crit Rev Microbiol 2020; 47:126-140. [PMID: 33332206 DOI: 10.1080/1040841x.2020.1854172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
While evolution proceeds through the generation of random variant alleles, the application of selective pressures can select for subsets of mutations that confer fitness-improving physiological benefits. This, in essence, defines the process of adaptive evolution. The rapid replication rate of bacteria has allowed for the design of experiments to study these processes over a reasonable timeframe within a laboratory setting. This has been greatly assisted by advances in tractability of diverse microorganisms, next generation sequencing technologies and bioinformatic analysis pipelines. Examining the processes by which organisms adapt their genetic code to cope with sub-optimal growth conditions has yielded a wealth of molecular insight into diverse biological processes. Here we discuss how the study of adaptive evolutionary trajectories in bacteria has allowed for improved understanding of stress responses, revealed important insight into microbial physiology, allowed for the production of highly optimised strains for use in biotechnology and increased our knowledge of the role of genomic plasticity in chronic infections.
Collapse
Affiliation(s)
- James P R Connolly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
216
|
Balakrishnan J, Ganapathi P, Kannan S, Marudhamuthu M, Shanmugam K. Anti-listerial activity of microalgal fatty acid methyl esters and their possible applications as chicken marinade. Int J Food Microbiol 2020; 339:109027. [PMID: 33412385 DOI: 10.1016/j.ijfoodmicro.2020.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
Fatty acid methyl esters (FAMEs) from marine microalgae have been reported to possess antimicrobial activities against several Gram positive and Gram negative bacteria, but a majority of them needs to be explored. The objective of this study was to investigate the antibacterial activity, mechanism of FAMEs from selected marine microalgae against Listeria monocytogenes, and to elucidate its efficacy in food model. The minimum inhibitory concentration of FAMEs was calculated to be 155 μg/mL for Chromulina sp. and 162 μg/mL for Nannochloropsis sp. against L. monocytogenes. Time-killing kinetics showed that FAMEs efficiently inhibited the growth of L. monocytogenes in a time and concentration dependent manner. The mechanism of action of FAMEs was studied by analysing its effects at a MIC on the cellular metabolism, membrane permeability, and membrane integrity of L. monocytogenes. Transmission Electron Microscopy (TEM) results showed that cells exposed to FAMEs showed damaged cell membrane structure with leakage of the internal contents in the cells of L. monocytogenes. Fluorescence microscopy images showed that L. monocytogenes cells treated with FAMEs showed high dead cell population corresponding with propidium iodide positive cells. Furthermore, FAMEs significantly down regulated quorum sensing and biofilm related genes (DegU, FlaE, and FlaD). In vivo therapeutic potential of FAMEs revealed improved Caenorhabditis elegans survival and reduced intestinal colonization during L. monocytogenes infection. Growth of listeria was abolished in chicken meat during the cold storage of 9 days when the samples were pre-treated with FAMEs. These results suggest anti-L. monocytogenes activity of FAMEs and elucidated its use in food control of chicken meat at refrigerated conditions.
Collapse
Affiliation(s)
- Jeyakumar Balakrishnan
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Prakash Ganapathi
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Kathiresan Shanmugam
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
217
|
Antonelli F, Bartolini M, Plissonnier ML, Esposito A, Galotta G, Ricci S, Davidde Petriaggi B, Pedone C, Di Giovanni A, Piazza S, Guerrieri F, Romagnoli M. Essential Oils as Alternative Biocides for the Preservation of Waterlogged Archaeological Wood. Microorganisms 2020; 8:microorganisms8122015. [PMID: 33339447 PMCID: PMC7765822 DOI: 10.3390/microorganisms8122015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Waterlogged archaeological wood is exposed to a high risk of biological degradation during the post-excavation phases of storage and restoration. For this reason, often biocides must be used to preserve wooden remains. In the present work three essential oils (cinnamon, wild thyme, and common thyme) were tested as possible alternative biocides to use in the preservation of waterlogged archaeological wood. The oils were first tested in vitro to establish the minimum inhibitory concentration (MIC) and to evaluate the biocidal activity on selected fungal strains. Then, the established MIC was applied on waterlogged archaeological wood samples and during an actual restoration treatment. The effectiveness of the oils was evaluated through cultural analyses, ATP quantification, and next-generation sequencing. The results showed that the oils caused a significant decrease in the vitality of fungal mycelia grown in vitro and of the microbiota present in treated wood and storage water. Furthermore, an influence on the composition of the bacterial communities of treated wood samples was observed. Although further tests are needed to evaluate interferences with the materials used during restoration procedures, essential oils could be considered as a possible alternative to the currently used biocide.
Collapse
Affiliation(s)
- Federica Antonelli
- Department for Innovation in Biological, Agro-Food and Forestry Systems (DIBAF), Tuscia University, 01100 Viterbo, Italy;
- Correspondence: (F.A.); (F.G.)
| | - Marco Bartolini
- Biology Laboratory, Istituto Centrale per il Restauro (ICR), Ministry of Cultural Heritage and Activities and Tourism (MIBACT), 00153 Rome, Italy; (M.B.); (G.G.); (S.R.)
| | - Marie-Laure Plissonnier
- Epigenetics and Epigenomic of Hepatocellular Carcinoma, U1052, Cancer Research Center of Lyon (CRCL), 69424 Lyon CEDEX 03, France;
| | - Alfonso Esposito
- Department of Cellular, Computational and Integrative Biology–CIBIO, University of Trento, 38123 Trento, Italy; (A.E.); (S.P.)
| | - Giulia Galotta
- Biology Laboratory, Istituto Centrale per il Restauro (ICR), Ministry of Cultural Heritage and Activities and Tourism (MIBACT), 00153 Rome, Italy; (M.B.); (G.G.); (S.R.)
| | - Sandra Ricci
- Biology Laboratory, Istituto Centrale per il Restauro (ICR), Ministry of Cultural Heritage and Activities and Tourism (MIBACT), 00153 Rome, Italy; (M.B.); (G.G.); (S.R.)
| | - Barbara Davidde Petriaggi
- Underwater Archaeological Operations Unit, Istituto Centrale per il Restauro (ICR), Ministry of Cultural Heritage and Activities and Tourism (MIBACT), 00153 Rome, Italy;
| | - Cristian Pedone
- Restoration Laboratory of Organic Excavation Materials, Istituto Centrale per il Restauro (ICR), Ministry of Cultural Heritage and Activities and Tourism (MIBACT), 00153 Rome, Italy; (C.P.); (A.D.G.)
| | - Antonella Di Giovanni
- Restoration Laboratory of Organic Excavation Materials, Istituto Centrale per il Restauro (ICR), Ministry of Cultural Heritage and Activities and Tourism (MIBACT), 00153 Rome, Italy; (C.P.); (A.D.G.)
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology–CIBIO, University of Trento, 38123 Trento, Italy; (A.E.); (S.P.)
- Computational Biology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Francesca Guerrieri
- Epigenetics and Epigenomic of Hepatocellular Carcinoma, U1052, Cancer Research Center of Lyon (CRCL), 69424 Lyon CEDEX 03, France;
- Correspondence: (F.A.); (F.G.)
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forestry Systems (DIBAF), Tuscia University, 01100 Viterbo, Italy;
| |
Collapse
|
218
|
Jangir M, Sharma S, Sharma S. Synergistic effect of oilseed cake and biocontrol agent in the suppression of Fusarium wilt in Solanum lycopersicum. Braz J Microbiol 2020; 51:1929-1939. [PMID: 32770313 DOI: 10.1007/s42770-020-00344-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 11/30/2022] Open
Abstract
The antagonistic efficacy of a biocontrol agent in combination with oilseed cake against fungal phytopathogens has been sparsely explored. The present study aimed to evaluate the antifungal activity of a biocontrol agent (Trichoderma harzianum MTCC 3928) formulated with oilseed cake (OSC) against Fusarium oxysporum f. sp. lycopersici responsible for causing vascular wilt in Solanum lycopersicum. In in vitro studies, OSC of mustard (Brassica juncea) exhibited significant mycelial inhibition against the pathogen. The volatile plate assay showed mycelial inhibition of 70 and 40% with unautoclaved and autoclaved mustard cakes, respectively. The aqueous extract (10% v/v) of the mustard cake was the most effective with 47.3% mycelial inhibition of pathogen over control. In addition, volatiles and aqueous extract of mustard cake subjected to GC-MS analysis revealed a range of antifungal bioactive compounds with hexanedioic acid, dioctyl ester (16.57%), and oleic acid trimethylsilyl ester (12.41%) being predominant compounds. In in vitro studies, it was noticed that the T. harzianum strain was compatible with mustard cake, and hence used as a growth substrate for its mass multiplication. SEM analysis revealed no distortion in spores and mycelium of T. harzianum grown on the mustard cake. Further, seed germination assay suggested the optimum concentration of mustard cake (10%) supporting the germination rate and economics of formulation development. In in planta assay, the combination of biocontrol agent and mustard cake showed 48% disease reduction, and ~ 40% with T. harzianum alone in comparison to untreated control. Also, the combination of mustard cake and T. harzianum significantly enhanced the growth parameters of S. lycopersicum. The findings of the current study identified an environmentally friendly alternative for mitigation of Fusarium wilt, thereby providing a sustainable option for mitigation of wilt disease and enhancement of plant health.
