201
|
Huang C, Liu X, Wu Q, Cao J, Zhu X, Wang X, Song Y. Cardiovascular toxic effects of nanoparticles and corresponding molecular mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124360. [PMID: 38871171 DOI: 10.1016/j.envpol.2024.124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Rapid advancements in nanotechnology have been integrated into various disciplines, leading to an increased prevalence of nanoparticle exposure. The widespread utilization of nanomaterials and heightened levels of particulate pollution have prompted government departments to intensify their focus on assessing the safety of nanoparticles (NPs). The cardiovascular system, crucial for maintaining human health, has emerged as vulnerable to damage from nanoparticle exposure. A mounting body of evidence indicates that interactions can occur when NPs come into contact with components of the cardiovascular system, contributing to adverse cardiovascular disease (CVD). However, the underlying molecular mechanisms driving these events remain elusive. This work provides a comprehensive review of recent advance on nanoparticle-induced adverse cardiovascular events and offers insight into the associated molecular mechanisms. Finally, the influencing factors of NPs-induced cardiovascular toxicity are discussed.
Collapse
Affiliation(s)
- Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
202
|
Lyons S, Nolan A, Carthy P, Griffin M, O'Connell B. Long-term exposure to PM 2.5 air pollution and mental health: a retrospective cohort study in Ireland. Environ Health 2024; 23:54. [PMID: 38858702 PMCID: PMC11163701 DOI: 10.1186/s12940-024-01093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Mental illness is the leading cause of years lived with disability, and the global disease burden of mental ill-health has increased substantially in the last number of decades. There is now increasing evidence that environmental conditions, and in particular poor air quality, may be associated with mental health and wellbeing. METHODS This cross-sectional analysis uses data on mental health and wellbeing from The Irish Longitudinal Study on Ageing (TILDA), a nationally representative survey of the population aged 50+ in Ireland. Annual average PM2.5 concentrations at respondents' residential addresses over the period 1998-2014 are used to measure long-term exposure to ambient PM2.5. RESULTS We find evidence of associations between long-term exposure to ambient PM2.5 and depression and anxiety. The measured associations are strong, and are comparable with effect sizes for variables such as sex. Effects are also evident at relatively low concentrations by international standards. However, we find no evidence of associations between long-term ambient particulate pollution and other indicators of mental health and well-being such as stress, worry and quality of life. CONCLUSIONS The measured associations are strong, particularly considering the relatively low PM2.5 concentrations prevailing in Ireland compared to many other countries. While it is estimated that over 90 per cent of the world's population lives in areas with annual mean PM2.5 concentrations greater than 10 μg/m3, these results contribute to the increasing evidence that suggests that harmful effects can be detected at even low levels of air pollution.
Collapse
Affiliation(s)
- Seán Lyons
- School of Economics, University College Dublin, Dublin, Ireland
- Department of Economics, Trinity College Dublin, Dublin, Ireland
| | - Anne Nolan
- Department of Economics, Trinity College Dublin, Dublin, Ireland.
- Economic and Social Research Institute, Whitaker Square, Sir John Rogerson's Quay, Dublin 2, D02 K138, Ireland.
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland.
| | - Philip Carthy
- Economic and Social Research Institute, Whitaker Square, Sir John Rogerson's Quay, Dublin 2, D02 K138, Ireland
| | - Míde Griffin
- Department of Economics, Trinity College Dublin, Dublin, Ireland
| | - Brian O'Connell
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
203
|
Qin X, Wei P, Ning Z, Gali NK, Ghadikolaei MA, Wang Y. Dissecting PM sensor capabilities: A combined experimental and theoretical study on particle sizing and physicochemical properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124354. [PMID: 38862097 DOI: 10.1016/j.envpol.2024.124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Recent advancements in particulate matter (PM) optical measurement technology have enhanced the characterization of particle size distributions (PSDs) across various temporal and spatial scales, offering a more detailed analysis than traditional PM mass concentration monitoring. This study employs field experiments, laboratory tests, and model simulations to evaluate the influence of physicochemical characteristics of particulate matter (PM) on the performance of a compact, multi-channel PM sizing sensor. The sensor is integrated within a mini air station (MAS) designed to detect particles across 52 channels. The field experiments highlighted the sensor's ability to track hygroscopicity parameter κ-values across particle sizes, noting an increasing trend with particle size. The sensor's capability in identifying the size and mass concentration of different PM types, including ammonium nitrate, sodium chloride, smoke, incense, and silica dust particles, was assessed through laboratory tests. Laboratory comparisons with the Aerodynamic Particle Sizer (APS) showed high consistency (R2 > 0.96) for various PM sources, supported by Kolmogorov-Smirnov tests confirming the sensor's capability to match APSsize distributions. Model simulations further elucidated the influence of particle refractive index and size distributions on sensor performance, leading to optimized calibrant selection and application-specific recommendations. These comprehensive evaluations underscore the critical interplay between the chemical composition and physical properties of PM, significantly advancing the application and reliability of optical PM sensors in environmental monitoring.
Collapse
Affiliation(s)
- Xiaoliang Qin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China; Atmospheric Research Center, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Peng Wei
- College of Geography and Environment, Shandong Normal University, Jinan, China
| | - Zhi Ning
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China; Atmospheric Research Center, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China.
| | - Nirmal Kumar Gali
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meisam Ahmadi Ghadikolaei
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ya Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
204
|
Darras-Hostens M, Degrendel M, Amouyel P, Dauchet L. Association between residential air pollution exposure and cardiovascular risk factors in adults living in northern France. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:232. [PMID: 38849665 DOI: 10.1007/s10653-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024]
Abstract
Air pollution is associated with elevated cardiovascular mortality and an increase in cardiovascular risk factors. However, the literature data on associations between air pollution and cardiovascular risk factors are contradictory. To explore the relationship between residential exposure to atmospheric pollutants and cardiovascular risk factors (lipid biomarker and blood pressure levels). We studied a sample of 2339 adult participants in the ELISABET study from the Dunkirk and Lille urban areas of France. The mean annual exposure to atmospheric pollutants (PM10, NO2 and SO2) at the home address was estimated via an air dispersion model. The associations were probed in multivariate linear regression models. The mean NO2 level was 26.05 μg/m3 in Lille and 19.96 µg/m3 in Dunkirk. The mean PM10 level was 27.02 μg/m3 in Lille and 26.53 μg/m3 in Dunkirk. We detected a significant association between exposure to air pollutants and the high-density lipoprotein (HDL) (which is a protective factor against cardiovascular diseases) level: for a 2 µg/m3 increment in PM10, the HDL level decreased by 1.72% (p = 0.0037). None of the associations with other lipid variables or with blood pressure were significant. We didn't find evidence significant associations for most of the risk factors but, long-term exposure of adults to moderate levels of ambient air pollution was associated with a decrement in HDL.
Collapse
Affiliation(s)
- Marion Darras-Hostens
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, University of Lille, 59000, Lille, France
| | - Maxime Degrendel
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, University of Lille, 59000, Lille, France
| | - Philippe Amouyel
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, University of Lille, 59000, Lille, France
| | - Luc Dauchet
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, University of Lille, 59000, Lille, France.
- Epidemiology Unit, 2 Rue du Pr. Laguesse (MRRC), Lille University Medical Center, 59037, Lille Cedex, France.
| |
Collapse
|
205
|
Kilbo Edlund K, Andersson EM, Andersson M, Barregard L, Christensson A, Johannesson S, Harari F, Murgia N, Torén K, Stockfelt L. Occupational particle exposure and chronic kidney disease: a cohort study in Swedish construction workers. Occup Environ Med 2024; 81:238-243. [PMID: 38811167 PMCID: PMC11187372 DOI: 10.1136/oemed-2023-109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES Increasing epidemiological and experimental evidence suggests that particle exposure is an environmental risk factor for chronic kidney disease (CKD). However, only a few case-control studies have investigated this association in an occupational setting. Hence, our objective was to investigate associations between particle exposure and CKD in a large cohort of Swedish construction workers. METHODS We performed a retrospective cohort study in the Swedish Construction Workers' Cohort, recruited 1971-1993 (n=286 089). A job-exposure matrix was used to identify workers exposed to nine different particulate exposures, which were combined into three main categories (inorganic dust and fumes, wood dust and fibres). Incident CKD and start of renal replacement therapy (RRT) were obtained from validated national registries until 2021 and analysed using adjusted Cox proportional hazards models. RESULTS Exposure to inorganic dust and fumes was associated with an increased risk of CKD and RRT during working age (adjusted HR for CKD at age <65 years 1.15, 95% CI 1.05 to 1.26). The elevated risk did not persist after retirement age. Exposure to cement dust, concrete dust and diesel exhaust was associated with CKD. Elevated HRs were also found for quartz dust and welding fumes. CONCLUSIONS Workers exposed to inorganic particles seem to be at elevated risk of CKD and RRT. Our results are in line with previous evidence of renal effects of ambient air pollution and warrant further efforts to reduce occupational and ambient particle exposure.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Eva M Andersson
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Martin Andersson
- Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - Lars Barregard
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Anders Christensson
- Department of Nephrology, Lund University, Lund, Sweden
- Department of Nephrology, Skåne University Hospital Nephrology, Malmö, Sweden
| | - Sandra Johannesson
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Florencia Harari
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Nicola Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Kjell Torén
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Leo Stockfelt
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| |
Collapse
|
206
|
Cao Y, Wu X, Han W, An J. Visual analysis of global air pollution impact research: a bibliometric review (1996-2022). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40383-40418. [PMID: 37452246 DOI: 10.1007/s11356-023-28468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
The impact of air pollution is one of the hotspots attracting continuous scholarly attention, but the comprehensive statistical and visual analysis reviews are few. Employing the method of bibliometric analysis, this paper took the relevant literature from 1996 to April 2022 on the Web of Science as the research object. Through the methods of keyword co-occurrence analysis and burst analysis, the spatiotemporal evolution trend, cooperation network, outstanding scholars, knowledge base, and research focus of air pollution impact research are visually presented. Via constructing a common word matrix of high-frequency words, clustering analysis is used to aggregate high-frequency keywords into 24 clusters. By the strategic coordinate analysis method, the relationships within and between clusters were revealed. The main findings include (1) research on the impact of air pollution mainly focusing on human health; (2) the six keywords with the highest centrality are California, hydrocarbons, dioxide, generation, Asia, and diesel; (3) these 11 clusters may be developed into future research hotspots: particulate matter, nitrogen oxides, mortality, ozone, pollution, air quality, asthma, children, epidemiology, aerosols, and polycyclic aromatic hydrocarbons; and (4) seven topics are research hot: daily mortality, long-term exposure, coronary heart disease, concentration, North China plain, traffic-related air pollution, and air pollution.
Collapse
Affiliation(s)
- Yanli Cao
- School of Economics and Management, Shanghai Maritime University, Shanghai, 201306, China
| | - Xianhua Wu
- School of Economics and Management, Shanghai Maritime University, Shanghai, 201306, China.
- Collaborative Innovation Center On Climate and Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Wenjun Han
- School of Economics and Management, Shanghai Maritime University, Shanghai, 201306, China
| | - Jiaqi An
- School of Economics and Management, Shanghai Maritime University, Shanghai, 201306, China
| |
Collapse
|
207
|
Seoni S, Shahini A, Meiburger KM, Marzola F, Rotunno G, Acharya UR, Molinari F, Salvi M. All you need is data preparation: A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108200. [PMID: 38677080 DOI: 10.1016/j.cmpb.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND AND OBJECTIVES Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. METHODS A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013 and 2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. RESULTS Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42 %), resampling (increasing the percentage of robust radiomics features from 59.5 % to 89.25 %), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42 % in classification accuracy and 47 % in segmentation Dice scores. CONCLUSIONS Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.
