201
|
Guégan M, Martin E, Valiente Moro C. Comparative Analysis of the Bacterial and Fungal Communities in the Gut and the Crop of Aedes albopictus Mosquitoes: A Preliminary Study. Pathogens 2020; 9:pathogens9080628. [PMID: 32752163 PMCID: PMC7459933 DOI: 10.3390/pathogens9080628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
The Asian tiger mosquito Aedes albopictus is a major pathogen vector and one of the world’s most invasive species. In recent years, the study of mosquito-associated microbiota has received growing interest for reducing transmission of mosquito-borne pathogens. Most of studies on mosquito microbiota mainly focused on the gut bacteria. However, microorganisms can also colonize other organs and are not restricted to bacteria. In mosquitoes, the crop is the primary storage organ for sugars from the nectar feeding before it is transferred into the midgut for digestion. No study has yet investigated whether this organ can harbor microorganisms in Ae. albopictus. By using high-throughput sequencing, this study is the first to describe the microbiota including both bacteria and fungi in sugar-fed Ae. albopictus males and females. The results showed the presence of diverse and rich bacterial and fungal communities in the crop of both sexes that did not strongly differ from the community composition and structure found in the gut. Altogether, our results provide a thorough description of the crop-associated microbiota in Ae. albopictus which can open new avenues for further studies on trophic interactions between the mosquito and its microbiota.
Collapse
|
202
|
Nateghi Rostami M. CRISPR/Cas9 gene drive technology to control transmission of vector‐borne parasitic infections. Parasite Immunol 2020; 42:e12762. [DOI: 10.1111/pim.12762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Nateghi Rostami
- Laboratory of Biology of Host‐Parasite Interactions Department of Parasitology Pasteur Institute of Iran Tehran Iran
| |
Collapse
|
203
|
Kucuk RA. Gut Bacteria in the Holometabola: A Review of Obligate and Facultative Symbionts. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5893943. [PMID: 32809024 PMCID: PMC7433766 DOI: 10.1093/jisesa/ieaa084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 06/11/2023]
Abstract
The diversity and ecological variety of Holometabola foregrounds a wide array of dynamic symbiotic relationships with gut-dwelling bacteria. A review of the literature highlights that holometabolous insects rely on both obligate bacteria and facultative bacteria living in their guts to satisfy a number of physiological needs. The driving forces behind these differing relationships can be hypothesized through the scrutiny of bacterial associations with host gut morphology, and transmission of bacteria within a given host taxon. Our knowledge of the evolution of facultative or obligate symbiotic bacteria in holometabolan systems is further enhanced by an assessment of the various services the bacteria provide, including nutrition, immune system health, and development. The diversity of Holometabola can thus be examined through an assessment of known bacterial partnerships within the orders of Holometabola.
Collapse
Affiliation(s)
- R A Kucuk
- Clemson University, Poole Agricultural Center, Clemson, SC
| |
Collapse
|
204
|
Oliveira TMP, Sanabani SS, Sallum MAM. Bacterial diversity associated with the abdomens of naturally Plasmodium-infected and non-infected Nyssorhynchus darlingi. BMC Microbiol 2020; 20:180. [PMID: 32586275 PMCID: PMC7315559 DOI: 10.1186/s12866-020-01861-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bacterial community present in the abdomen in Anophelinae mosquitoes can influence mosquito susceptibility to Plasmodium infection. Little is known about the bacteria associated with Nyssorhynchus darlingi, a primary malaria vector in the Amazon basin. We investigated the abdominal bacterial community compositions of naturally Plasmodium-infected (P-positive, n = 9) and non-infected (P-negative, n = 7) Ny. darlingi from the Brazilian Amazon region through massive parallel sequencing of the bacterial V4 variable region of the 16S rRNA gene. RESULTS Bacterial richness of Ny. darlingi encompassed 379 operational taxonomic units (OTUs), the majority of them belonging to the Proteobacteria, Firmicutes and Bacteroides phyla. Escherichia/Shigella and Pseudomonas were more abundant in the P-positive and P-negative groups, respectively, than in the opposite groups. Enterobacter was found only in the P-negative group. The results of statistical analyses conducted to compare bacterial abundance and diversity between Plasmodium-infected and Plasmodium-non-infected mosquitoes were not significant. CONCLUSIONS This study increased knowledge about bacterial composition in Ny. darlingi and revealed that Plasmodium-positive and Plasmodium-negative groups share a common core of bacteria. The genera Prevotella 9, Sphingomonas, Bacteroides, and Bacillus were reported for the first time in Ny. darlingi.
Collapse
Affiliation(s)
| | - Sabri Saeed Sanabani
- LIM-3, Hospital das Clínicas da FMUSP (HCFMUSP), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
205
|
Pigeault R, Isaïa J, Yerbanga RS, Dabiré KR, Ouédraogo JB, Cohuet A, Lefèvre T, Christe P. Different distribution of malaria parasite in left and right extremities of vertebrate hosts translates into differences in parasite transmission. Sci Rep 2020; 10:10183. [PMID: 32576924 PMCID: PMC7311528 DOI: 10.1038/s41598-020-67180-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Malaria, a vector-borne disease caused by Plasmodium spp., remains a major global cause of mortality. Optimization of disease control strategies requires a thorough understanding of the processes underlying parasite transmission. While the number of transmissible stages (gametocytes) of Plasmodium in blood is frequently used as an indicator of host-to-mosquito transmission potential, this relationship is not always clear. Significant effort has been made in developing molecular tools that improve gametocyte density estimation and therefore prediction of mosquito infection rates. However a significant level of uncertainty around estimates remains. The weakness in the relationship between gametocyte burden, measured from a blood sample, and the mosquito infection rate could be explained by a non-homogeneous distribution of gametocytes in the bloodstream. The estimated gametocyte density would then only be a single snapshot that does not reflect the host infectivity. This aspect of Plasmodium infection, however, remains largely neglected. In both humans and birds, we found here that the gametocyte densities differed depending on which side of the body the sample was taken, suggesting that gametocytes are not homogeneously distributed within the vertebrate host. We observed a fluctuating asymmetry, in other words, the extremity of the body with the highest density of parasites is not always the same from one individual to another. An estimation of gametocyte density from only one blood sample, as is commonly measured, could, therefore, over- or underestimated the infectivity of gametocyte carriers. This might have important consequences on the epidemiology of the disease since we show that this variation influences host-to-mosquito transmission. Vectors fed on the least infected body part had a lower parasite burden than those fed on the most infected part. The heterogeneous distribution of gametocytes in bloodstream should be considered to improve diagnosis and test new malaria control strategies.
Collapse
Affiliation(s)
- Romain Pigeault
- Department of Ecology and Evolution, CH-1015, Lausanne, Switzerland.
| | - Julie Isaïa
- Department of Ecology and Evolution, CH-1015, Lausanne, Switzerland
| | | | - Kounbobr R Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France
| | - Philippe Christe
- Department of Ecology and Evolution, CH-1015, Lausanne, Switzerland
| |
Collapse
|
206
|
Isolation of an anti-entomopathogenic fungal protein secreted from Pseudomonas aeruginosa BGf-2: An intestinal bacteriam of Blattella germanica (L.). J Invertebr Pathol 2020; 173:107371. [DOI: 10.1016/j.jip.2020.107371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
|
207
|
Qing W, Zhijing X, Guangfu Y, Fengxia M, Qiyong L, Zhong Z, Ruiling Z. Variation in the microbiota across different developmental stages of Aedes albopictus is affected by ampicillin exposure. Microbiologyopen 2020; 9:1162-1174. [PMID: 32207564 PMCID: PMC7294303 DOI: 10.1002/mbo3.1026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
The microbiota plays an important role in the growth of mosquitoes and the transmission of mosquito-borne pathogens. The effects of changes in aquatic habitats in which mosquitoes live, as one of the major factors closely associated with the microbial communities of mosquitoes, on the microbiota of different developmental stages remain to be elucidated. Here, we compared the microbiota of larvae and pupae of Aedes albopictus exposed to different ampicillin concentrations and investigated the bacterial composition of adult females. The results demonstrate that the microbial community differed substantially between developmental stages and that samples of the same stages shared similarities, whereas differences were observed between adult females. Based on all observations, we hypothesize that the use of ampicillin caused dysbiosis rather than excluding bacteria from mosquitoes and that the disturbing effect of ampicillin was obvious in adults. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that most of the bacteria identified in this study were significantly associated with metabolism. Taken together, our results indicate that ampicillin can change the abundance of bacteria, while microbial communities of Ae. albopictus showed obvious stage-specific characteristics. Further investigations are needed to characterize specific bacterial components that are affected by ampicillin exposure and to quantify their functions, thereby providing a better understanding of the influence of antibiotics on microbial communities at different life stages.
Collapse
Affiliation(s)
- Wan Qing
- School of Basic Medical ScienceShandong First Medical UniversityTaianChina
| | - Xue Zhijing
- State Key Laboratory of Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Yu Guangfu
- School of Basic Medical ScienceShandong First Medical UniversityTaianChina
| | - Meng Fengxia
- State Key Laboratory of Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Liu Qiyong
- State Key Laboratory of Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Zhang Zhong
- School of Basic Medical ScienceShandong First Medical UniversityTaianChina
| | - Zhang Ruiling
- School of Basic Medical ScienceShandong First Medical UniversityTaianChina
| |
Collapse
|
208
|
Tainchum K, Dupont C, Chareonviriyaphap T, Jumas-Bilak E, Bangs MJ, Manguin S. Bacterial Microbiome in Wild-Caught Anopheles Mosquitoes in Western Thailand. Front Microbiol 2020; 11:965. [PMID: 32508784 PMCID: PMC7253650 DOI: 10.3389/fmicb.2020.00965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
Among the complex microbial community living in the mosquito midgut, some bacteria (e.g., Enterobacter spp.) can deliver effector molecules with anti-Plasmodium effects suppressing the development of malaria parasites (Plasmodium falciparum) before the öokinete can penetrate the mosquito midgut epithelium. Despite knowledge of this phenomenon, only a few studies have defined the diversity of microbiota in wild-caught adult Anopheles species. The objective of this study was to analyze and compare the bacterial microbiota in different Anopheles species, including representatives of the primary malaria vectors in western Thailand. Wild female Anopheles species were sampled from malaria-endemic areas in Tak and Mae Hong Son provinces near the Thai-Myanmar border. Midgut/abdominal bacterial diversity was assessed by examining the 16S rRNA gene, V3 hypervariable region, using PCR-Temporal Temperature Gel Electrophoresis (PCR-TTGE) profiling and sequence analysis. A total of 24 bacterial genera were identified from eight Anopheles species. Five bacterial genera were newly reported in Anopheles mosquitoes (Ferrimonas, Megasphaera, Pectobacterium, Shimwellia, and Trabulsiella). Five genera, including Megasphaera, were detected exclusively in a single-malaria (Plasmodium vivax) infected Anopheles minimus and not observed in other non-infected mosquitoes. The use of PCR-TTGE provides the first characterization of the midgut bacterial microbiome present in wild adult Anopheles in Thailand. Evidence that microbiota might impact pathogen development (suppression) in Anopheles and thereby reduce the risk of pathogen transmission deserves more studies to describe the presence and better understand the biological role of bacteria in natural mosquito populations.