Collapse
Affiliation(s)
- Monika Jangir
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Satyawati Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
219
|
Rodrigues EM, Cesar DE, Santos de Oliveira R, de Paula Siqueira T, Tótola MR. Hydrocarbonoclastic bacterial species growing on hexadecane: Implications for bioaugmentation in marine ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115579. [PMID: 33254655 DOI: 10.1016/j.envpol.2020.115579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
of bioaugmentation strategies are an obstacle for damage mitigation caused by oil spills in marine environments. Cells added to the contaminated sites are quickly lost by low adherence to the contaminants, rendering ineffective. This study used two hydrocarbonoclastic species - Rhodococcus rhodochrous TRN7 and Nocardia farcinica TRH1 cells - growing in mineral medium containing hexadecane to evaluate cell distribution in a crude-oil contaminated marine water. Cell affinity to hydrophobic compounds was quantified using Microbial Adhesion to Hydrocarbons test and analysis of fatty acids profile was performed using the Microbial Identification System. Bioremediation simulations were set up and cell populations of both strains were quantified by Fluorescent in situ Hybridization. R. rhodochrous and N. farcinica reached up to 97% and 60% of adhesion to hexadecane, respectively. The carbon source had more influence on the fatty acid profiles of both strains than the microbial species. The presence of 45.24% of 13:0 anteiso on total fatty acids in R. rhodochrous and 12.35% of saturated fatty acids with less than 13 carbons atoms in N. farcinica, as well as the occurrence of fatty alcohols only in presence of hexadecane in both species, are indicators that fatty acid changes are involved in the adaptation of the cells to remain at the water/oil interface. Cell quantification after bioremediation simulations revealed an increase in the density of both species, suggesting that the bioremediation strategies resulted on the increase of hydrocarbonoclastic species and up to 27.9% of all prokaryotic microbial populations in the microcosms were composed of R. rhodochrous or N. farcinica. These findings show the potential of application of these two bacterial strains in bioaugmentation of hydrocarbon-contaminated marine ecosystems.R. rhodochrous TRN7 and N. farcinica TRH1 hydrocarbonoclastic strains modify the fatty acid profile and increases density, optimizing hydrocarbons biodegradation.
Collapse
Affiliation(s)
- Edmo Montes Rodrigues
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Instituto Federal de Educação, Ciência e Tecnologia Do Ceará - IFCE - Campus Camocim, Camocim, Ceará, Brazil.
| | - Dionéia Evangelista Cesar
- Laboratório de Ecologia e Biologia Molecular de Microorganismos, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Renatta Santos de Oliveira
- Laboratório de Ecologia e Biologia Molecular de Microorganismos, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Tatiane de Paula Siqueira
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
220
|
Vo TTT, Chu PM, Tuan VP, Te JSL, Lee IT. The Promising Role of Antioxidant Phytochemicals in the Prevention and Treatment of Periodontal Disease via the Inhibition of Oxidative Stress Pathways: Updated Insights. Antioxidants (Basel) 2020; 9:antiox9121211. [PMID: 33271934 PMCID: PMC7760335 DOI: 10.3390/antiox9121211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence on the involvement of oxidative stress, which is simply described as the imbalance between oxidants and antioxidants in favor of the former, in the development of periodontal disease that is the most common inflammatory disease in the oral cavity. Thus, the potential of antioxidant phytochemicals as adjunctively preventive and therapeutic agents against the initiation and progression of periodontal disease is a topic of great interest. The current review firstly aims to provide updated insights about the immuno-inflammatory pathway regulated by oxidative stress in periodontal pathology. Then, this work further presents the systemic knowledge of antioxidant phytochemicals, particularly the pharmacological activities, which can be utilized in the prevention and treatment of periodontal disease. Additionally, the challenges and future prospects regarding such a scope are figured out.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Pei-Ming Chu
- School of Medicine, College of Medicine, China Medical University, Taichung 406, Taiwan;
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam;
| | - Joyce Si-Liang Te
- Department of Medical Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5162); Fax: +886-2-27362295
| |
Collapse
|
221
|
BARRERA-RUIZ DG, CUESTAS-ROSAS GC, SÁNCHEZ-MARIÑEZ RI, ÁLVAREZ-AINZA ML, MORENO-IBARRA GM, LÓPEZ-MENESES AK, PLASCENCIA-JATOMEA M, CORTEZ-ROCHA MO. Antibacterial activity of essential oils encapsulated in chitosan nanoparticles. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.34519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
222
|
Yousefi M, Khorshidian N, Hosseini H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front Nutr 2020; 7:577287. [PMID: 33330578 PMCID: PMC7732451 DOI: 10.3389/fnut.2020.577287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
223
|
Wang Z, Xue T, Hu D, Ma Y. A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli. Front Bioeng Biotechnol 2020; 8:524198. [PMID: 33072717 PMCID: PMC7537768 DOI: 10.3389/fbioe.2020.524198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Producing high concentrations of biobutanol is challenging, primarily because of the toxicity of butanol toward cells. In our previous study, several butanol tolerance-promoting genes were identified from butanol-tolerant Escherichia coli mutants and inactivation of the transcriptional regulator factor Rob was shown to improve butanol tolerance. Here, the butanol tolerance characteristics and mechanism regulated by inactivated Rob are investigated. Comparative transcriptome analysis of strain DTrob, with a truncated rob in the genome, and the control BW25113 revealed 285 differentially expressed genes (DEGs) to be associated with butanol tolerance and categorized as having transport, localization, and oxidoreductase activities. Expression of 25 DEGs representing different functional categories was analyzed by quantitative reverse transcription PCR (qRT-PCR) to assess the reliability of the RNA-Seq data, and 92% of the genes showed the same expression trend. Based on functional complementation experiments of key DEGs, deletions of glgS and yibT increased the butanol tolerance of E. coli, whereas overexpression of fadB resulted in increased cell density and a slight increase in butanol tolerance. A metabolic network analysis of these DEGs revealed that six genes (fadA, fadB, fadD, fadL, poxB, and acs) associated with acetyl-CoA production were significantly upregulated in DTrob, suggesting that Rob inactivation might enhance butanol tolerance by increasing acetyl-CoA. Interestingly, DTrob produced more acetate in response to butanol stress than the wild-type strain, resulting in the upregulation expression of some genes involved in acetate metabolism. Altogether, the results of this study reveal the mechanism underlying increased butanol tolerance in E. coli regulated by Rob inactivation.
Collapse
Affiliation(s)
- Zhiquan Wang
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tingli Xue
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Dongsheng Hu
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Centre of Chemical Science and Engineering, and Key Laboratory for Green Chemical Technology, Tianjin University, Tianjin, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Frontier Technology Institute, Tianjin University, Tianjin, China
| |
Collapse
|
224
|
Synthesis of bio-based polymacrolactones with pendant eugenol moieties as novel antimicrobial thermoplastic materials. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
225
|
Xu G, Xiao L, Wu A, Han R, Ni Y. Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones. Appl Biochem Biotechnol 2020; 193:257-270. [PMID: 32929579 DOI: 10.1007/s12010-020-03417-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Microbial tolerance to organic solvents is critical for efficient production of biofuels. In this study, n-butanol tolerance of Escherichia coli JM109 was improved by overexpressing of genes encoding stress-responsive small RNA-regulator, RNA chaperone, and molecular chaperone. Gene rpoS, coding for sigma S subunit of RNA polymerase, was the most efficient in improving n-butanol tolerance of E. coli. The highest OD600 and the specific growth rate of JM109/pQE80L-rpoS reached 1.692 and 0.144 h-1 respectively at 1.0% (v/v) n-butanol. Double and triple expression of molecular chaperones rpoS, secB, and groS were conducted and optimized. Recombinant strains JM109/pQE80L-secB-rpoS and JM109/pQE80L-groS-secB-rpoS exhibited the highest n-butanol tolerance, with specific growth rates of 0.164 and 0.165 h-1, respectively. Membrane integrity, potentials, and cell morphology analyses demonstrated the high viability of JM109/pQE80L-groS-secB-rpoS. This study provides guidance on employing various molecular chaperones for enhancing the tolerance of E. coli against n-butanol.