Collapse
Affiliation(s)
- Silvia Seoni
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Alen Shahini
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Kristen M Meiburger
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Francesco Marzola
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Giulia Rotunno
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Centre for Health Research, University of Southern Queensland, Australia
| | - Filippo Molinari
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Massimo Salvi
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
208
|
Correia C, Santana P, Martins V, Mariano P, Almeida A, Almeida SM. Advancing air quality monitoring: A low-cost sensor network in motion - Part I. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121179. [PMID: 38761627 DOI: 10.1016/j.jenvman.2024.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
In urban areas, high levels of air pollution pose significant risks to human health, emphasising the need for detailed air quality (AQ) monitoring. However, traditional AQ monitoring relies on the data from Reference Monitoring Stations, which are sparsely distributed and provide only hourly or daily data, failing to capture the spatial and temporal variability of air pollutant concentrations. Addressing this challenge, we introduce in this article the ExpoLIS system, an all-weather mobile AQ monitoring system that integrates various AQ low-cost sensors (LCSs), providing high spatio-temporal resolution data. This study demonstrates that the inclusion of an extended sampling device may mitigate the effect of the meteorological parameters and other disturbances on readings. At the same time, it did not reduce the quality of the data, both in static conditions and in motion, as we were able to maintain a certain level of agreement between the LCSs. In conclusion, the ExpoLIS system proves its versatility by enabling the collection of large quantities of accurate data, allowing a deeper understanding of the AQ dynamics in urban environments.
Collapse
Affiliation(s)
- Carolina Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela, Portugal.
| | - Pedro Santana
- ISCTE-Instituto Universitário de Lisboa (ISCTE-IUL), Av. Das Forças Armadas, 1649-026, Lisboa, Portugal; ISTAR-Information Sciences and Technologies and Architecture Research Center, Av. Das Forças Armadas, 1649-026, Lisboa, Portugal
| | - Vânia Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela, Portugal
| | - Pedro Mariano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela, Portugal; ISCTE-Instituto Universitário de Lisboa (ISCTE-IUL), Av. Das Forças Armadas, 1649-026, Lisboa, Portugal
| | - Alexandre Almeida
- ISCTE-Instituto Universitário de Lisboa (ISCTE-IUL), Av. Das Forças Armadas, 1649-026, Lisboa, Portugal; Instituto de Telecomunicações, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela, Portugal
| |
Collapse
|
209
|
Zhu Y, Hu F, Zhou X, Xue Q. Estimating the causal effect of air pollution on mental disorders: A two-sample Mendelian randomization study. JOURNAL OF NEURORESTORATOLOGY 2024; 12:100114. [DOI: 10.1016/j.jnrt.2024.100114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
210
|
Li Q, Zhang Y, Fang J, Sun Q, Du Y, Wang Y, Lei J, Zhu Y, Xue X, Chen R, Kan H, Li T. Effect of air purification on blood pressure and heart rate among school children: A cluster, randomized, double-blind crossover trial. CHINESE SCIENCE BULLETIN 2024; 69:2454-2462. [DOI: 10.1360/tb-2023-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
211
|
Zhang CL, Maccarone JR, Grady ST, Collins CM, Moy ML, Hart JE, Kang CM, Coull BA, Schwartz JD, Koutrakis P, Garshick E. Indoor and ambient black carbon and fine particulate matter associations with blood biomarkers in COPD patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171897. [PMID: 38522542 PMCID: PMC11090036 DOI: 10.1016/j.scitotenv.2024.171897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Systemic inflammation contributes to cardiovascular risk and chronic obstructive pulmonary disease (COPD) pathophysiology. Associations between systemic inflammation and exposure to ambient fine particulate matter (PM ≤ 2.5 μm diameter; PM2.5), and black carbon (BC), a PM2.5 component attributable to traffic and other sources of combustion, infiltrating indoors are not well described. METHODS Between 2012 and 2017, COPD patients completed in-home air sampling over one-week intervals, up to four times (seasonally), followed by measurement of plasma biomarkers of systemic inflammation, C-reactive protein (CRP) and interleukin-6 (IL-6), and endothelial activation, soluble vascular adhesion molecule-1 (sVCAM-1). Ambient PM2.5, BC and sulfur were measured at a central site. The ratio of indoor/ambient sulfur in PM2.5, a surrogate for fine particle infiltration, was used to estimate indoor BC and PM2.5 of ambient origin. Linear mixed effects regression with a random intercept for each participant was used to assess associations between indoor and indoor of ambient origin PM2.5 and BC with each biomarker. RESULTS 144 participants resulting in 482 observations were included in the analysis. There were significant positive associations between indoor BC and indoor BC of ambient origin with CRP [%-increase per interquartile range (IQR);95 % CI (13.2 %;5.2-21.8 and 11.4 %;1.7-22.1, respectively)]. Associations with indoor PM2.5 and indoor PM2.5 of ambient origin were weaker. There were no associations with IL-6 or sVCAM-1. CONCLUSIONS In homes of patients with COPD without major sources of combustion, indoor BC is mainly attributable to the infiltration of ambient sources of combustion indoors. Indoor BC of ambient origin is associated with increases in systemic inflammation in patients with COPD, even when staying indoors.
Collapse
Affiliation(s)
- Cathy L Zhang
- Research and Development Service, VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | - Jennifer R Maccarone
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, Boston, MA 02132, USA; The Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Stephanie T Grady
- Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA
| | - Christina M Collins
- Research and Development Service, VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | - Marilyn L Moy
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, Boston, MA 02132, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jaime E Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Choong-Min Kang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, Boston, MA 02132, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
212
|
Leow L, Tam JKC, Kee PP, Zain A. Healthcare sustainability in cardiothoracic surgery. ANZ J Surg 2024; 94:1059-1064. [PMID: 38345130 DOI: 10.1111/ans.18899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Climate change is the greatest threat to human health. Cardiothoracic patients suffer direct consequences from poor environmental health and we have a vested interest to address this in our practice. As leaders of complex high-end surgery, we are uniquely positioned to effect practical and immediate changes to significantly pare down emissions within the operating theatre, outside the operating theatre and beyond the confines of the hospital. METHODS We aim to spotlight this pressing issue, take stock of our current efforts, and encourage fellow specialists to drive this agenda. RESULTS Sustainability in healthcare needs to be formalized as part of the core curriculum in surgical training and awareness generated via carbon audits and life cycle analyses. Practical actions such as reducing unnecessary equipment usage, choosing reusable equipment over single use disposables, judicious use of investigations rooted in clinical reasoning and sharing of resources across services and health systems help reduce the carbon output of our specialty. CONCLUSION The 'Triple Bottom Line' serves as a good template to calibrate efforts that balance quality against environmental costs. More can be done to advocate for and find solutions for sustainable healthcare with cardiothoracic surgery.
Collapse
Affiliation(s)
- Lowell Leow
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre Singapore, Singapore
| | - John Kit Chung Tam
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Poh Pei Kee
- Department of Anaesthesia, National University Hospital Singapore, Singapore
| | - Amanda Zain
- Department of Paediatrics, Khoo Teck Puat National University Children's Medical Institute, National University Hospital Singapore, Singapore
- Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
213
|
Leinweber ME, Meisenbacher K, Schmandra T, Karl T, Torsello G, Walensi M, Geisbuesch P, Schmitz-Rixen T, Jung G, Hofmann AG. Exploring the Effects of Local Air Pollution on Popliteal Artery Aneurysms. J Clin Med 2024; 13:3250. [PMID: 38892961 PMCID: PMC11172973 DOI: 10.3390/jcm13113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives: A growing body of evidence highlights the effects of air pollution on chronic and acute cardiovascular diseases, such as associations between PM10 and several cardiovascular events. However, evidence of the impact of fine air pollutants on the development and progression of peripheral arterial aneurysms is not available. Methods: Data were obtained from the multicenter PAA outcome registry POPART and the German Environment Agency. Means of the mean daily concentration of PM10, PM2.5, NO2, and O3 concentrations were calculated for 2, 10, and 3650 days prior to surgery for each patient. Additionally, weighted ten-year averages were analyzed. Correlation was assessed by calculating Pearson correlation coefficients, and regression analyses were conducted as multiple linear or multiple logistic regression, depending on the dependent variable. Results: For 1193 patients from the POPART registry, paired air pollution data were available. Most patients were male (95.6%) and received open surgical repair (89.9%). On a regional level, the arithmetic means of the daily means of PM10 between 2000 and 2022 were neither associated with average diameters nor runoff vessels. Negative correlations for mean PAA diameter and mean NO2, as well as a positive correlation with mean O3, were found; however, they were not statistically significant. On patient level, no evidence for an association of mean PM10 exposure over ten years prior to inclusion in the registry and PAA diameter or the number of runoff vessels was found. Weighted PM10, NO2, and O3 exposure over ten years also did not result in significant associations with aneurysm diameter or runoff vessels. Short-term air pollutant concentrations were not associated with symptomatic PAAs or with perioperative complications. Conclusions: We found no indication that long-term air pollutant concentrations are associated with PAA size or severity, neither on a regional nor individual level. Additionally, short-term air pollution showed no association with clinical presentation or treatment outcomes.
Collapse
Affiliation(s)
| | - Katrin Meisenbacher
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Schmandra
- Department of Vascular Surgery, Sana Klinikum Offenbach, 63069 Offenbach, Germany
| | - Thomas Karl
- Department of Vascular and Endovascular Surgery, Klinikum am Plattenwald, SLK-Kliniken Heilbronn GmbH, 74177 Bad Friedrichshall, Germany
| | - Giovanni Torsello
- Department for Vascular Surgery, Franziskus Hospital Münster, 48145 Münster, Germany
| | - Mikolaj Walensi
- Department of Vascular Surgery and Phlebology, Contilia Heart and Vascular Center, 45138 Essen, Germany
| | - Phillip Geisbuesch
- Department of Vascular and Endovascular Surgery, Klinikum Stuttgart, 70199 Stuttgart, Germany
| | - Thomas Schmitz-Rixen
- German Society of Surgery, Langenbeck-Virchow-Haus, Luisenstraße 58/59, 10117 Berlin, Germany
| | - Georg Jung
- Department of Vascular and Endovascular Surgery, Luzerner Kantonsspital, 6000 Lucern, Switzerland
| | - Amun Georg Hofmann
- FIFOS—Forum for Integrative Research and Systems Biology, 1170 Vienna, Austria
| |
Collapse
|
214
|
Clark JB, Allen HC. Interfacial carbonyl groups of propylene carbonate facilitate the reversible binding of nitrogen dioxide. Phys Chem Chem Phys 2024; 26:15733-15741. [PMID: 38767271 DOI: 10.1039/d4cp01382d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The interaction of NO2 with organic interfaces is critical in the development of NO2 sensing and trapping technologies, and equally so to the atmospheric processing of marine and continental aerosol. Recent studies point to the importance of surface oxygen groups in these systems, however the role of specific functional groups on the microscopic level has yet to be fully established. In the present study, we aim to provide fundamental information on the interaction and potential binding of NO2 at atmospherically relevant organic interfaces that may also help inform innovation in NO2 sensing and trapping development. We then present an investigation into the structural changes induced by NO2 at the surface of propylene carbonate (PC), an environmentally relevant carbonate ester. Surface-sensitive vibrational spectra of the PC liquid surface are acquired before, during, and after exposure to NO2 using infrared reflection-absorption spectroscopy (IRRAS). Analysis of vibrational changes at the liquid surface reveal that NO2 preferentially interacts with the carbonyl of PC at the interface, forming a distribution of binding symmetries. At low ppm levels, NO2 saturates the PC surface within 10 minutes and the perturbations to the surface are constant over time during the flow of NO2. Upon removal of NO2 flow, and under atmospheric pressures, these interactions are reversible, and the liquid surface structure of PC recovers completely within 30 min.
