201
|
Leong TL, Bryant VL. B cells in lung cancer-not just a bystander cell: a literature review. Transl Lung Cancer Res 2021; 10:2830-2841. [PMID: 34295681 PMCID: PMC8264333 DOI: 10.21037/tlcr-20-788] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
Metastatic lung cancer represents a significant global issue where it is responsible for the most cancer diagnoses and deaths worldwide. Treatment for advanced lung cancer has undergone a series of paradigm shifts from chemotherapy to targeted molecular agents to the most recent immunotherapy strategies. The most successful of the latter involves antibodies that block inhibitory receptors on tumor infiltrating T cells, thereby enhancing T cell activity against tumor cells. However, only a subset of patients demonstrate durable responses to these drugs and treatment resistance is common. Emerging evidence suggests that a critical role exists for B cells as more than a bystander immune cell in the tumor microenvironment (TME). However, this role is likely context-specific where B cells comprise distinct subtypes with unique effector functions that may result in anti- or pro-tumor effects. As such, the balance between various B cell subtypes affects the net B cell impact upon tumor immunity. To date, the factors needed to polarize B cell function toward anti-tumor activity are unclear. Understanding B cell biology in the lung cancer setting will help redefine and refine treatment strategies to augment anti-tumor immunity. This article presents a review of the literature describing the current knowledge of the development and function of B cells, and explores their role in lung cancer and potential as an immunotherapeutic strategy and as a predictive marker for response to immune checkpoint blockade.
Collapse
Affiliation(s)
- Tracy L Leong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute of Breathing and Sleep, Heidelberg, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Vanessa L Bryant
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Allergy and Clinical Immunology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
202
|
Maulana TI, Kromidas E, Wallstabe L, Cipriano M, Alb M, Zaupa C, Hudecek M, Fogal B, Loskill P. Immunocompetent cancer-on-chip models to assess immuno-oncology therapy. Adv Drug Deliv Rev 2021; 173:281-305. [PMID: 33798643 DOI: 10.1016/j.addr.2021.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The advances in cancer immunotherapy come with several obstacles, limiting its widespread use and benefits so far only to a small subset of patients. One of the underlying challenges remains to be the lack of representative nonclinical models that translate to human immunity and are able to predict clinical efficacy and safety outcomes. In recent years, immunocompetent Cancer-on-Chip models emerge as an alternative human-based platform that enables the integration and manipulation of complex tumor microenvironment. In this review, we discuss novel opportunities offered by Cancer-on-Chip models to advance (mechanistic) immuno-oncology research, ranging from design flexibility to multimodal analysis approaches. We then exemplify their (potential) applications for the research and development of adoptive cell therapy, immune checkpoint therapy, cytokine therapy, oncolytic virus, and cancer vaccines.
Collapse
|
203
|
Lim YW, Coles GL, Sandhu SK, Johnson DS, Adler AS, Stone EL. Single-cell transcriptomics reveals the effect of PD-L1/TGF-β blockade on the tumor microenvironment. BMC Biol 2021; 19:107. [PMID: 34030676 PMCID: PMC8147417 DOI: 10.1186/s12915-021-01034-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion, and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated. RESULTS We used single-cell RNA sequencing in a mouse model to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in macrophages, and downregulation of extracellular matrix genes in fibroblasts. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1. CONCLUSIONS Taken together, our data could be leveraged translationally to complement or find alternatives to anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.
Collapse
Affiliation(s)
- Yoong Wearn Lim
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Garry L Coles
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Savreet K Sandhu
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - David S Johnson
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA
| | - Adam S Adler
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA.
| | - Erica L Stone
- GigaGen, Inc., One Tower Place, Suite 750, South San Francisco, CA, 94080, USA.
| |
Collapse
|
204
|
Gkountakos A, Delfino P, Lawlor RT, Scarpa A, Corbo V, Bria E. Harnessing the epigenome to boost immunotherapy response in non-small cell lung cancer patients. Ther Adv Med Oncol 2021; 13:17588359211006947. [PMID: 34104224 PMCID: PMC8161860 DOI: 10.1177/17588359211006947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The introduction of immune checkpoint inhibitor (ICI)-based therapy for non-oncogene addicted non-small cell lung cancer (NSCLC) has significantly transformed the treatment landscape of the disease. Inhibitors of the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint axis, which were initially considered as a late-line treatment option, gradually became the standard of care as first-line treatment for subgroups of NSCLC patients. However, a significant fraction of patients either fails to respond or progresses after a partial response to ICI treatment. Thus, the identification of mechanisms responsible for innate and acquired resistance to immunotherapy within a rapidly evolving tumor microenvironment (TME) is urgently required, as is the identification of reliable predictive biomarkers beyond PD-L1 expression. The deregulation of the epigenome is a key driver of cancer initiation and progression, and it has also been shown to drive therapeutic resistance. Tumor education of infiltrating myeloid cells towards an immuno-suppressive phenotype as well as induction of T-cell dysfunction in the TME is also driven by epigenome reprogramming. As it stands and, given their dynamic nature, epigenetic changes in cancer and non-cancer cells represent an attractive target to increase immunotherapy activity in NSCLC. Accordingly, clinical trials of combinatorial immuno-epigenetic drug regimens have been associated with tumor response in previously immunotherapy-resistant NSCLC patients irrespective of their PD-L1 status. Moreover, epigenetic signatures might represent valuable theragnostic biomarkers as they can be assayed easily in liquid biopsy and provide multiple layers of information. In this review, we discuss the current knowledge regarding the dysregulated epigenetic mechanisms contributing to immunotherapy resistance in NSCLC. Although the clinical data are still maturing, we highlight the attractive perspective that the synergistic model of immuno-epigenetic strategies might overcome the current limitations of immunotherapy alone and will be translated into durable clinical benefit for a broader NSCLC population.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- ARC-NET Applied Research on Cancer Center, University of Verona, P.le L.A. Scuro 10, Verona, 37134, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Rita T. Lawlor
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical Oncology, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
205
|
Diet-Induced Obesity Impairs Outcomes and Induces Multi-Factorial Deficiencies in Effector T Cell Responses Following Anti-CTLA-4 Combinatorial Immunotherapy in Renal Tumor-Bearing Mice. Cancers (Basel) 2021; 13:cancers13102295. [PMID: 34064933 PMCID: PMC8151089 DOI: 10.3390/cancers13102295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Immunotherapy use has become standard for many patients with advanced kidney cancer; unfortunately, <50% of patients experience durable responses. Mounting evidence suggests that modifiable factors, such as diet and obesity, impact immunotherapy outcomes. Obesity, a major U.S. health epidemic, blunts anti-tumor immunity and promotes tumor growth in multiple preclinical models. However, the full biological impact of obesity on the T cell responses needed to achieve positive immunotherapy outcomes remains unclear. Here, we studied the effects of obesity on T cell responses following combinatorial immunotherapy in a mouse model of kidney cancer. We found that obesity is associated with blunted effector T cell responses, resulting in diminished immunotherapy outcomes. This therapy produces sustained T cell responses and robust tumor control in obese-resistant mice fed the same high-fat diet. Finding ways to amplify T cell responses within renal tumors from hosts with obesity will be critical for achieving optimal immunotherapy outcomes. Abstract Associations between modifiable factors and the efficacy of cancer immunotherapies remain uncertain. We found previously that diet-induced obesity (DIO) reduces the efficacy of an immunotherapy consisting of adenovirus-encoded TRAIL plus CpG oligonucleotide (AdT/CpG) in mice with renal tumors. To eliminate confounding effects of diet and determine whether outcomes could be improved in DIO mice, we evaluated AdT/CpG combined with anti-CTLA-4 in diet-matched, obese-resistant (OB-RES) versus DIO tumor-bearing mice. Therapy-treated OB-RES mice displayed effective renal tumor control and sustained CD4+ and CD8+ T cell responses. In contrast, therapy-treated DIO mice exhibited progressive tumor outgrowth and blunted T cell responses, characterized by reduced intratumoral frequencies of IFNγ+ CD4+ and CD8+ T cells. Weak effector T cell responses in therapy-treated DIO mice were accompanied by low intratumoral concentrations of the T cell chemoattractant CCL5, heightened concentrations of pro-tumorigenic GM-CSF, and impaired proliferative capacity of CD44+CD8+ T cells in tumor-draining lymph nodes. Our findings demonstrate that in lean mice with renal tumors, combining in situ T cell priming upstream of anti-CTLA-4 enhances outcomes versus anti-CTLA-4 alone. However, host obesity is associated with heightened immunotherapy resistance, characterized by multi-factorial deficiencies in effector CD4+ and CD8+ T cell responses that extend beyond the tumor microenvironment.
