201
|
Fayad N, Habib WA, El-Shesheny R, Kandeil A, Mourad Y, Mokhbat J, Kayali G, Goldstein J, Abdallah J. Lebanese SARS-CoV-2 genomics: 24 months of the pandemic. Virus Res 2022; 317:198824. [PMID: 35605880 PMCID: PMC9121641 DOI: 10.1016/j.virusres.2022.198824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic continues to pose a global health concern, despite the ongoing vaccination campaigns, due to the emergence and rapid spread of new variants of the causative agent SARS-CoV-2. These variants are identified and tracked via the marker mutations they carry, and the classification system put in place following tremendous sequencing efforts. In this study, the genomes of 1,230 Lebanese SARS-CoV-2 strains collected throughout 2 years of the outbreak in Lebanon were analyzed, 115 of which sequenced within this project. Strains were classified into seven GISAID clades, the major one being GRY, and 36 Pango lineages, with three variants of concern identified: alpha, delta and omicron. A time course distribution of GISAID clades allowed the visualization of change throughout the two years of the Lebanese outbreak, in conjunction with major events and measures in the country. Subsequent phylogenetic analysis showed the clustering of strains belonging to the same clades. In addition, a mutational survey showed the presence of mutations in the structural, non-structural and accessory proteins. Twenty five (25) mutations were labeled as major, i.e. present in more than 30% of the strains, such as the common Spike_D614G and NSP3_T183I. Whereas 635 were labeled as uncommon, i.e. found in very few of the analyzed strains as well as GISAID records, such as NSP2_I349V. Distribution of these mutations differed between 2020, and the first and the second half of 2021. In summary, this study highlights key genomic aspects of the Lebanese SARS-CoV-2 strains collected in 2020, the first year of the outbreak in Lebanon, versus those collected in 2021, the second year of COVID-19 in Lebanon.
Collapse
Affiliation(s)
- Nancy Fayad
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon
| | - Walid Abi Habib
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States of America
| | | | - Jacques Mokhbat
- School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | | | - Jimi Goldstein
- Human Link, Dubai, United Arab Emirates; School of Engineering and Technology, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK.
| | - Jad Abdallah
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon.
| |
Collapse
|
202
|
Zhong Z, Wang J, He S, Su X, Huang W, Chen M, Zhuo Z, Zhu X, Fang M, Li T, Zhang S, Ge S, Zhang J, Xia N. An encodable multiplex microsphere-phase amplification sensing platform detects SARS-CoV-2 mutations. Biosens Bioelectron 2022; 203:114032. [PMID: 35131697 PMCID: PMC8802492 DOI: 10.1016/j.bios.2022.114032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 variants of concern (VOCs) contain several single-nucleotide variants (SNVs) at key sites in the receptor-binding region (RBD) that enhance infectivity and transmission, as well as cause immune escape, resulting in an aggravation of the coronavirus disease 2019 (COVID-19) pandemic. Emerging VOCs have sparked the need for a diagnostic method capable of simultaneously monitoring these SNVs. To date, no highly sensitive, efficient clinical tool exists to monitor SNVs simultaneously. Here, an encodable multiplex microsphere-phase amplification (MMPA) sensing platform that combines primer-coded microsphere technology with dual fluorescence decoding strategy to detect SARS-CoV-2 RNA and simultaneously identify 10 key SNVs in the RBD. MMPA limits the amplification refractory mutation system PCR (ARMS-PCR) reaction for specific target sequence to the surface of a microsphere with specific fluorescence coding. This effectively solves the problem of non-specific amplification among primers and probes in multiplex PCR. For signal detection, specific fluorescence codes inside microspheres are used to determine the corresponding relationship between the microspheres and the SNV sites, while the report probes hybridized with PCR products are used to detect the microsphere amplification intensity. The MMPA platform offers a lower SARS-CoV-2 RNA detection limit of 28 copies/reaction, the ability to detect a respiratory pathogen panel without cross-reactivity, and a SNV analysis accuracy level comparable to that of sequencing. Moreover, this super-multiple parallel SNVs detection method enables a timely updating of the panel of detected SNVs that accompanies changing VOCs, and presents a clinical availability that traditional sequencing methods do not.
Collapse
|
203
|
Korencak M, Sivalingam S, Sahu A, Dressen D, Schmidt A, Brand F, Krawitz P, Hart L, Maria Eis-Hübinger A, Buness A, Streeck H. Reconstruction of the Origin of the First Major SARS-CoV-2 Outbreak in Germany. Comput Struct Biotechnol J 2022; 20:2292-2296. [PMID: 35574268 PMCID: PMC9088089 DOI: 10.1016/j.csbj.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022] Open
Abstract
The first major COVID-19 outbreak in Germany occurred in Heinsberg in February 2020 with 388 officially reported cases. Unexpectedly, the first outbreak happened in a small town with little to no travelers. We used phylogenetic analyses to investigate the origin and spread of the virus in this outbreak. We sequenced 90 (23%) SARS-CoV-2 genomes from the 388 reported cases including the samples from the first documented cases. Phylogenetic analyses of these sequences revealed mainly two circulating strains with 74 samples assigned to lineage B.3 and 6 samples assigned to lineage B.1. Lineage B.3 was introduced first and probably caused the initial spread. Using phylogenetic analysis tools, we were able to identify closely related strains in France and hypothesized the possible introduction from France.
Collapse
Affiliation(s)
- Marek Korencak
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Sugirthan Sivalingam
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Anshupa Sahu
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Dietmar Dressen
- Labor Mönchengladbach MVZ Dr. Stein & Kollegen GbR, Tomphecke 45, Mönchengladbach 41169, Germany
| | - Axel Schmidt
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Fabian Brand
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Libor Hart
- Department of Oral and Maxillofacial Surgery, University of Duisburg-Essen, Henricistr. 92, Essen 45136, Germany
| | | | - Andreas Buness
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
- Corresponding author.
| |
Collapse
|
204
|
Strain wars 2: Binding constants, enthalpies, entropies, Gibbs energies and rates of binding of SARS-CoV-2 variants. Virology 2022; 570:35-44. [PMID: 35366482 PMCID: PMC8961312 DOI: 10.1016/j.virol.2022.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
SARS-CoV-2 virus is the cause of COVID-19 pandemic and belongs to RNA viruses, showing great tendency to mutate. Several dozens of mutations have been observed on the SARS-CoV-2 virus, during the last two years. Some of the mutated strains show a greater infectivity and are capable of suppressing the earlier strains, through interference. In this work, kinetic and thermodynamic properties were calculated for strains characterized by various numbers and locations of mutations. It was shown that mutations lead to changes in chemical composition, thermodynamic properties and infectivity. Through competition, the phenomenon of interference of various SARS-CoV-2 strains was explained, which results in suppression of the wild type by mutant strains. Standard Gibbs energy of binding and binding constant for the Omicron (B.1.1.529) strain were found to be ΔBG⁰ = −45.96 kJ/mol and KB = 1.13 ∙ 10+8 M−1, respectively.
Collapse
|
205
|
Tsai MS, Shih WT, Yang YH, Lin YS, Chang GH, Hsu CM, Yeh RA, Shu LH, Cheng YC, Liu HT, Wu YH, Wu YH, Shen RC, Wu CY. Potential inhibitor for blocking binding between ACE2 and SARS-CoV-2 spike protein with mutations. Biomed Pharmacother 2022; 149:112802. [PMID: 35279013 PMCID: PMC8906167 DOI: 10.1016/j.biopha.2022.112802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022] Open
Abstract
At the time of writing, more than 440 million confirmed coronavirus disease 2019 (COVID-19) cases and more than 5.97 million COVID-19 deaths worldwide have been reported by the World Health Organization since the start of the outbreak of the pandemic in Wuhan, China. During the COVID-19 pandemic, many variants of SARS-CoV-2 have arisen because of high mutation rates. N501Y, E484K, K417N, K417T, L452R and T478K in the receptor binding domain (RBD) region may increase the infectivity in several variants of SARS-CoV-2. In this study, we discovered that GB-1, developed from Chiehyuan herbal formula which obtained from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, can inhibit the binding between ACE2 and RBD with Wuhan type, K417N-E484K-N501Y and L452R-T478K mutation. In addition, GB-1 inhibited the binding between ACE2 and RBD with a single mutation (E484K or N501Y), except the K417N mutation. In the compositions of GB-1, glycyrrhizic acid can inhibit the binding between ACE2 and RBD with Wuhan type, except K417N-E484K-N501Y mutation. Our results suggest that GB-1 could be a potential candidate for the prophylaxis of different variants of SARS-CoV-2 infection because of its inhibition of binding between ACE2 and RBD with different mutations (L452R-T478K, K417N-E484K-N501Y, N501Y or E484K).
Collapse
Affiliation(s)
- Ming-Shao Tsai
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Rou-Chen Shen
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
206
|
Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y, Huang Y. mRNA vaccines for COVID-19 and diverse diseases. J Control Release 2022; 345:314-333. [PMID: 35331783 PMCID: PMC8935967 DOI: 10.1016/j.jconrel.2022.03.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
Since its outbreak in late 2019, the novel coronavirus disease 2019 (COVID-19) has spread to every continent on the planet. The global pandemic has affected human health and socioeconomic status around the world. At first, the global response to the pandemic was to isolate afflicted individuals to prevent the virus from spreading, while vaccine development was ongoing. The genome sequence was first presented in early January 2020, and the phase I clinical trial of the vaccine started in March 2020 in the United States using novel lipid-based nanoparticle (LNP), encapsulated with mRNA termed as mRNA-1273. Till now, various mRNA-based vaccines are in development, while one mRNA-based vaccine got market approval from US-FDA for the prevention of COVID-19. Previously, mRNA-based vaccines were thought to be difficult to develop, but the current development is a significant accomplishment. However, widespread production and global availability of mRNA-based vaccinations to combat the COVID-19 pandemic remains a major challenge, especially when the mutations continually occur on the virus (e.g., the recent outbreaks of Omicron variant). This review elaborately discusses the COVID-19 pandemic, the biology of SARS-CoV-2 and the progress of mRNA-based vaccines. Moreover, the review also highlighted a detailed description of mRNA delivery technologies and the application potential in controlling other life-threatening diseases. Therefore, it provides a comprehensive view and multidisciplinary insights into mRNA therapy for broader audiences.