Collapse
Affiliation(s)
- Jessica B Clark
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
215
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
216
|
Sánchez LF, Villacura L, Catalán F, Araya RT, Guzman MAL. The Oxidative Potential of Airborne Particulate Matter Research Trends, Challenges, and Future Perspectives-Insights from a Bibliometric Analysis and Scoping Review. Antioxidants (Basel) 2024; 13:640. [PMID: 38929079 PMCID: PMC11200927 DOI: 10.3390/antiox13060640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 06/28/2024] Open
Abstract
This study is a comprehensive analysis of the oxidative potential (OP) of particulate matter (PM) and its environmental and health impacts. The researchers conducted a bibliometric analysis and scoping review, screening 569 articles and selecting 368 for further analysis. The study found that OP is an emerging field of study, with a notable increase in the number of publications in the 2010s compared to the early 2000s. The research is primarily published in eight journals and is concentrated in a few academic and university-based institutions. The study identified key research hotspots for OP-PM, emphasizing the importance of capacity building, interdisciplinary collaboration, understanding emission sources and atmospheric processes, and the impacts of PM and its OP. The study highlighted the need to consider the effects of climate change on OP-PM and the regulatory framework for PM research. The findings of this study will contribute to a better understanding of PM and its consequences, including human exposure and its effects. It will also inform strategies for managing air quality and protecting public health. Overall, this study provides valuable insights into the field of OP-PM research and highlights the need for continued research and collaboration to address the environmental and health impacts of PM.
Collapse
Affiliation(s)
| | | | | | | | - Manuel A. Leiva Guzman
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (L.F.S.); (L.V.); (F.C.); (R.T.A.)
| |
Collapse
|
217
|
Ji S, Guo Y, Yan W, Wei F, Ding J, Hong W, Wu X, Ku T, Yue H, Sang N. PM 2.5 exposure contributes to anxiety and depression-like behaviors via phenyl-containing compounds interfering with dopamine receptor. Proc Natl Acad Sci U S A 2024; 121:e2319595121. [PMID: 38739786 PMCID: PMC11127009 DOI: 10.1073/pnas.2319595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.
Collapse
Affiliation(s)
- Shaoyang Ji
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Yuqiong Guo
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Wei Yan
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu221004, People’s Republic of China
| | - Fang Wei
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Jinjian Ding
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Wenjun Hong
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Xiaoyun Wu
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Tingting Ku
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Huifeng Yue
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Nan Sang
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| |
Collapse
|
218
|
Bratman GN, Bembibre C, Daily GC, Doty RL, Hummel T, Jacobs LF, Kahn PH, Lashus C, Majid A, Miller JD, Oleszkiewicz A, Olvera-Alvarez H, Parma V, Riederer AM, Sieber NL, Williams J, Xiao J, Yu CP, Spengler JD. Nature and human well-being: The olfactory pathway. SCIENCE ADVANCES 2024; 10:eadn3028. [PMID: 38748806 PMCID: PMC11809653 DOI: 10.1126/sciadv.adn3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
The world is undergoing massive atmospheric and ecological change, driving unprecedented challenges to human well-being. Olfaction is a key sensory system through which these impacts occur. The sense of smell influences quality of and satisfaction with life, emotion, emotion regulation, cognitive function, social interactions, dietary choices, stress, and depressive symptoms. Exposures via the olfactory pathway can also lead to (anti-)inflammatory outcomes. Increased understanding is needed regarding the ways in which odorants generated by nature (i.e., natural olfactory environments) affect human well-being. With perspectives from a range of health, social, and natural sciences, we provide an overview of this unique sensory system, four consensus statements regarding olfaction and the environment, and a conceptual framework that integrates the olfactory pathway into an understanding of the effects of natural environments on human well-being. We then discuss how this framework can contribute to better accounting of the impacts of policy and land-use decision-making on natural olfactory environments and, in turn, on planetary health.
Collapse
Affiliation(s)
- Gregory N. Bratman
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cecilia Bembibre
- Institute for Sustainable Heritage, University College London, London, UK
| | - Gretchen C. Daily
- Natural Capital Project, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Woods Institute, Stanford University, Stanford, CA 94305, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H. Kahn
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Connor Lashus
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Anna Oleszkiewicz
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wrocław, Poland
| | | | | | - Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nancy Long Sieber
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jonathan Williams
- Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Jieling Xiao
- College of Architecture, Birmingham City University, Birmingham, UK
| | - Chia-Pin Yu
- School of Forestry and Resource Conservation, National Taiwan University, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan
| | - John D. Spengler
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
219
|
Tassanaviroj K, Plodpai P, Wongyikul P, Tanasombatkul K, Shinlapawittayatorn K, Phinyo P. Effect modification of diabetic status on the association between exposure to particulate matter and cardiac arrhythmias in a general population: A systematic review and meta-analysis. PLoS One 2024; 19:e0301766. [PMID: 38758819 PMCID: PMC11101100 DOI: 10.1371/journal.pone.0301766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 05/19/2024] Open
Abstract
Particulate matter (PM) has various health effects, including cardiovascular diseases. Exposure to PM and a diagnosis of diabetes mellitus (DM) have been associated with an increased risk of cardiac arrhythmias. However, no comprehensive synthesis has been conducted to examine the modifying effect of DM on the association between PM and arrhythmia events. Thus, the objectives of this review were to investigate whether the association of PM is linked to cardiac arrhythmias and whether DM status modifies its effect in the general population. The search was conducted on PubMed/MEDLINE and Embase until January 18, 2023. We included cohort and case-crossover studies reporting the effect of PM exposure on cardiac arrhythmias and examining the role of diabetes as an effect modifier. We used the DerSimonian and Laird random-effects model to calculate the pooled estimates. A total of 217 studies were found and subsequently screened. Nine studies met the inclusion criteria, and five of them were included in the meta-analysis. The participants numbered 4,431,452, with 2,556 having DM. Exposure to PM of any size showed a significant effect on arrhythmias in the overall population (OR 1.10, 95% CI 1.04-1.16). However, the effect modification of DM was not significant (OR 1.18 (95% CI 1.01-1.38) for DM; OR 1.08 (95% CI 1.02-1.14) for non-DM; p-value of subgroup difference = 0.304). Exposure to higher PM concentrations significantly increases cardiac arrhythmias requiring hospital or emergency visits. Although the impact on diabetic individuals is not significant, diabetic patients should still be considered at risk. Further studies with larger sample sizes and low bias are needed.
Collapse
Affiliation(s)
| | | | - Pakpoom Wongyikul
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krittai Tanasombatkul
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phichayut Phinyo
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
220
|
Botticini S, Comini E, Dello Iacono S, Flammini A, Gaioni L, Galliani A, Ghislotti L, Lazzaroni P, Re V, Sisinni E, Verzeroli M, Zappa D. Index Air Quality Monitoring for Light and Active Mobility. SENSORS (BASEL, SWITZERLAND) 2024; 24:3170. [PMID: 38794025 PMCID: PMC11124976 DOI: 10.3390/s24103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Light and active mobility, as well as multimodal mobility, could significantly contribute to decarbonization. Air quality is a key parameter to monitor the environment in terms of health and leisure benefits. In a possible scenario, wearables and recharge stations could supply information about a distributed monitoring system of air quality. The availability of low-power, smart, low-cost, compact embedded systems, such as Arduino Nicla Sense ME, based on BME688 by Bosch, Reutlingen, Germany, and powered by suitable software tools, can provide the hardware to be easily integrated into wearables as well as in solar-powered EVSE (Electric Vehicle Supply Equipment) for scooters and e-bikes. In this way, each e-vehicle, bike, or EVSE can contribute to a distributed monitoring network providing real-time information about micro-climate and pollution. This work experimentally investigates the capability of the BME688 environmental sensor to provide useful and detailed information about air quality. Initial experimental results from measurements in non-controlled and controlled environments show that BME688 is suited to detect the human-perceived air quality. CO2 readout can also be significant for other gas (e.g., CO), while IAQ (Index for Air Quality, from 0 to 500) is heavily affected by relative humidity, and its significance below 250 is quite low for an outdoor uncontrolled environment.
Collapse
Affiliation(s)
- Stefano Botticini
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (S.B.); (E.C.); (E.S.); (D.Z.)
| | - Elisabetta Comini
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (S.B.); (E.C.); (E.S.); (D.Z.)
| | - Salvatore Dello Iacono
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (S.B.); (E.C.); (E.S.); (D.Z.)
| | - Alessandra Flammini
- Department of Engineering and Applied Science, University of Bergamo, 24129 Bergamo, Italy; (L.G.); (A.G.); (L.G.); (P.L.); (V.R.); (M.V.)
| | - Luigi Gaioni
- Department of Engineering and Applied Science, University of Bergamo, 24129 Bergamo, Italy; (L.G.); (A.G.); (L.G.); (P.L.); (V.R.); (M.V.)
| | - Andrea Galliani
- Department of Engineering and Applied Science, University of Bergamo, 24129 Bergamo, Italy; (L.G.); (A.G.); (L.G.); (P.L.); (V.R.); (M.V.)
| | - Luca Ghislotti
- Department of Engineering and Applied Science, University of Bergamo, 24129 Bergamo, Italy; (L.G.); (A.G.); (L.G.); (P.L.); (V.R.); (M.V.)
| | - Paolo Lazzaroni
- Department of Engineering and Applied Science, University of Bergamo, 24129 Bergamo, Italy; (L.G.); (A.G.); (L.G.); (P.L.); (V.R.); (M.V.)
| | - Valerio Re
- Department of Engineering and Applied Science, University of Bergamo, 24129 Bergamo, Italy; (L.G.); (A.G.); (L.G.); (P.L.); (V.R.); (M.V.)
| | - Emiliano Sisinni
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (S.B.); (E.C.); (E.S.); (D.Z.)
| | - Matteo Verzeroli
- Department of Engineering and Applied Science, University of Bergamo, 24129 Bergamo, Italy; (L.G.); (A.G.); (L.G.); (P.L.); (V.R.); (M.V.)
| | - Dario Zappa
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (S.B.); (E.C.); (E.S.); (D.Z.)
| |
Collapse
|
221
|
Wong PY, Su HJ, Candice Lung SC, Liu WY, Tseng HT, Adamkiewicz G, Wu CD. Explainable geospatial-artificial intelligence models for the estimation of PM 2.5 concentration variation during commuting rush hours in Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123974. [PMID: 38615837 DOI: 10.1016/j.envpol.2024.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
PM2.5 concentrations are higher during rush hours at background stations compared to the average concentration across these stations. Few studies have investigated PM2.5 concentration and its spatial distribution during rush hours using machine learning models. This study employs a geospatial-artificial intelligence (Geo-AI) prediction model to estimate the spatial and temporal variations of PM2.5 concentrations during morning and dusk rush hours in Taiwan. Mean hourly PM2.5 measurements were collected from 2006 to 2020, and aggregated into morning (7 a.m.-9 a.m.) and dusk (4 p.m.-6 p.m.) rush-hour mean concentrations. The Geo-AI prediction model was generated by integrating kriging interpolation, land-use regression, machine learning, and a stacking ensemble approach. A forward stepwise variable selection method based on the SHapley Additive exPlanations (SHAP) index was used to identify the most influential variables. The performance of the Geo-AI models for morning and dusk rush hours had accuracy scores of 0.95 and 0.93, respectively and these results were validated, indicating robust model performance. Spatially, PM2.5 concentrations were higher in southwestern Taiwan for morning rush hours, and suburban areas for dusk rush hours. Key predictors included kriged PM2.5 values, SO2 concentrations, forest density, and the distance to incinerators for both morning and dusk rush hours. These PM2.5 estimates for morning and dusk rush hours can support the development of alternative commuting routes with lower concentrations.