Collapse
|
206
|
Basu A, Ramamoorthi G, Albert G, Gallen C, Beyer A, Snyder C, Koski G, Disis ML, Czerniecki BJ, Kodumudi K. Differentiation and Regulation of T H Cells: A Balancing Act for Cancer Immunotherapy. Front Immunol 2021; 12:669474. [PMID: 34012451 PMCID: PMC8126720 DOI: 10.3389/fimmu.2021.669474] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Current success of immunotherapy in cancer has drawn attention to the subsets of TH cells in the tumor which are critical for activation of anti-tumor response either directly by themselves or by stimulating cytotoxic T cell activity. However, presence of immunosuppressive pro-tumorigenic TH subsets in the tumor milieu further contributes to the complexity of regulation of TH cell-mediated immune response. In this review, we present an overview of the multifaceted positive and negative effects of TH cells, with an emphasis on regulation of different TH cell subtypes by various immune cells, and how a delicate balance of contradictory signals can influence overall success of cancer immunotherapy. We focus on the regulatory network that encompasses dendritic cell-induced activation of CD4+ TH1 cells and subsequent priming of CD8+ cytotoxic T cells, along with intersecting anti-inflammatory and pro-tumorigenic TH2 cell activity. We further discuss how other tumor infiltrating immune cells such as immunostimulatory TH9 and Tfh cells, immunosuppressive Treg cells, and the duality of TH17 function contribute to tip the balance of anti- vs pro-tumorigenic TH responses in the tumor. We highlight the developing knowledge of CD4+ TH1 immune response against neoantigens/oncodrivers, impact of current immunotherapy strategies on CD4+ TH1 immunity, and how opposing action of TH cell subtypes can be explored further to amplify immunotherapy success in patients. Understanding the nuances of CD4+ TH cells regulation and the molecular framework undergirding the balancing act between anti- vs pro-tumorigenic TH subtypes is critical for rational designing of immunotherapies that can bypass therapeutic escape to maximize the potential of immunotherapy.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Gabriella Albert
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Gary Koski
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA, United States
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Oncological Sciences, University of South Florida, Tampa, FL, United States.,Department of Breast Cancer Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
207
|
Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 2021; 67:101280. [PMID: 33581314 DOI: 10.1016/j.arr.2021.101280] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Aging is a progressive degenerative process involving a chronic low-grade inflammation and the accumulation of senescent cells. One major issue is to reveal the mechanisms which promote the deposition of pro-inflammatory senescent cells within tissues. The accumulation involves mechanisms which increase cellular senescence as well as those inhibiting the clearance of senescent cells from tissues. It is known that a persistent inflammatory state evokes a compensatory immunosuppression which inhibits pro-inflammatory processes by impairing the functions of effector immune cells, e.g., macrophages, T cells and natural killer (NK) cells. Unfortunately, these cells are indispensable for immune surveillance and the subsequent clearance of senescent cells, i.e., the inflammation-induced counteracting immunosuppression prevents the cleansing of host tissues. Moreover, senescent cells can also repress their own clearance by expressing inhibitors of immune surveillance and releasing the ligands of NKG2D receptors which impair their surveillance by NK and cytotoxic CD8+ T cells. It seems that cellular senescence and immunosuppression establish a feed-forward process which promotes the aging process and age-related diseases. I will examine in detail the immunosuppressive mechanisms which impair the surveillance and clearance of pro-inflammatory senescent cells with aging. In addition, I will discuss several therapeutic strategies to halt the degenerative feed-forward circuit associated with the aging process and age-related diseases.
Collapse
|
208
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [PMID: 35590232 DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
209
|
Mast Cells and Skin and Breast Cancers: A Complicated and Microenvironment-Dependent Role. Cells 2021; 10:cells10050986. [PMID: 33922465 PMCID: PMC8146516 DOI: 10.3390/cells10050986] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are important sentinel cells in host defense against infection and major effector cells in allergic disease. The role of these cells in cancer settings has been widely debated. The diverse range of mast cell functions in both immunity and tissue remodeling events, such as angiogenesis, provides multiple opportunities for mast cells to modify the tumor microenvironment. In this review, we consider both skin and breast cancer settings to address the controversy surrounding the importance of mast cells in the host response to tumors. We specifically address the key mediators produced by mast cells which impact tumor development. The role of environmental challenges in modifying mast cell responses and opportunities to modify mast cell responses to enhance anti-tumor immunity are also considered. While the mast cell's role in many cancer contexts is complicated and poorly understood, the activities of these tissue resident and radioresistant cells can provide important opportunities to enhance anti-cancer responses and limit cancer development.