Collapse
Affiliation(s)
- Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lin Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Anning Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
226
|
Presentato A, Piacenza E, Scurria A, Albanese L, Zabini F, Meneguzzo F, Nuzzo D, Pagliaro M, Martino DC, Alduina R, Ciriminna R. A New Water-Soluble Bactericidal Agent for the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacterial Strains. Antibiotics (Basel) 2020; 9:antibiotics9090586. [PMID: 32911640 PMCID: PMC7558503 DOI: 10.3390/antibiotics9090586] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 01/31/2023] Open
Abstract
Grapefruit and lemon pectin obtained from the respective waste citrus peels via hydrodynamic cavitation in water only are powerful, broad-scope antimicrobials against Gram-negative and -positive bacteria. Dubbed IntegroPectin, these pectic polymers functionalized with citrus flavonoids and terpenes show superior antimicrobial activity when compared to commercial citrus pectin. Similar to commercial pectin, lemon IntegroPectin determined ca. 3-log reduction in Staphylococcus aureus cells, while an enhanced activity of commercial citrus pectin was detected in the case of Pseudomonas aeruginosa cells with a minimal bactericidal concentration (MBC) of 15 mg mL−1. Although grapefruit and lemon IntegroPectin share equal MBC in the case of P. aeruginosa cells, grapefruit IntegroPectin shows boosted activity upon exposure of S. aureus cells with a 40 mg mL−1 biopolymer concentration affording complete killing of the bacterial cells. Insights into the mechanism of action of these biocompatible antimicrobials and their effect on bacterial cells, at the morphological level, were obtained indirectly through Fourier Transform Infrared spectroscopy and directly through scanning electron microscopy. In the era of antimicrobial resistance, these results are of great societal and sanitary relevance since citrus IntegroPectin biomaterials are also devoid of cytotoxic activity, as already shown for lemon IntegroPectin, opening the route to the development of new medical treatments of polymicrobial infections unlikely to develop drug resistance.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
| | - Elena Piacenza
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
| | - Lorenzo Albanese
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Federica Zabini
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
- Correspondence: (M.P.); (R.A.)
| | - Delia Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Rosa Alduina
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- Correspondence: (M.P.); (R.A.)
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
| |
Collapse
|
227
|
Rocchetti G, Alcántara C, Bäuerl C, García-Pérez JV, Lorenzo JM, Lucini L, Collado MC, Barba FJ. Bacterial growth and biological properties of Cymbopogon schoenanthus and Ziziphus lotus are modulated by extraction conditions. Food Res Int 2020; 136:109534. [PMID: 32846595 DOI: 10.1016/j.foodres.2020.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
The present study aims to evaluate the antibacterial activity and biological properties of two traditional Saharian plants (Cymbopogon schoenanthus and Ziziphus lotus). The plant extracts were obtained by using a different combination of extraction methods (conventional vs. ultrasound-assisted) and solvents (water vs. ethanol:water (50:50, v/v)). The antioxidant profile, anti-inflammatory activity and impact on bacterial growth (foodborne and probiotic bacteria) of the obtained extracts were assessed. The plant species showed the hierarchically more important role in determining the biological properties of the extracts, followed by extraction solvent and extraction conditions. Conventional Z. lotus hydroethanolic extracts showed the highest total phenolic content (20.4 mg GAE/g), while Z. lotus ethanol extracts from ultrasound-assisted process presented the highest content of carotenoids (0.15 mg/g). In addition, ultrasound-assisted Z. lotus hydroethanolic extracts presented the highest in vitro radical scavenging activity, being 7.93 mmol Trolox/g. Multivariate analysis statistics (PCA) showed that both the extraction methodology and the solvent used strongly affected the bacterial growth. Z. lotus mainly decreased the growth rate of S. aureus and L. innocua. Interestingly, the aqueous extracts of this plant as well as those from C. schoenanthus, obtained by conventional extraction, significantly increased the growth rate and the maximal optical density of L. casei. Aqueous extracts of both Z. lotus and C. schoenanthus slightly influenced the growth of Bifidobacterium. Overall, the extracts of these plants showed selective activities with respect to pathogens and probiotic bacteria and may provide an advantage both in terms of antimicrobial and prebiotic activity.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Cristina Alcántara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Jose V García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia 46022, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n 46100, Burjassot, València, Spain.
| |
Collapse
|
228
|
Chantadee T, Santimaleeworagun W, Phorom Y, Phaechamud T. Saturated Fatty Acid-Based In Situ Forming Matrices for Localized Antimicrobial Delivery. Pharmaceutics 2020; 12:pharmaceutics12090808. [PMID: 32854439 PMCID: PMC7559323 DOI: 10.3390/pharmaceutics12090808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the world has faced the issue of antibiotic resistance. Methicillin-resistant Staphylococcus aureus (MRSA) is a significant problem in various treatments and control of infections. Biocompatible materials with saturated fatty acids of different chain lengths (C8-C18) were studied as matrix formers of localized injectable vancomycin HCl (VCM)-loaded antisolvent-induced in situ forming matrices. The series of fatty acid-based in situ forming matrices showed a low viscosity (5.47-13.97 cPs) and pH value in the range of 5.16-6.78, with high injectability through a 27-G needle (1.55-3.12 N). The preparations exhibited low tolerance to high concentrations of KH2PO4 solution (1.88-5.42% v/v) and depicted an electrical potential change during phase transformation. Their phase transition and matrix formation at the microscopic and macroscopic levels depended on the chain length of fatty acids and solvent characteristics. The VCM release pattern depended on the nucleation/crystallization and solvent exchange behaviors of the delivery system. The 35% w/v of C12-C16 fatty acid-based in situ forming matrix prolonged the VCM release over seven days in which C12, C14, C16 -based formulation reached 56, 84, and 85% cumulative drug release at 7th day. The release data fitted well with Higuchi's model. The developed formulations presented efficient antimicrobial activities against standard S. aureus, MRSA, Escherichia coli, and Candida albicans. Hence, VCM-loaded antisolvent-induced fatty acid-based in situ forming matrix is a potential local delivery system for the treatment of local Gram-positive infection sites, such as joints, eyes, dermis of surgery sites, etc., in the future.
Collapse
Affiliation(s)
- Takron Chantadee
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: (T.C.); (T.P.); Tel.: +66-034-255800 (T.C. & T.P.)
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Yaowaruk Phorom
- Secretary Office of Faculty, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Thawatchai Phaechamud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: (T.C.); (T.P.); Tel.: +66-034-255800 (T.C. & T.P.)
| |
Collapse
|
229
|
de Almeida MAL, Batista AUD, de Araújo MRC, de Almeida VFDS, Bonan PRF, Nóbrega Alves D, da Costa TKVL, Nóbrega DF, de Castro RD. Cinnamaldehyde is a biologically active compound for the disinfection of removable denture: blinded randomized crossover clinical study. BMC Oral Health 2020; 20:223. [PMID: 32807162 PMCID: PMC7433048 DOI: 10.1186/s12903-020-01212-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/09/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Fungal infections associated with the use of dentures, like denture stomatitis, are difficult to prevent and treat. This in situ study aimed to investigate the efficacy of cinnamaldehyde for the disinfection of complete removable dentures, and the effect on the physical and mechanical properties (Vickers microhardness, color, and surface roughness) of the acrylic resin. METHODS Acrylic resin disks were inserted into the dentures of a probabilistic sample of 33 complete denture users, that used cinnamaldehyde (27 μg/mL) and 0.5% sodium hypochlorite solutions in a 20 min/7-days protocol of dentures immersion in each solution, with a wash-out period of 7 days, to constitute a crossover-study. The disks were analyzed before and after the immersion, for the presence of microorganisms (CFU/mL) and by scanning electron microscope (SEM). Also, the surface roughness (Ra) and Vickers microhardness were measured, and color parameters were analyzed using the National Bureau of Standards (NBS) method. Data was analyzed by Wilcoxon and Friedman (microbiological evaluation), paired t-test (color and roughness) and independent t-test (Vickers hardness) (α = 0.05). RESULTS A significant reduction (P < 0.05) in the number of microorganisms was observed for each species (total microorganisms, Streptococcus mutans, and Candida spp.), with no significant differences (P > 0.05) between hypochlorite and cinnamaldehyde. There was an increase in the roughness and a decrease in the hardness of the test specimens, with no difference between the two disinfectant substances (P > 0.05). Both hypochlorite and cinnamaldehyde also caused changes in color, considered as "perceptible" by the NBS classification, but with no significant difference between disinfectant substances (P < 0.05), and under the clinically acceptable limit (ΔE ≤ 3.7). CONCLUSION The 27 μg/mL cinnamaldehyde solution was effective against all evaluated microorganisms and caused minor alterations in hardness, surface roughness, and color parameters, with no clinical relevance.