Collapse
Affiliation(s)
- Krajana Tainchum
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Chloé Dupont
- HydroSciences Montpellier, Institut de Recherche pour le Développement, CNRS, Université Montpellier, Montpellier, France
- Centre Hospitalier Universitaire, Laboratoire d’Hygiène Hospitalière, Montpellier, France
| | - Theeraphap Chareonviriyaphap
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, Institut de Recherche pour le Développement, CNRS, Université Montpellier, Montpellier, France
- Centre Hospitalier Universitaire, Laboratoire d’Hygiène Hospitalière, Montpellier, France
| | - Michael J. Bangs
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- Public Health & Malaria Control, PT Freeport Indonesia/International SOS, Kuala Kencana, Indonesia
| | - Sylvie Manguin
- HydroSciences Montpellier, Institut de Recherche pour le Développement, CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
209
|
Brinkerhoff RJ, Clark C, Ocasio K, Gauthier DT, Hynes WL. Factors affecting the microbiome of Ixodes scapularis and Amblyomma americanum. PLoS One 2020; 15:e0232398. [PMID: 32413031 PMCID: PMC7228056 DOI: 10.1371/journal.pone.0232398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
The microbial community composition of disease vectors can impact pathogen establishment and transmission as well as on vector behavior and fitness. While data on vector microbiota are accumulating quickly, determinants of the variation in disease vector microbial communities are incompletely understood. We explored the microbiome of two human-biting tick species abundant in eastern North America (Amblyomma americanum and Ixodes scapularis) to identify the relative contribution of tick species, tick life stage, tick sex, environmental context and vertical transmission to the richness, diversity, and species composition of the tick microbiome. We sampled 89 adult and nymphal Ixodes scapularis (N = 49) and Amblyomma americanum (N = 40) from two field sites and characterized the microbiome of each individual using the v3-v4 hypervariable region of the 16S rRNA gene. We identified significant variation in microbial community composition due to tick species and life stage with lesser impact of sampling site. Compared to unfed nymphs and males, the microbiome of engorged adult female I. scapularis, as well as the egg masses they produced, were low in bacterial richness and diversity and were dominated by Rickettsia, suggesting strong vertical transmission of this genus. Likewise, microbiota of A. americanum nymphs and males were more diverse than those of adult females. Among bacteria of public health importance, we detected several different Rickettsia sequence types, several of which were distinct from known species. Borrelia was relatively common in I. scapularis but did not show the same level of sequence variation as Rickettsia. Several bacterial genera were significantly over-represented in Borrelia-infected I. scapularis, suggesting a potential interaction of facilitative relationship between these taxa; no OTUs were under-represented in Borrelia-infected ticks. The systematic sampling we conducted for this study allowed us to partition the variation in tick microbial composition as a function of tick- and environmentally-related factors. Upon more complete understanding of the forces that shape the tick microbiome it will be possible to design targeted experimental studies to test the impacts of individual taxa and suites of microbes on vector-borne pathogen transmission and on vector biology.
Collapse
Affiliation(s)
- R. Jory Brinkerhoff
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- * E-mail:
| | - Chris Clark
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Kelly Ocasio
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - David T. Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Wayne L. Hynes
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
210
|
Sharma P, Rani J, Chauhan C, Kumari S, Tevatiya S, Das De T, Savargaonkar D, Pandey KC, Dixit R. Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi. Front Immunol 2020; 11:609. [PMID: 32477320 PMCID: PMC7240202 DOI: 10.3389/fimmu.2020.00609] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/17/2020] [Indexed: 02/05/2023] Open
Abstract
Blood-feeding enriched gut-microbiota boosts mosquitoes' anti-Plasmodium immunity. Here, we ask how Plasmodium vivax alters gut-microbiota, anti-Plasmodial immunity, and impacts tripartite Plasmodium-mosquito-microbiota interactions in the gut lumen. We used a metagenomics and RNAseq strategy to address these questions. In naïve mosquitoes, Elizabethkingia meningitis and Pseudomonas spp. are the dominant bacteria and blood-feeding leads to a heightened detection of Elizabethkingia, Pseudomonas and Serratia 16S rRNA. A parallel RNAseq analysis of blood-fed midguts also shows the presence of Elizabethkingia-related transcripts. After, P. vivax infected blood-meal, however, we do not detect bacterial 16S rRNA until circa 36 h. Intriguingly, the transcriptional expression of a selected array of antimicrobial arsenal cecropins 1-2, defensin-1, and gambicin remained low during the first 36 h-a time frame when ookinetes/early oocysts invaded the gut. We conclude during the preinvasive phase, P. vivax outcompetes midgut-microbiota. This microbial suppression likely negates the impact of mosquito immunity which in turn may enhance the survival of P. vivax. Detection of sequences matching to mosquito-associated Wolbachia opens a new inquiry for its exploration as an agent for "paratransgenesis-based" mosquito control.
Collapse
Affiliation(s)
- Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
- Bio and Nanotechnology Department, Guru Jambheshwar University of Science and Technology, Haryana, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Deepali Savargaonkar
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
211
|
Kivistik C, Knobloch J, Käiro K, Tammert H, Kisand V, Hildebrandt JP, Herlemann DPR. Impact of Salinity on the Gastrointestinal Bacterial Community of Theodoxus fluviatilis. Front Microbiol 2020; 11:683. [PMID: 32457702 PMCID: PMC7225522 DOI: 10.3389/fmicb.2020.00683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Differences in salinity are boundaries that act as barriers for the dispersal of most aquatic organisms. This creates distinctive biota in freshwater and brackish water (mesohaline) environments. To test how saline boundaries influence the diversity and composition of host-associated microbiota, we analyzed the microbiome within the digestive tract of Theodoxus fluviatilis, an organism able to cross the freshwater and mesohaline boundary. Alpha-diversity measures of the microbiome in freshwater and brackish water were not significantly different. However, the composition of the bacterial community within freshwater T. fluviatilis differed significantly compared with mesohaline T. fluviatilis and typical bacteria could be determined for the freshwater and the mesohaline digestive tract microbiome. An artificial increase in salinity surrounding these freshwater snails resulted in a strong change in the bacterial community and typical marine bacteria became more pronounced in the digestive tract microbiome of freshwater T. fluviatilis. However, the composition of the digestive tract microbiome in freshwater snails did not converge to that found within mesohaline snails. Within mesohaline snails, no cardinal change was found after either an increase or decrease in salinity. In all samples, Pseudomonas, Pirellula, Flavobacterium, Limnohabitans, and Acinetobacter were among the most abundant bacteria. These bacterial genera were largely unaffected by changes in environmental conditions. As permanent residents in T. fluviatilis, they may support the digestion of the algal food in the digestive tract. Our results show that freshwater and mesohaline water host-associated microbiomes respond differently to changes in salinity. Therefore, the salinization of coastal freshwater environments due to a rise in sea level can influence the gut microbiome and its functions with currently unknown consequences for, e.g., nutritional physiology of the host.
Collapse
Affiliation(s)
- Carmen Kivistik
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Jan Knobloch
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Kairi Käiro
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Helen Tammert
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Veljo Kisand
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
212
|
Yin C, Sun P, Yu X, Wang P, Cheng G. Roles of Symbiotic Microorganisms in Arboviral Infection of Arthropod Vectors. Trends Parasitol 2020; 36:607-615. [PMID: 32386795 DOI: 10.1016/j.pt.2020.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Arthropod vectors serve as native reservoirs and transmitters of hundreds of arboviruses. In arthropod vectors, symbiotic microorganisms residing in the gut lumen and/or hemocoelic tissues maintain complicated relationships with their host and influence multiple aspects of vector physiology. Recently, accumulating evidence has established an important role for symbiotic microorganisms in vector-virus interactions which could potentially be used to control viral transmission. Herein, we review recent progress on symbiotic microbe-arbovirus interactions and summarize the molecular mechanisms by which commensal microbes act on hosts and arboviruses. Understanding the sophisticated interactions among arthropod vectors, microbiota, and arboviruses may offer new strategies for the prevention of arboviral diseases in the future.