Collapse
Affiliation(s)
- Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| | - Muhammad Irfan
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China; School of Business Administration, Ilma University, Karachi 75190, Pakistan
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
207
|
Yashvardhini N, Jha DK, Kumar A, Gaurav M, Sayrav K. Genome sequence analysis of nsp15 from SARS-CoV-2. Bioinformation 2022; 18:432-437. [PMID: 36909703 PMCID: PMC9997503 DOI: 10.6026/97320630018432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome), a causative agent of COVID-19 disease created a pandemic situation worldwide. Nsp15 is a uridine specific endoribonuclease encoded by the genome of SARS-CoV-2. It plays important role in processing viral RNA and, thus evades the host immune system. Therefore, it is of interest to identify mutants of nsp15 amongst Asian SARS-CoV-2 isolates, where a total of 1795 mutations, from 7793 sequences of Asia submitted till 31st January 2022, amongst which A231V, H234Y, K109N, K259R and S261A mutations were found frequent. Hence, we report data on the predicted secondary structure of wild type form followed by hydropathy plot, physiochemical properties, Ramachandran plot, B-cell epitopes prediction and protein modeling of wild type and mutant of nsp15 protein. Data shows that nsp15 of SARS-CoV-2 is a pontential candidate for the development of vaccine to control the infections of SARS-CoV-2.
Collapse
Affiliation(s)
- Niti Yashvardhini
- Department of Microbiology, Patna Women’s College, Patna, 800 001, Bihar, India
| | - Deepak Kumar Jha
- Department of Zoology, S.M.P. Girls Degree College, Ballia, 277401, Uttar Pradesh, India
| | - Amit Kumar
- Department of Botany, Patna University, Patna-800 005, Bihar, India
| | - Manjush Gaurav
- Department of Botany, Patna University, Patna-800 005, Bihar, India
| | - Kumar Sayrav
- Department of Chemistry, V.K.S. University, Ara-802301, Bihar India
| |
Collapse
|
208
|
Tharmalingam T, Han X, Wozniak A, Saward L. Polyclonal hyper immunoglobulin: A proven treatment and prophylaxis platform for passive immunization to address existing and emerging diseases. Hum Vaccin Immunother 2022; 18:1886560. [PMID: 34010089 PMCID: PMC9090292 DOI: 10.1080/21645515.2021.1886560] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Passive immunization with polyclonal hyper immunoglobulin (HIG) therapy represents a proven strategy by transferring immunoglobulins to patients to confer immediate protection against a range of pathogens including infectious agents and toxins. Distinct from active immunization, the protection is passive and the immunoglobulins will clear from the system; therefore, administration of an effective dose must be maintained for prophylaxis or treatment until a natural adaptive immune response is mounted or the pathogen/agent is cleared. The current review provides an overview of this technology, key considerations to address different pathogens, and suggested improvements. The review will reflect on key learnings from development of HIGs in the response to public health threats due to Zika, influenza, and severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Xiaobing Han
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ashley Wozniak
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
| | - Laura Saward
- Therapeutics Business Unit, Emergent BioSolutions Incorporated, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
209
|
Generated Randomly and Selected Functionally? The Nature of Enterovirus Recombination. Viruses 2022; 14:v14050916. [PMID: 35632658 PMCID: PMC9144335 DOI: 10.3390/v14050916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic recombination in RNA viruses is an important evolutionary mechanism. It contributes to population diversity, host/tissue adaptation, and compromises vaccine efficacy. Both the molecular mechanism and initial products of recombination are relatively poorly understood. We used an established poliovirus-based in vitro recombination assay to investigate the roles of sequence identity and RNA structure, implicated or inferred from an analysis of circulating recombinant viruses, in the process. In addition, we used next-generation sequencing to investigate the early products of recombination after cellular coinfection with different poliovirus serotypes. In independent studies, we find no evidence for a role for RNA identity or structure in determining recombination junctions location. Instead, genome function and fitness are of greater importance in determining the identity of recombinant progeny. These studies provide further insights into this important evolutionary mechanism and emphasize the critical nature of the selection process on a mixed virus population.
Collapse
|
210
|
Machado BAS, Hodel KVS, Fonseca LMDS, Pires VC, Mascarenhas LAB, da Silva Andrade LPC, Moret MA, Badaró R. The Importance of Vaccination in the Context of the COVID-19 Pandemic: A Brief Update Regarding the Use of Vaccines. Vaccines (Basel) 2022; 10:591. [PMID: 35455340 PMCID: PMC9027942 DOI: 10.3390/vaccines10040591] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has led the world to undertake the largest vaccination campaign in human history. In record time, unprecedented scientific and governmental efforts have resulted in the acquisition of immunizers utilizing different technologies (nucleotide acids, viral vectors, inactivated and protein-based vaccines). Currently, 33 vaccines have already been approved by regulatory agencies in different countries, and more than 10 billion doses have been administered worldwide. Despite the undeniable impact of vaccination on the control of the pandemic, the recurrent emergence of new variants of interest has raised new challenges. The recent viral mutations precede new outbreaks that rapidly spread at global proportions. In addition, reducing protective efficacy rates have been observed among the main authorized vaccines. Besides these issues, several other crucial issues for the appropriate combatting of the pandemic remain uncertain or under investigation. Particularly noteworthy issues include the use of vaccine-boosting strategies to increase protection; concerns related to the long-term safety of vaccines, child immunization reliability and uncommon adverse events; the persistence of the virus in society; and the transition from a pandemic to an endemic state. In this review, we describe the updated scenario regarding SARS-CoV-2 variants and COVID-19 vaccines. In addition, we outline current discussions covering COVID-19 vaccine safety and efficacy, and the future pandemic perspectives.
Collapse
Affiliation(s)
- Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (V.C.P.); (L.A.B.M.); (L.P.C.d.S.A.); (M.A.M.); (R.B.)
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (V.C.P.); (L.A.B.M.); (L.P.C.d.S.A.); (M.A.M.); (R.B.)
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (V.C.P.); (L.A.B.M.); (L.P.C.d.S.A.); (M.A.M.); (R.B.)
| | - Vinícius Couto Pires
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (V.C.P.); (L.A.B.M.); (L.P.C.d.S.A.); (M.A.M.); (R.B.)
| | - Luis Alberto Brêda Mascarenhas
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (V.C.P.); (L.A.B.M.); (L.P.C.d.S.A.); (M.A.M.); (R.B.)
| | - Leone Peter Correia da Silva Andrade
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (V.C.P.); (L.A.B.M.); (L.P.C.d.S.A.); (M.A.M.); (R.B.)
| | - Marcelo Albano Moret
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (V.C.P.); (L.A.B.M.); (L.P.C.d.S.A.); (M.A.M.); (R.B.)
- UNEB, Universidade do Estado da Bahia, Salvador 41150-000, Brazil
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (V.C.P.); (L.A.B.M.); (L.P.C.d.S.A.); (M.A.M.); (R.B.)
| |
Collapse
|
211
|
Tarazi R, Vaslin MFS. The Viral Threat in Cotton: How New and Emerging Technologies Accelerate Virus Identification and Virus Resistance Breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:851939. [PMID: 35449884 PMCID: PMC9016188 DOI: 10.3389/fpls.2022.851939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Cotton (Gossypium spp. L., Malvaceae) is the world's largest source of natural fibers. Virus outbreaks are fast and economically devasting regarding cotton. Identifying new viruses is challenging as virus symptoms usually mimic nutrient deficiency, insect damage, and auxin herbicide injury. Traditional viral identification methods are costly and time-consuming. Developing new resistant cotton lines to face viral threats has been slow until the recent use of molecular virology, genomics, new breeding techniques (NBT), remote sensing, and artificial intelligence (AI). This perspective article demonstrates rapid, sensitive, and cheap technologies to identify viral diseases and propose their use for virus resistance breeding.
Collapse
Affiliation(s)
- Roberto Tarazi
- Plant Molecular Virology Laboratory, Department of Virology, Microbiology Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biotecnologia e Bioprocessos da UFRJ, Rio de Janeiro, Brazil
| | - Maite F. S. Vaslin
- Plant Molecular Virology Laboratory, Department of Virology, Microbiology Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biotecnologia e Bioprocessos da UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
212
|
Aydogdu MO, Rohn JL, Jafari NV, Brako F, Homer‐Vanniasinkam S, Edirisinghe M. Severe Acute Respiratory Syndrome Type 2-Causing Coronavirus: Variants and Preventive Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104495. [PMID: 35037418 PMCID: PMC9008798 DOI: 10.1002/advs.202104495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/17/2021] [Indexed: 05/03/2023]
Abstract
COVID-19 vaccines have constituted a substantial scientific leap in countering severe acute respiratory syndrome type 2-causing coronavirus (SARS-CoV-2), and worldwide implementation of vaccination programs has significantly contributed to the global pandemic effort by saving many lives. However, the continuous evolution of the SARS-CoV-2 viral genome has resulted in different variants with a diverse range of mutations, some with enhanced virulence compared with previous lineages. Such variants are still a great concern as they have the potential to reduce vaccine efficacy and increase the viral transmission rate. This review summarizes the significant variants of SARS-CoV-2 encountered to date (December 2021) and discusses a spectrum of possible preventive strategies, with an emphasis on physical and materials science.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Department of Mechanical EngineeringUniversity College London (UCL)Torrington PlaceLondonWC1E 7JEUK
| | - Jennifer L. Rohn
- Department of Renal MedicineDivision of MedicineUniversity College LondonRowland Hill StreetLondonNW3 2PFUK
| | - Nazila V. Jafari
- Department of Renal MedicineDivision of MedicineUniversity College LondonRowland Hill StreetLondonNW3 2PFUK
| | - Francis Brako
- Medway School of PharmacyUniversities at MedwayChathamME4 4TBUK
| | | | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College London (UCL)Torrington PlaceLondonWC1E 7JEUK
| |
Collapse
|
213
|
Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, Siyadatpanah A, Alhumaydhi FA, Mahmud S, Tallei TE, Emran TB, Kim B. Can the SARS-CoV-2 Omicron Variant Confer Natural Immunity against COVID-19? Molecules 2022; 27:2221. [PMID: 35408618 PMCID: PMC9000495 DOI: 10.3390/molecules27072221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with no signs of abatement in sight. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of this pandemic and has claimed over 5 million lives, is still mutating, resulting in numerous variants. One of the newest variants is Omicron, which shows an increase in its transmissibility, but also reportedly reduces hospitalization rates and shows milder symptoms, such as in those who have been vaccinated. As a result, many believe that Omicron provides a natural vaccination, which is the first step toward ending the COVID-19 pandemic. Based on published research and scientific evidence, we review and discuss how the end of this pandemic is predicted to occur as a result of Omicron variants being surpassed in the community. In light of the findings of our research, we believe that it is most likely true that the Omicron variant is a natural way of vaccinating the masses and slowing the spread of this deadly pandemic. While the mutation that causes the Omicron variant is encouraging, subsequent mutations do not guarantee that the disease it causes will be less severe. As the virus continues to evolve, humans must constantly adapt by increasing their immunity through vaccination.