Collapse
Affiliation(s)
- Pei-Yi Wong
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Liu
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Ting Tseng
- Department of Information Management, National Central University, Taoyuan, Taiwan
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chih-Da Wu
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan; Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
222
|
Donzelli G, Sera F, Morales MA, Vozzi F, Roos T, Schaffert A, Paparella M, Murugadoss S, Mertens B, Gehring R, Linzalone N. A systematic review and meta-analysis of human population studies on the association between exposure to toxic environmental chemicals and left ventricular dysfunction (LVD). ENVIRONMENTAL RESEARCH 2024; 249:118429. [PMID: 38354889 DOI: 10.1016/j.envres.2024.118429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Exposure to environmental chemicals has been associated with an elevated risk of heart failure (HF). However, the impact on early markers of HF, such as left ventricular dysfunction (LVD), remains limited. OBJECTIVE To establish a foundation of evidence regarding early HF markers and their association with environmental pollutants, a systematic review and meta-analysis was conducted. METHODS The search, conducted on October 13th, 2023, encompassed PubMed, Embase, and Web of Science without filters, focusing on observational studies reporting myocardial geometrical, structural, or functional alterations in individuals without a history of heart disease. This included the general adult population, workers, young people, and the elderly. The risk of bias was assessed using the ROBINS-I tool at both study and item levels. RESULTS The systematic review included 17 studies involving 43.358 individuals exposed to air pollution and 2038 exposed to heavy metals. Approximately 41% of the effect measures of associations reported significant abnormalities in myocardial structure or function. The metanalyses by pollutants categories indicated positive associations between LV systolic and diastolic abnormalities and exposure to PM2.5 [-0.069 (-0.104, -0.033); -0.044 (-0.062, -0.025)] and PM10 [-0.055 (-0.087, -0.022); -0.030 (-0.050, -0.010)] and NO2 [-0.042 (-0.071, -0.013); -0.021 (-0.037, -0.004)], as well as positive associations between lead exposure and LV systolic abnormalities [-0.033 (-0.051, -0.016)]. CONCLUSIONS Existing evidence shows that specific early markers of HF may be associated with exposure to chemical pollutants. It is recommended to include such endpoints in new longitudinal and case-control studies to confirm further risk associations. These studies should consider co-exposures, account for vulnerable groups, and identify cardiotoxic compounds that may require regulation. When examining the link between myocardial abnormalities and environmental exposure, it is also advisable to explore the supportive use of Adverse Outcome Pathway (AOP) approaches to confirm a causal relationship.
Collapse
Affiliation(s)
- G Donzelli
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - F Sera
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy.
| | - M A Morales
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - F Vozzi
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - T Roos
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - A Schaffert
- Institute of Medical Biochemistry, Medical University Innsbruck, Innsbruck, Austria.
| | - M Paparella
- Institute of Medical Biochemistry, Medical University Innsbruck, Innsbruck, Austria.
| | - S Murugadoss
- Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - B Mertens
- Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - R Gehring
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - N Linzalone
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| |
Collapse
|
223
|
Wu QZ, Zeng HX, Andersson J, Oudin A, Kanninen KM, Xu MW, Qin SJ, Zeng QG, Zhao B, Zheng M, Jin N, Chou WC, Jalava P, Dong GH, Zeng XW. Long-term exposure to major constituents of fine particulate matter and neurodegenerative diseases: A population-based survey in the Pearl River Delta Region, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134161. [PMID: 38569338 DOI: 10.1016/j.jhazmat.2024.134161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Exposure to PM2.5 has been linked to neurodegenerative diseases, with limited understanding of constituent-specific contributions. OBJECTIVES To explore the associations between long-term exposure to PM2.5 constituents and neurodegenerative diseases. METHODS We recruited 148,274 individuals aged ≥ 60 from four cities in the Pearl River Delta region, China (2020 to 2021). We calculated twenty-year average air pollutant concentrations (PM2.5 mass, black carbon (BC), organic matter (OM), ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-)) at the individuals' home addresses. Neurodegenerative diseases were determined by self-reported doctor-diagnosed Alzheimer's disease (AD) and Parkinson's disease (PD). Generalized linear mixed models were employed to explore associations between pollutants and neurodegenerative disease prevalence. RESULTS PM2.5 and all five constituents were significantly associated with a higher prevalence of AD and PD. The observed associations generally exhibited a non-linear pattern. For example, compared with the lowest quartile, higher quartiles of BC were associated with greater odds for AD prevalence (i.e., the adjusted odds ratios were 1.81; 95% CI, 1.45-2.27; 1.78; 95% CI, 1.37-2.32; and 1.99; 95% CI, 1.54-2.57 for the second, third, and fourth quartiles, respectively). CONCLUSIONS Long-term exposure to PM2.5 and its constituents, particularly combustion-related BC, OM, and SO42-, was significantly associated with higher prevalence of AD and PD in Chinese individuals. ENVIRONMENTAL IMPLICATION PM2.5 is a routinely regulated mixture of multiple hazardous constituents that can lead to diverse adverse health outcomes. However, current evidence on the specific contributions of PM2.5 constituents to health effects is scarce. This study firstly investigated the association between PM2.5 constituents and neurodegenerative diseases in the moderately to highly polluted Pearl River Delta region in China, and identified hazardous constituents within PM2.5 that have significant impacts. This study provides important implications for the development of targeted PM2.5 prevention and control policies to reduce specific hazardous PM2.5 constituents.
Collapse
Affiliation(s)
- Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mu-Wu Xu
- Department of Epidemiology and Environment Health, School of Public and Health Professions, University at Buffalo, Buffalo, 14214, USA
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Mei Zheng
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
224
|
Kuehn BM. Closure of Coal-Burning Plant in Pittsburgh Linked to Big Reductions in Heart-Related Emergency Department Visits and Hospitalizations. Circulation 2024; 149:1611-1613. [PMID: 38739697 DOI: 10.1161/circulationaha.123.067602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
|
225
|
Huang SP, Su CC, Lin CY, Nethery R, Josey K, Bates B, Robinson D, Gandhi P, Rua M, Parthasarathi A, Setoguchi S, Kao Yang YH. Exposure-Response to High PM 2.5 Levels for Cardiovascular Events in High-risk Older Adults in Taiwan. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.08.24306967. [PMID: 38766145 PMCID: PMC11100932 DOI: 10.1101/2024.05.08.24306967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Multiple studies from countries with relatively lower PM 2.5 level demonstrated that acute and chronic exposure even at lower than recommended level, e.g., 9 μg/m 3 in the US increased the risk of cardiovascular (CV) events. However, limited studies using individual level data exist from countries with a wider range of PM levels to illustrate shape of the exposure-response curve throughout the range including > 20 μg/m 3 PM 2·5 concentrations. Taiwan with its policies reduced PM 2.5 over time provide opportunities to illustrate the dose response curves and how reductions of PM 2.5 over time correlated with CV events incidence in a nationwide sample. Methods Using data from the 2009-2019 Taiwan National Health Insurance Database linked to nationwide PM2.5 data. We examined the shape and magnitude of the exposure-response curve between seasonal average PM 2·5 level and CV events-related hospitalizations among older adults at high-risk for CV events. We used history-adjusted marginal structural models including potential confounding by individual demographic factors, baseline comorbidities, and health service measures. To quantify the risk below and above 20 μg/m 3 we conducted stratified Cox regression. We also plotted PM 2.5 and CV events from 2009-2019 as well as average temperature as a comparison. Findings Using the PM 2.5 concentration <15 μg/m 3 (Taiwan regulatory standard) as a reference, the seasonal average PM 2.5 concentration (15-23.5μg/m 3 and > 23.5 μg/m 3 ) were associated with hazard ration of 1.13 (95%CI 1.09-1.18) and 1.19 (95%CI 1.14-1.24), 1.07 (95%CI 1.03-1.11) and 1.14 (95%CI 1.10-1.18), 1.22 (95%CI 1.08-1.38) and 1.31 (95%CI 1.16-1.48), 1.04 (95%CI 0.98-1.10) and 1.10 (95%CI 1.04-1.16) respectively for HF, IS/TIA,PE/DVT and MI/ACS. A nonlinear relationship between PM 2·5 and CV events outcomes was observed at PM 2·5 levels above 20 μg/m 3 . Interpretation A nonlinear exposure-response relationship between PM2·5 concentration and the incidence of cardiovascular events exists when PM2.5 is higher than the levels recommended by WHO Air Quality Guidelines. Further lowering PM2·5 levels beyond current regulatory standards may effectively reduce the incidence of cardiovascular events, particularly HF and DVT, and can lead to tangible health benefits in high-risk elderly population.
Collapse
|
226
|
Byun G, Kim S, Choi Y, Kim A, Team AC, Lee JT, Bell ML. Long-term exposure to PM 2.5 and mortality in a national cohort in South Korea: effect modification by community deprivation, medical infrastructure, and greenness. BMC Public Health 2024; 24:1266. [PMID: 38720292 PMCID: PMC11080206 DOI: 10.1186/s12889-024-18752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Long-term exposure to PM2.5 has been linked to increased mortality risk. However, limited studies have examined the potential modifying effect of community-level characteristics on this association, particularly in Asian contexts. This study aimed to estimate the effects of long-term exposure to PM2.5 on mortality in South Korea and to examine whether community-level deprivation, medical infrastructure, and greenness modify these associations. METHODS We conducted a nationwide cohort study using the National Health Insurance Service-National Sample Cohort. A total of 394,701 participants aged 30 years or older in 2006 were followed until 2019. Based on modelled PM2.5 concentrations, 1 to 3-year and 5-year moving averages of PM2.5 concentrations were assigned to each participant at the district level. Time-varying Cox proportional-hazards models were used to estimate the association between PM2.5 and non-accidental, circulatory, and respiratory mortality. We further conducted stratified analysis by community-level deprivation index, medical index, and normalized difference vegetation index to represent greenness. RESULTS PM2.5 exposure, based on 5-year moving averages, was positively associated with non-accidental (Hazard ratio, HR: 1.10, 95% Confidence Interval, CI: 1.01, 1.20, per 10 µg/m3 increase) and circulatory mortality (HR: 1.22, 95% CI: 1.01, 1.47). The 1-year moving average of PM2.5 was associated with respiratory mortality (HR: 1.33, 95% CI: 1.05, 1.67). We observed higher associations between PM2.5 and mortality in communities with higher deprivation and limited medical infrastructure. Communities with higher greenness showed lower risk for circulatory mortality but higher risk for respiratory mortality in association with PM2.5. CONCLUSIONS Our study found mortality effects of long-term PM2.5 exposure and underlined the role of community-level factors in modifying these association. These findings highlight the importance of considering socio-environmental contexts in the design of air quality policies to reduce health disparities and enhance overall public health outcomes.
Collapse
Affiliation(s)
- Garam Byun
- School of the Environment, Yale University, New Haven, CT, 06511, USA
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, 02841, Republic of Korea
| | - Sera Kim
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, 02841, Republic of Korea
| | - Yongsoo Choi
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Ayoung Kim
- Department of Public Health Sciences, Graduate School of Public health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - AiMS-Create Team
- Ai-Machine learning Statistics Collaborative Research Ensemble for Air pollution, Temperature, and all types of Environmental exposures, Seoul National University and Pusan National University, Seoul, Republic of Korea
| | - Jong-Tae Lee
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, 02841, Republic of Korea.