Collapse
Affiliation(s)
- Chunhong Yin
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China, 100084; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China, 518055
| | - Peng Sun
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China, 100084; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China, 518055
| | - Xi Yu
- School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, USA, 06030
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China, 100084; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China, 518055.
| |
Collapse
|
213
|
Wu Y, Zheng Y, Chen Y, Chen G, Zheng H, Hu F. Apis cerana gut microbiota contribute to host health though stimulating host immune system and strengthening host resistance to Nosema ceranae. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192100. [PMID: 32537206 PMCID: PMC7277281 DOI: 10.1098/rsos.192100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/28/2020] [Indexed: 05/26/2023]
Abstract
Gut microbial communities play vital roles in the modulation of many insects' immunity, including Apis mellifera. However, little is known about the interaction of Apis cerana gut bacteria and A. cerana immune system. Here in this study, we conducted a comparison between germ-free gut microbiota deficient (GD) workers and conventional gut community (CV) workers, to reveal the possible impact of gut microbiota on the expression of A. cerana antimicrobial peptides and immune regulate pathways. We also test whether A. cerana gut microbiota can strengthen host resistance to Nosema ceranae. We find that the expression of apidaecin, abaecin and hymenoptaecin were significantly upregulated with the presence of gut bacteria, and JNK pathway was activated; in the meanwhile, the existence of gut bacteria inhibited the proliferation of Nosema ceranae. These demonstrated the essential role of A. cerana gut microbiota to host health and provided critical insight into the honeybee host-microbiome interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
214
|
Dong Y, Simões ML, Dimopoulos G. Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles. SCIENCE ADVANCES 2020; 6:eaay5898. [PMID: 32426491 PMCID: PMC7220273 DOI: 10.1126/sciadv.aay5898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/27/2020] [Indexed: 05/14/2023]
Abstract
The malaria parasite's complex journey through the Anopheles mosquito vector provides multiple opportunities for targeting Plasmodium with recombinant effectors at different developmental stages and different host tissues. We have designed and expressed transgenes that efficiently suppress Plasmodium infection by targeting the parasite with multiple independent endogenous and exogenous effectors at multiple infection stages to potentiate suppression and minimize the probability for development of resistance to develop. We have also addressed the fitness impact of transgene expression on the mosquito. We show that highly potent suppression can be achieved by targeting both pre-oocyst stages by transgenically overexpressing either the endogenous immune deficiency immune pathway transcription factor Rel2 or a polycistronic mRNA encoding multiple antiparasitic effectors and simultaneously targeting the sporozoite stages with an anti-sporozoite single-chain antibody fused to the antiparasitic protein Scorpine. Expression of the selected endogenous effector systems appears to pose a lower fitness cost than does the use of foreign genes.
Collapse
|
215
|
Huang Y, Yu Y, Zhan S, Tomberlin JK, Huang D, Cai M, Zheng L, Yu Z, Zhang J. Dual oxidase Duox and Toll-like receptor 3 TLR3 in the Toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in Hermetia illucens L. PLoS One 2020; 15:e0225873. [PMID: 32352968 PMCID: PMC7192390 DOI: 10.1371/journal.pone.0225873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/26/2020] [Indexed: 01/26/2023] Open
Abstract
Black soldier fly (BSF; Hermetia illucens L.) larvae can convert fresh pig manure into protein and fat-rich biomass, which can then be used as aquafeed for select species. Currently, BSF is the only approved insect for such purposes in Canada, USA, and the European Union. Pig manure could serve as a feed substrate for BSF; however, it is contaminated with zoonotic pathogens (e.g., Staphylococcus aureus and Salmonella spp.). Fortunately, BSF larvae inhibit many of these zoonotic pathogens; however, the mechanisms employed are unclear. We employed RNAi, qRT-PCR, and Illumina MiSeq 16S rDNA high-throughput sequencing to examine the interaction between two immune genes (Duox in Duox-reactive oxygen species [ROS] immune system and TLR3 in the Toll signaling pathway) and select pathogens common in pig manure to decipher the mechanisms resulting in pathogen suppression. Results indicate Bsf Duox-TLR3 RNAi increased bacterial load but decreased relative abundance of Providencia and Dysgonomonas, which are thought to be commensals in the BSF larval gut. Bsf Duox-TLR3 RNAi also inactivated the NF-κB signaling pathway, downregulated the expression of antimicrobial peptides, and diminished inhibitory effects on zoonotic pathogen. The resulting dysbiosis stimulated an immune response by activating BsfDuox and promoting ROS, which regulated the composition and structure of the gut bacterial community. Thus, BsfDuox and BsfTLR3 are important factors in regulating these key gut microbes, while inhibiting target zoonotic pathogens.
Collapse
Affiliation(s)
- Yaqing Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqiang Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Zhan
- Institute of Plant Physiology & Ecology, SIBS, CAS, Shanghai, China
| | | | - Dian Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
216
|
20-Hydroxyecdysone Primes Innate Immune Responses That Limit Bacterial and Malarial Parasite Survival in Anopheles gambiae. mSphere 2020; 5:5/2/e00983-19. [PMID: 32295874 PMCID: PMC7160685 DOI: 10.1128/msphere.00983-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Blood feeding is an integral behavior of mosquitoes to acquire nutritional resources needed for reproduction. This requirement also enables mosquitoes to serve as efficient vectors to acquire and potentially transmit a multitude of mosquito-borne diseases, most notably malaria. Recent studies suggest that mosquito immunity is stimulated following a blood meal, independent of infection status. Since blood feeding promotes production of the hormone 20-hydroxyecdysone (20E), we hypothesized that 20E plays an important role in priming the immune response for pathogen challenge. Here, we examine the immunological effects of priming Anopheles gambiae with 20E prior to pathogen infection, demonstrating a significant reduction in bacteria and Plasmodium berghei survival in the mosquito host. Transcriptome sequencing (RNA-seq) analysis following 20E treatment identifies several known 20E-regulated genes, as well as several immune genes with previously reported function in antipathogen defense. Together, these data demonstrate that 20E influences cellular immune function and antipathogen immunity following mosquito blood feeding, arguing the importance of hormones in the regulation of mosquito innate immune function.IMPORTANCE Blood feeding is required to provide nutrients for mosquito egg production and serves as a mechanism to acquire and transmit pathogens. Shortly after a blood meal is taken, there is a peak in the production of 20-hydroxyecdysone (20E), a mosquito hormone that initiates physiological changes, including yolk protein production and mating refractoriness. Here, we examine additional roles of 20E in the regulation of mosquito immunity, demonstrating that priming the immune system with 20E increases mosquito resistance to pathogens. We identify differentially expressed genes in response to 20E treatment, including several involved in innate immune function as well as lipid metabolism and transport. Together, these data argue that 20E stimulates mosquito cellular immune function and innate immunity shortly after blood feeding.
Collapse
|
217
|
Chan KK, Auguste AJ, Brewster CC, Paulson SL. Vector competence of Virginia mosquitoes for Zika and Cache Valley viruses. Parasit Vectors 2020; 13:188. [PMID: 32276649 PMCID: PMC7147054 DOI: 10.1186/s13071-020-04042-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Vector-borne diseases are a major public health concern and cause significant morbidity and mortality. Zika virus (ZIKV) is the etiologic agent of a massive outbreak in the Americas that originated in Brazil in 2015 and shows a strong association with congenital ZIKV syndrome in newborns. Cache Valley virus (CVV) is a bunyavirus that causes mild to severe illness in humans and ruminants. In this study, we investigated the vector competence of Virginia mosquitoes for ZIKV and CVV to explore their abilities to contribute to potential outbreaks. Methods To determine vector competence, mosquitoes were fed a blood meal comprised of defibrinated sheep blood and virus. The presence of midgut or salivary gland barriers to ZIKV infection were determined by intrathoracic inoculation vs oral infection. After 14-days post-exposure, individual mosquitoes were separated into bodies, legs and wings, and saliva expectorant. Virus presence was detected by plaque assay to determine midgut infection, dissemination, and transmission rates. Results Transmission rates for Ae. albopictus orally infected (24%) and intrathoracically inoculated (63%) with ZIKV was similar to Ae. aegypti (48% and 71%, respectively). Transmission rates of ZIKV in Ae. japonicus were low, and showed evidence of a midgut infection barrier demonstrated by low midgut infection and dissemination rates from oral infection (3%), but increased transmission rates after intrathoracic inoculation (19%). Aedes triseriatus was unable to transmit ZIKV following oral infection or intrathoracic inoculation. CVV transmission was dose-dependent where mosquitoes fed high titer (ht) virus blood meals developed higher rates of midgut infection, dissemination, and transmission compared to low titer (lt) virus blood meals. CVV was detected in the saliva of Ae. albopictus (ht: 68%, lt: 24%), Ae. triseriatus (ht: 52%, lt: 7%), Ae. japonicus (ht: 22%, lt: 0%) and Ae. aegypti (ht: 10%; lt: 7%). Culex pipiens and Cx. restuans were not competent for ZIKV or CVV. Conclusions This laboratory transmission study provided further understanding of potential ZIKV and CVV transmission cycles with Aedes mosquitoes from Virginia. The ability for these mosquitoes to transmit ZIKV and CVV make them a public health concern and suggest targeted control programs by mosquito and vector abatement districts.![]()
Collapse
Affiliation(s)
- Kevin K Chan
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | | | - Carlyle C Brewster
- Plant and Environmental Sciences Department, Clemson University, Clemson, SC, USA
| | - Sally L Paulson
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
218
|
Araújo MDS, Andrade AO, Dos Santos NAC, Castro RB, Pereira DB, Rodrigues MMDS, Costa GDS, Júnior AMP, Carvalho LPC, de Medeiros JF, Pereira-da-Silva LH. First Observation of Experimental Plasmodium vivax Infection of Three Malaria Vectors from the Brazilian Amazon. Vector Borne Zoonotic Dis 2020; 20:517-523. [PMID: 32255759 DOI: 10.1089/vbz.2019.2527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although malaria is endemic to the Amazon region, little is known about the susceptibility of potential parasite vectors in Brazil. Assessing the vector susceptibility of Anopheles mosquitoes will increase our understanding of parasite-vector interactions and aid the design of vector control strategies. This study assessed the susceptibility of three Anopheles species to midgut infection by Plasmodium vivax, the predominant malaria species in Rondônia State, Brazil. Blood from P. vivax infected patients was fed to Anopheles aquasalis, Anopheles darlingi, and Anopheles deaneorum mosquitoes using a membrane feeding assay (MFA). Gametocytemia was estimated by microscopic examination of blood smears and oocyst prevalence, and infection intensity was assessed. The presence of oocysts was determined by microscopy, and the infection rates and infection intensity were determined for all species. Data from six MFAs showed that An. darlingi and An. deaneorum exhibited the highest infection rates (97% and 90%, respectively) and developed a similar median number of P. vivax oocysts (142 and 123, respectively), while An. aquasalis exhibited the smallest infection rates (77%) and the median number of oocysts (88). Established laboratory colonies of An. darlingi and An. deaneorum and susceptibility to plasmodial infection would be beneficial for modeling P. vivax vector-parasite interactions in Brazil.