Collapse
|
210
|
Horowitz NB, Mohammad I, Moreno-Nieves UY, Koliesnik I, Tran Q, Sunwoo JB. Humanized Mouse Models for the Advancement of Innate Lymphoid Cell-Based Cancer Immunotherapies. Front Immunol 2021; 12:648580. [PMID: 33968039 PMCID: PMC8100438 DOI: 10.3389/fimmu.2021.648580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse circulating and tissue-resident cells, which carry out functions including homeostasis and antitumor immunity. The development and behavior of human natural killer (NK) cells and other ILCs in the context of cancer is still incompletely understood. Since NK cells and Group 1 and 2 ILCs are known to be important for mediating antitumor immune responses, a clearer understanding of these processes is critical for improving cancer treatments and understanding tumor immunology as a whole. Unfortunately, there are some major differences in ILC differentiation and effector function pathways between humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-derived tumors alongside human genes or human immune cells represent an excellent tool for studying these pathways in vivo. Recent advancements in humanized mice enable unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC behavior in the context of cancer, the humanized mouse models that are most commonly employed in cancer research and their optimization for studying ILCs, current approaches to manipulating human ILCs for antitumor activity, and the relative utility of various mouse models for the development and assessment of these ILC-related immunotherapies.
Collapse
Affiliation(s)
- Nina B Horowitz
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, CA, United States
| | - Imran Mohammad
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Uriel Y Moreno-Nieves
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ievgen Koliesnik
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Quan Tran
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
211
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
212
|
Kang Y, Huang J, Liu Y, Zhang N, Cheng Q, Zhang Y. Integrated Analysis of Immune Infiltration Features for Cervical Carcinoma and Their Associated Immunotherapeutic Responses. Front Cell Dev Biol 2021; 9:573497. [PMID: 33898414 PMCID: PMC8063060 DOI: 10.3389/fcell.2021.573497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is the fourth most prevalent cancer in women, which decreases quality of life of the patients. Traditional interventions have failed to improve the overall survival period of patients due to high tumor recurrence after treatment or late diagnosis. Fortunately, preliminary evidence suggests that anti-angiogenic and immunotherapy can efficiently treat against cervical cancer. However, there is no clear evidence on the efficacy of immunotherapy in cervical cancer. Therefore, in this study, we classified cervical cancers in the TCGA dataset using various algorithms and explored the relationship between the immune profile and corresponding sensitivity of the tumors to immunotherapy. Results showed that patients with tumors had higher expression of immunocytes and longer overall survival time. In addition, we build a scoring system based on the immune landscape of the tumor microenvironment of cervical cancer. Tumors with higher scores exhibited better survival outcomes and were more sensitive to immunotherapy. In this study, the immune landscape of cervical cancer was analyzed, and the subtype of cervical cancer based on that difference was proposed. Besides, the subtype of cervical cancer showed different sensitivity to immunotherapeutic response which further confirmed its relationship with tumor immune landscape.
Collapse
Affiliation(s)
- Yanan Kang
- Department of Gynecology, Xiangya Hospital Central South University, Changsha, China
| | - Jin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Yang Liu
- Department of Gynecology, Xiangya Hospital Central South University, Changsha, China
| | - Nan Zhang
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yi Zhang
- Department of Gynecology, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
213
|
Zhao Z, Ding H, Lin ZB, Qiu SH, Zhang YR, Guo YG, Chu XD, Sam LI, Pan JH, Pan YL. Relationship between Tertiary Lymphoid Structure and the Prognosis and Clinicopathologic Characteristics in Solid Tumors. Int J Med Sci 2021; 18:2327-2338. [PMID: 33967609 PMCID: PMC8100653 DOI: 10.7150/ijms.56347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: An increasing number of studies had shown that tertiary lymphoid structure (TLS) plays an important role in tumor progression. However, the prognostic role of TLS in various tumors remains controversial. This meta-analysis aims to investigate the clinicopathological and prognostic values of TLS in solid tumors. Methods: A systematic search was conducted in PubMed, EMBASE and Cochrane Library undated to November 2, 2020. Odds ratios of clinical parameters, hazard ratio (HR) of overall survival (OS), relapse-free survival (RFS), disease-free survival (DFS) and relapse rate were calculated in order to evaluate the relationship between TLS expression and clinicopathological or prognostic values in different tumors. Result: 27 eligible studies including 6647 patients with different types of tumors were analyzed. High TLS expression was associated with a longer OS (HR = 0.66, 95% CI: 0.50 - 0.86, P = 0.002) and RFS (HR = 0.61, 95% CI: 0.47 - 0.79, P = 0.0001). Moreover, high TLS levels in tumor were associated with a low risk of recurrence (HR = 0.43, 95% CI: 0.32 - 0.57, P < 0.0001). However, there was no relationship between TLS expression and DFS. Meanwhile, high TLS expression was associated with smaller tumor size (P < 0.00001) and higher tumor infiltrating lymphocytes (TILs). Furthermore, the subgroup analysis showed high TLS expression that may be associated with a lower clinical grading and N stage in breast cancer and colorectal cancer. Conclusion: High TLS expression is associated with the longer OS and RFS in solid tumors, and a lower risk of cancer relapse. Meanwhile, high TLS expression is also associated with a smaller tumor size, higher infiltration of TILs, lower clinical grading and N stage in the tumor. Therefore, high TLS expression in the tumor is a favorable prognostic biomarker for solid tumor patients.
Collapse
Affiliation(s)
- Zhan Zhao
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hui Ding
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zheng-bin Lin
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Sheng-hui Qiu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yi-ran Zhang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yan-guan Guo
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiao-dong Chu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Loi I Sam
- International School, Jinan University, Guangzhou 510632, China
| | - Jing-hua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yun-long Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
214
|
Brcic L, Mathilakathu A, Walter RFH, Wessolly M, Mairinger E, Beckert H, Kreidt D, Steinborn J, Hager T, Christoph DC, Kollmeier J, Mairinger T, Wohlschlaeger J, Schmid KW, Borchert S, Mairinger FD. Digital Gene Expression Analysis of Epithelioid and Sarcomatoid Mesothelioma Reveals Differences in Immunogenicity. Cancers (Basel) 2021; 13:1761. [PMID: 33917061 PMCID: PMC8067687 DOI: 10.3390/cancers13081761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with asbestos exposure. Median survival ranges from 14 to 20 months after initial diagnosis. As of November 2020, the FDA approved a combination of immune checkpoint inhibitors after promising intermediate results. Nonetheless, responses remain unsatisfying. Adequate patient stratification to improve response rates is still lacking. This retrospective study analyzed formalin fixed paraffin embedded specimens from a cohort of 22 MPM. Twelve of those samples showed sarcomatoid, ten epithelioid differentiation. Complete follow-up, including radiological assessment of response by modRECIST and time to death, was available with reported deaths of all patients. RNA of all samples was isolated and subjected to digital gene expression pattern analysis. Our study revealed a notable difference between epithelioid and sarcomatoid mesothelioma, showing differential gene expression for 304/698 expressed genes. Whereas antigen processing and presentation to resident cytotoxic T cells as well as phagocytosis is highly affected in sarcomatoid mesothelioma, cell-cell interaction via cytokines seems to be of greater importance in epithelioid cases. Our work reveals the specific role of the immune system within the different histologic subtypes of MPM, providing a more detailed background of their immunogenic potential. This is of great interest regarding therapeutic strategies including immunotherapy in mesothelioma.