Collapse
Affiliation(s)
- Marco Antônio Lavorato de Almeida
- Faculty of Dentistry, Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-970 Brazil
| | - André Ulisses Dantas Batista
- Faculty of Dentistry, Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-970 Brazil
| | - Maria Rejane Cruz de Araújo
- Faculty of Dentistry, Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-970 Brazil
| | | | - Paulo Rogério Ferreti Bonan
- Faculty of Dentistry, Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-970 Brazil
| | - Danielle Nóbrega Alves
- Faculty of Dentistry, Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-970 Brazil
| | - Tereza Karla Vieira Lopes da Costa
- Faculty of Dentistry, Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-970 Brazil
| | - Diego Figueiredo Nóbrega
- Faculty of Dentistry, Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-970 Brazil
| | - Ricardo Dias de Castro
- Faculty of Dentistry, Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-970 Brazil
| |
Collapse
|
230
|
Sidiropoulou E, Skoufos I, Marugan-Hernandez V, Giannenas I, Bonos E, Aguiar-Martins K, Lazari D, Blake DP, Tzora A. In vitro Anticoccidial Study of Oregano and Garlic Essential Oils and Effects on Growth Performance, Fecal Oocyst Output, and Intestinal Microbiota in vivo. Front Vet Sci 2020; 7:420. [PMID: 32851011 PMCID: PMC7411182 DOI: 10.3389/fvets.2020.00420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023] Open
Abstract
This study investigated the in vitro effects of Greek oregano and garlic essential oils on inhibition of Eimeria parasites and their in vivo effects on production performance, intestinal bacteria counts, and oocyst output. An inhibition assay was performed in vitro using Eimeria tenella Wisconsin strain sporozoites and Madin-Darby bovine kidney (MDBK) cells. Intracellular sporozoite invasion was quantified by detection of E. tenella DNA using qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the oregano essential oil at the concentration of 100 μg/ml by 83 or 93% after 2 or 24 h, respectively. Garlic essential oil reached a maximum inhibition of 70% after 24 h with the 50 μg/ml concentration. Normal morphology was observed in MDBK cells exposed to concentrations of 100 μl/ml of garlic or oregano for over 24 h. In the in vivo trial, 180 male broiler chicks (45.3 ± 0.7 g) were allocated into two treatments (6 pens of 15 chicks per treatment). Control treatment was fed commercial diets without antibiotics or anticoccidials. The ORE-GAR treatment was fed the same control diets, further supplemented with a premix (1 g/kg feed) containing the oregano (50 g/kg premix) and garlic (5 g/kg premix) essential oils. At day 37, all birds were slaughtered under commercial conditions, and intestinal samples were collected. ORE-GAR treatment had improved final body weight (1833.9 vs. 1.685.9 g; p < 0.01), improved feed conversion ratio (1.489 vs. 1.569; p < 0.01), and reduced fecal oocyst excretion (day 28: 3.672 vs. 3.989 log oocysts/g, p < 0.01; day 37: 3.475 vs. 4.007 log oocysts/g, p < 0.001). In the caecal digesta, ORE-GAR treatment had lower total anaerobe counts (8.216 vs. 8.824 CFU/g; p < 0.01), whereas in the jejunum digesta the ORE-GAR treatment had higher counts of E. coli (5.030 vs. 3.530 CFU/g; p = 0.01) and Enterobacteriaceae (5.341 vs. 3.829 CFU/g; p < 0.01), and lower counts of Clostridium perfringens (2.555 vs. 2.882 CFU/g; p < 0.01). In conclusion, the combined supplementation of oregano and garlic essential oils had a potent anticoccidial effect in vitro and a growth-promoting effect in broilers reared in the absence of anticoccidial drugs.
Collapse
Affiliation(s)
- Erasmia Sidiropoulou
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Production, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Arta, Greece
| | - Virginia Marugan-Hernandez
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Bonos
- Laboratory of Animal Production, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Arta, Greece
| | - Kelsilandia Aguiar-Martins
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Athina Tzora
- Laboratory of Animal Production, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Arta, Greece
| |
Collapse
|
231
|
Potente G, Bonvicini F, Gentilomi GA, Antognoni F. Anti- Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East. Antibiotics (Basel) 2020; 9:antibiotics9070395. [PMID: 32660009 PMCID: PMC7400371 DOI: 10.3390/antibiotics9070395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Extensive documentation is available on plant essential oils as a potential source of antimicrobials, including natural drugs against Candida spp. Yeasts of the genus Candida are responsible for various clinical manifestations, from mucocutaneous overgrowth to bloodstream infections, whose incidence and mortality rates are increasing because of the expanding population of immunocompromised patients. In the last decade, although C. albicans is still regarded as the most common species, epidemiological data reveal that the global distribution of Candida spp. has changed, and non-albicans species of Candida are being increasingly isolated worldwide. The present study aimed to review the anti-Candida activity of essential oils collected from 100 species of the Lamiaceae family growing in the Mediterranean area and the Middle East. An overview is given on the most promising essential oils and constituents inhibiting Candida spp. growth, with a particular focus for those natural products able to reduce the expression of virulence factors, such as yeast-hyphal transition and biofilm formation. Based on current knowledge on members of the Lamiaceae family, future recommendations to strengthen the value of these essential oils as antimicrobial agents include pathogen selection, with an extension towards the new emerging Candida spp. and toxicological screening, as it cannot be taken for granted that plant-derived products are void of potential toxic and/or carcinogenic properties.
Collapse
Affiliation(s)
- Giulia Potente
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.P.); (F.A.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-4290-930
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Fabiana Antognoni
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.P.); (F.A.)
| |
Collapse
|
232
|
Jeucken A, Molenaar MR, van de Lest CHA, Jansen JWA, Helms JB, Brouwers JF. A Comprehensive Functional Characterization of Escherichia coli Lipid Genes. Cell Rep 2020; 27:1597-1606.e2. [PMID: 31042483 DOI: 10.1016/j.celrep.2019.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid membranes are the border between living cells and their environments. The membrane's lipid composition defines fluidity, thickness, and protein activity and is controlled by the intricate actions of lipid gene-encoded enzymes. However, a comprehensive analysis of each protein's contribution to the lipidome is lacking. Here, we present such a comprehensive and functional overview of lipid genes in Escherichia coli by individual overexpression or deletion of these genes. We developed a high-throughput lipidomic platform, combining growth analysis, one-step lipid extraction, rapid LC-MS, and bioinformatic analysis into one streamlined procedure. This allowed the processing of more than 300 samples per day and revealed interesting functions of known enzymes and distinct effects of individual proteins on the phospholipidome. Our data demonstrate the plasticity of the phospholipidome and unexpected relations between lipid classes and cell growth. Modeling of lipidomic responses to short-chain alcohols provides a rationale for targeted membrane engineering.