Collapse
Affiliation(s)
- Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Siti Marfuah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia;
| | - Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia;
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shafi Mahmud
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| |
Collapse
|
214
|
Guide RNAs containing universal bases enable Cas9/Cas12a recognition of polymorphic sequences. Nat Commun 2022; 13:1617. [PMID: 35338140 PMCID: PMC8956631 DOI: 10.1038/s41467-022-29202-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
CRISPR/Cas complexes enable precise gene editing in a wide variety of organisms. While the rigid identification of DNA sequences by these systems minimizes the potential for off-target effects, it consequently poses a problem for the recognition of sequences containing naturally occurring polymorphisms. The presence of genetic variance such as single nucleotide polymorphisms (SNPs) in a gene sequence can compromise the on-target activity of CRISPR systems. Thus, when attempting to target multiple variants of a human gene, or evolved variants of a pathogen gene using a single guide RNA, more flexibility is desirable. Here, we demonstrate that Cas9 can tolerate the inclusion of universal bases in individual guide RNAs, enabling simultaneous targeting of polymorphic sequences. Crucially, we find that specificity is selectively degenerate at the site of universal base incorporation, and remains otherwise preserved. We demonstrate the applicability of this technology to targeting multiple naturally occurring human SNPs with individual guide RNAs and to the design of Cas12a/Cpf1-based DETECTR probes capable of identifying multiple evolved variants of the HIV protease gene. Our findings extend the targeting capabilities of CRISPR/Cas systems beyond their canonical spacer sequences and highlight a use of natural and synthetic universal bases.
Collapse
|
215
|
Pamornchainavakul N, Kikuti M, Paploski IAD, Makau DN, Rovira A, Corzo CA, VanderWaal K. Measuring How Recombination Re-shapes the Evolutionary History of PRRSV-2: A Genome-Based Phylodynamic Analysis of the Emergence of a Novel PRRSV-2 Variant. Front Vet Sci 2022; 9:846904. [PMID: 35400102 PMCID: PMC8990846 DOI: 10.3389/fvets.2022.846904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
While the widespread and endemic circulation of porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) causes persistent economic losses to the U.S. swine industry, unusual increases of severe cases associated with the emergence of new genetic variants are a major source of concern for pork producers. Between 2020 and 2021, such an event occurred across pig production sites in the Midwestern U.S. The emerging viral clade is referred to as the novel sub-lineage 1C (L1C) 1-4-4 variant. This genetic classification is based on the open reading frame 5 (ORF5) gene. However, although whole genome sequence (WGS) suggested that this variant represented the emergence of a new strain, the true evolutionary history of this variant remains unclear. To better elucidate the variant's evolutionary history, we conducted a recombination detection analysis, time-scaled phylogenetic estimation, and discrete trait analysis on a set of L1C-1-4-4 WGSs (n = 19) alongside other publicly published WGSs (n = 232) collected over a 26-year period (1995–2021). Results from various methodologies consistently suggest that the novel L1C variant was a descendant of a recombinant ancestor characterized by recombination at the ORF1a gene between two segments that would be otherwise classified as L1C and L1A in the ORF5 gene. Based on analysis of different WGS fragments, the L1C-1-4-4 variant descended from an ancestor that existed around late 2018 to early 2019, with relatively high substitution rates in the proximal ORF1a as well as ORF5 regions. Two viruses from 2018 were found to be the closest relatives to the 2020-21 outbreak strain but had different recombination profiles, suggesting that these viruses were not direct ancestors. We also assessed the overall frequency of putative recombination amongst ORF5 and other parts of the genome and found that recombination events which leave detectable numbers of descendants are not common. However, the rapid spread and high virulence of the L1C-1-4-4 recombinant variant demonstrates that inter-sub-lineage recombination occasionally found amongst the U.S. PRRSV-2 might be an evolutionary mechanisms that contributed to this emergence. More generally, recombination amongst PRRSV-2 accelerates genetic change and increases the chance of the emergence of high fitness variants.
Collapse
|
216
|
Getso MI, Etemadi S, Raissi V, Mohseni M, Mohseni MS, Raeisi F, Raiesi O. Therapeutic strategies for COVID-19 patients: An update. Infect Disord Drug Targets 2022; 22:10-21. [PMID: 35319396 DOI: 10.2174/1871526522666220322145729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
The novel coronavirus SARS-coV-2, which emerged in Wuhan in November 2019, has increasingly spread causing a global pandemic that infected more than 444 million people, resulting in severe social and economic ramifications, and claimed more than 6,010,000 lives by March 5, 2022. The pandemic attracted global attention with consequential multiple economic, social, and clinical studies. Among causes of poor clinical outcome of the disease are therapeutic challenges, leading to spirals of studies in search for better therapeutic alternatives. Despite the worsening circumstances of the pandemic, no drug has yet shown remarkable efficacy in the clinical management of COVID-19 patients in large-scale trials. Many potential therapeutic strategies, including the use of nucleotide analogs, chloroquine phosphate, arbidol, protease inhibitors (lopinavir/ritonavir), plasma, monoclonal antibodies, plastic antibodies based on Molecularly Imprinted Polymers (MIPs), traditional Chinese medicine (TCM), nanomaterials, vaccine, and mesenchymal stem cells (MSCs), have emerged with various degrees of successes. Remdesivir and dexamethasone have now been licensed based on the results of randomized controlled trials. Baricitinib, the Janus kinase (JAK) 1/2 inhibitor, is also an attractive candidate due to its properties as a potent anti-inflammatory agent and its hypothesized off-target antiviral effects against SARS-CoV-2. Besides, human plasma from recovered COVID-19 patients is theoretically expected to be safe and effective for both therapy and post-exposure prophylaxis. In light of the literature, the correlation between the reduction of C5aR1/C5aR2 and IL6-IL6R axis, using the available anti-IL6R mAb would be crucial. More, MSCs are a potential therapeutic choice for patients with COVID-19 pneumonia. The coronavirus spike (S) protein that mediates the process of the infection via binding of host cells to the virus receptor is an essential focus for vaccine development. Importantly, with the number of patients increasing daily, there is an urgent need for effective therapeutic intervention. In this review, we expatiated on several strategies deployed for the treatment of COVID-19 infection.
Collapse
Affiliation(s)
- Muhammad Ibrahim Getso
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University Kano, PMB 3011 Kano-Nigeria
| | - Soudabeh Etemadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Vahid Raissi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Mohseni
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Sadat Mohseni
- Department of Engineering and Technology, Islamic Azad University, Sari Branch, Sari, Iran
| | - Farid Raeisi
- Department of Nursing and Midwifery of Dezful Islamic Azad University, Dezful, Iran
| | - Omid Raiesi
- Department of Parasitology, School of Allied Medical Sciences. Ilam University of Medical Sciences, Ilam, Iran.
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
217
|
Mallick Gupta A, Mandal S, Mandal S, Chakrabarti J. Immune escape facilitation by mutations of epitope residues in RdRp of SARS-CoV-2. J Biomol Struct Dyn 2022; 41:3542-3552. [PMID: 35293850 DOI: 10.1080/07391102.2022.2051746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations drive viral evolution and genome variability that causes viruses to escape host immunity and to develop drug resistance. SARS-CoV-2 has considerably higher mutation rate. SARS-CoV-2 possesses a RNA dependent RNA polymerase (RdRp) which helps to replicate its genome. The mutation P323L in RdRp is associated with the loss of a particular epitope (321-327) from this protein. We consider the effects of mutations in some of the epitope region including the naturally occurring mutation P323L on the structure of the epitope and their interface with paratope using all-atom molecular dynamics (MD) simulation studies. We observe that the mutations cause conformational changes in the epitope region by opening up the region associated with increase in the radius of gyration and intramolecular hydrogen bonds, making the region less accessible. Moreover, we study the conformational stability of the epitope region and epitope:paratope interface under the mutation from the fluctuations in the dihedral angles. We observe that the mutation renders the epitope and the epitope:paratope interface unstable compared to the corresponding wild type ones. Thus, the mutations may help in escaping antibody mediated immunity of the hostCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aayatti Mallick Gupta
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata
| | - SasthiCharan Mandal
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata
| |
Collapse
|
218
|
Papanikolaou V, Chrysovergis A, Ragos V, Tsiambas E, Katsinis S, Manoli A, Papouliakos S, Roukas D, Mastronikolis S, Peschos D, Batistatou A, Kyrodimos E, Mastronikolis N. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene 2022; 814:146134. [PMID: 34990799 PMCID: PMC8725615 DOI: 10.1016/j.gene.2021.146134] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus-related Severe Acute Respiratory Syndrome (SARS-CoV) in 2002/2003, Middle-East Respiratory Syndrome (MERS-CoV) in 2012/2013, and especially the current 2019/2021 Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) affected negatively the national health systems’ endurance worldwide. SARS-Cov-2 virus belongs to lineage b of beta-CoVs demonstrating a strong phylogenetic similarity with BatCoVRaTG13 type. Spike (S) glycoprotein projections -consisting of two subunits S1/S2- provide a unique crown-like formation (corona) on virion’s surface. Concerning their functional role, S1 represents the main receptor-binding domain (RBD), whereas S2 is involved in the virus-cell membrane fusion mechanism. On Nov 26th 2021, WHO designated the new SARS-CoV-2 strain – named Omicron, from letter ‘’όμικρον’’ in the Greek alphabet - as a variant of concern (B.1.1529 variant). Potentially this new variant is associated with high transmissibility leading to elevated infectivity and probably increased re-infection rates. Its impact on morbidity/mortality remains under investigation. In the current paper, analyzing and comparing the alterations of SARS-CoV-2 S RNA sequences in the defined variants (Alpha to Omicron), we observed some interesting findings regarding the S1-RBD/S2 mutation/deletion equilibrium that maybe affect and modify its activity.