Collapse
Affiliation(s)
- Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Alexander Mathilakathu
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Robert F. H. Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Hospital Essen—Ruhrlandklinik, 45239 Essen, Germany;
| | - Daniel Kreidt
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Daniel C. Christoph
- Department of Medical Oncology, Evang. Kliniken Essen-Mitte, 45136 Essen, Germany;
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, 14165 Berlin, Germany;
| | - Thomas Mairinger
- Department of Tissue Diagnostics, Helios Klinikum Emil von Behring, 14165 Berlin, Germany;
| | | | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Fabian D. Mairinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
215
|
Uzhachenko RV, Bharti V, Ouyang Z, Blevins A, Mont S, Saleh N, Lawrence HA, Shen C, Chen SC, Ayers GD, DeNardo DG, Arteaga C, Richmond A, Vilgelm AE. Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors. Cell Rep 2021; 35:108944. [PMID: 33826903 PMCID: PMC8383195 DOI: 10.1016/j.celrep.2021.108944] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) delay progression of metastatic breast cancer. However, complete responses are uncommon and tumors eventually relapse. Here, we show that CDK4/6i can enhance efficacy of T cell-based therapies, such as adoptive T cell transfer or T cell-activating antibodies anti-OX40/anti-4-1BB, in murine breast cancer models. This effect is driven by the induction of chemokines CCL5, CXCL9, and CXCL10 in CDK4/6i-treated tumor cells facilitating recruitment of activated CD8+ T cells, but not Tregs, into the tumor. Mechanistically, chemokine induction is associated with metabolic stress that CDK4/6i treatment induces in breast cancer cells. Despite the cell cycle arrest, CDK4/6i-treated cells retain high metabolic activity driven by deregulated PI3K/mTOR pathway. This causes cell hypertrophy and increases mitochondrial content/activity associated with oxidative stress and inflammatory stress response. Our findings uncover a link between tumor metabolic vulnerabilities and anti-tumor immunity and support further development of CDK4/6i and immunotherapy combinations.
Collapse
Affiliation(s)
- Roman V Uzhachenko
- Comprehensive Cancer Center - James, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Vijaya Bharti
- Comprehensive Cancer Center - James, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhufeng Ouyang
- Comprehensive Cancer Center - James, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashlyn Blevins
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Stacey Mont
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Nabil Saleh
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Hunter A Lawrence
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Chengli Shen
- Comprehensive Cancer Center - James, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - David G DeNardo
- Department of Medicine, Washington University St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Anna E Vilgelm
- Comprehensive Cancer Center - James, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
216
|
Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, Eisenblätter M, Wildgruber M. Tumor-Associated Macrophages-Implications for Molecular Oncology and Imaging. Biomedicines 2021; 9:biomedicines9040374. [PMID: 33918295 PMCID: PMC8066018 DOI: 10.3390/biomedicines9040374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the largest group of leukocytes within the tumor microenvironment (TME) of solid tumors and orchestrate the composition of anti- as well as pro-tumorigenic factors. This makes TAMs an excellent target for novel cancer therapies. The plasticity of TAMs resulting in varying membrane receptors and expression of intracellular proteins allow the specific characterization of different subsets of TAMs. Those markers similarly allow tracking of TAMs by different means of molecular imaging. This review aims to provides an overview of the origin of tumor-associated macrophages, their polarization in different subtypes, and how characteristic markers of the subtypes can be used as targets for molecular imaging and theranostic approaches.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Christopher Klenk
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Sophia Kästle
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Michel Eisenblätter
- Department of Diagnostic and Interventional Radiology, Freiburg University Hospital, 79106 Freiburg, Germany;
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
- Correspondence: ; Tel.: +49-0-89-4400-76640
| |
Collapse
|
217
|
Abstract
ABSTRACT Redirection of T cell cytotoxicity by the chimeric antigen receptor (CAR) structure may not be sufficient for optimal antitumor function in the patient tumor microenvironment. Comodifying CAR T cells to secrete different classes of proteins can be used to optimize CAR T cell function, overcome suppressive signals, and/or alter the tumor microenvironment milieu. These modifications aim to improve initial responses to therapy and enhance the durability of response. Furthermore, CAR T cells can deliver these molecules locally to the tumor microenvironment, avoiding systemic distribution. This approach has been tested in preclinical models using a variety of different classes of agonistic and antagonistic proteins, and clinical trials are currently underway to assess efficacy in patients.
Collapse
|
218
|
Lu T, Peng H, Zhong L, Wu P, He J, Deng Z, Huang Y. The Tree Shrew as a Model for Cancer Research. Front Oncol 2021; 11:653236. [PMID: 33768009 PMCID: PMC7985444 DOI: 10.3389/fonc.2021.653236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Animal disease models are necessary in medical research, and an appropriate animal model is of great importance for studies about the prevention or treatment of cancer. The most important thing in the selection of animal models is to consider the similarity between animals and humans. The tree shrew (Tupaia belangeri) is a squirrel-like mammal which placed in the order Scandentia. Whole-genome sequencing has revealed that tree shrews are extremely similar to primate and humans than to rodents, with many highly conserved genes, which makes the data from studies that use tree shrews as models more convincing and the research outcomes more easily translatable. In tumor research, tree shrews are often used as animal models for hepatic and mammary cancers. As research has progressed, other types of tree shrew tumor models have been developed and exhibit clinical manifestations similar to those of humans. Combining the advantages of both rodents and primates, the tree shrew is expected to be the most powerful animal model for studying tumors.
Collapse
Affiliation(s)
- Tao Lu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Hongmei Peng
- Scientific Research and Education Department, The First People's Hospital of Changde City, Changde, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
219
|
Zhou X, Peng M, He Y, Peng J, Zhang X, Wang C, Xia X, Song W. CXC Chemokines as Therapeutic Targets and Prognostic Biomarkers in Skin Cutaneous Melanoma Microenvironment. Front Oncol 2021; 11:619003. [PMID: 33767987 PMCID: PMC7985846 DOI: 10.3389/fonc.2021.619003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Background Skin Cutaneous Melanoma (SKCM) is a tumor of the epidermal melanocytes induced by gene activation or mutation. It is the result of the interaction between genetic, constitutional, and environmental factors. SKCM is highly aggressive and is the most threatening skin tumor. The incidence of the disease is increasing year by year, and it is the main cause of death in skin tumors around the world. CXC chemokines in the tumor microenvironment can regulate the transport of immune cells and the activity of tumor cells, thus playing an anti-tumor immunological role and affecting the prognosis of patients. However, the expression level of CXC chemokine in SKCM and its effect on prognosis are still unclear. Method Oncomine, UALCAN, GEPIA, STRING, GeneMANIA, cBioPortal, TIMER, TRRUST, DAVID 6.8, and Metascape were applied in our research. Result The transcription of CXCL1, CXCL5, CXCL8, CXCL9, CXCL10, and CXCL13 in SKCM tissues were significantly higher than those in normal tissues. The pathological stage of SKCM patients is closely related to the expression of CXCL4, CXCL9, CXCL10, CXCL11, CXCL12, and CXCL13. The prognosis of SKCM patients with low transcription levels of CXCL4, CXCL9, CXCL10, CXCL11, and CXCL13 is better. The differential expression of CXC chemokines is mainly associated with inflammatory response, immune response, and cytokine mediated signaling pathways. Our data indicate that the key transcription factors of CXC chemokines are RELA, NF-κB1 and SP1. The targets of CXC chemokines are mainly LCK, LYN, SYK, MAPK2, MAPK12, and ART. The relationship between CXC chemokine expression and immune cell infiltration in SKCM was closed. Conclusions Our research provides a basis for screening SKCM biomarkers, predicting prognosis, and choosing immunotherapy.