Collapse
Affiliation(s)
- Maisa da Silva Araújo
- Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brasil.,Instituto Nacional de Epidemiologia da Amazônia Ocidental-INCT/EpiAmo, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil
| | - Alice Oliveira Andrade
- Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brasil
| | - Najara Akira Costa Dos Santos
- Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brasil
| | - Raphael Brum Castro
- Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil
| | - Dhélio Batista Pereira
- Ambulatório de Malária, Centro de Pesquisa em Medicina Tropical, Porto Velho, Rondônia, Brasil
| | | | - Glaucilene da Silva Costa
- Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brasil
| | - Antonio Marques Pereira Júnior
- Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil.,Instituto Nacional de Epidemiologia da Amazônia Ocidental-INCT/EpiAmo, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil
| | - Luís Paulo Costa Carvalho
- Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brasil
| | - Jansen Fernandes de Medeiros
- Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil.,Instituto Nacional de Epidemiologia da Amazônia Ocidental-INCT/EpiAmo, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brasil
| | | |
Collapse
|
219
|
Huang W, Wang S, Jacobs-Lorena M. Use of Microbiota to Fight Mosquito-Borne Disease. Front Genet 2020; 11:196. [PMID: 32211030 PMCID: PMC7076131 DOI: 10.3389/fgene.2020.00196] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
Mosquito-borne diseases cause more than 700 million people infected and one million people die (Caraballo and King, 2014). With the limitations of progress toward elimination imposed by insecticide- and drug-resistance, combined with the lack of vaccines, innovative strategies to fight mosquito-borne disease are urgently needed. In recent years, the use of mosquito microbiota has shown great potential for cutting down transmission of mosquito-borne pathogens. Here we review what is known about the mosquito microbiota and how this knowledge is being used to develop new ways to control mosquito-borne disease. We also discuss the challenges for the eventual release of genetically modified (GM) symbionts in the field.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
220
|
Rodgers FH, Cai JA, Pitaluga AN, Mengin-Lecreulx D, Gendrin M, Christophides GK. Functional analysis of the three major PGRPLC isoforms in the midgut of the malaria mosquito Anopheles coluzzii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103288. [PMID: 31760136 DOI: 10.1016/j.ibmb.2019.103288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) constitute the primary means of bacterial recognition in insects. Recent work in the model organism Drosophila has revealed the mechanisms by which the complement of PGRPs refine the sensitivity of different tissues to bacterial elicitors, permitting the persistence of commensal bacteria in the gut whilst maintaining vigilance against bacterial infection. Here, we use in vivo knockdowns and in vitro pull-down assays to investigate the role of the three major isoforms of the transmembrane receptor of the Imd pathway, PGRPLC, in basal immunity in the Anopheles coluzzii mosquito midgut. Our results indicate that the mosquito midgut is regionalized in its expression of immune effectors and of PGRPLC1. We show that PGRPLC1 and PGRPLC3 are pulled down with polymeric DAP-type peptidoglycan, while PGRPLC2 and PGRPLC3 co-precipitate in the presence of TCT, a peptidoglycan monomer. These data suggest that, as found in Drosophila, discrimination of polymeric and monomeric PGN by Anopheles PGRPLC participates in the regulation of the Imd pathway.
Collapse
Affiliation(s)
- Faye H Rodgers
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Julia A Cai
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Andre N Pitaluga
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud and Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Mathilde Gendrin
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK; Institut Pasteur de la Guyane, BP6010 Cayenne, French Guiana, France & Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - George K Christophides
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
221
|
Swei A, Couper LI, Coffey LL, Kapan D, Bennett S. Patterns, Drivers, and Challenges of Vector-Borne Disease Emergence. Vector Borne Zoonotic Dis 2020; 20:159-170. [PMID: 31800374 PMCID: PMC7640753 DOI: 10.1089/vbz.2018.2432] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vector-borne diseases are emerging at an increasing rate and comprise a disproportionate share of all emerging infectious diseases. Yet, the key ecological and evolutionary dimensions of vector-borne disease that facilitate their emergence have not been thoroughly explored. This study reviews and synthesizes the existing literature to explore global patterns of emerging vector-borne zoonotic diseases (VBZDs) under changing global conditions. We find that the vast majority of emerging VBZDs are transmitted by ticks (Ixodidae) and mosquitoes (Culicidae) and the pathogens transmitted are dominated by Rickettsiaceae bacteria and RNA viruses (Flaviviridae, Bunyaviridae, and Togaviridae). The most common potential driver of these emerging zoonoses is land use change, but for many diseases, the driver is unknown, revealing a critical research gap. While most reported VBZDs are emerging in the northern latitudes, after correcting for sampling bias, Africa is clearly a region with the greatest share of emerging VBZD. We highlight critical gaps in our understanding of VBZD emergence and emphasize the importance of interdisciplinary research and consideration of deeper evolutionary processes to improve our capacity for anticipating where and how such diseases have and will continue to emerge.
Collapse
Affiliation(s)
- Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, California
| | - Lisa I. Couper
- Department of Biology, Stanford University, Palo Alto, California
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Durrell Kapan
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Shannon Bennett
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| |
Collapse
|
222
|
Mitri C, Bischoff E, Belda Cuesta E, Volant S, Ghozlane A, Eiglmeier K, Holm I, Dieme C, Brito-Fravallo E, Guelbeogo WM, Sagnon N, Riehle MM, Vernick KD. Leucine-Rich Immune Factor APL1 Is Associated With Specific Modulation of Enteric Microbiome Taxa in the Asian Malaria Mosquito Anopheles stephensi. Front Microbiol 2020; 11:306. [PMID: 32174902 PMCID: PMC7054466 DOI: 10.3389/fmicb.2020.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
The commensal gut microbiome is contained by the enteric epithelial barrier, but little is known about the degree of specificity of host immune barrier interactions for particular bacterial taxa. Here, we show that depletion of leucine-rich repeat immune factor APL1 in the Asian malaria mosquito Anopheles stephensi is associated with higher midgut abundance of just the family Enterobacteraceae, and not generalized dysbiosis of the microbiome. The effect is explained by the response of a narrow clade containing two main taxa related to Klebsiella and Cedecea. Analysis of field samples indicate that these two taxa are recurrent members of the wild Anopheles microbiome. Triangulation using sequence and functional data incriminated relatives of C. neteri and Cedecea NFIX57 as candidates for the Cedecea component, and K. michiganensis, K. oxytoca, and K.sp. LTGPAF-6F as candidates for the Klebsiella component. APL1 presence is associated with host ability to specifically constrain the abundance of a narrow microbiome clade of the Enterobacteraceae, and the immune factor may promote homeostasis of this clade in the enteric microbiome for host benefit.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Eugeni Belda Cuesta
- Integromics Unit, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Amine Ghozlane
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Constentin Dieme
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emma Brito-Fravallo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Wamdaogo M. Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| |
Collapse
|
223
|
The environment and species affect gut bacteria composition in laboratory co-cultured Anopheles gambiae and Aedes albopictus mosquitoes. Sci Rep 2020; 10:3352. [PMID: 32099004 PMCID: PMC7042291 DOI: 10.1038/s41598-020-60075-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
The midgut microbiota of disease vectors plays a critical role in the successful transmission of human pathogens. The environment influences the microbiota composition; however, the relative mosquito-species contribution has not been rigorously disentangled from the environmental contribution to the microbiota structure. Also, the extent to which the microbiota of the adult sugar food source and larval water can predict that of the adult midgut and vice versa is not fully understood. To address these relationships, larvae and adults of Anopheles gambiae and Aedes albopictus were either reared separately or in a co-rearing system, whereby aquatic and adult stages of both species shared the larval water and sugar food source, respectively. Despite being reared under identical conditions, clear intra- and interspecies differences in midgut microbiota-composition were observed across seven cohorts, collected at different time points over a period of eight months. Fitting a linear model separately for each OTU in the mosquito midgut showed that two OTUs significantly differed between the midguts of the two mosquito species. We also show an effect for the sugar food source and larval water on the adult midgut microbiota. Our findings suggest that the mosquito midgut microbiota is highly dynamic and controlled by multiple factors.
Collapse
|
224
|
Dieme C, Zmarlak NM, Brito-Fravallo E, Travaillé C, Pain A, Cherrier F, Genève C, Calvo-Alvarez E, Riehle MM, Vernick KD, Rotureau B, Mitri C. Exposure of Anopheles mosquitoes to trypanosomes reduces reproductive fitness and enhances susceptibility to Plasmodium. PLoS Negl Trop Dis 2020; 14:e0008059. [PMID: 32032359 PMCID: PMC7032731 DOI: 10.1371/journal.pntd.0008059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
During a blood meal, female Anopheles mosquitoes are potentially exposed to diverse microbes in addition to the malaria parasite, Plasmodium. Human and animal African trypanosomiases are frequently co-endemic with malaria in Africa. It is not known whether exposure of Anopheles to trypanosomes influences their fitness or ability to transmit Plasmodium. Using cell and molecular biology approaches, we found that Trypanosoma brucei brucei parasites survive for at least 48h after infectious blood meal in the midgut of the major malaria vector, Anopheles coluzzii before being cleared. This transient survival of trypanosomes in the midgut is correlated with a dysbiosis, an alteration in the abundance of the enteric bacterial flora in Anopheles coluzzii. Using a developmental biology approach, we found that the presence of live trypanosomes in mosquito midguts also reduces their reproductive fitness, as it impairs the viability of laid eggs by affecting their hatching. Furthermore, we found that Anopheles exposure to trypanosomes enhances their vector competence for Plasmodium, as it increases their infection prevalence. A transcriptomic analysis revealed that expression of only two Anopheles immune genes are modulated during trypanosome exposure and that the increased susceptibility to Plasmodium was microbiome-dependent, while the reproductive fitness cost was dependent only on the presence of live trypanosomes but was microbiome independent. Taken together, these results demonstrate multiple effects upon Anopheles vector competence for Plasmodium caused by eukaryotic microbes interacting with the host and its microbiome, which may in turn have implications for malaria control strategies in co-endemic areas. In nature, females Anopheles mosquitoes that transmit the malaria parasites Plasmodium, take successive blood meals to maximize their offspring. During these blood meals, mosquitoes are exposed to a variety of microbes present in the host blood in addition to Plasmodium, the obligate parasite that causes malaria. The Trypanosoma parasites, causing trypanosomiases, are sympatric with the malaria parasites in numerous African regions, therefore, a single female mosquito could be in contact with both pathogens concurrently or through successive blood meals. In this work, we showed that exposure of females Anopheles mosquitoes to Trypanosoma enhanced their susceptibility to malaria parasites, reduced their reproductive fitness and modulated their bacterial gut flora. While the effect of trypanosomes ingestion on Plasmodium infection is microbiome dependent, the phenotype on the reproductive fitness is microbiome independent. These results highlight the need for considering the effect of eukaryotic microbes on Anopheles biology for malaria control strategies.