Collapse
Affiliation(s)
| | - Aris Chrysovergis
- 1ST ENT Department, Hippocration Hospital, University of Athens, Athens, Greece
| | - Vasileios Ragos
- Dept of Maxillofacial, Medical School, University of Ioannina, Greece
| | - Evangelos Tsiambas
- Dept of Maxillofacial, Medical School, University of Ioannina, Greece; Department of Cytology, Molecular Unit, 417 Veterans Army Hospital (NIMTS), Athens, Greece.
| | - Spyros Katsinis
- Department of Otorhinolaryngology, Thoracic Diseases General Hospital "Sotiria", Athens, Greece
| | - Arezina Manoli
- Department of Otorhinolaryngology, Thoracic Diseases General Hospital "Sotiria", Athens, Greece
| | | | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | | | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Greece
| | - Anna Batistatou
- ENT Department, Medical School, University of Patras, Greece
| | - Efthimios Kyrodimos
- 1ST ENT Department, Hippocration Hospital, University of Athens, Athens, Greece
| | | |
Collapse
|
219
|
Yépez Y, Marcano-Ruiz M, Bezerra RS, Fam B, Ximenez JPB, Silva WA, Bortolini MC. Evolutionary history of the SARS-CoV-2 Gamma variant of concern (P.1): a perfect storm. Genet Mol Biol 2022; 45:e20210309. [PMID: 35266951 PMCID: PMC8908351 DOI: 10.1590/1678-4685-gmb-2021-0309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Our goal was to describe in more detail the evolutionary history of Gamma and two derived lineages (P.1.1 and P.1.2), which are part of the arms race that SARS-CoV-2 wages with its host. A total of 4,977 sequences of the Gamma strain of SARS-CoV-2 from Brazil were analyzed. We detected 194 sites under positive selection in 12 genes/ORFs: Spike, N, M, E, ORF1a, ORF1b, ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF10. Some diagnostic sites for Gamma lacked a signature of positive selection in our study, but these were not fixed, apparently escaping the action of purifying selection. Our network analyses revealed branches leading to expanding haplotypes with sites under selection only detected when P.1.1 and P.1.2 were considered. The P.1.2 exclusive haplotype H_5 originated from a non-synonymous mutational step (H3509Y) in H_1 of ORF1a. The selected allele, 3509Y, represents an adaptive novelty involving ORF1a of P.1. Finally, we discuss how phenomena such as epistasis and antagonistic pleiotropy could limit the emergence of new alleles (and combinations thereof) in SARS-COV-2 lineages, maintaining infectivity in humans, while providing rapid response capabilities to face the arms race triggered by host immuneresponses.
Collapse
Affiliation(s)
- Yuri Yépez
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Mariana Marcano-Ruiz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Rafael S Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Bibiana Fam
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - João PB Ximenez
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Wilson A Silva
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
- Instituto de Pesquisa do Câncer de Guarapuava, Guarapuava, PR,
Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
220
|
Zhang M, Gong Y, Jiao S. Neutralization heterogeneity of circulating SARS-CoV-2 variants to sera elicited by a vaccinee or convalescent. Future Virol 2022; 17:10.2217/fvl-2021-0100. [PMID: 35492429 PMCID: PMC9041375 DOI: 10.2217/fvl-2021-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
COVID-19, which was first reported in December 2019 in China, has caused a global outbreak. Five variants of concern (VOCs) have been identified in different countries since the global pandemic, namely, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.529). Although multiple vaccines have been found to be effective, some of the amino acid changes may increase the infectivity of virus and decrease the sensitivity to antibodies. Here we characterize the VOCs and discuss their sensitivity to antibodies elicited by convalescent and vaccinee sera. In conclusion, several variants display a reduction in the susceptibility to neutralization antibodies generated by natural infection or vaccination, which threatens the containment of the epidemic.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Research & Development, Beijing DCTY Biotech Co., Ltd, 86 Shuangying West Road, Beijing, 102200, People's Republic of China
| | - Yixin Gong
- Department of Research & Development, Beijing DCTY Biotech Co., Ltd, 86 Shuangying West Road, Beijing, 102200, People's Republic of China
| | - Shunchang Jiao
- Department of Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| |
Collapse
|
221
|
Behl A, Nair A, Mohagaonkar S, Yadav P, Gambhir K, Tyagi N, Sharma RK, Butola BS, Sharma N. Threat, challenges, and preparedness for future pandemics: A descriptive review of phylogenetic analysis based predictions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105217. [PMID: 35065303 DOI: 10.1016/j.meegid.2022.105217] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
For centuries the world has been confronted with many infectious diseases, with a potential to turn into a pandemic posing a constant threat to human lives. Some of these pandemics occurred due to the emergence of new disease or re-emergence of previously known diseases with a few mutations. In such scenarios their optimal prevention and control options were not adequately developed. Most of these diseases are highly contagious and for their timely control, knowledge about the pathogens and disease progression is the basic necessity. In this review, we have presented a documented chronology of the earlier pandemics, evolutionary analysis of the infectious disease with pandemic potential, the role of RNA, difficulties in controlling pandemics, and the likely pathogens that could trigger future pandemics. In this study, the evolutionary history of the pathogens was identified by carrying out phylogenetic analysis. The percentage similarity between different infectious diseases is critically analysed for the identification of their correlation using online sequence matcher tools. The Baltimore classification system was used for finding the genomic nature of the viruses. It was observed that most of the infectious pathogens rise from their animal hosts with some mutations in their genome composition. The phylogenetic tree shows that the single-stranded RNA diseases have a common origin and many of them are having high similarity percentage. The outcomes of this study will help in the identification of potential pathogens that can cause future pandemics. This information will be helpful in the development of early detection techniques, devising preventive mechanism to limit their spread, prophylactic measures, Infection control and therapeutic options, thereby, strengthening our approach towards global preparedness against future pandemics.
Collapse
Affiliation(s)
- Amanpreet Behl
- Department of Molecular Medicine, Jamia Hamdard Univeristy, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Ashrit Nair
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Sanika Mohagaonkar
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Kirtida Gambhir
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Nishant Tyagi
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Rakesh Kumar Sharma
- Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Chennai 600077, Tamil Nadu, India
| | - Bhupendra Singh Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Navneet Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
222
|
|
223
|
Zhang D, Yang Y, Li M, Lu Y, Liu Y, Jiang J, Liu R, Liu J, Huang X, Li G, Qu J. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. ENGINEERING (BEIJING, CHINA) 2022; 10:155-166. [PMID: 33903827 PMCID: PMC8060651 DOI: 10.1016/j.eng.2020.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 05/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) and concerns about several other pandemics in the 21st century have attracted extensive global attention. These emerging infectious diseases threaten global public health and raise urgent studies on unraveling the underlying mechanisms of their transmission from animals to humans. Although numerous works have intensively discussed the cross-species and endemic barriers to the occurrence and spread of emerging infectious diseases, both types of barriers play synergistic roles in wildlife habitats. Thus far, there is still a lack of a complete understanding of viral diffusion, migration, and transmission in ecosystems from a macro perspective. In this review, we conceptualize the ecological barrier that represents the combined effects of cross-species and endemic barriers for either the natural or intermediate hosts of viruses. We comprehensively discuss the key influential factors affecting the ecological barrier against viral transmission from virus hosts in their natural habitats into human society, including transmission routes, contact probability, contact frequency, and viral characteristics. Considering the significant impacts of human activities and global industrialization on the strength of the ecological barrier, ecological barrier deterioration driven by human activities is critically analyzed for potential mechanisms. Global climate change can trigger and expand the range of emerging infectious diseases, and human disturbances promote higher contact frequency and greater transmission possibility. In addition, globalization drives more transmission routes and produces new high-risk regions in city areas. This review aims to provide a new concept for and comprehensive evidence of the ecological barrier blocking the transmission and spread of emerging infectious diseases. It also offers new insights into potential strategies to protect the ecological barrier and reduce the wide-ranging risks of emerging infectious diseases to public health.
Collapse
Affiliation(s)
- Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
224
|
Al-Qahtani AA. Mutations in the genome of severe acute respiratory syndrome coronavirus 2: implications for COVID-19 severity and progression. J Int Med Res 2022; 50:3000605221086433. [PMID: 35352580 PMCID: PMC8973081 DOI: 10.1177/03000605221086433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Coronaviridae is a large family of enveloped, positive-strand RNA viruses that has plagued the world since it was discovered in humans in the 1960s. The recent severe acute respiratory syndrome coronavirus (SARS-CoV)-2 pandemic has already exceeded the number of combined cases and deaths witnessed during previous SARS-CoV and Middle East respiratory syndrome-CoV epidemics in the last two decades. This narrative review focuses on genomic mutations in SARS-CoV-2 and their impact on the severity and progression of COVID-19 in light of reported data in the literature. Notable SARS-CoV-2 mutations associated with open reading frames, the S glycoprotein, and nucleocapsid protein, currently circulating globally, are discussed along with emerging mutations such as those in the SARS-CoV-2 VUI 202012/01 variant in the UK and other European countries, the 484K.V2 and P.1 variants in Brazil, the B.1.617 variant in India, and South African variants 501Y.V2 and B.1.1.529 (omicron). These variants have the potential to influence the receptor binding domain, host-virus fusion, and SARS-CoV-2 replication. Correlating these mutations with disease dynamics could help us understand their pathogenicity and design appropriate therapeutics.