Collapse
Affiliation(s)
- Xuezhi Zhou
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Manjuan Peng
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Ye He
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Jingjie Peng
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Zhang
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Chao Wang
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Weitao Song
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
220
|
Lee JY, Chaudhuri O. Modeling the tumor immune microenvironment for drug discovery using 3D culture. APL Bioeng 2021; 5:010903. [PMID: 33564739 PMCID: PMC7857858 DOI: 10.1063/5.0030693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
A few decades ago, the notion that a patient's own immune system could recognize and eliminate tumor cells was highly controversial; now, it is the basis for a thriving new field of cancer research, cancer immunology. With these new immune-based cancer treatments come the need for new complex preclinical models to assess their efficacy. Traditional therapeutics have often targeted the intrinsic growth of cancer cells and could, thus, be modeled with 2D monoculture. However, the next generation of therapeutics necessitates significantly greater complexity to model the ability of immune cells to infiltrate, recognize, and eliminate tumor cells. Modeling the physical and chemical barriers to immune infiltration requires consideration of extracellular matrix composition, architecture, and mechanobiology in addition to interactions between multiple cell types. Here, we give an overview of the unique properties of the tumor immune microenvironment, the challenges of creating physiologically relevant 3D culture models for drug discovery, and a perspective on future opportunities to meet this significant challenge.
Collapse
Affiliation(s)
- Joanna Y. Lee
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California 94080, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
221
|
Xydia M, Rahbari R, Ruggiero E, Macaulay I, Tarabichi M, Lohmayer R, Wilkening S, Michels T, Brown D, Vanuytven S, Mastitskaya S, Laidlaw S, Grabe N, Pritsch M, Fronza R, Hexel K, Schmitt S, Müller-Steinhardt M, Halama N, Domschke C, Schmidt M, von Kalle C, Schütz F, Voet T, Beckhove P. Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients. Nat Commun 2021; 12:1119. [PMID: 33602930 PMCID: PMC7893042 DOI: 10.1038/s41467-021-21297-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Regulatory CD4+ T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing. While Treg in peripheral blood and breast tumors are clonally distinct, Tconv clones, including tumor-antigen reactive effectors (Teff), are detected in both compartments. Tumor-infiltrating CD4+ cells accumulate into distinct transcriptome clusters, including early activated Tconv, uncommitted Teff, Th1 Teff, suppressive Treg and pro-tumorigenic Treg. Trajectory analysis suggests early activated Tconv differentiation either into Th1 Teff or into suppressive and pro-tumorigenic Treg. Importantly, Tconv, activated Tconv and Treg share highly-expanded clones contributing up to 65% of intratumoral Treg. Here we show that Treg in human breast cancer may considerably stem from antigen-experienced Tconv converting into secondary induced Treg through intratumoral activation.
Collapse
Affiliation(s)
- Maria Xydia
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany.
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany.
| | - Raheleh Rahbari
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
| | - Eliana Ruggiero
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Iain Macaulay
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- Technical Development, Earlham Institute, Norwich, UK
| | - Maxime Tarabichi
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- The Francis Crick Institute, London, UK
| | - Robert Lohmayer
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany
- Institute for Theoretical Physics, University of Regensburg, Regensburg, Germany
| | - Stefan Wilkening
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Tillmann Michels
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany
| | - Daniel Brown
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Sebastiaan Vanuytven
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Svetlana Mastitskaya
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Sean Laidlaw
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
| | - Niels Grabe
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Centre, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Maria Pritsch
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany
| | - Raffaele Fronza
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Klaus Hexel
- Flow Cytometry Core Facility, German Cancer Research Centre, Heidelberg, Germany
| | - Steffen Schmitt
- Flow Cytometry Core Facility, German Cancer Research Centre, Heidelberg, Germany
| | - Michael Müller-Steinhardt
- German Red Cross (DRK Blood Donation Service in Baden-Württemberg-Hessen) and Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Niels Halama
- Medical Oncology Department, National Centre for Tumor Diseases, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Centre, BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Christoph Domschke
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Manfred Schmidt
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Christof von Kalle
- Translational Oncology Department, National Centre for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
- Clinical Study Centre, Charité/BIH, Berlin, Germany
| | - Florian Schütz
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Thierry Voet
- The Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, UK
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Philipp Beckhove
- RCI Regensburg Centre for Interventional Immunology, University and Department of Hematology/Oncology, University Medical Centre of Regensburg, Regensburg, Germany.
- Translational Immunology Department, German Cancer Research Centre, Heidelberg, Germany.
| |
Collapse
|
222
|
Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification. Biosci Rep 2021; 41:227516. [PMID: 33409535 PMCID: PMC7876598 DOI: 10.1042/bsr20203565] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Ge-Gen-Qin-Lian Decoction (GGQLD), a traditional Chinese medicine (TCM) formula, has been widely used for ulcerative colitis (UC) in China, but the pharmacological mechanisms remain unclear. This research was designed to clarify the underlying pharmacological mechanism of GGQLD against UC. Method: In this research, a GGQLD-compound-target-UC network was constructed based on public databases to clarify the relationship between active compounds in GGQLD and potential targets. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed to investigate biological functions associated with potential targets. A protein–protein interaction network was constructed to screen and evaluate hub genes and key active ingredients. Molecular docking was used to verify the activities of binding between hub targets and ingredients. Results: Finally, 83 potential therapeutic targets and 118 corresponding active ingredients were obtained by network pharmacology. Quercetin, kaempferol, wogonin, baicalein, and naringenin were identified as potential candidate ingredients. GO and KEGG enrichment analyses revealed that GGQLD had anti-inflammatory, antioxidative, and immunomodulatory effects. The effect of GGQLD on UC might be achieved by regulating the balance of cytokines (e.g., IL-6, TNF, IL-1β, CXCL8, CCL2) in the immune system and inflammation-related pathways, such as the IL-17 pathway and the Th17 cell differentiation pathway. In addition, molecular docking results demonstrated that the main active ingredient, quercetin, exhibited good affinity to hub targets. Conclusion: This research fully reflects the multicomponent and multitarget characteristics of GGQLD in the treatment of UC. Furthermore, the present study provided new insight into the mechanisms of GGQLD against UC.