Collapse
Affiliation(s)
- Constentin Dieme
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Natalia Marta Zmarlak
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Institut Pasteur–Bioinformatics and Biostatistics Hub–C3BI, USR 3756 IP CNRS–Paris, France
| | - Floriane Cherrier
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Estefanía Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
- * E-mail: (BR); (CM)
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- * E-mail: (BR); (CM)
| |
Collapse
|
225
|
Oliveira JH, Bahia AC, Vale PF. How are arbovirus vectors able to tolerate infection? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103514. [PMID: 31585195 DOI: 10.1016/j.dci.2019.103514] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
One of the defining features of mosquito vectors of arboviruses such as Dengue and Zika is their ability to tolerate high levels of virus proliferation without suffering significant pathology. This adaptation is central to vector competence and disease spread. The molecular mechanisms, pathways, cellular and metabolic adaptations responsible for mosquito disease tolerance are still largely unknown and may represent effective ways to control mosquito populations and prevent arboviral diseases. In this review article, we describe the key link between disease tolerance and pathogen transmission, and how vector control methods may benefit by focusing efforts on dissecting the mechanisms underlying mosquito tolerance of arboviral infections. We briefly review recent work investigating tolerance mechanisms in other insects, describe the state of the art regarding the mechanisms of disease tolerance in mosquitos, and highlight the emerging role of gut microbiota in mosquito immunity and disease tolerance.
Collapse
Affiliation(s)
- José Henrique Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| | - Ana Cristina Bahia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
226
|
Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S. Mosquito Microbiota and Implications for Disease Control. Trends Parasitol 2020; 36:98-111. [PMID: 31866183 PMCID: PMC9827750 DOI: 10.1016/j.pt.2019.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023]
Abstract
Mosquito-transmitted diseases account for about 500 000 deaths every year. Blocking these pathogens in the mosquito vector before they are transmitted to humans is an effective strategy to prevent mosquito-borne diseases. Like most higher organisms, mosquitoes harbor a highly diverse and dynamic microbial flora that can be explored for prevention of pathogen transmission. Here we review the structure and function of the mosquito microbiota, including bacteria, fungi, and viruses, and discuss the potential of using components of the microbiota to thwart pathogen transmission.
Collapse
Affiliation(s)
- Han Gao
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Chunlai Cui
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Lili Wang
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Correspondence: ,
| | - Sibao Wang
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,Correspondence: ,
| |
Collapse
|
227
|
Azevedo R, Mendes AM, Prudêncio M. The Impact of Antiretroviral Therapy on Malaria Parasite Transmission. Front Microbiol 2020; 10:3048. [PMID: 32038528 PMCID: PMC6993566 DOI: 10.3389/fmicb.2019.03048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Coendemicity between the human immunodeficiency virus (HIV) and Plasmodium parasites, the causative agents of acquired immunodeficiency syndrome (AIDS) and malaria, respectively, occurs in several regions around the world. Although the impact of the interaction between these two organisms is not well understood, it is thought that the outcome of either disease may be negatively influenced by coinfection. Therefore, it is important to understand how current first-line antiretroviral therapies (ART) might impact Plasmodium infection in these regions. Here, we describe the effect of 18 antiretroviral compounds and of first-line ART on the blood and sporogonic stages of Plasmodium berghei in vitro and in vivo. We show that the combination zidovudine + lamivudine + lopinavir/ritonavir (LPV/r), employed as first-line HIV treatment in the field, has a strong inhibitory activity on the sporogonic stages of P. berghei and that several non-nucleoside reverse transcriptase inhibitors (NNRTI) have a moderate effect on this stage of the parasite’s life cycle. Our results expose the effect of current first-line ART on Plasmodium infection and identify potential alternative therapies for HIV/AIDS that might impact malaria transmission.
Collapse
Affiliation(s)
- Raquel Azevedo
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - António M Mendes
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Prudêncio
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
228
|
Gao L, Song X, Wang J. Gut microbiota is essential in PGRP-LA regulated immune protection against Plasmodium berghei infection. Parasit Vectors 2020; 13:3. [PMID: 31907025 PMCID: PMC6945779 DOI: 10.1186/s13071-019-3876-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains to be one of the deadliest infectious diseases and imposes substantial financial and social costs in the world. Mosquitoes rely on the immune system to control parasite infection. Peptidoglycan recognition proteins (PGRPs), a family of pattern-recognition receptors (PRR), are responsible for initiating and regulating immune signaling pathways. PGRP-LA is involved in the regulation of immune defense against the Plasmodium parasite, however, the underlying mechanism needs to be further elucidated. METHODS The spatial and temporal expression patterns of pgrp-la in Anopheles stephensi were analyzed by qPCR. The function of PGRP-LA was examined using a dsRNA-based RNA interference strategy. Western blot and periodic acid schiff (PAS) staining were used to assess the structural integrity of peritrophic matrix (PM). RESULTS The expression of pgrp-la in An. stephensi was induced in the midgut in response to the rapid proliferating gut microbiota post-blood meal. Knocking down of pgrp-la led to the downregulation of immune effectors that control gut microbiota growth. The decreased expression of these immune genes also facilitated P. berghei infection. However, such dsLA treatment did not influence the structural integrity of PM. When gut microbiota was removed by antibiotic treatment, the regulation of PGRP-LA on immune effectors was abolished and the knock down of pgrp-la failed to increase susceptibility of mosquitoes to parasite infection. CONCLUSIONS PGRP-LA regulates the immune responses by sensing the dynamics of gut microbiota. A mutual interaction between gut microbiota and PGRP-LA contributes to the immune defense against Plasmodium parasites in An. stephensi.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiumei Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China. .,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
229
|
Galeano-Castañeda Y, Bascuñán P, Serre D, Correa MM. Trans-stadial fate of the gut bacterial microbiota in Anopheles albimanus. Acta Trop 2020; 201:105204. [PMID: 31574253 DOI: 10.1016/j.actatropica.2019.105204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023]
Abstract
Gut microbiota communities in mosquitoes are influenced among others, by developmental stage. There is evidence that the aquatic environment where larvae feed influences the mosquito gut bacterial community composition with only a subgroup of these bacteria been transmitted trans-stadially to adults. This study evaluated the gut bacterial composition of Anopheles albimanus larvae, emerged and circulating mosquitoes, as well as water from the larval habitat, to elucidate transitions in these bacterial communities and determine the final composition in circulating mosquitoes. A 16S rRNA Illumina sequencing allowed to determine that Proteobacteria was the most abundant phylum in larvae (72.4%), emerged mosquitoes (75%), circulating adults (45.4%) and water from the larval habitat (79.1%). A core microbiome analysis evidenced that Enterobacter, Bacillus and Staphylococcus genera were the core bacterial microbiota (OTUs detected in >90%) in the four groups evaluated. PCoA cluster based on Jaccard and Bray Curtis distances showed two main bacterial clusters, one comprising the emerged and circulating adults, and the other the larvae. The results indicated that the gut microbiota of An. albimanus larvae is composed of bacteria acquired from the larval habitat; then, a rearrangement of the bacterial communities occurs in the trans-stadial passage. However, the higher bacterial richness detected in circulating adults suggests bacterial acquisition from the terrestrial environment where the mosquito feeds. Finally, the trans-stadially passage of some bacteria makes of interest their evaluation as candidates for paratransgenic control.
Collapse
|
230
|
Galeano-Castañeda Y, Urrea-Aguirre P, Piedrahita S, Bascuñán P, Correa MM. Composition and structure of the culturable gut bacterial communities in Anopheles albimanus from Colombia. PLoS One 2019; 14:e0225833. [PMID: 31790474 PMCID: PMC6886788 DOI: 10.1371/journal.pone.0225833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
The understanding of factors affecting the gut bacterial communities in malaria vectors is essential for the design of vector control interventions, such as those based on a paratransgenic approach. One of the requirements of this method is the availability of bacteria from the mosquito susceptible to culture. Thus, the aim of this study was to evaluate the composition and structure of the culturable gut bacterial communities in field mosquitoes Anopheles albimanus from Colombia, in addition to generate a bacterial collection to further analyze microbial functional activity. Gut bacteria were isolated from An. albimanus larvae and adult mosquitoes collected in localities of the Atlantic and Pacific Coasts. The bacterial isolates were grouped in 28 morphospecies that corresponded to three phyla, three classes, nine families and 14 genera. The larvae guts from San Antero (Atlantic Coast) and Buenaventura (Pacific Coast) shared the genera Bacillus and Lysinibacillus and in adults, Bacillus and Bacillus cereus Group were registered in both localities. Gut bacterial richness was higher in adults from the Pacific with respect to the Atlantic Coast, while larval richness was similar in samples of both coasts. The Shannon index indicated uniformity in morphospecies abundances in both localities. Finally, the characterization of morphospecies from the gut of Anopheles albimanus mosquitoes from Colombia by culture-dependent methods complemented with 16S rRNA gene sequencing allowed the definition, at a finer resolution, of the composition and structure of these microbial communities. In addition, the obtained bacterial culture collection will allow further evaluation of the microorganisms for their potential as biocontrol agents.
Collapse
Affiliation(s)
- Yadira Galeano-Castañeda
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Paula Urrea-Aguirre
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Stefani Piedrahita
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Priscila Bascuñán
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
231
|
Landesman WJ, Mulder K, Fredericks LP, Allan BF. Cross-kingdom analysis of nymphal-stage Ixodes scapularis microbial communities in relation to Borrelia burgdorferi infection and load. FEMS Microbiol Ecol 2019; 95:fiz167. [PMID: 31722384 PMCID: PMC6859517 DOI: 10.1093/femsec/fiz167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
The tick microbiota may influence the colonization of Ixodes scapularis by Borrelia burgdorferi, the Lyme disease bacterium. Using conserved and pathogen-specific primers we performed a cross-kingdom analysis of bacterial, fungal, protistan and archaeal communities of I. scapularis nymphs (N = 105) collected from southern Vermont, USA. The bacterial community was dominated by a Rickettsia and several environmental taxa commonly reported in I. scapularis, as well as the human pathogens B. burgdorferi and Anaplasma phagocytophilum, agent of human granulocytic anaplasmosis. With the fungal primer set we detected primarily plant- and litter-associated taxa and >18% of sequences were Malassezia, a fungal genus associated with mammalian skin. Two 18S rRNA gene primer sets, intended to target protistan communities, returned mostly Ixodes DNA as well as the wildlife pathogen Babesia odocoilei (7% of samples), a Gregarines species (14%) and a Spirurida nematode (18%). Data from pathogen-specific and conserved primers were consistent in terms of prevalence and identification. We measured B. burgdorferi presence/absence and load and found that bacterial beta diversity varied based on B. burgdorferi presence/absence. Load was weakly associated with bacterial community composition. We identified taxa associated with B. burgdorferi infection that should be evaluated for their role in vector colonization by pathogens.