Collapse
Affiliation(s)
- Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
225
|
Innate Immune Response in SARS-CoV-2 Infection. Microorganisms 2022; 10:microorganisms10030501. [PMID: 35336077 PMCID: PMC8950297 DOI: 10.3390/microorganisms10030501] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
An efficient host immune response is crucial in controlling viral infections. Despite most studies focused on the implication of T and B cell response in COVID-19 (Corona Virus Disease-19) patients or in their activation after vaccination against SARS-CoV-2, host innate immune response has raised even more interest as well. In fact, innate immunity, including Natural Killer (NK) cells, monocytes/macrophages and neutrophils, represent the first line of defense against the virus and it is essential to determine the correct activation of an efficient and specific acquired immune response. In this perspective, we will report an overview on the main findings concerning SARS-CoV-2 interaction with innate host immune system, in correlation with pathogenesis and viral immune escape mechanisms.
Collapse
|
226
|
Developing an Amplification Refractory Mutation System-Quantitative Reverse Transcription-PCR Assay for Rapid and Sensitive Screening of SARS-CoV-2 Variants of Concern. Microbiol Spectr 2022; 10:e0143821. [PMID: 34985323 PMCID: PMC8729772 DOI: 10.1128/spectrum.01438-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the emergence and wide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), such as the Delta variant (B.1.617.2 lineage and AY sublineage), it is important to track VOCs for sourcing of transmission. Currently, whole-genome sequencing is commonly used for detecting VOCs, but this is limited by the high costs of reagents and sophisticated sequencers. In this study, common mutations in the genomes of SARS-CoV-2 VOCs were identified by analyzing more than 1 million SARS-CoV-2 genomes from public data. Among them, mutations C1709A (a change of C to A at position 1709) and C56G, respectively, were found in more than 99% of the genomes of Alpha and Delta variants and were specific to them. Then, a method using the amplification refractory mutation system combined with quantitative reverse transcription-PCR (ARMS-RT-qPCR) based on the two mutations was developed for identifying both VOCs. The assay can detect as little as 1 copy/μL of the VOCs, and the results for identifying Alpha and Delta variants in clinical samples by the ARMS-RT-qPCR assay showed 100% agreement with the results using sequencing-based methods. The whole assay can be completed in 2.5 h using commercial fluorescent PCR instruments. Therefore, the ARMS-RT-qPCR assay could be used for screening the two highly concerning variants Alpha and Delta by normal PCR laboratories in airports and in hospitals and other health-related organizations. Additionally, based on the unique mutations identified by the genomic analysis, similar molecular assays can be developed for rapid identification of other VOCs. IMPORTANCE The current stage of the pandemic, led by SARS-CoV-2 variants of concern (VOCs), underscores the necessity to develop a cost-effective and rapid molecular diagnosis assay to differentiate the VOCs. In this study, over 1 million SARS-CoV-2 genomic sequences of high quality from GISAID were analyzed and a network of the common mutations of the lineages was constructed. The conserved unique mutations specific for SARS-CoV-2 VOCs were found. Then, ARMS-RT-qPCR assays based on the two unique mutations of the Alpha and Delta variants were developed for the detection of the two VOCs. Application of the assay in clinical samples demonstrated that the current method is a convenient, cost-effective, and rapid way to screen the target SARS-CoV-2 VOCs.
Collapse
|
227
|
Thakur S, Sasi S, Pillai SG, Nag A, Shukla D, Singhal R, Phalke S, Velu GSK. SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Front Med (Lausanne) 2022; 9:815389. [PMID: 35273977 PMCID: PMC8902153 DOI: 10.3389/fmed.2022.815389] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
With the high rate of COVID-19 infections worldwide, the emergence of SARS-CoV-2 variants was inevitable. Several mutations have been identified in the SARS-CoV-2 genome, with the spike protein as one of the mutational hot spots. Specific amino acid substitutions such as D614G and N501Y were found to alter the transmissibility and virulence of the virus. The WHO has classified the variants identified with fitness-enhancing mutations as variants of concern (VOC), variants of interest (VOI) or variants under monitoring (VUM). The VOCs pose an imminent threat as they exhibit higher transmissibility, disease severity and ability to evade vaccine-induced and natural immunity. Here we review the mutational landscape on the SARS-CoV-2 structural and non-structural proteins and their impact on diagnostics, therapeutics and vaccines. We also look at the effectiveness of approved vaccines, antibody therapy and convalescent plasma on the currently prevalent VOCs, which are B.1.17, B.1.351, P.1, B.1.617.2 and B.1.1.529. We further discuss the possible factors influencing mutation rates and future directions.
Collapse
Affiliation(s)
- Suresh Thakur
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| | - Shalitha Sasi
- Blue Horizon International Therapeutic Sciences, Hackensack, NJ, United States
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Ritu Singhal
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Disease, New Delhi, India
| | - Sameer Phalke
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| | - G. S. K. Velu
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| |
Collapse
|
228
|
Abstract
Retroviral elements from endogenous retroviruses have functions in mammalian physiology. The best-known examples are the envelope proteins that function in placenta development and immune suppression. Porcine endogenous retroviruses (PERVs) are an understudied class of endogenous retroviruses that infect cultured human cells, raising concern regarding porcine xenografts. The PERV envelope glycoprotein has also been proposed as a possible swine syncytin with a role in placental development. Despite the growing interest in PERVs, their envelope glycoproteins remain poorly characterized. Here, we successfully determined the postfusion crystal structure of the PERV core fusion ectodomain. The PERV fusion protein structure reveals a conserved class I viral fusion protein six-helix bundle. Biophysical experiments demonstrated that the thermodynamic stability of the PERV fusion protein secondary structure was the same at physiological and acidic pHs. A conserved surface analysis highlights the high degree of sequence conservation among retroviral fusogens in the chain reversal region that facilitates the large-scale conformational change required for membrane fusion. Further structural alignment of class I viral fusogens revealed a phylogenetic clustering that shows evolution into various lineages that correlate with virus mechanisms of cell entry. Our work indicates that structural dendrograms can be used to qualitatively infer insights into the fusion mechanisms of newly discovered class I viral fusogen structures. IMPORTANCE Class I viral fusion proteins represent a diverse group of fusogens that catalyze membrane fusion. Although structural studies have focused on those from exogenous viruses, ancient retroviral infections of germ line cells have immortalized ancient fusogens in eukaryotic genomes. These "fossilized" glycoproteins are poorly defined compared to modern fusogens. In this study, we characterized and determined the structure of the porcine endogenous retrovirus fusogen, an ancient retroviral element captured by swine. This fusion protein revealed remarkable alignment to exogenous retroviral fusion proteins, suggesting that fossil fusogens utilize similar structural determinants to perform membrane fusion. Moreover, structural phylogenetic analysis demonstrates that class I viral fusogens cluster into distinct lineages defined by mechanism of membrane fusion. Our results suggest that structural dendrograms can be used to infer mechanistic insights for uncharacterized fusion proteins.
Collapse
|
229
|
Subudhi BB, Chattopadhyay S, Chattopadhyay S. Targeting host factors of virus-induced inflammation: a strategy for tackling future epidemics by RNA viruses. Future Virol 2022. [DOI: 10.2217/fvl-2021-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bharat Bhusan Subudhi
- Drug Development & Analysis Lab, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Subhasis Chattopadhyay
- Department of Atomic Energy, School of Biological Sciences, National Institute of Science Education & Research Bhubaneswar, Homi Bhabha National Institute, Khurda, 752050, India
| | | |
Collapse
|
230
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Front Immunol 2022; 13:801522. [PMID: 35222380 PMCID: PMC8863680 DOI: 10.3389/fimmu.2022.801522] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
The infective SARS-CoV-2 is more prone to immune escape. Presently, the significant variants of SARS-CoV-2 are emerging in due course of time with substantial mutations, having the immune escape property. Simultaneously, the vaccination drive against this virus is in progress worldwide. However, vaccine evasion has been noted by some of the newly emerging variants. Our review provides an overview of the emerging variants' immune escape and vaccine escape ability. We have illustrated a broad view related to viral evolution, variants, and immune escape ability. Subsequently, different immune escape approaches of SARS-CoV-2 have been discussed. Different innate immune escape strategies adopted by the SARS-CoV-2 has been discussed like, IFN-I production dysregulation, cytokines related immune escape, immune escape associated with dendritic cell function and macrophages, natural killer cells and neutrophils related immune escape, PRRs associated immune evasion, and NLRP3 inflammasome associated immune evasion. Simultaneously we have discussed the significant mutations related to emerging variants and immune escape, such as mutations in the RBD region (N439K, L452R, E484K, N501Y, K444R) and other parts (D614G, P681R) of the S-glycoprotein. Mutations in other locations such as NSP1, NSP3, NSP6, ORF3, and ORF8 have also been discussed. Finally, we have illustrated the emerging variants' partial vaccine (BioNTech/Pfizer mRNA/Oxford-AstraZeneca/BBIBP-CorV/ZF2001/Moderna mRNA/Johnson & Johnson vaccine) escape ability. This review will help gain in-depth knowledge related to immune escape, antibody escape, and partial vaccine escape ability of the virus and assist in controlling the current pandemic and prepare for the next.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
231
|
Abstract
We apply the theory of learning to physically renormalizable systems in an attempt to outline a theory of biological evolution, including the origin of life, as multilevel learning. We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable and show that they entail the major features of biological evolution, including replication and natural selection. It is shown that these cornerstone phenomena of biology emerge from the fundamental features of learning dynamics such as the existence of a loss function, which is minimized during learning. We then sketch the theory of evolution using the mathematical framework of neural networks, which provides for detailed analysis of evolutionary phenomena. To demonstrate the potential of the proposed theoretical framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the flow of information during learning (back propagation) and predicting (forward propagation) the environment by evolving organisms. The more complex evolutionary phenomena, such as major transitions in evolution (in particular, the origin of life), have to be analyzed in the thermodynamic limit, which is described in detail in the paper by Vanchurin et al. [V. Vanchurin, Y. I. Wolf, E. V. Koonin, M. I. Katsnelson, Proc. Natl. Acad. Sci. U.S.A. 119, 10.1073/pnas.2120042119 (2022)].