Collapse
|
223
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
224
|
Korpela SP, Hinz TK, Oweida A, Kim J, Calhoun J, Ferris R, Nemenoff RA, Karam SD, Clambey ET, Heasley LE. Role of epidermal growth factor receptor inhibitor-induced interferon pathway signaling in the head and neck squamous cell carcinoma therapeutic response. J Transl Med 2021; 19:43. [PMID: 33485341 PMCID: PMC7825244 DOI: 10.1186/s12967-021-02706-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is frequently amplified or overexpressed in head and neck squamous cell carcinoma (HNSCC) and is a clinically validated target for the therapeutic antibody, cetuximab, in the management of this cancer. The degree of response to EGFR inhibitors measured by tumor shrinkage varies widely among HNSCC patients, and the biological mechanisms that underlie therapeutic heterogeneity amongst HNSCC patients remain ill-defined. METHODS EGFR-dependent human and murine HNSCC cell lines were treated with the EGFR/ERBB inhibitors, gefitinib and AZD8931, and submitted to RNAseq, GSEA, and qRT-PCR. Conditioned media was analyzed by ELISA and Luminex assays. Murine HNSCC tumors were stained for T cell markers by immunofluorescence. Primary HSNCC patient specimens treated with single agent cetuximab were stained with Vectra multispectral immunofluorescence. RESULTS The transcriptional reprogramming response to EGFR/ERBB-specific TKIs was measured in a panel of EGFR-dependent human HNSCC cell lines and interferon (IFN) α and γ responses identified as top-ranked TKI-induced pathways. Despite similar drug sensitivity, responses among 7 cell lines varied quantitatively and qualitatively, especially regarding the induced chemokine and cytokine profiles. Of note, the anti-tumorigenic chemokine, CXCL10, and the pro-tumorigenic factor, IL6, exhibited wide-ranging and non-overlapping induction. Similarly, AZD8931 exerted potent growth inhibition, IFNα/IFNγ pathway activation, and CXCL10 induction in murine B4B8 HNSCC cells. AZD8931 treatment of immune-competent mice bearing orthotopic B4B8 tumors increased CD8 + T cell content and the therapeutic response was abrogated in nu/nu mice relative to BALB/c mice. Finally, Vectra 3.0 analysis of HNSCC patient tumors prior to and after 3-4 weeks of single agent cetuximab treatment revealed increased CD8 + T cell content in specimens from patients exhibiting a therapeutic response relative to non-responders. CONCLUSIONS The findings reveal heterogeneous, tumor cell-intrinsic, EGFR/ERBB inhibitor-induced IFN pathway activation in HNSCC and suggest that individual tumor responses to oncogene-targeted agents are a sum of direct growth inhibitory effects and variably-induced participation of host immune cells.
Collapse
Affiliation(s)
- Sean P Korpela
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - Trista K Hinz
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - Ayman Oweida
- Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jihye Kim
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Calhoun
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA
| | - Robert Ferris
- Departments of Otolaryngology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lynn E Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA.
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
225
|
Mutala LB, Deleine C, Karakachoff M, Dansette D, Ducoin K, Oger R, Rousseau O, Podevin J, Duchalais E, Fourquier P, Thomas WEA, Gourraud PA, Bennouna J, Brochier C, Gervois N, Bossard C, Jarry A. The Caspase-1/IL-18 Axis of the Inflammasome in Tumor Cells: A Modulator of the Th1/Tc1 Response of Tumor-Infiltrating T Lymphocytes in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13020189. [PMID: 33430344 PMCID: PMC7825767 DOI: 10.3390/cancers13020189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
In colorectal cancer (CRC), a high density of T lymphocytes represents a strong prognostic marker in subtypes of CRC. Optimized immunotherapy strategies to boost this T-cell response are still needed. A good candidate is the inflammasome pathway, an emerging player in cancer immunology that bridges innate and adaptive immunity. Its effector protein caspase-1 matures IL-18 that can promote a T-helper/cytotoxic (Th1/Tc1) response. It is still unknown whether tumor cells from CRC possess a functional caspase-1/IL-18 axis that could modulate the Th1/Tc1 response. We used two independent cohorts of CRC patients to assess IL-18 and caspase-1 expression by tumor cells in relation to the density of TILs and the microsatellite status of CRC. Functional and multiparametric approaches at the protein and mRNA levels were performed on an ex vivo CRC explant culture model. We show that, in the majority of CRCs, tumor cells display an activated and functional caspase-1/IL-18 axis that contributes to drive a Th1/Tc1 response elicited by TILs expressing IL-18Rα. Furthermore, unsupervised clustering identified three clusters of CRCs according to the caspase-1/IL-18/TIL density/interferon gamma (IFNγ) axis and microsatellite status. Together, our results strongly suggest that targeting the caspase-1/IL-18 axis can improve the anti-tumor immune response in subgroups of CRC.
Collapse
Affiliation(s)
- Linda Bilonda Mutala
- Institut Roche, 92100 Boulogne-Billancourt, France; (L.B.M.); (C.B.)
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Cécile Deleine
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Matilde Karakachoff
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | | | - Kathleen Ducoin
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Romain Oger
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Olivia Rousseau
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | - Juliette Podevin
- Digestive Surgery Department and IMAD, CHU Nantes, 44093 Nantes, France; (J.P.); (E.D.)
| | - Emilie Duchalais
- Digestive Surgery Department and IMAD, CHU Nantes, 44093 Nantes, France; (J.P.); (E.D.)
| | - Pierre Fourquier
- Digestive Surgery Department, Hôpital Privé du Confluent, 44200 Nantes, France;
| | | | - Pierre-Antoine Gourraud
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | - Jaafar Bennouna
- Digestive Oncology Department and IMAD, CHU, 44093 Nantes, France;
| | - Camille Brochier
- Institut Roche, 92100 Boulogne-Billancourt, France; (L.B.M.); (C.B.)