Collapse
Affiliation(s)
- Aike Jeucken
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Martijn R Molenaar
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Chris H A van de Lest
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands.
| |
Collapse
|
233
|
Nordborg FM, Jones RJ, Oelgemöller M, Negri AP. The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137486. [PMID: 32325569 DOI: 10.1016/j.scitotenv.2020.137486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
Oil pollution remains a significant local threat to shallow tropical coral reef environments, but the environmental conditions typical of coral reefs are rarely considered in oil toxicity testing and risk assessments. Here we review the effects of three environmental co-factors on petroleum oil toxicity towards coral reef organisms, and show that the impacts of oil pollution on coral reef taxa can be exacerbated by environmental conditions commonly encountered in tropical reef environments. Shallow reefs are routinely exposed to high levels of ultraviolet radiation (UVR), which can substantially increase the toxicity of some oil components through phototoxicity. Exposure to UVR represents the most likely and harmful environmental co-factor reviewed here, leading to an average toxicity increase of 7.2-fold across all tests reviewed. The clear relevance of UVR co-exposure and its strong influence on tropical reef oil toxicity highlights the need to account for UVR as a standard practice in future oil toxicity studies. Indeed, quantifying the influence of UVR on toxic thresholds of oil to coral reef species is essential to develop credible oil spill risk models required for oil extraction developments, shipping management and spill responses in the tropics. The few studies available indicate that co-exposure to elevated temperature and low pH, both within the range of current daily and seasonal fluctuations and/or projected under continued climate change, can increase oil toxicity on average by 3.0- and 1.3-fold, respectively. While all three of the reviewed environmental co-factors have the potential to substantially increase the impacts of oil pollution in shallow reef environments, their simultaneous effects have not been investigated. Assessments of the combined effects of oil pollution, UVR, temperature and low pH will become increasingly important to identify realistic hazard thresholds suitable for future risk assessments over the coming century.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Ross J Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Michael Oelgemöller
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
234
|
Common Plant-Derived Terpenoids Present Increased Anti-Biofilm Potential against Staphylococcus Bacteria Compared to a Quaternary Ammonium Biocide. Foods 2020; 9:foods9060697. [PMID: 32492772 PMCID: PMC7353659 DOI: 10.3390/foods9060697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
The antimicrobial actions of three common plant-derived terpenoids (i.e., carvacrol, thymol and eugenol) were compared to those of a typical quaternary ammonium biocide (i.e., benzalkonium chloride; BAC), against both planktonic and biofilm cells of two widespread Staphylococcus species (i.e., S. aureus and S. epidermidis). The minimum inhibitory and bactericidal concentrations (MICs, MBCs) of each compound against the planktonic cells of each species were initially determined, together with their minimum biofilm eradication concentrations (MBECs). Various concentrations of each compound were subsequently applied, for 6 min, against each type of cell, and survivors were enumerated by agar plating to calculate log reductions and determine the resistance coefficients (Rc) for each compound, as anti-biofilm effectiveness indicators. Sessile communities were always more resistant than planktonic ones, depending on the biocide and species. Although lower BAC concentrations were always needed to kill a specified population of either cell type compared to the terpenoids, for the latter, the required increases in their concentrations, to be equally effective against the biofilm cells with respect to the planktonic ones, were not as intense as those observed in the case of BAC, presenting thus significantly lower Rc. This indicates their significant anti-biofilm potential and advocate for their further promising use as anti-biofilm agents.
Collapse
|
235
|
New Synthetic Nitro-Pyrrolomycins as Promising Antibacterial and Anticancer Agents. Antibiotics (Basel) 2020; 9:antibiotics9060292. [PMID: 32486200 PMCID: PMC7345095 DOI: 10.3390/antibiotics9060292] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pyrrolomycins (PMs) are polyhalogenated antibiotics known as powerful biologically active compounds, yet featuring high cytotoxicity. The present study reports the antibacterial and antitumoral properties of new chemically synthesized PMs, where the three positions of the pyrrolic nucleus were replaced by nitro groups, aiming to reduce their cytotoxicity while maintaining or even enhancing the biological activity. Indeed, the presence of the nitro substituent in diverse positions of the pyrrole determined an improvement of the minimal bactericidal concentration (MBC) against Gram-positive (i.e., Staphylococcus aureus) or -negative (i.e., Pseudomonas aeruginosa) pathogen strains as compared to the natural PM-C. Moreover, some new nitro-PMs were as active as or more than PM-C in inhibiting the proliferation of colon (HCT116) and breast (MCF 7) cancer cell lines and were less toxic towards normal epithelial (hTERT RPE-1) cells. Altogether, our findings contribute to increase the knowledge of the mode of action of these promising molecules and provide a basis for their rationale chemical or biological manipulation.
Collapse
|
236
|
García-Contreras R, Loarca D, Pérez-González C, Jiménez-Cortés JG, Gonzalez-Valdez A, Soberón-Chávez G. Rhamnolipids stabilize quorum sensing mediated cooperation in Pseudomonas aeruginosa. FEMS Microbiol Lett 2020; 367:5837079. [PMID: 32407463 DOI: 10.1093/femsle/fnaa080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main models to study social behaviors in bacteria since it synthesizes several exoproducts, including exoproteases and siderophores and release them to the environment. Exoproteases and siderophores are public goods that can be utilized by the individuals that produce them but also by non-producers, that are considered social cheaters. Molecularly exoprotease cheaters are mutants in regulatory genes such as lasR, and are commonly isolated from chronic infections and selected in the laboratory upon serial cultivation in media with protein as a sole carbon source. Despite that the production of exoproteases is exploitable, cooperators have also ways to restrict the growth and selection of social cheaters, for instance by producing toxic metabolites like pyocyanin. In this work, using bacterial competitions, serial cultivation and growth assays, we demonstrated that rhamnolipids which production is regulated by quorum sensing, selectively affect the growth of lasR mutants and are able to restrict social cheating, hence contributing to the maintenance of cooperation in Pseudomonas aeruginosa populations.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| | - Daniel Loarca
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| | - Caleb Pérez-González
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| | - J Guillermo Jiménez-Cortés
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| | - Abigail Gonzalez-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, México
| |
Collapse
|
237
|
Boriollo MFG, Marques MB, da Silva TA, da Silva JJ, Dias RA, Silva Filho THN, Melo ILR, dos Santos Dias CT, Bernardo WLDC, de Mello Silva Oliveira N, Peters VM, Höfling JF, Spolidorio DMP. Antimicrobial potential, phytochemical profile, cytotoxic and genotoxic screening of Sedum praealtum A. DC. (balsam). BMC Complement Med Ther 2020; 20:133. [PMID: 32349729 PMCID: PMC7191818 DOI: 10.1186/s12906-020-02915-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sedum praealtum has been used for a long time in traditional medicine as an analgesic and anti-inflammatory agent. Its beneficial effects have been known since ancient times, when Latinos used it to treat sore and swollen eyes. This research evaluated the antimicrobial potential, the cytotoxic and genotoxic effects, and some chromatographic profiles of the hydroethanolic extract of leaves, stems and roots of S. praealtum. METHODS The antimicrobial activities were carried out by broth microdilution and agar diffusion. In vitro cytotoxicity was evaluated by cell cultures of Aedes albopictus and the selectivity index (SI) was estimated: SI=CI50/MIC. Genotoxic and systemic toxic effects of S. praealtum leaves were analyzed by micronucleus assay in mice bone marrow. Chromatographic profiles and mass spectra were investigated by GC-MS. RESULTS Gram-positive (B. subtilis, B. cereus, M. luteus, E. faecalis and S. aureus) and gram-negative (E. coli, E. aerogenes, S. marcescens, P. aeruginosa, P. mirabilis and S. typhimurium) bacteria exhibited MICs ranging from 12.5-50 and 0-50 mg/ml, respectively. Sedum praealtum showed no efficacy against M. tuberculosis and M. bovis. Cytotoxicity (CI50) of S. praealtum was 4.22 and 5.96 mg/ml for leaves and stems, respectively, while its roots showed no cytotoxicity. Micronucleated polychromatic erythrocytes (MNPCEs) analyzes showed no differences between treatment doses (0.5-2 g/kg) and negative control (NaCl), but the PCE/NCE ratio (polychromatic erythrocyte/normochromatic erythrocyte) showed significant differences. Phytochemical screening identified thirteen compounds in the leaves, stems and roots of S. praealtum potentially associated with their biological activities. CONCLUSIONS This research comprises a first scientific study on genotoxicity, cytotoxicity and antimicrobial effects of S. praealtum (Balsam), and it provides an initial theoretical foundation for its comprehensive use. Results showed antibacterial action of S. praealtum against gram-positive bacteria and some gram-negative species (depending on the plant anatomical part), but ineffective antimycobacterial action. However, S. praealtum leaves and stems display potential cytotoxicity, contributing to the SI < 1 values. In addition, S. praealtum leaves exhibit no clastogenic and/or aneugenic effects, but it has systemic toxicity dose-independent.