Collapse
|
232
|
Kumar A, Goyal N, Saranathan N, Dhamija S, Saraswat S, Menon MB, Vivekanandan P. The slowing rate of CpG depletion in SARS-CoV-2 genomes is consistent with adaptations to the human host. Mol Biol Evol 2022; 39:6521032. [PMID: 35134218 PMCID: PMC8892944 DOI: 10.1093/molbev/msac029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Depletion of CpG dinucleotides in SARS-CoV-2 genomes has been linked to virus evolution, host-switching, virus replication, and innate immune responses. Temporal variations, if any, in the rate of CpG depletion during virus evolution in the host remain poorly understood. Here, we analysed the CpG content of over 1.4 million full-length SARS-CoV-2 genomes representing over 170 million documented infections during the first 17 months of the pandemic. Our findings suggest that the extent of CpG depletion in SARS-CoV-2 genomes is modest. Interestingly, the rate of CpG depletion is highest during early evolution in humans and it gradually tapers off almost reaching an equilibrium; this is consistent with adaptations to the human host. Furthermore, within the coding regions, CpG depletion occurs predominantly at codon positions 2-3 and 3-1. Loss of ZAP-binding motifs in SARS-CoV-2 genomes is primarily driven by the loss of the terminal CpG in the motifs. Nonetheless, majority of the CpG depletion in SARS-CoV-2 genomes occurs outside ZAP-binding motifs. SARS-CoV-2 genomes selectively lose CpGs-motifs from a U-rich context; this may help avoid immune recognition by TLR7. SARS-CoV-2 alpha-, beta- and delta-variants of concern have reduced CpG content compared to sequences from the beginning of the pandemic. In sum, we provide evidence that the rate of CpG depletion in virus genomes is not uniform and it greatly varies over time and during adaptations to the host. This work highlights how temporal variations in selection pressures during virus adaption may impact the rate and the extent of CpG depletion in virus genomes.
Collapse
Affiliation(s)
- Akhil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nishank Goyal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nandhini Saranathan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Sonam Dhamija
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Saurabh Saraswat
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|
233
|
Malik JA, Ahmed S, Mir A, Shinde M, Bender O, Alshammari F, Ansari M, Anwar S. The SARS-CoV-2 mutations versus vaccine effectiveness: New opportunities to new challenges. J Infect Public Health 2022; 15:228-240. [PMID: 35042059 PMCID: PMC8730674 DOI: 10.1016/j.jiph.2021.12.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The SARS-CoV-2 coronavirus epidemic is hastening the discovery of the most efficient vaccines. The development of cost-effective vaccines seems to be the only solution to terminate this pandemic. However, the vaccines' effectiveness has been questioned due to recurrent mutations in the SARS-CoV-2 genome. Most of the mutations are associated with the spike protein, a vital target for several marketed vaccines. Many countries were highly affected by the 2nd wave of the SARS-CoV-2, like the UK, India, Brazil and France. Experts are also alarming the further COVID-19 wave with the emergence of Omicron, which is highly affecting the South African populations. This review encompasses the detailed description of all vaccine candidates and COVID-19 mutants that will add value to design further studies to combat the COVID-19 pandemic. METHODS The information was generated using various search engines like google scholar, PubMed, clinicaltrial.gov.in, WHO database, ScienceDirect, and news portals by using keywords SARS-CoV-2 mutants, COVID-19 vaccines, efficacy of SARS-CoV-2 vaccines, COVID-19 waves. RESULTS This review has highlighted the evolution of SARS-CoV-2 variants and the vaccine efficacy. Currently, various vaccine candidates are undergoing several phases of development. Their efficacy still needs to check for newly emerged variants. We have focused on the evolution, multiple mutants, waves of the SARS-CoV-2, and different marketed vaccines undergoing various clinical trials and the design of the trials to determine vaccine efficacy. CONCLUSION Various mutants of SARS-CoV-2 arrived, mainly concerned with the spike protein, a key component to design the vaccine candidates. Various vaccines are undergoing clinical trial and show impressive results, but their efficacy still needs to be checked in different SARS-CoV-2 mutants. We discussed all mutants of SARS-CoV-2 and the vaccine's efficacy against them. The safety concern of these vaccines is also discussed. It is important to understand how coronavirus gets mutated to design better new vaccines, providing long-term protection and neutralizing broad mutant variants. A proper study approach also needs to be considered while designing the vaccine efficacy trials, which further improved the study outcomes. Taking preventive measures to protect from the virus is also equally important, like vaccine development.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical Engineering, Indian Institute of Technology (IIT), Ropar 140001, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Aroosa Mir
- Department of Pharmacology, Jamia Hamdard, New Delhi, India
| | - Mrunal Shinde
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mukhtar Ansari
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
234
|
Parra-Lucares A, Segura P, Rojas V, Pumarino C, Saint-Pierre G, Toro L. Emergence of SARS-CoV-2 Variants in the World: How Could This Happen? Life (Basel) 2022; 12:194. [PMID: 35207482 PMCID: PMC8879166 DOI: 10.3390/life12020194] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had a significant global impact, with more than 280,000,000 people infected and 5,400,000 deaths. The use of personal protective equipment and the anti-SARS-CoV-2 vaccination campaigns have reduced infection and death rates worldwide. However, a recent increase in infection rates has been observed associated with the appearance of SARS-CoV-2 variants, including the more recently described lineage B.1.617.2 (Delta variant) and lineage B.1.1.529/BA.1 (Omicron variant). These new variants put the effectiveness of international vaccination at risk, with the appearance of new outbreaks of COVID-19 throughout the world. This emergence of new variants has been due to multiple predisposing factors, including molecular characteristics of the virus, geographic and environmental conditions, and the impact of social determinants of health that favor the genetic diversification of SARS-CoV-2. We present a literature review on the most recent information available on the emergence of new variants of SARS-CoV-2 in the world. We analyzed the biological, geographical, and sociocultural factors that favor the development of these variants. Finally, we evaluate the surveillance strategies for the early detection of new variants and prevent their distribution outside these regions.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Division of Critical Care Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile; (A.P.-L.); (V.R.)
| | - Paula Segura
- Department of Anatomic Pathology, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile;
| | - Verónica Rojas
- Division of Critical Care Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile; (A.P.-L.); (V.R.)
- Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
| | - Catalina Pumarino
- School of Medicine, Faculty of Medicine, Universidad de Chile, 8380456 Santiago, Chile;
| | - Gustavo Saint-Pierre
- Microbiology Unit, Clinical Laboratory, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile;
| | - Luis Toro
- Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
- Critical Care Unit, Clínica Las Condes, 7591047 Santiago, Chile
| |
Collapse
|
235
|
Innate immune sensing of influenza A viral RNA through IFI16 promotes pyroptotic cell death. iScience 2022; 25:103714. [PMID: 35072006 PMCID: PMC8762390 DOI: 10.1016/j.isci.2021.103714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/04/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
Programmed cell death pathways are triggered by various stresses or stimuli, including viral infections. The mechanism underlying the regulation of these pathways upon Influenza A virus (IAV) infection is not well characterized. We report that a cytosolic DNA sensor IFI16 is essential for the activation of programmed cell death pathways in IAV infected cells. We have identified that IFI16 functions as an RNA sensor for the influenza A virus by interacting with genomic RNA. The activation of IFI16 triggers the production of type I, III interferons, and also pro-inflammatory cytokines via the STING-TBK1 and Pro-caspase-1 signaling axis, thereby promoting cell death (apoptosis and pyroptosis in IAV infected cells). On the contrary, IFI16 knockdown cells showed reduced inflammatory responses and also prevented cell mortality during IAV infection. Collectively, these results demonstrate the pivotal role of IFI16-mediated IAV sensing and its essential role in activating programmed cell death pathways. DNA sensor IFI16 senses Influenza viral RNA IFI16 induce pyroptosis in Influenza A Virus (IAV) infected cells IFI16 interacts with IAV RNA and restricts viral replication IFI16 promotes overall antiviral state during IAV infection
Collapse
|
236
|
Leducq V, Jary A, Bridier-Nahmias A, Daniel L, Zafilaza K, Damond F, Goldstein V, Duval A, Blanquart F, Calvez V, Descamps D, Marcelin AG, Visseaux B. Nosocomial transmission clusters and lineage diversity characterized by SARS-CoV-2 genomes from two large hospitals in Paris, France, in 2020. Sci Rep 2022; 12:1094. [PMID: 35058525 PMCID: PMC8776803 DOI: 10.1038/s41598-022-05085-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
France went through three deadly epidemic waves due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing major public health and socioeconomic issues. We proposed to study the course of the pandemic along 2020 from the outlook of two major Parisian hospitals earliest involved in the fight against COVID-19. Genome sequencing and phylogenetic analysis were performed on samples from patients and health care workers (HCWs) from Bichat (BCB) and Pitié-Salpêtrière (PSL) hospitals. A tree-based phylogenetic clustering method and epidemiological data were used to investigate suspected nosocomial transmission clusters. Clades 20A, 20B and 20C were prevalent during the spring wave and, following summer, clades 20A.EU2 and 20E.EU1 emerged and took over. Phylogenetic clustering identified 57 potential transmission clusters. Epidemiological connections between participants were found for 17 of these, with a higher proportion of HCWs. The joint presence of HCWs and patients suggest viral contaminations between these two groups. We provide an enhanced overview of SARS-CoV-2 phylogenetic changes over 2020 in the Paris area, one of the regions with highest incidence in France. Despite the low genetic diversity displayed by the SARS-CoV-2, we showed that phylogenetic analysis, along with comprehensive epidemiological data, helps to identify and investigate healthcare associated clusters.