| | - Nadine Gervois
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Céline Bossard
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
- Pathology Department, CHU Nantes, 44093 Nantes, France;
| | - Anne Jarry
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
- Correspondence:
| |
Collapse
|
226
|
Mirlekar B, Pylayeva-Gupta Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers (Basel) 2021; 13:E167. [PMID: 33418929 PMCID: PMC7825035 DOI: 10.3390/cancers13020167] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The IL-12 family cytokines are a group of unique heterodimeric cytokines that include IL-12, IL-23, IL-27, IL-35 and, most recently, IL-39. Recent studies have solidified the importance of IL-12 cytokines in shaping innate and adaptive immune responses in cancer and identified multipronged roles for distinct IL-12 family members, ranging from effector to regulatory immune functions. These cytokines could serve as promising candidates for the development of immunomodulatory therapeutic approaches. Overall, IL-12 can be considered an effector cytokine and has been found to engage anti-tumor immunity by activating the effector Th1 response, which is required for the activation of cytotoxic T and NK cells and tumor clearance. IL-23 and IL-27 play dual roles in tumor immunity, as they can both activate effector immune responses and promote tumor growth by favoring immune suppression. IL-35 is a potent regulatory cytokine and plays a largely pro-tumorigenic role by inhibiting effector T cells. In this review, we summarize the recent findings on IL-12 family cytokines in the control of tumor growth with an emphasis primarily on immune regulation. We underscore the clinical implications for the use of these cytokines either in the setting of monotherapy or in combination with other conventional therapies for the more effective treatment of malignancies.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
227
|
Singh MP, Sethuraman SN, Miller C, Malayer J, Ranjan A. Boiling histotripsy and in-situ CD40 stimulation improve the checkpoint blockade therapy of poorly immunogenic tumors. Theranostics 2021; 11:540-554. [PMID: 33391491 PMCID: PMC7738858 DOI: 10.7150/thno.49517] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Advanced stage cancers with a suppressive tumor microenvironment (TME) are often refractory to immune checkpoint inhibitor (ICI) therapy. Recent studies have shown that focused ultrasound (FUS) TME-modulation can synergize ICI therapy, but enhancing survival outcomes in poorly immunogenic tumors remains challenging. Here, we investigated the role of focused ultrasound based boiling histotripsy (HT) and in-situ anti-CD40 agonist antibody (αCD40) combinatorial therapy in enhancing therapeutic efficacy against ICI refractory murine melanoma. Methods: Unilateral and bilateral large (~330-400 mm3) poorly immunogenic B16F10 melanoma tumors were established in the flank regions of mice. Tumors were exposed to single local HT followed by an in-situ administration of αCD40 (HT+ αCD40: HT40). Inflammatory signatures post treatment were assessed using pan-cancer immune profiling and flow cytometry. The ability of HT40 ± ICI to enhance local and systemic effects was determined by immunological characterization of the harvested tissues, and by tumor growth delay of local and distant untreated tumors 4-6 weeks post treatment. Results: Immune profiling revealed that HT40 upregulated a variety of inflammatory markers in the tumors. Immunologically, HT40 treated tumors showed an increased population of granzyme B+ expressing functional CD8+ T cells (~4-fold) as well as an increased M1 to M2 macrophage ratio (~2-3-fold) and CD8+ T: regulatory T cell ratio (~5-fold) compared to the untreated control. Systemically, the proliferation rates of the melanoma-specific memory T cell population were significantly enhanced by HT40 treatment. Finally, the combination of HT40 and ICI therapy (anti-CTLA-4 and anti-PD-L1) caused superior inhibition of distant untreated tumors, and prolonged survival rates compared to the control. Conclusions: Data suggest that HT40 reprograms immunologically cold tumors and sensitizes them to ICI therapy. This approach may be clinically useful for treating advanced stage melanoma cancers.
Collapse
Affiliation(s)
- Mohit Pratap Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Sri Nandhini Sethuraman
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Craig Miller
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Jerry Malayer
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
228
|
Zhang Y, Guan XY, Jiang P. Cytokine and Chemokine Signals of T-Cell Exclusion in Tumors. Front Immunol 2020; 11:594609. [PMID: 33381115 PMCID: PMC7768018 DOI: 10.3389/fimmu.2020.594609] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The success of cancer immunotherapy in solid tumors depends on a sufficient distribution of effector T cells into malignant lesions. However, immune-cold tumors utilize many T-cell exclusion mechanisms to resist immunotherapy. T cells have to go through three steps to fight against tumors: trafficking to the tumor core, surviving and expanding, and maintaining the memory phenotype for long-lasting responses. Cytokines and chemokines play critical roles in modulating the recruitment of T cells and the overall cellular compositions of the tumor microenvironment. Manipulating the cytokine or chemokine environment has brought success in preclinical models and early-stage clinical trials. However, depending on the immune context, the same cytokine or chemokine signals may exhibit either antitumor or protumor activities and induce unwanted side effects. Therefore, a comprehensive understanding of the cytokine and chemokine signals is the premise of overcoming T-cell exclusion for effective and innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| | - Xin-yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| | - Peng Jiang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
229
|
Liu W, Wang W, Zhang N, Di W. The Role of CCL20-CCR6 Axis in Ovarian Cancer Metastasis. Onco Targets Ther 2020; 13:12739-12750. [PMID: 33335408 PMCID: PMC7738160 DOI: 10.2147/ott.s280309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Chemokine networks play a key and complex role in tumor progression. CCL20 and its unique receptor CCR6 have been reported to mediate malignant biological activities in various cancers, but their role in ovarian cancer metastasis remains unclear. Purpose Our study aims to explore the effect of CCL20-CCR6 axis on ovarian cancer metastasis and its potential mechanism. Methods The transwell assay was used to detect the cell migration and invasion after CCL20 treatment. The CCK-8 assay was used to detect the cell viability after CCL20 treatment and CCR6 depletion. The mRNA and protein expression were assayed through qRT-PCR and Western blotting. The siRNAs and CRISPR-Cas9 system were adopted to suppress CCR6 expression. Intraperitoneal xenograft mouse model was constructed to test the pro-metastasis effect of CCL20-CCR6 axis in vivo. The differentially expressed genes induced by CCL20 were identified through RNA-sequencing, and immunohistochemistry staining was used to detect their protein expression in tumor tissues. Results Our results revealed that CCL20 treatment selectively promoted the migration and invasion of CCR6high ovarian cancer cells, but had no effect on CCR6low cells. Blockade of CCR6 expression effectively reversed the cell migration and invasion induced by CCL20 stimulation. Animal experiment proved that CCL20-CCR6 axis mediated ovarian cancer metastasis in vivo. The differentially expressed genes after CCL20 stimulation were associated with metastasis, and CCL20 induced an increased expression of CDH2 and VCAN and decreased CDH1 expression in cancer cells. Moreover, CCL20 stimulated the expression of N-cadherin and versican in tumor tissues and inhibited the expression of E-cadherin, while CCR6 knockout successfully blocked the expression changes. Conclusion Our findings revealed that CCL20-CCR6 axis promotes ovarian cancer metastasis both in vivo and in vitro, probably through increasing cancer cell adhesion and epithelial–mesenchymal transition. Blockade of CCL20-CCR6 axis might become a novel anti-tumor therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Wan Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
230
|
Seyfoori A, Barough MS, Amereh M, Jush BK, Lum JJ, Akbari M. Bioengineered tissue models for the development of dynamic immuno-associated tumor models and high-throughput immunotherapy cytotoxicity assays. Drug Discov Today 2020; 26:455-473. [PMID: 33253917 DOI: 10.1016/j.drudis.2020.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/27/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023]
Abstract
Cancer immunotherapy is rapidly developing, with numerous therapies approved over the past decade and more therapies expected to gain approval in the future. However, immunotherapy of solid tumors has been less successful because immunosuppressive barriers limit immune cell trafficking and function against cancer cells. Interactions between suppressive immune cells, cytokines, and inhibitory factors are central to cancer immunotherapy approaches. In this review, we discuss recent advances in utilizing microfluidic platforms for understanding cancer-suppressive immune system interactions. Dendritic cell (DC)-mediated tumor models, infiltrated lymphocyte-mediated tumor models [e.g., natural killer (NK) cells, T cells, chimeric antigen receptor (CAR) T cells, and macrophages], monocyte-mediated tumor models, and immune checkpoint blockade (ICB) tumor models are among the various bioengineered immune cell-cancer cell interactions that we reviewed herein.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Bardia Khun Jush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; Center for Biomedical Research, University of Victoria, Victoria, BC V8P 5C2, Canada; Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
231
|
Abstract
Initially identified as a T lymphocyte-elicited inhibitor of macrophage motility, macrophage migration inhibitory factor (MIF) has since been found to be expressed by nearly every immune cell type examined and overexpressed in most solid and hematogenous malignant cancers. It is localized to both extracellular and intracellular compartments and physically interacts with more than a dozen different cell surface and intracellular proteins. Although classically associated with and characterized as a mediator of pro-inflammatory innate immune responses, more recent studies demonstrate that, in malignant disease settings, MIF contributes to anti-inflammatory, immune evasive, and immune tolerant phenotypes in both innate and adaptive immune cell types. This review will summarize the studies describing MIF in tumor-specific innate and adaptive immune responses and attempt to reconcile these various pleiotropic functions in normal physiology.