Collapse
Affiliation(s)
- Marcelo Fabiano Gomes Boriollo
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP 13414-903 Brazil
| | - Milene Bueno Marques
- Center for Research and Postgraduate Studies in Animal Science, Pathology and Animal Pharmacology Area, University of Alfenas (UNIFENAS), Alfenas, MG 37132-440 Brazil
| | - Thaísla Andrielle da Silva
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP 13414-903 Brazil
| | - Jeferson Júnior da Silva
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP 13414-903 Brazil
| | - Reigson Alves Dias
- Laboratory of Pharmacogenetics and Molecular Biology, Faculty of Medical Sciences, University of Alfenas (UNIFENAS), Alfenas, MG 37132-440 Brazil
| | - Thyago Henrique Neves Silva Filho
- Laboratory of Pharmacogenetics and Molecular Biology, Faculty of Medical Sciences, University of Alfenas (UNIFENAS), Alfenas, MG 37132-440 Brazil
| | - Isadora Letícia Ribeiro Melo
- Laboratory of Pharmacogenetics and Molecular Biology, Faculty of Medical Sciences, University of Alfenas (UNIFENAS), Alfenas, MG 37132-440 Brazil
| | - Carlos Tadeu dos Santos Dias
- Department of Exact Sciences, College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, SP 13418-900 Brazil
| | - Wagner Luís de Carvalho Bernardo
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP 13414-903 Brazil
- Laboratory of Oral Microbiology and Immunology, Department of Physiology and Oral Pathology, Araraquara School of Dentistry, São Paulo State University (FOAr/UNESP), Araraquara, SP 14801-903 Brazil
| | - Nelma de Mello Silva Oliveira
- Center for Research and Postgraduate Studies in Animal Science, Pathology and Animal Pharmacology Area, University of Alfenas (UNIFENAS), Alfenas, MG 37132-440 Brazil
| | - Vera Maria Peters
- Reproductive Biology Center, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG 36036-900 Brazil
| | - José Francisco Höfling
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP 13414-903 Brazil
| | - Denise Madalena Palomari Spolidorio
- Laboratory of Oral Microbiology and Immunology, Department of Physiology and Oral Pathology, Araraquara School of Dentistry, São Paulo State University (FOAr/UNESP), Araraquara, SP 14801-903 Brazil
| |
Collapse
|
238
|
Shon JC, Noh YJ, Kwon YS, Kim JH, Wu Z, Seo JS. The impact of phenanthrene on membrane phospholipids and its biodegradation by Sphingopyxis soli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110254. [PMID: 32007746 DOI: 10.1016/j.ecoenv.2020.110254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
The direct interactions of bacterial membranes and polycyclic aromatic hydrocarbons (PAHs) strongly influence the biological processes, such as metabolic activity and uptake of substrates due to changes in membrane lipids. However, the elucidation of adaptation mechanisms as well as membrane phospholipid alterations in the presence of phenanthrene (PHE) from α-proteobacteria has not been fully explored. This study was conducted to define the degradation efficiency of PHE by Sphingopyxis soli strain KIT-001 in a newly isolated from Jeonju river sediments and to characterize lipid profiles in the presence of PHE in comparison to cells grown on glucose using quantitative lipidomic analysis. This strain was able to respectively utilize 1-hydroxy-2-naphthoic acid and salicylic acid as sole carbon source and approximately 90% of PHE (50 mg/L) was rapidly degraded via naphthalene route within 1 day incubation. In the cells grown on PHE, strain KIT-001 appeared to dynamically change profiles of metabolite and lipid in comparison to cells grown on glucose. The levels of primary metabolites, phosphatidylethanolamines (PE), and phosphatidic acids (PA) were significantly decreased, whereas the levels of phosphatidylcholines (PC) and phosphatidylglycerols (PG) were significantly increased. The adaptation mechanism of Sphingopyxis sp. regarded mainly the accumulation of bilayer forming lipids and anionic lipids to adapt more quickly under restricted nutrition and toxicity condition. Hence, these findings are conceivable that strain KIT-001 has a good adaptive ability and biodegradation for PHE through the alteration of phospholipids, and will be helpful for applications for effective bioremediation of PAHs-contaminated sites.
Collapse
Affiliation(s)
- Jong Cheol Shon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Ji Noh
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Zhexue Wu
- Mass Spectrometry Convergence Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
239
|
Boye A, Addo JK, Acheampong DO, Thomford AK, Asante E, Amoaning RE, Kuma DN. The hydroxyl moiety on carbon one (C1) in the monoterpene nucleus of thymol is indispensable for anti-bacterial effect of thymol. Heliyon 2020; 6:e03492. [PMID: 32195386 PMCID: PMC7078539 DOI: 10.1016/j.heliyon.2020.e03492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thymol, a natural monoterpene phenol is not only relevant clinically as an anti-microbial, anti-oxidant and anti-inflammatory agent but also holds the prospect as a natural template for pharmaceutical semi-synthesis of therapeutic agents. It is a major component of essential oils from many plants. Evidence abound linking overall bioactivity of thymol to its monoterpene nucleus, specifically, the hydroxyl (-OH) substituent on carbon number one (C1) on the monoterpene nucleus. Other studies have posited that the overall bioactivity of thymol is not substantially altered by chemical modification of - OH on the C1 of the monoterpene nucleus. In view of this, it is still unclear as to whether removal or modification of the –OH on C1 of the monoterpene nucleus relates generally or context-dependently to bioactivity of thymol. Objective The present study investigated anti-bacterial effects of ester-and-ether substituted derivatives of thymol on S. aureus, P. aeruginosa and E. coli. Materials and methods twelve ester-and-ether substituted derivatives of thymol (6TM1s and 6TM2s) were synthesized and characterized by using HPLC, Mass spectrometry, and IR techniques. Anti-bacterial activity of the 12 thymol derivatives was evaluated using broth macrodilution and turbidimetric methods against pure clinical isolates (S. aureus, P. aeruginosa and E. coli). Standard anti-biotics used were Thymol Streptomycin and flucloxacillin, while DMSO was used as vehicle for thymol derivatives. MIC and MBC were determined. Results Thymol produced broad-spectrum growth inhibition on all isolates. At equimolar concentrations, thymol and reference drugs produced concentration-dependent growth inhibition against the isolates (Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli) compared to DMSO. Although the growth inhibitory effects of the ester-and-ether derivatives of thymol was significant (P ≤ 0.05) compared to DMSO, it was however insignificant (P ≥ 0.05) compared to thymol and reference antibiotics. Comparatively, at equimolar concentrations, ester-substituted derivatives of thymol, particularly the branched chain derivative (TM1C) produced more effective growth inhibition on the isolates than the ether-substituted derivatives of thymol. Thymol was twice as potent (MIC and MBC, 500 μg/ml) than both ester-and-ether substituted derivatives of thymol (MIC and MBC, > 1000 μg/ml) on all the three clinical isolates. Increase in side chain bulkiness of –OH moiety on the monoterpene nucleus of thymol decreased growth inhibition on isolates. Conclusion Thymol has demonstrated broad-spectrum anti-bacterial effects attributable to the hydroxyl moiety on C1 of the monoterpene nucleus. Structural modification of the hydroxyl moiety on C1 of the monoterpene nucleus of thymol with either ether-or-ester substitutions yielded no significant anti-bacterial effects.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice Kwaku Addo
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ama Kyeraa Thomford
- Department of Biomedical Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Asante
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Regina Elorm Amoaning
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dominic Nkwantabisa Kuma
- Department of Biomedical Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
240
|
Cendrowski A, Kraśniewska K, Przybył JL, Zielińska A, Kalisz S. Antibacterial and Antioxidant Activity of Extracts from Rose Fruits ( Rosa rugosa). Molecules 2020; 25:E1365. [PMID: 32192161 PMCID: PMC7144371 DOI: 10.3390/molecules25061365] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to determine the antioxidant and antimicrobial properties in freeze-dried extracts of rose fruits (Rosa rugosa) obtained using various extraction techniques and to determine the effect of a selected extract on bacterial survival in model fluids imitating protein food. Ethanolic extracts from rose fruits showed higher antioxidant activity compared to other tested extracts. The rose fruits aqueous extract showed the highest inhibitory activity against most of the 10 bacterial strains tested. From the group of Gram-positive bacteria, the Bacillus cereus strain proved to be the most sensitive to the action of the rose extract. From the Gram-negative bacteria: Escherichia coli and Klebsiella pneumoniae were the most sensitive. The reduction in the number of bacterial cells in matrices imitating protein food depended on the concentration of the aqueous extract used. However, at none of the concentrations used was a complete inhibition of bacterial growth observed. We have confirmed that the traditional extraction and freeze-drying of rose fruits is still suitable for the food industry due to obtaining extracts with good antibacterial and antioxidant properties and the use of bio-solvents, such as water or ethanol, which are easily available in high purity and completely biodegradable.