- School of Health Policy and Management, College of Health Sciences, Korea University, Hana Science Hall, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, 06511, USA
- School of Health Policy and Management, College of Health Sciences, Korea University, Hana Science Hall, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
227
|
Tasmin S, Aschebrook-Kilfoy B, Hedeker D, Gopalakrishnan R, Connellan E, Kibriya MG, Young MT, Kaufman JD, Ahsan H. Long-term exposure to ambient air pollution and measures of central hemodynamics and arterial stiffness among multiethnic Chicago residents. Environ Health 2024; 23:47. [PMID: 38715087 PMCID: PMC11075200 DOI: 10.1186/s12940-024-01077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES To examine whether long-term air pollution exposure is associated with central hemodynamic and brachial artery stiffness parameters. METHODS We assessed central hemodynamic parameters including central blood pressure, cardiac parameters, systemic vascular compliance and resistance, and brachial artery stiffness measures [including brachial artery distensibility (BAD), compliance (BAC), and resistance (BAR)] using waveform analysis of the arterial pressure signals obtained from a standard cuff sphygmomanometer (DynaPulse2000A, San Diego, CA). The long-term exposures to particles with an aerodynamic diameter < 2.5 μm (PM2.5) and nitrogen dioxide (NO2) for the 3-year periods prior to enrollment were estimated at residential addresses using fine-scale intra-urban spatiotemporal models. Linear mixed models adjusted for potential confounders were used to examine associations between air pollution exposures and health outcomes. RESULTS The cross-sectional study included 2,387 Chicago residents (76% African Americans) enrolled in the ChicagO Multiethnic Prevention And Surveillance Study (COMPASS) during 2013-2018 with validated address information, PM2.5 or NO2, key covariates, and hemodynamics measurements. We observed long-term concentrations of PM2.5 and NO2 to be positively associated with central systolic, pulse pressure and BAR, and negatively associated with BAD, and BAC after adjusting for relevant covariates. A 1-µg/m3 increment in preceding 3-year exposures to PM2.5 was associated with 1.8 mmHg higher central systolic (95% CI: 0.98, 4.16), 1.0 mmHg higher central pulse pressure (95% CI: 0.42, 2.87), a 0.56%mmHg lower BAD (95% CI: -0.81, -0.30), and a 0.009 mL/mmHg lower BAC (95% CI: -0.01, -0.01). CONCLUSION This population-based study provides evidence that long-term exposures to PM2.5 and NO2 is related to central BP and arterial stiffness parameters, especially among African Americans.
Collapse
Affiliation(s)
- Saira Tasmin
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Briseis Aschebrook-Kilfoy
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Donald Hedeker
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA
| | | | - Elizabeth Connellan
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Michael T Young
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA.
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
228
|
Luo H, Zhang Q, Meng X, Kan H, Chen R. Air Pollution and Cardiac Arrest: A More Significant Intermediate Role of COPD than Cardiac Events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7782-7790. [PMID: 38664224 DOI: 10.1021/acs.est.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
No prior studies have linked long-term air pollution exposure to incident sudden cardiac arrest (SCA) or its possible development trajectories. We aimed to investigate the association between long-term exposure to air pollution and SCA, as well as possible intermediate diseases. Based on the UK Biobank cohort, Cox proportional hazard model was applied to explore associations between air pollutants and SCA. Chronic obstructive pulmonary disease (COPD) and major adverse cardiovascular events (MACE) were selected as intermediate conditions, and multistate model was fitted for trajectory analysis. During a median follow-up of 13.7 years, 2884 participants developed SCA among 458 237 individuals. The hazard ratios (HRs) for SCA were 1.04-1.12 per interquartile range increment in concentrations of fine particulate matter, inhalable particulate matter, nitrogen dioxide, and nitrogen oxides. Most prominently, air pollutants could induce SCA through promoting transitions from baseline health to COPD (HRs: 1.06-1.24) and then to SCA (HRs: 1.16-1.27). Less importantly, SCA could be developed through transitions from baseline health to MACE (HRs: 1.02-1.07) and further to SCA (HRs: 1.12-1.16). This study provides novel and compelling evidence that long-term exposure to air pollution could promote the development of SCA, with COPD serving as a more important intermediate condition than MACE.
Collapse
Affiliation(s)
- Huihuan Luo
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University School of Public Health, Shanghai 200032, China
| | - Qingli Zhang
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University School of Public Health, Shanghai 200032, China
| | - Xia Meng
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University School of Public Health, Shanghai 200032, China
| | - Haidong Kan
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University School of Public Health, Shanghai 200032, China
| | - Renjie Chen
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University School of Public Health, Shanghai 200032, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
229
|
Arrúe M, Penalba A, Rodriguez-Bodero A, Elicegui A, de Homdedeu M, Cruz MJ, Simats A, Rodriguez S, Buxó X, Garcia-Rodriguez N, Pizarro J, Turner MC, Delgado P, Rosell A. Diesel exhaust particles exposure exacerbates pro-thrombogenic plasma features ex-vivo after cerebral ischemia and accelerates tPA-induced clot-lysis in hypertensive subjects. J Cereb Blood Flow Metab 2024; 44:772-786. [PMID: 37974302 PMCID: PMC11197133 DOI: 10.1177/0271678x231214826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
The combustion of fossil fuels, mainly by diesel engines, generates Diesel Exhaust Particles (DEP) which are the main source of Particulate Matter (PM), a major air pollutant in urban areas. These particles are a risk factor for stroke with 5.6% of cases attributed to PM exposure. Our aim was to evaluate the effect of DEP exposure on clot formation and lysis in the context of stroke. An ex-vivo clot formation and lysis turbidimetric assay has been conducted in human and mouse plasma samples from ischemic stroke or control subjects exposed to DEP or control conditions. Experimental DEP exposure was achieved by nasal instillation in mice, or by ex-vivo exposure in human plasma. Results show consistent pro-thrombogenic features in plasma after human ischemic stroke and mouse cerebral ischemia (distal MCAo), boosted by the presence of DEP. Otherwise, thrombolysis times were increased after ischemia in chronically exposed mice but not in the DEP exposed group. Finally, subjects living in areas with high PM levels presented accelerated thrombolysis compared to those living in low polluted areas. Overall, our results point at a disbalance of the thrombogenic/lytic system in presence of DEP which could impact on ischemic stroke onset, clot size and thrombolytic treatment.
Collapse
Affiliation(s)
- Mercedes Arrúe
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ane Rodriguez-Bodero
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amaia Elicegui
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miquel de Homdedeu
- Pneumology Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - María-Jesús Cruz
- Pneumology Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rodriguez
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Xavier Buxó
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Nicolás Garcia-Rodriguez
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
230
|
Paulus N, Lemort V. Experimental assessment of pollutant emissions from residential fuel cells and comparative benchmark analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121017. [PMID: 38718602 DOI: 10.1016/j.jenvman.2024.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Energy transition currently brings focus on fuel cell micro-combined heat and power (mCHP) systems for residential uses. The two main technologies already commercialized are the Proton Exchange Membrane Fuel Cells (PEMFCs) and Solid Oxide Fuel Cells (SOFCs). The pollutant emissions of one system of each technology have been tested with a portable probe both in laboratory and field-test configurations. In this paper, the nitrogen oxides (NOx), sulphur dioxide (SO2), and carbon monoxide (CO) emission levels are compared to other combustion technologies such as a recent Euro 6 diesel automotive vehicle, a classical gas condensing boiler, and a gas absorption heat pump. At last, a method of converting the concentration of pollutants (in ppm) measured by the sensors into pollutant intensity per unit of energy (in mg/kWh) is documented and reported. This allows for comparing the pollutant emissions levels with relevant literature, especially other studies conducted with other measuring sensors. Both tested residential fuel cell technologies fed by natural gas can be considered clean regarding SO2 and NOx emissions. The CO emissions can be considered quite low for the tested SOFC and even nil for the tested PEMFC. The biggest issue of natural gas fuel cell technologies still lies in the carbon dioxide (CO2) emissions associated with the fossil fuel they consume. The gas absorption heat pump however shows worse NOx and CO levels than the classical gas condensing boiler. At last, this study illustrates that the high level of hybridization between a fuel cell and a gas boiler may be responsible for unexpected ON/OFF cycling behaviours and therefore prevent both sub-systems from operating as optimally and reliably as they would have as standalone units.
Collapse
Affiliation(s)
- N Paulus
- Department of Electromechanics, Industrial Engineering Higher Education Institution of the Province of Liège (HEPL), Liège, 4000, Belgium; Department of Aerospace and Mechanics, University of Liège, Liège, 4000, Belgium.
| | - V Lemort
- Department of Aerospace and Mechanics, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
231
|
Wang S, Ma Y, Wu G, Du Z, Li J, Zhang W, Hao Y. Relationships between long-term exposure to major PM 2.5 constituents and outpatient visits and hospitalizations in Guangdong, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123866. [PMID: 38537800 DOI: 10.1016/j.envpol.2024.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Ambient fine particulate matter (PM2.5) has attracted considerable attention due to its crucial role in the rising global disease burden. Evidence of health risks associated with exposure to PM2.5 and its major constituents is important for advancing hazard assessments and air pollution emission policies. We investigated the relationship between exposure to major constituents of PM2.5 and outpatient visits as well as hospitalizations in Guangdong Province, China, where 127 million residents live in a severe PM2.5 pollution environment. An approach that integrates the generalized weighted quantile sum (gWQS) regression with the difference-in-differences (DID) approach was used to assess the overall mixture effects and relative contributions of each constituent. We observed significant associations between long-term exposure to the mixture of PM2.5 constituents (WQS index) and outpatient visits (IR%, percentage increases in risk per unit WQS index increase:1.73, 95%CI: 1.72, 1.74) as well as hospitalizations (IR%:5.15, 95%CI: 5.11, 5.20). Black carbon (weight: 0.34) and nitrate (weight: 0.60) respectively exhibited the highest contributions to outpatient visits and hospitalizations. The overall mixture effects on outpatient visits and hospitalizations were higher with increased summer air temperatures (IR%: 7.54, 95%CI: 7.33, 7.74 and IR%: 9.55, 95%CI: 8.36, 10.75, respectively) or decreased winter air temperatures (IR%: 1.88, 95%CI: 1.68, 2.08 and IR%: 4.87, 95%CI: 3.73, 6.02, respectively). Furthermore, the overall mixture effects on outpatient visits and hospitalizations were significantly higher in populations with higher socioeconomic status (P < 0.01). It's crucial to address the primary sources of nitrate precursor substances and black carbon (mainly traffic-related and industrial-related air pollutants) and consider the complex interaction effects between air temperature and PM2.5 in the context of climate change. Of particular concern is the need to prioritize healthcare demands in economically disadvantaged regions and to address the health inequalities stemming from the uneven distribution of healthcare resources and PM2.5 pollution.
Collapse
Affiliation(s)
- Shenghao Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujie Ma
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Gonghua Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghua Li
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response Peking University, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| |
Collapse
|
232
|
Khraishah H, Chen Z, Rajagopalan S. Understanding the Cardiovascular and Metabolic Health Effects of Air Pollution in the Context of Cumulative Exposomic Impacts. Circ Res 2024; 134:1083-1097. [PMID: 38662860 PMCID: PMC11253082 DOI: 10.1161/circresaha.124.323673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland Medical Center, Baltimore (H.K.)
| | - Zhuo Chen
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| |
Collapse
|
233
|
Marchewka WM, Bryniarski KL, Marchewka JM, Popiołek I, Dębski G, Badacz R, Marchewka I, Podolec-Szczepara N, Jasiewicz-Honkisz B, Mikołajczyk TP, Guzik TJ. Sex-specific associations between the environmental exposures and low-grade inflammation and increased blood pressure in young, healthy subjects. Sci Rep 2024; 14:9588. [PMID: 38670971 PMCID: PMC11053153 DOI: 10.1038/s41598-024-59078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Long-term exposures to environmental factors including airborne as well as noise pollutants, are associated with cardiovascular risk. However, the influence of environmental pollution on the young population is controversial. Accordingly, we aimed to investigate the relationships between long-term exposures to different environmental factors and major cardiovascular and inflammatory parameters and biomarkers in young, healthy subjects. Representative sample of permanent residents of two cities differing in air and noise pollution levels, aged 15-21 years, were recruited. Krakow and Lublin, both located in southern Poland, were chosen in relation to their similarities in demographic and geopolitical characteristics, but differences in air pollution (higher in Krakow) and noise parameters (higher in Lublin). A total of 576 subjects were studied: 292 in Krakow and 284 in Lublin. All subjects underwent health questionnaire, blood pressure measurements and biomarker determinations. Inflammatory biomarkers, such as CRP, hs-CRP, fibrinogen as well as homocysteine were all significantly higher in subjects living in Krakow as opposed to subjects living in Lublin (for hsCRP: 0.52 (0.32-0.98) mg/l vs. 0.35 (0.22-0.67) mg/l; p < 0.001). Increased inflammatory biomarker levels were observed in Krakow in both male and female young adults. Interestingly, significant differences were observed in blood pressure between male and female subjects. Males from Krakow had significantly higher mean systolic blood pressure (127.7 ± 10.4 mm/Hg vs. 122.4 ± 13.0 mm/Hg; p = 0.001), pulse pressure (58.7 ± 8.9 mm/Hg vs. 51.4 ± 12.3 mm/Hg; p < 0.001) and lower heart rate (p < 0.001) as compared to males living in Lublin. This was not observed in young adult females. Long-term exposure to environmental factors related to the place of residence can significantly influence inflammatory and cardiovascular parameters, even in young individuals. Interestingly, among otherwise healthy young adults, blood pressure differences exhibited significant variations based on biological sex.