Collapse
Affiliation(s)
- Valentin Leducq
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, 47-83 Bd de l'hôpital, 75013, Paris, France.
| | - Aude Jary
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, 47-83 Bd de l'hôpital, 75013, Paris, France
| | | | - Lena Daniel
- Université de Paris, Inserm, UMR1137, IAME, Paris, France
| | - Karen Zafilaza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, 47-83 Bd de l'hôpital, 75013, Paris, France
| | - Florence Damond
- Université de Paris, Inserm, UMR1137, IAME, Service de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Valérie Goldstein
- AP-HP, Sorbonne Université, Hôpital Pitié-Salpêtrière Charles-Foix, Service de Bactériologie Hygiène, Paris, France
| | - Audrey Duval
- Université de Paris, Inserm, UMR1137, IAME, Paris, France
| | - François Blanquart
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, 47-83 Bd de l'hôpital, 75013, Paris, France
| | - Diane Descamps
- Université de Paris, Inserm, UMR1137, IAME, Service de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, 47-83 Bd de l'hôpital, 75013, Paris, France
| | - Benoit Visseaux
- Université de Paris, Inserm, UMR1137, IAME, Service de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| |
Collapse
|
237
|
Wang C, Han J. Will the COVID-19 pandemic end with the Delta and Omicron variants? ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2215-2225. [PMID: 35069059 PMCID: PMC8760078 DOI: 10.1007/s10311-021-01369-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Chaoqi Wang
- School of Human Settlements and Environmental Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- School of Human Settlements and Environmental Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| |
Collapse
|
238
|
Abstract
The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering host cell death, inducing lymphocyte exhaustion and depletion, and finally, mutation and escape from immunity. In addition, SARS-CoV-2 employs strategies to take advantage of host cell resources for its benefits, such as inhibiting the ubiquitin-proteasome system, hijacking mitochondria functions, and usage of enhancing antibodies. It may be anticipated that as the tradeoffs of adaptation progress, the virus destructive burden will gradually subside. Some evidence suggests that SARS-CoV-2 will become part of the human respiratory virome, as had occurred with other coronaviruses, and coevolve with its host.
Collapse
Affiliation(s)
- Eduardo Tosta
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
239
|
In Silico Analysis of Honeybee Venom Protein Interaction with Wild Type and Mutant (A82V + P375S) Ebola Virus Spike Protein. BIOLOGICS 2022. [DOI: 10.3390/biologics2010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Venom from different organisms was used in ancient times to treat a wide range of diseases, and to combat a variety of enveloped and non-enveloped viruses. The aim of this in silico research was to investigate the impact of honeybee venom proteins and peptides against Ebola virus. In the current in silico study, different online and offline tools were used. RaptorX (protein 3D modeling) and PatchDock (protein–protein docking) were used as online tools, while Chimera and LigPlot + v2.1 were used for visualizing protein–protein interactions. We screened nine venom proteins and peptides against the normal Ebola virus spike protein and found that melittin, MCD and phospholipase A2 showed a strong interaction. We then screened these peptides and proteins against mutated strains of Ebola virus and found that the enzyme phospholipase A2 showed a strong interaction. According to the findings, phospholipase A2 found in honeybee venom may be an effective source of antiviral therapy against the deadly Ebola virus. Although the antiviral potency of phospholipase A2 has been recorded previously, this is the first in silico analysis of honeybee phospholipase A2 against the Ebola viral spike protein and its more lethal mutant strain.
Collapse
|
240
|
Ding LS, Zhang Y, Wen D, Ma J, Yuan H, Li H, Duo S, Yuan F, Zhang YE, Zheng A. Growth, Antigenicity, and Immunogenicity of SARS-CoV-2 Spike Variants Revealed by a Live rVSV-SARS-CoV-2 Virus. Front Med (Lausanne) 2022; 8:793437. [PMID: 35071273 PMCID: PMC8777026 DOI: 10.3389/fmed.2021.793437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 is an emerging coronavirus threatening human health and the economy worldwide. As an RNA virus, variants emerge during the pandemic and potentially influence the efficacy of the anti-viral drugs and vaccines. Eight spike variants harboring highly recurrent mutations were selected and introduced into a replication-competent recombinant VSV in place of the original G protein (rVSV-SARS-CoV-2). The resulting mutant viruses displayed similar growth curves in vitro as the wild-type virus and could be neutralized by sera from convalescent COVID-19 patients. Several variants, especially Beta strain, showed resistance to human neutralizing monoclonal antibodies targeting the receptor-binding domain (RBD). A single dose of rVSV-SARS-CoV-2 Beta variant could elicit enhanced and broad-spectrum neutralizing antibody responses in human ACE2 knock-in mice and golden Syrian hamsters, while other mutants generated antibody levels comparable to the wild-type. Therefore, our results will be of value to the development of next-generation vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Limin S. Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianbo Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Yuan
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyue Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E. Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
241
|
Thakur K, Borah N, Gangurde S, Rathod H. Mutation in RNA viruses: A challenge to effective vaccine development. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_315_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
242
|
Hassan SS, Lundstrom K, Serrano-Aroca Á, Adadi P, Aljabali AAA, Redwan EM, Lal A, Kandimalla R, El-Aziz TMA, Pal Choudhury P, Azad GK, Sherchan SP, Chauhan G, Tambuwala M, Takayama K, Barh D, Palu G, Basu P, Uversky VN. Emergence of unique SARS-CoV-2 ORF10 variants and their impact on protein structure and function. Int J Biol Macromol 2022; 194:128-143. [PMID: 34863825 PMCID: PMC8635690 DOI: 10.1016/j.ijbiomac.2021.11.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
The devastating impact of the ongoing coronavirus disease 2019 (COVID-19) on public health, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has made targeting the COVID-19 pandemic a top priority in medical research and pharmaceutical development. Surveillance of SARS-CoV-2 mutations is essential for the comprehension of SARS-CoV-2 variant diversity and their impact on virulence and pathogenicity. The SARS-CoV-2 open reading frame 10 (ORF10) protein interacts with multiple human proteins CUL2, ELOB, ELOC, MAP7D1, PPT1, RBX1, THTPA, TIMM8B, and ZYG11B expressed in lung tissue. Mutations and co-occurring mutations in the emerging SARS-CoV-2 ORF10 variants are expected to impact the severity of the virus and its associated consequences. In this article, we highlight 128 single mutations and 35 co-occurring mutations in the unique SARS-CoV-2 ORF10 variants. The possible predicted effects of these mutations and co-occurring mutations on the secondary structure of ORF10 variants and host protein interactomes are presented. The findings highlight the possible effects of mutations and co-occurring mutations on the emerging 140 ORF10 unique variants from secondary structure and intrinsic protein disorder perspectives.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India.
| | | | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigacion Traslacional San Alberto Magno, Universidad Catolica de Valencia San Vicente Martir, c/Guillem de Castro, 94, 46001 Valencia, Valencia, Spain.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid 566, Jordan.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab 21934, Alexandria, Egypt.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Department of Biocemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Pabitra Pal Choudhury
- Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, Kolkata 700108, India.
| | | | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849 Monterrey, Nuevo Leon, Mexico.
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 6068507, Japan.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein 2000, 721140, South Africa.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
243
|
Ciotti M, Ciccozzi M, Pieri M, Bernardini S. The COVID-19 pandemic: viral variants and vaccine efficacy. Crit Rev Clin Lab Sci 2022; 59:66-75. [PMID: 34598660 DOI: 10.1080/10408363.2021.1979462] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted the scientific community and the pharmaceutical companies to put maximum efforts into developing vaccines to contain the spread of this disease. Presently, many vaccines have been developed and authorized for use in human beings in different countries. In particular, in Europe to date, the Pfizer-BioNTech, Moderna, AstraZeneca and Janssen COVID-19 vaccines have been authorized. All of them are based on a version of the spike (S) glycoprotein characterized at the beginning of the pandemic. However, they differ by their level of efficacy against COVID-19. SARS-COV-2, like other RNA viruses, mutates continually. Genome sequencing analysis shows a nucleotide substitution rate of about 1 × 10-3 substitutions per year that leads to the emergence of variants through point mutations, insertions, deletions and recombination. There is concern about the ability of the current vaccines to protect against emerging viral variants. Mutations in the S-glycoprotein may affect transmission dynamics and the risk of immune escape. In this review, we address the different technological platforms in use for developing COVID-19 vaccines, the impact of emerging viral variants on virus transmission, hospitalization, and response to current vaccines, as well as rare but important adverse reactions to them. Finally, different methods for measuring antibody response to the vaccines, including the importance of using the WHO International Standard to calibrate immunoassays accurately to an arbitrary unit, to reduce interlaboratory variation and to create a common language for reporting results, are reported.
Collapse
Affiliation(s)
- Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata Foundation, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Campus Bio-Medico of Rome, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
- Department of Laboratory Medicine, Polyclinic Tor Vergata Foundation, Viale Oxford, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
- Emerging Technologies Division (ETD) of the International Federation Clinical Chemistry and Laboratory Medicine (IFCC), Milan, Italy
| |
Collapse
|
244
|
Abstract
Viruses are essentially, obligate intracellular parasites. They require a host to replicate their genetic material, spread to other cells, and eventually to other hosts. For humans, most viral infections are not considered lethal, regardless if at the cellular level, the virus can obliterate individual cells. Constant genomic mutations, (which can alter the antigenic content of viruses such as influenza or coronaviruses), zoonosis or immunosuppression/immunocompromisation, is when viruses achieve higher host mortality. Frequent examples of the severe consequenses of viral infection can be seen in children and the elderly. In most instances, the immune system will take a multifaceted approach in defending the host against viruses. Depending on the virus, the individual, and the point of entry, the immune system will initiate a robust response which involves multiple components. In this chapter, we expand on the total immune system, breaking it down to the two principal types: Innate and Adaptive Immunity, their different roles in viral recognition and clearance. Finally, how different viruses activate and evade different arms of the immune system.