Collapse
Affiliation(s)
- Andrzej Cendrowski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C Str., 02-776 Warsaw, Poland;
| | - Karolina Kraśniewska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C Str., 02-776 Warsaw, Poland
| | - Jarosław L. Przybył
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 Str., 02-776 Warsaw, Poland;
| | - Agnieszka Zielińska
- Chair of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Stanisław Kalisz
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C Str., 02-776 Warsaw, Poland;
| |
Collapse
|
241
|
Jensen TG, Holmstrup M, Madsen RB, Glasius M, Trac LN, Mayer P, Ehlers B, Slotsbo S. Effects of α-pinene on life history traits and stress tolerance in the springtail Folsomia candida. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108681. [PMID: 31816427 DOI: 10.1016/j.cbpc.2019.108681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 11/28/2022]
Abstract
Volatile monoterpenes are emitted in large quantities to both air and soil by many plant species. While studies have addressed effects of monoterpenes on aboveground invertebrates, we have much poorer understanding of the possible effects of monoterpenes on soil invertebrates. Monoterpenes play a protective role in some plant species during heat and water stress, and therefore may provide similar protection against abiotic stress to soil invertebrates. The aim of the present study was to investigate the effects of the common monoterpene, α-pinene, on the soil living springtail, Folsomia candida (Collembola; Isotomidae). We hypothesized that exposure to α-pinene would lower the transition temperature of membranes, and thereby improve cold tolerance. Controlled exposure to α-pinene, which is a volatile liquid at room temperature, was made possible by passive dosing through the air-phase using a lipid donor. This lipid-based passive dosing approach also allows linking observed effects to concentrations in membrane when equilibrium is achieved. Equilibrium membrane concentrations above 116 mmol kg-1 caused springtails to become comatose, and coma recovery time was proportional to exposure concentration. Alpha-pinene delayed time to first egg laying, while the number of eggs laid and hatchability was unaffected. Springtails exposed to α-pinene showed increased survival of cold shock (-6 °C, 2 h), but no effects on heat (34 °C, 2 h) or drought tolerance (98.2% relative humidity, 7d) were observed. The present study has demonstrated that α-pinene has direct toxic effects to F. candida, but on the other hand can improve their cold tolerance considerably at membrane concentrations above 87 mmol kg-1.
Collapse
Affiliation(s)
| | - Martin Holmstrup
- Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark
| | | | - Marianne Glasius
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Lam Ngoc Trac
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Bodil Ehlers
- Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark.
| |
Collapse
|
242
|
Newton MS, Cabezas-Perusse Y, Tong CL, Seelig B. In Vitro Selection of Peptides and Proteins-Advantages of mRNA Display. ACS Synth Biol 2020; 9:181-190. [PMID: 31891492 DOI: 10.1021/acssynbio.9b00419] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
mRNA display is a robust in vitro selection technique that allows the selection of peptides and proteins with desired functions from libraries of trillions of variants. mRNA display relies upon a covalent linkage between a protein and its encoding mRNA molecule; the power of the technique stems from the stability of this link, and the large degree of control over experimental conditions afforded to the researcher. This article describes the major advantages that make mRNA display the method of choice among comparable in vivo and in vitro methods, including cell-surface display, phage display, and ribosomal display. We also describe innovative techniques that harness mRNA display for directed evolution, protein engineering, and drug discovery.
Collapse
Affiliation(s)
- Matilda S. Newton
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
- Department of Molecular, Cellular, and Developmental Biology & Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yari Cabezas-Perusse
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Cher Ling Tong
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
243
|
Nanomolar Responsiveness of an Anaerobic Degradation Specialist to Alkylphenol Pollutants. J Bacteriol 2020; 202:JB.00595-19. [PMID: 31843798 DOI: 10.1128/jb.00595-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Anaerobic degradation of p-cresol (4-methylphenol) by the denitrifying betaproteobacterium Aromatoleum aromaticum EbN1 is regulated with high substrate specificity, presumed to be mediated by the predicted σ54-dependent two-component system PcrSR. An unmarked, in-frame ΔpcrSR deletion mutant showed reduced expression of the genes cmh (21-fold) and hbd (8-fold) that encode the two enzymes for initial oxidation of p-cresol to p-hydroxybenzoate compared to their expression in the wild type. The expression of cmh and hbd was restored by in trans complementation with pcrSR in the ΔpcrSR background to even higher levels than in the wild type. This is likely due to ∼200-/∼30-fold more transcripts of pcrSR in the complemented mutant. The in vivo responsiveness of A. aromaticum EbN1 to p-cresol was studied in benzoate-limited anaerobic cultures by the addition of p-cresol at various concentrations (from 100 μM down to 0.1 nM). Time-resolved transcript profiling by quantitative reverse transcription-PCR (qRT-PCR) revealed that the lowest p-cresol concentrations just affording cmh and hbd expression (response threshold) ranged between 1 and 10 nM, which is even more sensitive than the respective odor receptors of insects. A similar response threshold was determined for another alkylphenol, p-ethylphenol, which strain EbN1 anaerobically degrades via a different route and senses by the σ54-dependent one-component system EtpR. Based on these data and theoretical considerations, p-cresol or p-ethylphenol added as a single pulse (10 nM) requires less than a fraction of a second to reach equilibrium between intra- and extracellular space (∼20 molecules per cell), with an estimated Kd (dissociation constant) of <100 nM alkylphenol (p-cresol or p-ethylphenol) for its respective sensory protein (PcrS or EtpR).IMPORTANCE Alkylphenols (like p-cresol and p-ethylphenol) represent bulk chemicals for industrial syntheses. Besides massive local damage events, large-scale micropollution is likewise of environmental and health concern. Next to understanding how such pollutants can be degraded by microorganisms, it is also relevant to determine the microorganisms' lower threshold of responsiveness. Aromatoleum aromaticum EbN1 is a specialist in anaerobic degradation of aromatic compounds, employing a complex and substrate-specifically regulated catabolic network. The present study aims at verifying the predicted role of the PcrSR system in sensing p-cresol and at determining the threshold of responsiveness for alkylphenols. The findings have implications for the enigmatic persistence of dissolved organic matter (escape from biodegradation) and for the lower limits of aromatic compounds required for bacterial growth.
Collapse
|
244
|
Usach I, Margarucci E, Manca ML, Caddeo C, Aroffu M, Petretto GL, Manconi M, Peris JE. Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections. NANOMATERIALS 2020; 10:nano10020286. [PMID: 32046201 PMCID: PMC7075235 DOI: 10.3390/nano10020286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/04/2023]
Abstract
Citrus species extracts are well known sources of bio-functional compounds with health-promoting effects. In particular, essential oils are known for their antibacterial activity due to the high content of terpenes. In this work, the steam-distilled essential oil from the leaves of Citrus limon var. pompia was loaded in phospholipid vesicles. The physico-chemical characteristics of the essential oil loaded vesicles were compared with those of vesicles that were loaded with citral, which is one of the most abundant terpenes of Citrus essential oils. The biocompatibility of the vesicles was assessed in vitro in human keratinocytes. Furthermore, the antimicrobial activity of the vesicles was tested while using different bacterial strains and a yeast: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans, respectively. The vesicles were small in size (~140 nm), slightly polydispersed (PI ~ 0.31), highly negatively charged (~ −73 mV), and able to incorporate high amounts of essential oil or citral (E% ~ 86%). Pompia essential oil and citral exhibited antimicrobial activity against all of the assayed microorganisms, with P. aeruginosa being the least sensitive. Citral was slightly more effective than pompia essential oil against E. coli, S. aureus, and C. albicans. The incorporation of citral in vesicles improved its antifungal activity against C. albicans.
Collapse
Affiliation(s)
- Iris Usach
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Avda. V. Andrés Estellés, s/n Burjassot, Valencia 46100, Spain; (I.U.); (E.M.)
| | - Elisabetta Margarucci
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Avda. V. Andrés Estellés, s/n Burjassot, Valencia 46100, Spain; (I.U.); (E.M.)
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - Carla Caddeo
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - Matteo Aroffu
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - Giacomo L. Petretto
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy;
| | - Maria Manconi
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - José-Esteban Peris
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Avda. V. Andrés Estellés, s/n Burjassot, Valencia 46100, Spain; (I.U.); (E.M.)