Collapse
Affiliation(s)
- Wojciech M Marchewka
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
- Department of Radiology and Imaging Science, 5th Military Hospital, Krakow, Poland
| | - Krzysztof L Bryniarski
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jakub M Marchewka
- Department of Physiotherapy, University of Physical Education, Krakow, Poland
- Department of Orthopedics and Trauma Surgery, 5th Military Hospital, Krakow, Poland
| | - Iwona Popiołek
- Department of Toxicology and Environmental Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Dębski
- Department of Radiology and Imaging Science, 5th Military Hospital, Krakow, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ida Marchewka
- Department of Ophthalmology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | | | - Barbara Jasiewicz-Honkisz
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
| | - Tomasz P Mikołajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland.
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland.
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
234
|
Abstract
Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
235
|
Bai X, Ming X, Zhao M, Zhou L. Explore the effect of apparent temperature and air pollutants on the admission rate of acute myocardial infarction in Chongqing, China: a time-series study. BMJ Open 2024; 14:e084376. [PMID: 38658006 PMCID: PMC11043748 DOI: 10.1136/bmjopen-2024-084376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE Limited research has been conducted on the correlation between apparent temperature and acute myocardial infarction (AMI), as well as the potential impact of air pollutants in modifying this relationship. The objective of this study is to investigate the lagged effect of apparent temperature on AMI and assess the effect modification of environmental pollutants on this association. DESIGN A time-series study. SETTING AND PARTICIPANTS The data for this study were obtained from the Academy of Medical Data Science at Chongqing Medical University, covering daily hospitalisations for AMI between 1 January 2015 and 31 December 2016. Meteorological and air pollutant data were provided by China's National Meteorological Information Centre. OUTCOME MEASURES We used a combined approach of quasi-Poisson generalised linear model and distributed lag non-linear model to thoroughly analyse the relationships. Additionally, we employed a generalised additive model to investigate the interaction between air pollutants and apparent temperature on the effect of AMI. RESULT A total of 872 patients admitted to hospital with AMI were studied based on the median apparent temperature (20.43°C) in Chongqing. Low apparent temperature (10th, 7.19℃) has obvious lagged effect on acute myocardial infarction, first appearing on the 8th day (risk ratio (RR) 1.081, 95% CI 1.010 to 1.158) and the greatest risk on the 11th day (RR 1.094, 95% CI 1.037 to 1.153). No lagged effect was observed at high apparent temperature. In subgroup analysis, women and individuals aged 75 and above were at high risk. The interaction analysis indicates that there exist significant interactions between PM2.5 and high apparent temperature, as well as nitrogen dioxide (NO2) and low apparent temperature. CONCLUSION The occurrence of decreased apparent temperature levels was discovered to be linked with a heightened relative risk of hospitalisations for AMI. PM2.5 and NO2 have an effect modification on the association between apparent temperature and admission rate of AMI.
Collapse
Affiliation(s)
- Xiuyuan Bai
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xin Ming
- Chongqing Health Center for Women and Children, Chongqing, China
- Department of quality management section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mingming Zhao
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
236
|
Chowdhury S, Hänninen R, Sofiev M, Aunan K. Fires as a source of annual ambient PM 2.5 exposure and chronic health impacts in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171314. [PMID: 38423313 DOI: 10.1016/j.scitotenv.2024.171314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Chronic exposure to ambient PM2.5 is the largest environmental health risk in Europe. We used a chemical transport model and recent exposure response functions to simulate ambient PM2.5, contribution from fires and related health impacts over Europe from 1990 to 2019. Our estimation indicates that the excess death burden from exposure to ambient PM2.5 declined across Europe at a rate of 10,000 deaths per year, from 0.57 million (95 % confidence intervals: 0.44-0.75 million) in 1990 to 0.28 million (0.19-0.42 million) in the specified period. Among these excess deaths, approximately 99 % were among adults, while only around 1 % occurred among children. Our findings reveal a steady increase in fire mortality fractions (excess deaths from fires per 1000 deaths from ambient PM2.5) from 2 in 1990 to 13 in 2019. Notably, countries in Eastern Europe exhibited significantly higher fire mortality fractions and experienced more pronounced increases compared to those in Western and Central Europe. We performed sensitivity analyses by considering fire PM2.5 to be more toxic as compared to other sources, as indicated by recent studies. By considering fire PM2.5 to be more toxic than other PM2.5 sources results in an increased relative contribution of fires to excess deaths, reaching 2.5-13 % in 2019. Our results indicate the requirement of larger mitigation and adaptation efforts and more sustainable forest management policies to avert the rising health burden from fires.
Collapse
Affiliation(s)
| | | | | | - Kristin Aunan
- CICERO Center for International Climate Research, Oslo, Norway
| |
Collapse
|
237
|
Gao Y, Zhang X, Li X, Zhang J, Lv Z, Guo D, Mao H, Wang T. Lipid Dysregulation Induced by Gasoline and Diesel Exhaust Exposure and the Interaction with Age. TOXICS 2024; 12:303. [PMID: 38668526 PMCID: PMC11054039 DOI: 10.3390/toxics12040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Limited knowledge exists regarding gasoline and diesel exhaust effects on lipid metabolism. This study collected gasoline and diesel exhaust under actual driving conditions and conducted inhalation exposure on male young and middle-aged C57BL/6J mice for 4 h/day for 5 days to simulate commuting exposure intensity. Additionally, PM2.5 from actual roadways, representing gasoline and diesel vehicles, was generated for exposure to human umbilical vein endothelial cells (HUVECs) and normal liver cells (LO2) for 24, 48, and 72 h to further investigate exhaust particle toxicity. Results showed that diesel exhaust reduced total cholesterol and low-density lipoprotein cholesterol levels in young mice, indicating disrupted lipid metabolism. Aspartate aminotransferase and alanine aminotransferase levels increased by 53.7% and 21.7%, respectively, suggesting potential liver injury. Diesel exhaust exposure decreased superoxide dismutase and increased glutathione peroxidase levels. Cell viability decreased, and reactive oxygen species levels increased in HUVECs and LO2 following exposure to exhaust particles, with dose- and time-dependent effects. Diesel exhaust particles exhibited more severe inhibition of cell proliferation and oxidative damage compared to gasoline exhaust particles. These findings provide novel evidence of the risk of disrupted lipid metabolism due to gasoline and diesel exhaust, emphasizing the toxicity of diesel exhaust.
Collapse
Affiliation(s)
- Yutong Gao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xinzhuo Zhang
- Department of Visual Optics Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Xinting Li
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jinsheng Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zongyan Lv
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Dongping Guo
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
238
|
Yong M, McCunney RJ. Evaluation of biological markers for the risk assessment of carbon black in epidemiological studies. Front Public Health 2024; 12:1367797. [PMID: 38689765 PMCID: PMC11060078 DOI: 10.3389/fpubh.2024.1367797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Background/objectives Engineered nanomaterials (ENMs) have been suggested as being capable of promoting inflammation, a key component in the pathways associated with carcinogenesis, cardiovascular disease, and other conditions. As a result, the risk assessment of biological markers as early-stage indicators has the potential to improve translation from experimental toxicologic findings to identifying evidence in human studies. The study aims to review the possible early biological changes in workers exposed to carbon black (CB), followed by an evidentiary quality evaluation to determine the predictive value of the biological markers. Methods We conducted a literature search to identify epidemiological studies that assessed biological markers that were involved in the inflammatory process at early stages among workers with exposure to CB. We reviewed the studies with specific reference to the study design, statistical analyses, findings, and limitations. Results We identified five Chinese studies that investigated the potential impact of exposure to CB on inflammatory markers, bronchial wall thickening, genomic instability, and lung function impairment in CB production workers. Of the five Chinese studies, four were cross-sectional; another study reported results at two-time points over six years of follow-up. The authors of all five studies concluded positive relationships between exposure and the inflammatory cytokine profiles. The weak to very weak correlations between biomarkers and early-stage endpoints were reported. Conclusion Most inflammatory markers failed to satisfy the proposed evidentiary quality criteria. The significance of the results of the reviewed studies is limited by the cross-sectional study design, inconsistency in results, uncertain clinical relevance, and high occupational exposures. Based on this review, the risk assessment relying on inflammatory markers does not seem appropriate at this time. Nevertheless, the novel research warrants further exploration in assessing exposure to ENMs and corresponding potential health risks in occupational settings.
Collapse
Affiliation(s)
- Mei Yong
- MY EpiConsulting, Duesseldorf, Germany
| | - Robert J. McCunney
- Brigham and Women’s Hospital, Pulmonary Division, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
239
|
Cai X, Song Q, Meng X, Li K, Shi S, Jin L, Kan H, Wang S. Epigenome-wide association study on ambient PM 2.5 exposure in Han Chinese, the NSPT study. ENVIRONMENTAL RESEARCH 2024; 247:118276. [PMID: 38246299 DOI: 10.1016/j.envres.2024.118276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Ambient PM2.5 exposure has been recognized as a major health risk and related to aging, cardiovascular, respiratory and neurologic diseases, and cancer. However, underlying mechanism of epigenetic alteration and regulated pathways still remained unclear. The study on methylome effect of PM2.5 exposure was quite limited in Chinese population, and cohort-based study was absent. The study included blood-derived DNA methylation for 3365 Chinese participants from the NSPT cohort. We estimated individual PM2.5 exposure level of short-medium-, medium- and long-term, based on a validated prediction model. We preformed epigenome-wide association studies to estimate the links between PM2.5 exposure and DNA methylation change, as well as stratification and sensitive analysis to examined the robustness of the association models. A systematic review was conducted to obtain the previously published CpGs and examined for replication. We also conducted comparison on the DNA methylation variation corresponding to different time windows. We further conducted gene function analysis and pathway enrichment analysis to reveal related biological response. We identified a total of 177 CpGs and 107 DMRs associated with short-medium-term PM2.5 exposure, at a strict genome-wide significance (P < 5 × 10-8). The effect sizes on most CpGs tended to cease with the exposure of extended time scale. Associated markers and aligned genes were related to aging, immunity, inflammation and carcinogenesis. Enriched pathways were mostly involved in cell cycle and cell division, signal transduction, inflammatory pathway. Our study is the first EWAS on PM2.5 exposure conducted in large-scale Han Chinese cohort and identified associated DNA methylation change on CpGs and regions, as well as related gene functions and pathways.
Collapse
Affiliation(s)
- Xiyang Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qinglin Song
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Meng
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Kaixuan Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Su Shi
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
240
|
Clark JA, Engelman M, Schultz AA, Bersch AJ, Malecki K. Sense of neighborhood belonging and health: geographic, racial, and socioeconomic variation in Wisconsin. Front Public Health 2024; 12:1376672. [PMID: 38680935 PMCID: PMC11047775 DOI: 10.3389/fpubh.2024.1376672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background Individuals' sense of belonging (SoB) to their neighborhood is an understudied psychosocial factor that may influence the association between neighborhood characteristics, health, and disparities across socio-demographic groups. Methods Using 2014-2016 data from the Survey of the Health of Wisconsin (SHOW, N = 1,706), we conduct a detailed analysis of SoB and health in an American context. We construct OLS and logistic regressions estimating belonging's association with general, physical, and mental health. We explore geographic, racial, and socioeconomic variation to understand both the differential distribution of SoB and its heterogeneous relationship with health. Results A higher SoB is positively associated with better physical, mental, and general health. White participants report higher SoB than Black participants, yet the association between SoB and mental health is strongest among participants of color and urban residents. Conclusion Sense of belonging to neighborhood significantly predicts many facets of health, with place and individual characteristics appearing to moderate this relationship. Racial, geographic, and socioeconomic disparities in belonging-health associations raise important questions about who benefits from the social, economic, and physical aspects of local communities.