Collapse
Affiliation(s)
- William J Landesman
- Department of Biology, University of Bridgeport, Charles Dana Hall, 169 University Ave., Bridgeport, CT 06604, USA
| | - Kenneth Mulder
- Department of Mathematics, The Long Trail School, 1045 Kirby Hollow Road, Dorset, VT 05251, USA
| | - L Page Fredericks
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Brian F Allan
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
232
|
Microbiota potentialized larvicidal action of imidazolium salts against Aedes aegypti (Diptera: Culicidae). Sci Rep 2019; 9:16164. [PMID: 31700056 PMCID: PMC6838459 DOI: 10.1038/s41598-019-52687-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 01/18/2023] Open
Abstract
Mosquitoes are important vectors of pathogens due to their blood feeding behavior. Aedes aegypti (Diptera: Culicidae) transmits arboviruses, such as dengue, Zika, and Chikungunya. This species carries several bacteria that may be beneficial for its biological and physiological development. Therefore, studying the response of its microbiota to chemical products could result in vector control. Recently, imidazolium salts (IS) were identified as effective Ae. aegypti larvicides. Considering the importance of the mosquito microbiota, this study addressed the influence of IS on the bacteria of Ae. aegypti larvae. After exposition of larvae to different IS concentrations, the cultured microbiota was identified through culturomics and mass spectrometry, and the non-cultivated microbiota was characterized by molecular markers. In addition, the influence of the IS on axenic larvae was studied for comparison. There was an alteration in both cultivable species and in their diversity, including modifications in bacterial communities. The axenic larvae were less susceptible to the IS, which was increased after exposing these larvae to bacteria of laboratory breeding water. This highlights the importance of understanding the role of the larval microbiota of Ae. aegypti in the development of imidazolium salt-based larvicides. Such effect of IS towards microbiota of Ae. aegypti larvae, through their antimicrobial action, increases their larvicidal potential.
Collapse
|
233
|
Liu FH, Lin XL, Kang ZW, Tian HG, Liu TX. Isolation and characterization of Pseudomonas cedrina infecting Plutella xylostella (Lepidoptera: Plutellidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21593. [PMID: 31612553 DOI: 10.1002/arch.21593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The diamondback moth, Plutella xylostella, is one of the most destructive pests worldwide and its management relies exclusively on frequent application of chemical insecticides. Resistance to common insecticides is now widespread, and novel classes of insecticides are needed. Entomopathogenic bacteria and their related products play an important role in the management of this pest. In the present work, one bacterial strain was separated from infected pupae of P. xylostella collected from field and its pathogenicity was evaluated. On the basis of the 16S ribosomal RNA sequencing, BLASTN, and phylogenetic analysis, this bacterial isolate was identified as Pseudomonas cedrina. Oral administration of P. cedrina at levels above 10,000 CFU/ml gave significant mortality to P. xylostella larvae. The pathogenicity was also observed by reduced longevity and fecundity in adult females. However, when live bacterial cells were removed, the cultured broth lost any pathogenicity. In response to the bacterial infection, P. xylostella expressed antimicrobial and stress-associated genes. A mixture treatment of P. cedrina and Bacillus thuringiensis showed an additive effect on larval mortality of P. xylostella. These results indicated that P. cedrina is an opportunistic entomopathogen without secretion of toxins. Furthermore, the additive effect of P. cedrina and B. thuringiensis provide a new insight to develop new strategy for controlling P. xylostella.
Collapse
Affiliation(s)
- Fang-Hua Liu
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Li Lin
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Zibo Agro-Tech Extension Center, Zibo, Shandong, China
| | - Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
234
|
Scates SS, O'Neal ST, Anderson TD. Bacteria-mediated modification of insecticide toxicity in the yellow fever mosquito, Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:77-85. [PMID: 31685200 DOI: 10.1016/j.pestbp.2019.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The incidence of mosquito-borne disease poses a significant threat to human and animal health throughout the world, with effective chemical control interventions limited by widespread insecticide resistance. Recent evidence suggests that gut bacteria of mosquitoes, known to be essential in nutritional homeostasis and pathogen defense, may also play a significant role in facilitating insecticide resistance. This study investigated the extent to which bacteria contribute to the general esterase and cytochrome P450 monooxygenase (P450)-mediated detoxification of the insecticides propoxur and naled, as well as the insecticidal activity of these chemistries to the yellow fever mosquito, Aedes aegypti. Experiments conducted using insecticide synergists that reduce general esterase and P450 activity demonstrate a role for both groups of enzymes in the metabolic detoxification of propoxur and naled. Furthermore, reduction of bacteria in mosquito larvae using broad-spectrum antibiotics was found to decrease the metabolic detoxification of propoxur and naled, suggesting that the bacteria themselves may be contributing to the in vivo metabolic detoxification of these insecticides. This was supported by in vitro assays using culturable gut bacteria isolated from mosquito larvae which demonstrated that the bacteria were capable of reducing insecticide toxicity. More work is needed, however, to fully elucidate the contribution of bacteria in Ae. aegypti larvae to the metabolic detoxification of insecticides.
Collapse
Affiliation(s)
- Sara S Scates
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | - Scott T O'Neal
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
235
|
Harris EV, de Roode JC, Gerardo NM. Diet-microbiome-disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathog 2019; 15:e1007891. [PMID: 31671152 PMCID: PMC6822718 DOI: 10.1371/journal.ppat.1007891] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abiotic and biotic factors can affect host resistance to parasites. Host diet and host gut microbiomes are two increasingly recognized factors influencing disease resistance. In particular, recent studies demonstrate that (1) particular diets can reduce parasitism; (2) diets can alter the gut microbiome; and (3) the gut microbiome can decrease parasitism. These three separate relationships suggest the existence of indirect links through which diets reduce parasitism through an alteration of the gut microbiome. However, such links are rarely considered and even more rarely experimentally validated. This is surprising because there is increasing discussion of the therapeutic potential of diets and gut microbiomes to control infectious disease. To elucidate these potential indirect links, we review and examine studies on a wide range of animal systems commonly used in diet, microbiome, and disease research. We also examine the relative benefits and disadvantages of particular systems for the study of these indirect links and conclude that mice and insects are currently the best animal systems to test for the effect of diet-altered protective gut microbiomes on infectious disease. Focusing on these systems, we provide experimental guidelines and highlight challenges that must be overcome. Although previous studies have recommended these systems for microbiome research, here we specifically recommend these systems because of their proven relationships between diet and parasitism, between diet and the microbiome, and between the microbiome and parasite resistance. Thus, they provide a sound foundation to explore the three-way interaction between diet, the microbiome, and infectious disease.
Collapse
Affiliation(s)
- Erica V. Harris
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Jacobus C. de Roode
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Nicole M. Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
236
|
Bacterial communities associated with the midgut microbiota of wild Anopheles gambiae complex in Burkina Faso. Mol Biol Rep 2019; 47:211-224. [PMID: 31643044 DOI: 10.1007/s11033-019-05121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is responsible for severe forms of malaria. The composition of the mosquitoes' microbiota plays a role in P. falciparum transmission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3-v4 region of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2 × 250 nt). Diversity analysis was performed using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter (5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal-Wallis FDR-p > 0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infection in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.
Collapse
|
237
|
Molina-Henao EH, Graffe MY, De La Cadena EP, Serrato IM, Correa A, Romero LV, Caicedo PA, Ocampo CB. Culturable microbial composition in the midgut of Aedes aegypti strains with different susceptibility to dengue-2 virus infection. Symbiosis 2019. [DOI: 10.1007/s13199-019-00646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
238
|
Sauers LA, Sadd BM. An interaction between host and microbe genotypes determines colonization success of a key bumble bee gut microbiota member. Evolution 2019; 73:2333-2342. [PMID: 31584186 DOI: 10.1111/evo.13853] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
There has been a proliferation of studies demonstrating an organism's health is influenced by its microbiota. However, factors influencing beneficial microbe colonization and the evolution of these relationships remain understudied relative to host-pathogen interactions. Vertically transmitted beneficial microbes are predicted to show high levels of specificity in colonization, including genotype matching, which may transpire through coevolution. We investigate how host and bacterial genotypes influence colonization of a core coevolved microbiota member in bumble bees. The hindgut colonizing Snodgrassella alvi confers direct benefits, but, as an early colonizer, also facilitates the further development of a healthy microbiota. Due to predominantly vertical transmission promoting tight evolution between colonization factors of bacteria and host lineages, we predict that genotype-by-genotype interactions will determine successful colonization. Germ-free adult bees from seven bumble bee colonies (host genotypic units) were inoculated with one of six genetically distinct strains of S. alvi. Subsequent colonization within host and microbe genotypes combinations ranged from 0 to 100%, and an interaction between host and microbe genotypes determined colonization success. This novel finding of a genotype-by-genotype interaction determining colonization in an animal host-beneficial microbe system has implications for the ecological and evolutionary dynamics of host and microbe, including associated host-fitness benefits.