Collapse
|
245
|
Pathogenesis and mutagenesis of SARS-CoV-2. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217739 DOI: 10.1016/b978-0-323-85156-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious disease characterized by higher leukocyte numbers, acute respiratory distress, and elevated levels of plasma proinflammatory cytokines. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, begins its pathogenesis by the binding of the virus to the host's angiotensin-converting enzyme 2 (ACE-2) receptor and then replication. The various replicated viruses then reinfect other cells and organs with ACE-2 receptor and further wreak havoc and could later result in multisystem organ failure. Presently, efforts are on the way to develop vaccines and drugs for this virus. But the current spike in COVID-19 cases linked to mutation in the virus genome and those of its enzymes is a cause of concern. Studies conducted by some authors have identified 6 major clads (basal, D614G, L84S, L3606F, D448del, and G392D), out of which D614G (a G-to-A base change at position 23403 in the Wuhan reference strain) was found to be the most reoccurring clad. This chapter examines all of these.
Collapse
|
246
|
Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Nat Rev Urol 2022; 19:116-127. [PMID: 34837081 PMCID: PMC8622117 DOI: 10.1038/s41585-021-00542-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Although many studies have focused on SARS-CoV-2 infection in the lungs, comparatively little is known about the potential effects of the virus on male fertility. SARS-CoV-2 infection of target cells requires the presence of furin, angiotensin-converting enzyme 2 (ACE2) receptors, and transmembrane protease serine 2 (TMPRSS2). Thus, cells in the body that express these proteins might be highly susceptible to viral entry and downstream effects. Currently, reports regarding the expression of the viral entry proteins in the testes are conflicting; however, other members of the SARS-CoV family of viruses - such as SARS-CoV - have been suspected to cause testicular dysfunction and/or orchitis. SARS-CoV-2, which displays many similarities to SARS-CoV, could potentially cause similar adverse effects. Commonalities between SARS family members, taken in combination with sparse reports of testicular discomfort and altered hormone levels in patients with SARS-CoV-2, might indicate possible testicular dysfunction. Thus, SARS-CoV-2 infection has the potential for effects on testis somatic and germline cells and experimental approaches might be required to help identify potential short-term and long-term effects of SARS-CoV-2 on male fertility.
Collapse
|
247
|
Hashemi B, Akram FA, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Ameri Shah Reza M, Ghazi F, Roshangar L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol 2022; 67:102967. [PMID: 34777586 PMCID: PMC8576597 DOI: 10.1016/j.jddst.2021.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
Collapse
Affiliation(s)
- Behnam Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouzi-Amandi Akram
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Sheervalilou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
248
|
Helms L, Marchiano S, Stanaway IB, Hsiang TY, Juliar BA, Saini S, Zhao YT, Khanna A, Menon R, Alakwaa F, Mikacenic C, Morrell ED, Wurfel MM, Kretzler M, Harder JL, Murry CE, Himmelfarb J, Ruohola-Baker H, Bhatraju PK, Gale M, Freedman BS. Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight 2021; 6:e154882. [PMID: 34767537 PMCID: PMC8783682 DOI: 10.1172/jci.insight.154882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Kidneys are critical target organs of COVID-19, but susceptibility and responses to infection remain poorly understood. Here, we combine SARS-CoV-2 variants with genome-edited kidney organoids and clinical data to investigate tropism, mechanism, and therapeutics. SARS-CoV-2 specifically infects organoid proximal tubules among diverse cell types. Infections produce replicating virus, apoptosis, and disrupted cell morphology, features of which are revealed in the context of polycystic kidney disease. Cross-validation of gene expression patterns in organoids reflects proteomic signatures of COVID-19 in the urine of critically ill patients indicating interferon pathway upregulation. SARS-CoV-2 viral variants alpha, beta, gamma, kappa, and delta exhibit comparable levels of infection in organoids. Infection is ameliorated in ACE2-/- organoids and blocked via treatment with de novo-designed spike binder peptides. Collectively, these studies clarify the impact of kidney infection in COVID-19 as reflected in organoids and clinical populations, enabling assessment of viral fitness and emerging therapies.
Collapse
Affiliation(s)
- Louisa Helms
- Department of Medicine
- Division of Nephrology
- Kidney Research Institute
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
| | - Silvia Marchiano
- Department of Medicine
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
- Division of Cardiology
- Center for Cardiovascular Biology
| | - Ian B. Stanaway
- Department of Medicine
- Division of Nephrology
- Kidney Research Institute
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology
| | - Benjamin A. Juliar
- Department of Medicine
- Division of Nephrology
- Kidney Research Institute
- Institute for Stem Cell and Regenerative Medicine
| | - Shally Saini
- Institute for Stem Cell and Regenerative Medicine
- Department of Biochemistry; and
| | - Yan Ting Zhao
- Institute for Stem Cell and Regenerative Medicine
- Department of Biochemistry; and
- Department of Oral Health Sciences, School of Dentistry, University of Washington School of Medicine, Seattle, Washington, USA
| | - Akshita Khanna
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
- Center for Cardiovascular Biology
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl Alakwaa
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmen Mikacenic
- Department of Medicine
- Translational Research, Benaroya Research Institute, Seattle, Washington, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Eric D. Morrell
- Department of Medicine
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark M. Wurfel
- Department of Medicine
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer L. Harder
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles E. Murry
- Department of Medicine
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
- Division of Cardiology
- Center for Cardiovascular Biology
- Sana Biotechnology, Seattle, Washington, USA
| | | | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine
- Department of Biochemistry; and
- Department of Oral Health Sciences, School of Dentistry, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Pavan K. Bhatraju
- Department of Medicine
- Kidney Research Institute
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology
| | - Benjamin S. Freedman
- Department of Medicine
- Division of Nephrology
- Kidney Research Institute
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
249
|
Zhao LP, Lybrand TP, Gilbert PB, Hawn TR, Schiffer JT, Stamatatos L, Payne TH, Carpp LN, Geraghty DE, Jerome KR. Tracking SARS-CoV-2 Spike Protein Mutations in the United States (January 2020-March 2021) Using a Statistical Learning Strategy. Viruses 2021; 14:9. [PMID: 35062214 PMCID: PMC8777887 DOI: 10.3390/v14010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022] Open
Abstract
The emergence and establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of interest (VOIs) and variants of concern (VOCs) highlight the importance of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from coronavirus disease 2019 (COVID-19) cases in the United States (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID from 19 January 2020 to 15 March 2021. Alignment against the reference Spike protein sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a substitution compared to the reference strain. Next, generalized additive models were applied to model VRV temporal dynamics and to identify VRVs with significant and substantial dynamics (false discovery rate q-value < 0.01; maximum VRV proportion >10% on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal patterns and identify VRV-haplotypes. Finally, homology modeling was performed to gain insight into the potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of which had not previously been observed in a VOI/VOC, and 35 of which have emerged recently and are durably present. Our analysis identified 17 VRVs ~91 days earlier than their first corresponding VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of four VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling supported a potential functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike residues over time, independently of existing phylogenic classifications, and is complementary to existing genomic surveillance methods.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA 98109, USA
| | - Terry P. Lybrand
- Quintepa Computing LLC, Nashville, TN 37205, USA;
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Peter B. Gilbert
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA; (P.B.G.); (J.T.S.); (L.S.); (L.N.C.); (K.R.J.)
| | - Thomas R. Hawn
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.R.H.); (T.H.P.)
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Joshua T. Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA; (P.B.G.); (J.T.S.); (L.S.); (L.N.C.); (K.R.J.)
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.R.H.); (T.H.P.)
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA; (P.B.G.); (J.T.S.); (L.S.); (L.N.C.); (K.R.J.)
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Thomas H. Payne
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.R.H.); (T.H.P.)
| | - Lindsay N. Carpp
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA; (P.B.G.); (J.T.S.); (L.S.); (L.N.C.); (K.R.J.)
| | - Daniel E. Geraghty
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA;
| | - Keith R. Jerome
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA; (P.B.G.); (J.T.S.); (L.S.); (L.N.C.); (K.R.J.)
| |
Collapse
|
250
|
Porcine Reproductive and Respiratory Syndrome (PRRS) Epidemiology in an Integrated Pig Company of Northern Italy: A Multilevel Threat Requiring Multilevel Interventions. Viruses 2021; 13:v13122510. [PMID: 34960778 PMCID: PMC8705972 DOI: 10.3390/v13122510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is probably the most relevant viral disease affecting pig farming. Despite the remarkable efforts paid in terms of vaccination administration and biosecurity, eradication and long-term control have often been frustrated. Unfortunately, few studies are currently available that objectively link, using a formal statistical approach, viral molecular epidemiology to the risk factors determining the observed scenario. The purpose of the present study is to contribute to filling this knowledge gap taking advantage of the advancements in the field of phylodynamics. Approximately one-thousand ORF7 sequences were obtained from strains collected between 2004 and 2021 from the largest Italian pig company, which implements strict compartmentalization among independent three-sites (i.e., sow herds, nurseries and finishing units) pig flows. The history and dynamics of the viral population and its evolution over time were reconstructed and linked to managerial choices. The viral fluxes within and among independent pig flows were evaluated, and the contribution of other integrated pig companies and rurally risen pigs in mediating such spreading was investigated. Moreover, viral circulation in Northern Italy was reconstructed using a continuous phylogeographic approach, and the impact of several environmental features on PRRSV strain persistence and spreading velocity was assessed. The results demonstrate that PRRSV epidemiology is shaped by a multitude of factors, including pig herd management (e.g., immunization strategy), implementation of strict-independent pig flows, and environmental features (e.g., climate, altitude, pig density, road density, etc.) among the others. Small farms and rurally raised animals also emerged as a potential threat for larger, integrated companies. These pieces of evidence suggest that none of the implemented measures can be considered effective alone, and a multidimensional approach, ranging from individual herd management to collaboration and information sharing among different companies, is mandatory for effective infection control.
Collapse
|