Collapse
Affiliation(s)
- Joseph A. Clark
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Michal Engelman
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy A. Schultz
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, United States
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew J. Bersch
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristen Malecki
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois-Chicago, Chicago, IL, United States
| |
Collapse
|
241
|
Li C, Wang J, Zhang H, Diner DJ, Hasheminassab S, Janechek N. Improvement of Surface PM 2.5 Diurnal Variation Simulations in East Africa for the MAIA Satellite Mission. ACS ES&T AIR 2024; 1:223-233. [PMID: 38633207 PMCID: PMC11019548 DOI: 10.1021/acsestair.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/19/2024]
Abstract
The Multi-Angle Imager for Aerosols (MAIA), supported by NASA and the Italian Space Agency, is planned for launch into space in 2025. As part of its mission goal, outputs from a chemical transport model, the Unified Inputs for Weather Research and Forecasting Model coupled with Chemistry (UI-WRF-Chem), will be used together with satellite data and surface observations for estimating surface PM2.5. Here, we develop a method to improve UI-WRF-Chem with surface observations at the U.S. embassy in Ethiopia, one of MAIA's primary target areas in east Africa. The method inversely models the diurnal profile and amount of anthropogenic aerosol and trace gas emissions. Low-cost PurpleAir sensor data are used for validation after applying calibration functions obtained from the collocated data at the embassy. With the emission updates in UI-WRF-Chem, independent validation for February 2022 at several different PurpleAir sites shows an increase in the linear correlation coefficients from 0.1-0.7 to 0.6-0.9 between observations and simulations of the diurnal variation of surface PM2.5. Furthermore, even by using the emissions optimized for February 2021, the UI-WRF-Chem forecast for March 2022 is also improved. Annual update of monthly emissions via inverse modeling has the potential and is needed to improve MAIA's estimate of surface PM2.5.
Collapse
Affiliation(s)
- Chengzhe Li
- Department
of Chemical and Biochemical Engineering, Center for Global & Regional
Environmental Research, and Iowa Technology Institute, The University of Iowa, Iowa City, Iowa 52240, United States
| | - Jun Wang
- Department
of Chemical and Biochemical Engineering, Center for Global & Regional
Environmental Research, and Iowa Technology Institute, The University of Iowa, Iowa City, Iowa 52240, United States
| | - Huanxin Zhang
- Department
of Chemical and Biochemical Engineering, Center for Global & Regional
Environmental Research, and Iowa Technology Institute, The University of Iowa, Iowa City, Iowa 52240, United States
| | - David J. Diner
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91109, United States
| | - Sina Hasheminassab
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91109, United States
| | - Nathan Janechek
- Department
of Chemical and Biochemical Engineering, Center for Global & Regional
Environmental Research, and Iowa Technology Institute, The University of Iowa, Iowa City, Iowa 52240, United States
| |
Collapse
|
242
|
D’Avenio G, Daniele C, Grigioni M. Nanostructured Medical Devices: Regulatory Perspective and Current Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1787. [PMID: 38673144 PMCID: PMC11051465 DOI: 10.3390/ma17081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Nanomaterials (NMs) are having a huge impact in several domains, including the fabrication of medical devices (MDs). Hence, nanostructured MDs are becoming quite common; nevertheless, the associated risks must be carefully considered in order to demonstrate safety prior to their immission on the market. The biological effect of NMs requires the consideration of methodological issues since already established methods for, e.g., cytotoxicity can be subject to a loss of accuracy in the presence of certain NMs. The need for oversight of MDs containing NMs is reflected by the European Regulation 2017/745 on MDs, which states that MDs incorporating or consisting of NMs are in class III, at highest risk, unless the NM is encapsulated or bound in such a manner that the potential for its internal exposure is low or negligible (Rule 19). This study addresses the role of NMs in medical devices, highlighting the current applications and considering the regulatory requirements of such products.
Collapse
Affiliation(s)
- Giuseppe D’Avenio
- National Centre for Innovative Technologies in Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy; (C.D.); (M.G.)
| | | | | |
Collapse
|
243
|
Rajagopalan S, Ramaswami A, Bhatnagar A, Brook RD, Fenton M, Gardner C, Neff R, Russell AG, Seto KC, Whitsel LP. Toward Heart-Healthy and Sustainable Cities: A Policy Statement From the American Heart Association. Circulation 2024; 149:e1067-e1089. [PMID: 38436070 DOI: 10.1161/cir.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nearly 56% of the global population lives in cities, with this number expected to increase to 6.6 billion or >70% of the world's population by 2050. Given that cardiometabolic diseases are the leading causes of morbidity and mortality in people living in urban areas, transforming cities and urban provisioning systems (or urban systems) toward health, equity, and economic productivity can enable the dual attainment of climate and health goals. Seven urban provisioning systems that provide food, energy, mobility-connectivity, housing, green infrastructure, water management, and waste management lie at the core of human health, well-being, and sustainability. These provisioning systems transcend city boundaries (eg, demand for food, water, or energy is met by transboundary supply); thus, transforming the entire system is a larger construct than local urban environments. Poorly designed urban provisioning systems are starkly evident worldwide, resulting in unprecedented exposures to adverse cardiometabolic risk factors, including limited physical activity, lack of access to heart-healthy diets, and reduced access to greenery and beneficial social interactions. Transforming urban systems with a cardiometabolic health-first approach could be accomplished through integrated spatial planning, along with addressing current gaps in key urban provisioning systems. Such an approach will help mitigate undesirable environmental exposures and improve cardiovascular and metabolic health while improving planetary health. The purposes of this American Heart Association policy statement are to present a conceptual framework, summarize the evidence base, and outline policy principles for transforming key urban provisioning systems to heart-health and sustainability outcomes.
Collapse
|
244
|
Ahn TG, Kim YJ, Lee G, You YA, Kim SM, Chae R, Hur YM, Park MH, Bae JG, Lee SJ, Kim YH, Na S. Association Between Individual Air Pollution (PM 10, PM 2.5) Exposure and Adverse Pregnancy Outcomes in Korea: A Multicenter Prospective Cohort, Air Pollution on Pregnancy Outcome (APPO) Study. J Korean Med Sci 2024; 39:e131. [PMID: 38599601 PMCID: PMC11004777 DOI: 10.3346/jkms.2024.39.e131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Prenatal exposure to ambient air pollution is linked to a higher risk of unfavorable pregnancy outcomes. However, the association between pregnancy complications and exposure to indoor air pollution remains unclear. The Air Pollution on Pregnancy Outcomes research is a hospital-based prospective cohort research created to look into the effects of aerodynamically exposed particulate matter (PM)10 and PM2.5 on pregnancy outcomes. METHODS This prospective multicenter observational cohort study was conducted from January 2021 to June 2023. A total of 662 women with singleton pregnancies enrolled in this study. An AirguardK® air sensor was installed inside the homes of the participants to measure the individual PM10 and PM2.5 levels in the living environment. The time-activity patterns and PM10 and PM2.5, determined as concentrations from the time-weighted average model, were applied to determine the anticipated exposure levels to air pollution of each pregnant woman. The relationship between air pollution exposure and pregnancy outcomes was assessed using logistic and linear regression analyses. RESULTS Exposure to elevated levels of PM10 throughout the first, second, and third trimesters as well as throughout pregnancy was strongly correlated with the risk of pregnancy problems according to multiple logistic regression models adjusted for variables. Except for in the third trimester of pregnancy, women exposed to high levels of PM2.5 had a high risk of pregnancy complications. During the second trimester and entire pregnancy, the risk of preterm birth (PTB) increased by 24% and 27%, respectively, for each 10 μg/m3 increase in PM10. Exposure to high PM10 levels during the second trimester increased the risk of gestational diabetes mellitus (GDM) by 30%. The risk of GDM increased by 15% for each 5 μg/m3 increase in PM2.5 during the second trimester and overall pregnancy, respectively. Exposure to high PM10 and PM2.5 during the first trimester of pregnancy increased the risk of delivering small for gestational age (SGA) infants by 96% and 26%, respectively. CONCLUSION Exposure to high concentrations of PM10 and PM2.5 is strongly correlated with the risk of adverse pregnancy outcomes. Exposure to high levels of PM10 and PM2.5 during the second trimester and entire pregnancy, respectively, significantly increased the risk of PTB and GDM. Exposure to high levels of PM10 and PM2.5 during the first trimester of pregnancy considerably increased the risk of having SGA infants. Our findings highlight the need to measure individual particulate levels during pregnancy and the importance of managing air quality in residential environment.
Collapse
Affiliation(s)
- Tae Gyu Ahn
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Ewha Medical Research Institute College of Medicine, Seoul, Korea
| | - Gain Lee
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Soo Min Kim
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Rin Chae
- Division of Artificial Intelligence and Software/Artificial Intelligence Convergence, Ewha Womans University, Seoul, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Dongsan Medical Center, Daegu, Korea
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
245
|
Cao Y, Feng Y, Xia N, Zhang J. Causal associations of particulate matter 2.5 and cardiovascular disease: A two-sample mendelian randomization study. PLoS One 2024; 19:e0301823. [PMID: 38578766 PMCID: PMC10997086 DOI: 10.1371/journal.pone.0301823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND According to epidemiological studies, particulate matter 2.5 (PM2.5) is a significant contributor to cardiovascular disease (CVD). However, making causal inferences is difficult due to the methodological constraints of observational studies. In this study, we used two-sample Mendelian randomization (MR) to examine the causal relationship between PM 2.5 and the risk of CVD. METHODS Genome-wide association study (GWAS) statistics for PM2.5 and CVD were collected from the FinnGen and UK Biobanks. Mendelian randomization analyses were applied to explore the causal effects of PM2.5 on CVD by selecting single-nucleotide polymorphisms(SNP) as instrumental variables. RESULTS The results revealed that a causal effect was observed between PM2.5 and coronary artery disease(IVW: OR 2.06, 95% CI 1.35, 3.14), and hypertension(IVW: OR 1.07, 95% CI 1.03, 1.12). On the contrary, no causal effect was observed between PM2.5 and myocardial infarction(IVW: OR 0.73, 95% CI 0.44, 1.22), heart failure(IVW: OR 1.54, 95% CI 0.96, 2.47), atrial fibrillation(IVW: OR 1.03, 95% CI 0.71, 1.48), and ischemic stroke (IS)(IVW: OR 0.98, 95% CI 0.54, 1.77). CONCLUSION We discovered that there is a causal link between PM2.5 and coronary artery disease and hypertension in the European population, using MR methods. Our discovery may have the significance of public hygiene to improve the understanding of air quality and CVD risk.
Collapse
Affiliation(s)
- Ye Cao
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P. R. China
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
| | - Yi Feng
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
| | - Nan Xia
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
| | - Jiancheng Zhang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
246
|
Wen B, Ademi Z, Wu Y, Xu R, Yu P, Ye T, Coêlho MDSZS, Saldiva PHN, Guo Y, Li S. Ambient PM 2.5 and productivity-adjusted life years lost in Brazil: a national population-based study. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133676. [PMID: 38354440 DOI: 10.1016/j.jhazmat.2024.133676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Enormous health burden has been associated with air pollution and its effects continue to grow. However, the impact of air pollution on labour productivity at the population level is still unknown. This study assessed the association between premature death due to PM2.5 exposure and the loss of productivity-adjusted life years (PALYs), in Brazil. We applied a novel variant of the difference-in-difference (DID) approach to assess the association. Daily all-cause mortality data in Brazil were collected from 2000-2019. The PALYs lost increased by 5.11% (95% CI: 4.10-6.13%), for every 10 µg/m3 increase in the 2-day moving average of PM2.5. A total of 9,219,995 (95% CI: 7,491,634-10,921,141) PALYs lost and US$ 268.05 (95% CI: 217.82-317.50) billion economic costs were attributed to PM2.5 exposure, corresponding to 7.37% (95% CI: 5.99-8.73%) of the total PALYs lost due to premature death. This study also found that 5,005,306 PALYs could be avoided if the World Health Organization (WHO) air quality guideline (AQG) level was met. In conclusion, this study demonstrates that ambient PM2.5 exposure is associated with a considerable labour productivity burden relating to premature death in Brazil, while over half of the burden could be prevented if the WHO AQG was met. The findings highlight the need to reduce ambient PM2.5 levels and provide strong evidence for the development of strategies to mitigate the economic impacts of air pollution.