Collapse
Affiliation(s)
- Logan A Sauers
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61761
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61761
| |
Collapse
|
239
|
Cappelli A, Damiani C, Mancini MV, Valzano M, Rossi P, Serrao A, Ricci I, Favia G. Asaia Activates Immune Genes in Mosquito Eliciting an Anti- Plasmodium Response: Implications in Malaria Control. Front Genet 2019; 10:836. [PMID: 31608103 PMCID: PMC6774264 DOI: 10.3389/fgene.2019.00836] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 01/04/2023] Open
Abstract
In mosquitoes, the discovery of the numerous interactions between components of the microbiota and the host immune response opens up the attractive possibility of the development of novel control strategies against mosquito borne diseases. We have focused our attention to Asaia, a symbiont of several mosquito vectors who has been proposed as one of the most potential tool for paratransgenic applications; although being extensively characterized, its interactions with the mosquito immune system has never been investigated. Here we report a study aimed at describing the interactions between Asaia and the immune system of two vectors of malaria, Anophelesstephensi and An. gambiae. The introduction of Asaia isolates induced the activation of the basal level of mosquito immunity and lower the development of malaria parasite in An. stephensi. These findings confirm and expand the potential of Asaia in mosquito borne diseases control, not only through paratransgenesis, but also as a natural effector for mosquito immune priming.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Claudia Damiani
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Matteo Valzano
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Paolo Rossi
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Aurelio Serrao
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Irene Ricci
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Guido Favia
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
240
|
Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and Their Microbiota: A Review. Front Microbiol 2019; 10:2036. [PMID: 31551973 PMCID: PMC6738348 DOI: 10.3389/fmicb.2019.02036] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Aedes spp. are a major public health concern due to their ability to be efficient vectors of dengue, Chikungunya, Zika, and other arboviruses. With limited vaccines available and no effective therapeutic treatments against arboviruses, the control of Aedes spp. populations is currently the only strategy to prevent disease transmission. Host-associated microbes (i.e., microbiota) recently emerged as a promising field to be explored for novel environmentally friendly vector control strategies. In particular, gut microbiota is revealing its impact on multiple aspects of Aedes spp. biology, including vector competence, thus being a promising target for manipulation. Here we describe the technological advances, which are currently expanding our understanding of microbiota composition, abundance, variability, and function in the two main arboviral vectors, the mosquitoes Aedes aegypti and Aedes albopictus. Aedes spp. microbiota is described in light of its tight connections with the environment, with which mosquitoes interact during their various developmental stages. Unraveling the dynamic interactions among the ecology of the habitat, the mosquito and the microbiota have the potential to uncover novel physiological interdependencies and provide a novel perspective for mosquito control.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
241
|
Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, Loaiza JR. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep 2019; 9:12160. [PMID: 31434963 PMCID: PMC6704126 DOI: 10.1038/s41598-019-48414-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti and Aedes albopictus develop in the same aquatic sites where they encounter microorganisms that influence their life history and capacity to transmit human arboviruses. Some bacteria such as Wolbachia are currently being considered for the control of Dengue, Chikungunya and Zika. Yet little is known about the dynamics and diversity of Aedes-associated bacteria, including larval habitat features that shape their tempo-spatial distribution. We applied large-scale 16S rRNA amplicon sequencing to 960 adults and larvae of both Ae. aegypti and Ae. albopictus mosquitoes from 59 sampling sites widely distributed across nine provinces of Panama. We find both species share a limited, yet highly variable core microbiota, reflecting high stochasticity within their oviposition habitats. Despite sharing a large proportion of microbiota, Ae. aegypti harbours higher bacterial diversity than Ae. albopictus, primarily due to rarer bacterial groups at the larval stage. We find significant differences between the bacterial communities of larvae and adult mosquitoes, and among samples from metal and ceramic containers. However, we find little support for geography, water temperature and pH as predictors of bacterial associates. We report a low incidence of natural Wolbachia infection for both Aedes and its geographical distribution. This baseline information provides a foundation for studies on the functions and interactions of Aedes-associated bacteria with consequences for bio-control within Panama.
Collapse
Affiliation(s)
- Kelly L Bennett
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama.
| | - Carmelo Gómez-Martínez
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama
| | - Yamileth Chin
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Kristin Saltonstall
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Jose R Rovira
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama
| | - Jose R Loaiza
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama.
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama.
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Ciudad de Panamá, Panama.
| |
Collapse
|
242
|
Schneider DI, Saarman N, Onyango MG, Hyseni C, Opiro R, Echodu R, O’Neill M, Bloch D, Vigneron A, Johnson TJ, Dion K, Weiss BL, Opiyo E, Caccone A, Aksoy S. Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Negl Trop Dis 2019; 13:e0007340. [PMID: 31369548 PMCID: PMC6692048 DOI: 10.1371/journal.pntd.0007340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/13/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022] Open
Abstract
Tsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host's population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections.
Collapse
Affiliation(s)
- Daniela I. Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
- * E-mail:
| | - Norah Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Maria G. Onyango
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Chaz Hyseni
- Department of Biology, University of Mississippi, University, MS, United States of America
| | - Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Uganda
| | - Michelle O’Neill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Danielle Bloch
- Department of Health and Mental Hygiene, New York City, NY, United States of America
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - T. J. Johnson
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kirstin Dion
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Elizabeth Opiyo
- Department of Biology, University of Mississippi, University, MS, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|
243
|
Guégan M, Minard G, Tran FH, Tran Van V, Dubost A, Valiente Moro C. Short-term impacts of anthropogenic stressors on Aedes albopictus mosquito vector microbiota. FEMS Microbiol Ecol 2019; 94:5101426. [PMID: 30239661 DOI: 10.1093/femsec/fiy188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
Recent studies have highlighted the potential role of microbiota in the biology of the Aedes albopictus mosquito vector. This species is highly anthropogenic and exhibits marked ecological plasticity, with a resulting high potential to colonize a wide range of habitats-including anthropized areas-under various climatic conditions. We put forward the hypothesis that climate and anthropogenic activities, such as the use of antibiotics in agriculture and human medicine, might affect the mosquito-associated bacterial community. We thus studied the additive impact of a temperature decrease and antibiotic ingestion on the temporal dynamics of Ae. albopictus survival and its associated bacterial communities. The results showed no effects of disturbances on mosquito survival. However, short-term temperature impacts on bacterial diversity were observed, while both the community structure and bacterial diversity were affected by early antibiotic ingestion. The genera Elizabethkingia, Chryseobacterium and Wolbachia, as well as an unclassified member of the Bacteroidales order were particularly affected. Antibiotics negatively impacted Elizabethkingia abundance, while Chryseobacterium was completely eliminated following both disturbances, to the benefit of Wolbachia and the unclassified Bacteroidales species. These results generated fresh insight into the effects of climate and anthropogenic activities such as the use of antibiotics on mosquito microbiota.
Collapse
Affiliation(s)
- Morgane Guégan
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Guillaume Minard
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Florence-Hélène Tran
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Van Tran Van
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Audrey Dubost
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Claire Valiente Moro
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
244
|
Trappeniers K, Matetovici I, Van Den Abbeele J, De Vooght L. The Tsetse Fly Displays an Attenuated Immune Response to Its Secondary Symbiont, Sodalis glossinidius. Front Microbiol 2019; 10:1650. [PMID: 31396178 PMCID: PMC6668328 DOI: 10.3389/fmicb.2019.01650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
Sodalis glossinidius, a vertically transmitted facultative symbiont of the tsetse fly, is a bacterium in the early/intermediate state of its transition toward symbiosis, representing an important model for investigating how the insect host immune defense response is regulated to allow endosymbionts to establish a chronic infection within their hosts without being eliminated. In this study, we report on the establishment of a tsetse fly line devoid of S. glossinidius only, allowing us to experimentally investigate (i) the complex immunological interactions between a single bacterial species and its host, (ii) how the symbiont population is kept under control, and (iii) the impact of the symbiont on the vector competence of the tsetse fly to transmit the sleeping sickness parasite. Comparative transcriptome analysis showed no difference in the expression of genes involved in innate immune processes between symbiont-harboring (GmmSod+) and S. glossinidius-free (GmmSod–) flies. Re-exposure of (GmmSod–) flies to the endosymbiotic bacterium resulted in a moderate immune response, whereas exposure to pathogenic E. coli or to a close non-insect associated relative of S. glossinidius, i.e., S. praecaptivus, resulted in full immune activation. We also showed that S. glossinidius densities are not affected by experimental activation or suppression of the host immune system, indicating that S. glossinidius is resistant to mounted immune attacks and that the host immune system does not play a major role in controlling S. glossinidius proliferation. Finally, we demonstrate that the absence or presence of S. glossinidius in the tsetse fly does not alter its capacity to mount an immune response to pathogens nor does it affect the fly’s susceptibility toward trypanosome infection.
Collapse
Affiliation(s)
- Katrien Trappeniers
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irina Matetovici
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
245
|
Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A Gut Symbiotic Bacterium Serratia marcescens Renders Mosquito Resistance to Plasmodium Infection Through Activation of Mosquito Immune Responses. Front Microbiol 2019; 10:1580. [PMID: 31379768 PMCID: PMC6657657 DOI: 10.3389/fmicb.2019.01580] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023] Open
Abstract
The malaria development in the mosquito midgut is a complex process that results in considerable parasite losses. The mosquito gut microbiota influences the outcome of pathogen infection in mosquitoes, but the underlying mechanisms through which gut symbiotic bacteria affect vector competence remain elusive. Here, we identified two Serratia strains (Y1 and J1) isolated from field-caught female Anopheles sinensis from China and assessed their effect on Plasmodium development in An. stephensi. Colonization of An. stephensi midgut by Serratia Y1 significantly renders the mosquito resistant to Plasmodium berghei infection, while Serratia J1 has no impact on parasite development. Parasite inhibition by Serratia Y1 is induced by the activation of the mosquito immune system. Genome-wide transcriptomic analysis by RNA-seq shows a similar pattern of midgut gene expression in response to Serratia Y1 and J1 in sugar-fed mosquitoes. However, 24 h after blood ingestion, Serratia Y1 modulates more midgut genes than Serratia J1 including the c-type lectins (CTLs), CLIP serine proteases and other immune effectors. Furthermore, silencing of several Serratia Y1-induced anti-Plasmodium factors like the thioester-containing protein 1 (TEP1), fibrinogen immunolectin 9 (FBN9) or leucine-rich repeat protein LRRD7 can rescue parasite oocyst development in the presence of Serratia Y1, suggesting that these factors modulate the Serratia Y1-mediated anti-Plasmodium effect. This study enhances our understanding of how gut bacteria influence mosquito-Plasmodium interactions.