- Correspondence: ; Tel.: +34-963-543-353; Fax: +34-963-544-911
| |
Collapse
|
245
|
Varrella S, Tangherlini M, Corinaldesi C. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. Mar Drugs 2020; 18:md18020091. [PMID: 32019162 PMCID: PMC7074082 DOI: 10.3390/md18020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are considered to be among the most extreme ecosystems on our planet, allowing only the life of polyextremophilic organisms. DHABs’ prokaryotes exhibit extraordinary metabolic capabilities, representing a hot topic for microbiologists and biotechnologists. These are a source of enzymes and new secondary metabolites with valuable applications in different biotechnological fields. Here, we review the current knowledge on prokaryotic diversity in DHABs, highlighting the biotechnological applications of identified taxa and isolated species. The discovery of new species and molecules from these ecosystems is expanding our understanding of life limits and is expected to have a strong impact on biotechnological applications.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
| | | | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
- Correspondence:
| |
Collapse
|
246
|
Abstract
A desert soil sample was saturated with crude oil (17.3%, w/w) and aliquots were diluted to different extents with either pristine desert or garden soils. Heaps of all samples were exposed to outdoor conditions through six months, and were repeatedly irrigated with water and mixed thoroughly. Quantitative determination of the residual oil in the samples revealed that oil-bioremediation in the undiluted heaps was nearly as equally effective as in the diluted ones. One month after starting the experiment. 53 to 63% of oil was removed. During the subsequent five months, 14 to 24% of the oil continued to be consumed. The dynamics of the hydrocarbonoclastic bacterial communities in the heaps was monitored. The highest numbers of those organisms coordinated chronologically with the maximum oil-removal. Out of the identified bacterial species, those affiliated with the genera Nocardioides (especially N. deserti), Dietzia (especially D. papillomatosis), Microbacterium, Micrococcus, Arthrobacter, Pseudomonas, Cellulomonas, Gordonia and others were main contributors to the oil-consumption. Some species, e.g. D. papillomatosis were minor community constituents at time zero but they prevailed at later phases. Most isolates tolerated up to 20% oil, and D. papillomatosis showed the maximum tolerance compared with all the other studied isolates. It was concluded that even in oil-saturated soil, self-cleaning proceeds at a normal rate. When pristine soil receives spilled oil, indigenous microorganisms suitable for dealing with the prevailing oil-concentrations become enriched and involved in oil-biodegradation.
Collapse
|
247
|
Chemical Composition and Antibacterial Activity of Essential Oils from the Algerian Endemic Origanum glandulosum Desf. against Multidrug-Resistant Uropathogenic E. coli Isolates. Antibiotics (Basel) 2020; 9:antibiotics9010029. [PMID: 31952165 PMCID: PMC7169401 DOI: 10.3390/antibiotics9010029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 11/28/2022] Open
Abstract
Antibiotics are becoming ineffective against resistant bacteria. The use of essential oils (EOs) may constitute an alternative solution to fight against multidrug-resistant bacteria. This study aims to determine the chemical composition of EOs from five populations of the endemic Algerian Origanum glandulosum Desf. and to investigate their potential antibacterial activity against multidrug-resistant uropathogenic E. coli strains. The EOs were obtained by hydrodistillation and their composition was investigated by gas chromatography/mass spectrometry (GC/MS). The antibacterial activity was evaluated by the disc diffusion method against eight E. coli strains (six uropathogenic resistant and two referenced susceptible strains). Minimum inhibitory and bactericidal concentrations (MIC/MBC) were obtained by the broth microdilution method. The main EO components were thymol (15.2–56.4%), carvacrol (2.8–59.6%), γ-terpinene (9.9–21.8%) and p-cymene (8.5–13.9%). The antibacterial tests showed that all the EOs were active against all the strains, including the multidrug-resistant strains. The EO from the Bordj location, which contained the highest amount of carvacrol (59.6%), showed the highest antibacterial activity (inhibition diameters from 12 to 24.5 mm at a dilution of 1/10). To our knowledge, this is the first description of the activity of O. glandulosum EOs against resistant uropathogenic strains. Our study suggests that O. glandulosum EO could be used in some clinical situations to treat or prevent infections (e.g., urinary tract infections) with multidrug-resistant strains.
Collapse
|
248
|
Presentato A, Lampis S, Vantini A, Manea F, Daprà F, Zuccoli S, Vallini G. On the Ability of Perfluorohexane Sulfonate (PFHxS) Bioaccumulation by Two Pseudomonas sp. Strains Isolated from PFAS-Contaminated Environmental Matrices. Microorganisms 2020; 8:E92. [PMID: 31936600 PMCID: PMC7022908 DOI: 10.3390/microorganisms8010092] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 01/02/2023] Open
Abstract
PFASs (perfluoroalkyl and polyfluoroalkyl substances) are highly fluorinated, aliphatic, synthetic compounds with high thermal and chemical stability as well as unique amphiphilic properties which make them ingredients in a range of industrial processes. PFASs have attracted consideration due to their persistence, toxicity and bioaccumulation tendency in the environment. Recently, attention has begun to be addressed to shorter-chain PFASs, such as perfluorohexane sulfonate [PFHxS], apparently less toxic to and more easily eliminated from lab animals. However, short-chain PFASs represent end-products from the transformation of fluorotelomers whose biotic breakdown reactions have not been identified to date. This means that such emergent pollutants will tend to accumulate and persist in ecosystems. Since we are just learning about the interaction between short-chain PFASs and microorganisms, this study reports on the response to PFHxS of two Pseudomonas sp. strains isolated from environmental matrices contaminated by PFASs. The PFHxS bioaccumulation potential of these strains was unveiled by exploiting different physiological conditions as either axenic or mixed cultures under alkanothrofic settings. Moreover, electron microscopy revealed nonorthodox features of the bacterial cells, as a consequence of the stress caused by both organic solvents and PFHxS in the culturing substrate.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (S.Z.); (G.V.)
| | - Andrea Vantini
- Regional Agency for Environmental Prevention and Protection of Veneto (ARPAV), Regional Laboratories, 37135 Verona, Italy; (A.V.); (F.M.); (F.D.)
| | - Flavio Manea
- Regional Agency for Environmental Prevention and Protection of Veneto (ARPAV), Regional Laboratories, 37135 Verona, Italy; (A.V.); (F.M.); (F.D.)
| | - Francesca Daprà
- Regional Agency for Environmental Prevention and Protection of Veneto (ARPAV), Regional Laboratories, 37135 Verona, Italy; (A.V.); (F.M.); (F.D.)
| | - Stefano Zuccoli
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (S.Z.); (G.V.)
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (S.Z.); (G.V.)
| |
Collapse
|
249
|
Wang T, Li Y, Bi Y, Zhang M, Zhang T, Zheng X, Dong Y, Huang Y. Benzyl isothiocyanate fumigation inhibits growth, membrane integrity and mycotoxin production inAlternaria alternata. RSC Adv 2020; 10:1829-1837. [PMID: 35494694 PMCID: PMC9047563 DOI: 10.1039/c9ra09225k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
The antifungal activity of benzyl isothiocyanate (BITC) against pear pathotype-Alternaria alternata, the causal agent of pear black spot, and its possible mechanisms were studied. The results indicated that both the spore germination and mycelial growth of A. alternata were significantly inhibited by BITC in a dose-dependent manner. BITC concentrations at 1.25 mM completely suppressed mycelial growth of A. alternata and prevented ≥50% of black spot development in wounded pears inoculated with A. alternata. Microscopic analyses and propidium iodide (PI) staining showed that spore morphology in A. alternata treated with BITC at 0.625 mM was severely damaged. Relative electrical conductivity and lysis ability assays further showed that BITC treatment destroyed the integrity of the plasma membrane. Additionally, mycotoxin production was inhibited by 0.312 mM BITC, and the inhibitory rates of alternariol monomethyl ether (AME), alternariol (AOH), altenuene (ALT) and tentoxin (TEN) were 89.36%, 84.57%, 91.41% and 67.78%, respectively. The above results suggest that BITC exerts antifungal activity through membrane-targeted mechanisms. The antifungal activity of benzyl isothiocyanate (BITC) against pear pathotype-Alternaria alternata, the causal agent of pear black spot, and its possible mechanisms were studied.![]()
Collapse
Affiliation(s)
- Tiaolan Wang
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Yongcai Li
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Yang Bi
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Miao Zhang
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Tingting Zhang
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Xiaoyuan Zheng
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Yupeng Dong
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Yi Huang
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou 730070
- China
| |
Collapse
|
250
|
Mosbah H, Sassi AB, Chahdoura H, Snoussi M, Flamini G, Achour L, Selmi B. Antioxidant, antimicrobial and phytotoxic activities of Rhaponticum acaule DC. essential oil. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Habib Mosbah
- Higher Institute of Biotechnology of Monastir, Tunisia
| | | | | | - Mejdi Snoussi
- Higher Institute of Biotechnology of Monastir, Tunisia
| | - Guido Flamini
- Università di Pisa, Italy; Università di Pisa, Italy
| | - Lotfi Achour
- Higher Institute of Biotechnology of Monastir, Tunisia
| | | |
Collapse
|