Collapse
Affiliation(s)
- Bo Wen
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Zanfina Ademi
- Health Economics and Policy Evaluation Research (HEPER) Group, Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia; School of Pharmacy, Faculty of Health Sciences, Kuopio Campus, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Yao Wu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Pei Yu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Tingting Ye
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | | | | | - Yuming Guo
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
247
|
Mahakalkar AU, Gianquintieri L, Amici L, Brovelli MA, Caiani EG. Geospatial analysis of short-term exposure to air pollution and risk of cardiovascular diseases and mortality-A systematic review. CHEMOSPHERE 2024; 353:141495. [PMID: 38373448 DOI: 10.1016/j.chemosphere.2024.141495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The cardiovascular risk associated with short-term ambient air pollution exposure is well-documented. However, recent advancements in geospatial techniques have provided new insights into this risk. This systematic review focuses on short-term exposure studies that applied advanced geospatial pollution modelling to estimate cardiovascular disease (CVD) risk and accounted for additional unconventional neighbourhood-level confounders to analyse their modifier effect on the risk. Four databases were investigated to select publications between 2018 and 2023 that met the inclusion criteria of studying the effect of particulate matter (PM2.5 and PM10), SO2, NOx, CO, and O3 on CVD mortality or morbidity, utilizing pollution modelling techniques, and considering spatial and temporal confounders. Out of 3277 publications, 285 were identified for full-text review, of which 34 satisfied the inclusion criteria for qualitative analysis, and 12 of them were chosen for additional quantitative analysis. Quality assessment revealed that 28 out of 34 included articles scored 4 or above, indicating high quality. In 30 studies, advanced pollution modelling techniques were used, while in 4 only simpler methods were applied. The most pertinent confounders identified were socio-demographic variables (e.g., socio-economic status, population percentage by race or ethnicity) and neighbourhood-level built environment variables (e.g., urban/rural area, percentage of green space, proximity to healthcare), which exhibited varying modifier effects depending on the context. In the quantitative analysis, only PM 2.5 showed a significant positive association to all-cause CVD-related hospitalisation. Other pollutants did not show any significant effect, likely due to the high inter-study heterogeneity and a limited number of cases. The application of advanced geospatial measurement and modelling of air pollution exposure, as well as its risk, is increasing. This review underscores the importance of accounting for unconventional neighbourhood-level confounders to enhance the understanding of the CVD risk associated with short-term pollution exposure.
Collapse
Affiliation(s)
- Amruta Umakant Mahakalkar
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy; University School for Advanced Studies IUSS, Pavia, Italy
| | - Lorenzo Gianquintieri
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy.
| | - Lorenzo Amici
- Politecnico di Milano, Civil and Environmental Engineering Dpt., Milan, Italy
| | | | - Enrico Gianluca Caiani
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy; IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
248
|
Anand K, Walia GK, Mandal S, Menon JS, Gupta R, Tandon N, Narayan KMV, Ali MK, Mohan V, Schwartz JD, Prabhakaran D. Longitudinal associations between ambient PM 2.5 exposure and lipid levels in two Indian cities. Environ Epidemiol 2024; 8:e295. [PMID: 38617424 PMCID: PMC11008625 DOI: 10.1097/ee9.0000000000000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/10/2024] [Indexed: 04/16/2024] Open
Abstract
Background Exposure to ambient PM2.5 is known to affect lipid metabolism through systemic inflammation and oxidative stress. Evidence from developing countries, such as India with high levels of ambient PM2.5 and distinct lipid profiles, is sparse. Methods Longitudinal nonlinear mixed-effects analysis was conducted on >10,000 participants of Centre for cArdiometabolic Risk Reduction in South Asia (CARRS) cohort in Chennai and Delhi, India. We examined associations between 1-month and 1-year average ambient PM2.5 exposure derived from the spatiotemporal model and lipid levels (total cholesterol [TC], triglycerides [TRIG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]) measured longitudinally, adjusting for residential and neighborhood-level confounders. Results The mean annual exposure in Chennai and Delhi was 40 and 102 μg/m3 respectively. Elevated ambient PM2.5 levels were associated with an increase in LDL-C and TC at levels up to 100 µg/m3 in both cities and beyond 125 µg/m3 in Delhi. TRIG levels in Chennai increased until 40 µg/m3 for both short- and long-term exposures, then stabilized or declined, while in Delhi, there was a consistent rise with increasing annual exposures. HDL-C showed an increase in both cities against monthly average exposure. HDL-C decreased slightly in Chennai with an increase in long-term exposure, whereas it decreased beyond 130 µg/m3 in Delhi. Conclusion These findings demonstrate diverse associations between a wide range of ambient PM2.5 and lipid levels in an understudied South Asian population. Further research is needed to establish causality and develop targeted interventions to mitigate the impact of air pollution on lipid metabolism and cardiovascular health.
Collapse
Affiliation(s)
- Kritika Anand
- Centre for Chronic Disease Control, New Delhi, India
| | | | | | - Jyothi S. Menon
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| | - Ruby Gupta
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| | - Nikhil Tandon
- All India Institute of Medical Sciences, New Delhi, India
| | - K. M. Venkat Narayan
- Emory Global Diabetes Research Center of the Woodruff Health Sciences Center, Atlanta, Georgia
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Mohammed K. Ali
- Emory Global Diabetes Research Center of the Woodruff Health Sciences Center, Atlanta, Georgia
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Joel D. Schwartz
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Dorairaj Prabhakaran
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| |
Collapse
|
249
|
Seo YS, Park KH, Park JM, Jeong H, Kim B, Jeon JS, Yu J, Kim SK, Lee K, Lee MY. Short-term inhalation exposure to cigarette smoke induces oxidative stress and inflammation in lungs without systemic oxidative stress in mice. Toxicol Res 2024; 40:273-283. [PMID: 38525133 PMCID: PMC10959912 DOI: 10.1007/s43188-023-00223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 03/26/2024] Open
Abstract
Smoking is a well-established risk factor for various pathologies, including pulmonary diseases, cardiovascular disorders, and cancers. The toxic effects of cigarette smoke (CS) are mediated through multiple pathways and diverse mechanisms. A key pathogenic factor is oxidative stress, primarily induced by excessive formation of reactive oxygen species. However, it remains unclear whether smoking directly induces systemic oxidative stress or if such stress is a secondary consequence. This study aimed to determine whether short-term inhalation exposure to CS induces oxidative stress in extrapulmonary organs in addition to the lung in a murine model. In the experiment, 3R4F reference cigarettes were used to generate CS, and 8-week-old male BALB/c mice were exposed to CS at a total particulate matter concentration of either 0 or 800 µg/L for four consecutive days. CS exposure led to an increase in neutrophils, eosinophils, and total cell counts in bronchoalveolar lavage fluid. It also elevated levels of lactate dehydrogenase and malondialdehyde (MDA), markers indicative of tissue damage and oxidative stress, respectively. Conversely, no significant changes were observed in systemic oxidative stress markers such as total oxidant scavenging capacity, MDA, glutathione (GSH), and the GSH/GSSG ratio in blood samples. In line with these findings, CS exposure elevated NADPH oxidase (NOX)-dependent superoxide generation in the lung but not in other organs like the liver, kidney, heart, aorta, and brain. Collectively, our results indicate that short-term exposure to CS induces inflammation and oxidative stress in the lung without significantly affecting oxidative stress in extrapulmonary organs under the current experimental conditions. NOX may play a role in these pulmonary-specific events.
Collapse
Affiliation(s)
- Yoon-Seok Seo
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Kwang-Hoon Park
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Jung-Min Park
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596 Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596 Republic of Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
250
|
Kim H, Son JY, Junger W, Bell ML. Exposure to particulate matter and ozone, locations of regulatory monitors, and sociodemographic disparities in the city of Rio de Janeiro: Based on local air pollution estimates generated from machine learning models ☆. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2024; 322:120374. [PMID: 39479408 PMCID: PMC11523490 DOI: 10.1016/j.atmosenv.2024.120374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
South America is underrepresented in research on air pollution exposure disparities by sociodemographic factors, although such disparities have been observed in other parts of the world. We investigated whether exposure to and information about air pollution differs by sociodemographic factors in the city of Rio de Janeiro, the second most populous city in Brazil with dense urban areas, for 2012-2017. We developed machine learning-based models to estimate daily levels of O3, PM10, and PM2.5 using high-dimensional datasets from satellite remote sensing, atmospheric and land variables, and land use information. Cross-validations demonstrated good agreement between the estimated levels and measurements from ground-based monitoring stations: overall R 2 of 76.8 %, 63.9 %, and 69.1 % for O3, PM2.5, and PM10, respectively. We conducted univariate regression analyses to investigate whether long-term exposure to O3, PM2.5, PM10 and distance to regulatory monitors differs by socioeconomic indicators, the percentages of residents who were children (0-17 years) or age 65+ years in 154 neighborhoods. We also examined the number of days exceeding the Brazilian National Air Quality Standard (BNAQS). Long-term exposures to O3 and PM2.5 were higher in more socially deprived neighborhoods. An interquartile range (IQR) increment of the social development index (SDI) was associated with a 3.6 μg/m3 (95 % confidence interval [CI]: 2.9, 4.4; p-value≤0.001) decrease in O3, and 0.3 μg/m3 (95 % CI: 0.2, 0.5; p-value = 0.010) decrease in PM2.5. An IQR increase in the percentage of residents who are children was associated with a 4.1 μg/m3 (95 % CI: 3.1, 5.0; p-value≤0.001) increase in O3, and 0.4 μg/m3 (95 % CI: 0.3, 0.6; p-value = 0.009) increase in PM2.5. An IQR increase in the percentage of residents age ≥65was associated with a 3.3 μg/m3 (95 % CI: 2.4, 4.3; p-value=<0.001) decrease in O3, and 0.3 μg/m3 (95 % CI: 0.1, 0.5; p-value = 0.058) decrease in PM2.5. There were no apparent associations for PM10. The association for daily O3 levels exceeding the BNAQS daily standard was 0.4 %p-0.8 %p different by the IQR of variables, indicating a 7-15 days difference in the six-year period. The association for daily PM2.5 levels exceeding the BNAQS daily standard showed a 0.7-1.5 %p difference by the IQR, meaning a 13-27 days difference in the period. We did not find statistically significant associations between the distance to monitors and neighborhood characteristics but some indication regarding SDI. We found that O3 levels were higher in neighborhoods situated farther from monitoring stations, suggesting that elevated levels of air pollution may not be routinely measured. Exposure disparity patterns may vary by pollutants, suggesting a complex interplay between environmental and socioeconomic factors in environmental justice.
Collapse
Affiliation(s)
- Honghyok Kim
- Division of Environmental and Occupational Health Sciences,
School of Public Health, University of Illinois Chicago, Chicago, IL, United
States
| | - Ji-Young Son
- School of the Environment, Yale University, New Haven, CT,
United States
| | - Washington Junger
- Institute of Social Medicine, State University of Rio de
Janeiro, Rio de Janeiro, Brazil
| | - Michelle L. Bell
- School of the Environment, Yale University, New Haven, CT,
United States
| |
Collapse
|