Collapse
Affiliation(s)
- Liang Bai
- School of Life Science and Technology, Tongji University, Shanghai, China.,CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
246
|
Barletta ABF, Trisnadi N, Ramirez JL, Barillas-Mury C. Mosquito Midgut Prostaglandin Release Establishes Systemic Immune Priming. iScience 2019; 19:54-62. [PMID: 31351392 PMCID: PMC6661395 DOI: 10.1016/j.isci.2019.07.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Anopheles gambiae mosquitoes that have been infected with Plasmodium mount a more effective immune response to a subsequent infection. Priming is established when Plasmodium invasion of the mosquito midgut allows contact of the gut microbiota with epithelial cells. This event is followed by a systemic release of a hemocyte differentiation factor (HDF) consisting of Lipoxin A4 bound to Evokin, a lipocalin carrier, which increases the proportion of circulating hemocytes. We show that mosquito midgut cells produce and release prostaglandin E2 (PGE2), which attracts hemocytes to the midgut surface and enhances their patrolling activity. Systemic injection of prostaglandins (PGs) recapitulates the priming response and enhances antiplasmodial immunity by triggering HDF production. Although insects lack cyclooxygenases, two heme peroxidases, HPX7 and HPX8, catalyze essential steps in PG biosynthesis in mosquitoes. Mosquito midgut PGE2 release attracts hemocytes and establishes a long-lasting enhanced systemic cellular immune response to Plasmodium infection. Plasmodium invasion or bacterial exposure triggers midgut prostaglandin synthesis Prostaglandins attract mosquito hemocytes and increase their patrolling activity Two midgut peroxidases, HPX7 and HPX8, catalyze midgut prostaglandin synthesis Systemic release of midgut prostaglandins is essential to establish immune priming
Collapse
Affiliation(s)
- Ana Beatriz F Barletta
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Nathanie Trisnadi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jose Luis Ramirez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
247
|
O’Donnell AJ, Rund SSC, Reece SE. Time-of-day of blood-feeding: effects on mosquito life history and malaria transmission. Parasit Vectors 2019; 12:301. [PMID: 31262362 PMCID: PMC6604169 DOI: 10.1186/s13071-019-3513-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biological rhythms allow organisms to compartmentalise and coordinate behaviours, physiologies, and cellular processes with the predictable daily rhythms of their environment. There is increasing recognition that the biological rhythms of mosquitoes that vector parasites are important for global health. For example, whether perturbations in blood foraging rhythms as a consequence of vector control measures can undermine disease control. To address this, we explore the impacts of altered timing of blood-feeding on mosquito life history traits and malaria transmission. METHODS We present three experiments in which Anopheles stephensi mosquitoes were fed in the morning or evening on blood that had different qualities, including: (i) chemical-induced or (ii) Plasmodium chabaudi infection-induced anaemia; (iii) Plasmodium berghei infection but no anaemia; or (iv) stemming from hosts at different times of day. We then compared whether time-of-day variation in blood meal characteristics influences mosquito fitness proxies relating to survival and reproduction, and malaria transmission proxies. RESULTS Mosquito lifespan is not influenced by the time-of-day they received a blood meal, but several reproductive metrics are affected, depending on other blood characteristics. Overall, our data suggest that receiving a blood meal in the morning makes mosquitoes more likely to lay eggs, lay slightly sooner and have a larger clutch size. In keeping with previous work, P. berghei infection reduces mosquito lifespan and the likelihood of laying eggs, but time-of-day of blood-feeding does not impact upon these metrics nor on transmission of this parasite. CONCLUSION The time-of-day of blood-feeding does not appear to have major consequences for mosquito fitness or transmission of asynchronous malaria species. If our results from a laboratory colony of mosquitoes living in benign conditions hold for wild mosquitoes, it suggests that mosquitoes have sufficient flexibility in their physiology to cope with changes in biting time induced by evading insecticide-treated bed nets. Future work should consider the impact of multiple feeding cycles and the abiotic stresses imposed by the need to forage for blood during times of day when hosts are not protected by bed nets.
Collapse
Affiliation(s)
- Aidan J. O’Donnell
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Samuel S. C. Rund
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Sarah E. Reece
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
248
|
Shen SS, Qu XY, Zhang WZ, Li J, Lv ZY. Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infect Dis Poverty 2019; 8:49. [PMID: 31200765 PMCID: PMC6570864 DOI: 10.1186/s40249-019-0560-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Infectious diseases encompass a large spectrum of diseases that threaten human health, and coinfection is of particular importance because pathogen species can interact within the host. Currently, the antagonistic relationship between different pathogens during concurrent coinfections is defined as one in which one pathogen either manages to inhibit the invasion, development and reproduction of the other pathogen or biologically modulates the vector density. In this review, we provide an overview of the phenomenon and mechanisms of antagonism of coinfecting pathogens involving parasites. Main body This review summarizes the antagonistic interaction between parasites and parasites, parasites and viruses, and parasites and bacteria. At present, relatively clear mechanisms explaining polyparasitism include apparent competition, exploitation competition, interference competition, biological control of intermediate hosts or vectors and suppressive effect on transmission. In particular, immunomodulation, including the suppression of dendritic cell (DC) responses, activation of basophils and mononuclear macrophages and adjuvant effects of the complement system, is described in detail. Conclusions In this review, we summarize antagonistic concurrent infections involving parasites and provide a functional framework for in-depth studies of the underlying mechanisms of coinfection with different microorganisms, which will hasten the development of promising antimicrobial alternatives, such as novel antibacterial vaccines or biological methods of controlling infectious diseases, thus relieving the overwhelming burden of ever-increasing antimicrobial resistance. Electronic supplementary material The online version of this article (10.1186/s40249-019-0560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Shi Shen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiao-Yan Qu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Wei-Zhe Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jian Li
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China
| | - Zhi-Yue Lv
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.
| |
Collapse
|
249
|
Tchouassi DP, Muturi EJ, Arum SO, Kim CH, Fields CJ, Torto B. Host species and site of collection shape the microbiota of Rift Valley fever vectors in Kenya. PLoS Negl Trop Dis 2019; 13:e0007361. [PMID: 31173595 PMCID: PMC6584011 DOI: 10.1371/journal.pntd.0007361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/19/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The composition and structure of microbial communities associated with mosquitoes remain poorly understood despite their important role in host biology and potential to be harnessed as novel strategies for mosquito-borne disease control. We employed MiSeq sequencing of the 16S rRNA gene amplicons to characterize the bacterial flora of field-collected populations of Aedes mcintoshi and Aedes ochraceus, the primary vectors of Rift Valley fever (RVF) virus in Kenya. Proteobacteria (53.5%), Firmicutes (22.0%) and Actinobacteria (10.0%) were the most abundant bacterial phyla accounting for 85.5% of the total sequences. Non-metric multi-dimensional scaling plots based on Bray-Curtis dissimilarities revealed a clear grouping of the samples by mosquito species, indicating that the two mosquito species harbored distinct microbial communities. Microbial diversity, richness and composition was strongly influenced by the site of mosquito collection and overall, Ae. ochraceus had significantly higher microbial diversity and richness than Ae. mcintoshi. Our findings suggest that host species and site of collection are important determinants of bacterial community composition and diversity in RVF virus vectors and these differences likely contribute to the spatio-temporal transmission dynamics of RVF virus. Knowledge of the microbial communities associated with disease vectors can be exploited for symbiotic control of vector-borne diseases. Here, we characterized and compared the bacterial communities of field-caught populations of Aedes mcintoshi and Aedes ochraceus, the primary vectors of Rift Valley fever (RVF) virus in Kenya. We show that the two mosquito species harbor distinct microbial communities whose diversity and richness are heavily influenced by the site of collection. Because some bacterial species are known to influence vector susceptibility to pathogens, differences in bacterial communities between the two mosquito species is likely one of the primary factors accounting for the spatial and temporal variation in transmission dynamics of RVF virus.
Collapse
Affiliation(s)
- David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- * E-mail:
| | - Ephantus J. Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, United States of America
| | - Samwel O. Arum
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Christopher J. Fields
- High Performance Computing in Biology (HPCBio), Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Illinois, United States of America
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
250
|
Prussing C, Saavedra MP, Bickersmith SA, Alava F, Guzmán M, Manrique E, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE. Malaria vector species in Amazonian Peru co-occur in larval habitats but have distinct larval microbial communities. PLoS Negl Trop Dis 2019; 13:e0007412. [PMID: 31091236 PMCID: PMC6538195 DOI: 10.1371/journal.pntd.0007412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/28/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
In Amazonian Peru, the primary malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), is difficult to target using standard vector control methods because it mainly feeds and rests outdoors. Larval source management could be a useful supplementary intervention, but to determine its feasibility, more detailed studies on the larval ecology of Ny. darlingi are essential. We conducted a multi-level study of the larval ecology of Anophelinae mosquitoes in the peri-Iquitos region of Amazonian Peru, examining the environmental characteristics of the larval habitats of four species, comparing the larval microbiota among species and habitats, and placing Ny. darlingi larval habitats in the context of spatial heterogeneity in human malaria transmission. We collected Ny. darlingi, Nyssorhynchus rangeli (formerly Anopheles rangeli), Nyssorhynchus triannulatus s.l. (formerly Anopheles triannulatus s.l.), and Nyssorhynchus sp. nr. konderi (formerly Anopheles sp. nr. konderi) from natural and artificial water bodies throughout the rainy and dry seasons. We found that, consistent with previous studies in this region and in Brazil, the presence of Ny. darlingi was significantly associated with water bodies in landscapes with more recent deforestation and lower light intensity. Nyssorhynchus darlingi presence was also significantly associated with a lower vegetation index, other Anophelinae species, and emergent vegetation. Though they were collected in the same water bodies, the microbial communities of Ny. darlingi larvae were distinct from those of Ny. rangeli and Ny. triannulatus s.l., providing evidence either for a species-specific larval microbiome or for segregation of these species in distinct microhabitats within each water body. We demonstrated that houses with more reported malaria cases were located closer to Ny. darlingi larval habitats; thus, targeted control of these sites could help ameliorate malaria risk. The co-occurrence of Ny. darlingi larvae in water bodies with other putative malaria vectors increases the potential impact of larval source management in this region.
Collapse
Affiliation(s)
- Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
| | - Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sara A. Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| | | | - Mitchel Guzmán
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| |
Collapse
|