Collapse
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
232
|
Kravtsova-Ivantsiv Y, Goldhirsh G, Ivantsiv A, Ben Itzhak O, Kwon YT, Pikarsky E, Ciechanover A. Excess of the NF-ĸB p50 subunit generated by the ubiquitin ligase KPC1 suppresses tumors via PD-L1- and chemokines-mediated mechanisms. Proc Natl Acad Sci U S A 2020; 117:29823-29831. [PMID: 33168738 PMCID: PMC7703627 DOI: 10.1073/pnas.2019604117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nuclear factor-ĸB (NF-ĸB) transcription factor is a family of essential regulators of the immune response and cell proliferation and transformation. A typical factor is a heterodimer made of either p50 or p52, which are limited processing products of either p105 or p100, respectively, and a member of the Rel family of proteins, typically p65. The transcriptional program of NF-ĸB is tightly regulated by the composition of the dimers. In our previous work, we demonstrated that the ubiquitin ligase KPC1 is involved in ubiquitination and proteasomal processing of p105 to generate p50. Its overexpression and the resulting high level of p50 stimulates transcription of a broad array of tumor suppressors. Here we demonstrate that additional mechanisms are involved in the p50-mediated tumor-suppressive effect. p50 down-regulates expression of a major immune checkpoint inhibitor, the programmed cell death-ligand 1 (PD-L1), both in cells and in tumors. Importantly, the suppression is abrogated by overexpression of p65. This highlights the importance of the cellular quantities of the two different subunits of NF-ĸB which determine the composition of the dimer. While the putative p50 homodimer is tumor-suppressive, the "canonical" p50p65 heterodimer is oncogenic. We found that an additional mechanism is involved in the tumor-suppressive phenomenon: p50 up-regulates expression of the proinflammatory chemokines CCL3, CCL4, and CCL5, which in turn recruit into the tumors active natural killer (NK) cells and macrophages. Overall, p50 acts as a strong tumor suppressor via multiple mechanisms, including overexpression of tumor suppressors and modulation of the tumor microenvironment by recruiting active immune cells.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel
| | - Alexandra Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel
| | - Ofer Ben Itzhak
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel
- Department of Pathology, Rambam Health Care Campus, 3109601 Haifa, Israel
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, South Korea
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, 9112000 Jerusalem, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel;
| |
Collapse
|
233
|
Donlon NE, Sheppard A, Davern M, O’Connell F, Phelan JJ, Power R, Nugent T, Dinneen K, Aird J, Greene J, Nevins Selvadurai P, Bhardwaj A, Foley EK, Ravi N, Donohoe CL, Reynolds JV, Lysaght J, O’Sullivan J, Dunne MR. Linking Circulating Serum Proteins with Clinical Outcomes in Esophageal Adenocarcinoma-An Emerging Role for Chemokines. Cancers (Basel) 2020; 12:3356. [PMID: 33202734 PMCID: PMC7698106 DOI: 10.3390/cancers12113356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is an aggressive cancer with poor prognosis and incidence is increasing rapidly in the Western world. Multi-modal treatment has improved survival outcomes but only for a minority of patients. Currently no markers have been identified to predict treatment response. This study investigated the association between clinical outcomes and pre-treatment levels of 54 serum proteins in n = 80 patients with EAC. Low tumor regression grade (TRG), corresponding to a favorable treatment response, was linked to prolonged overall survival (OS). CCL4 was higher in patients with a favorable treatment response, while Tie2 and CRP were higher in poor responders. Elevated CCL22 and CCL26 was associated with improved OS, while elevated IL-10 showed a negative association. CCL3, CCL4, IL-1α and IL-12/IL23p40 were highest in individuals with no adverse features of tumor biology, whereas levels of Tie2 and VEGF were lowest in this cohort. CCL4 was also elevated in patients with high tumor lymphocyte infiltration. Comparison of matched pre- and post-treatment serum (n = 28) showed a large reduction in VEGFC, and a concomitant increase in other cytokines, including CCL4. These data link several serum markers with clinical outcomes, highlighting an important role for immune cell trafficking in the EAC antitumor immune response.
Collapse
Affiliation(s)
- Noel E. Donlon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Andrew Sheppard
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Maria Davern
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - James J. Phelan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Robert Power
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Timothy Nugent
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Kate Dinneen
- Department of Histopathology, St James’s Hospital, Dublin 8, Ireland; (K.D.); (J.A.)
| | - John Aird
- Department of Histopathology, St James’s Hospital, Dublin 8, Ireland; (K.D.); (J.A.)
| | - John Greene
- Department of Medical Oncology, St James’s Hospital, Dublin 8, Ireland; (J.G.); (P.N.S.)
| | - Paul Nevins Selvadurai
- Department of Medical Oncology, St James’s Hospital, Dublin 8, Ireland; (J.G.); (P.N.S.)
| | - Anshul Bhardwaj
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Emma K. Foley
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Claire L. Donohoe
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - John V. Reynolds
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (N.E.D.); (A.S.); (M.D.); (F.O.); (J.J.P.); (R.P.); (T.N.); (A.B.); (E.K.F.); (N.R.); (C.L.D.); (J.V.R.); (J.L.); (J.O.)
- Trinity St James’s Cancer Institute, St James’s Hospital, Dublin 8, Ireland
| |
Collapse
|
234
|
Gruber CN, Patel RS, Trachtman R, Lepow L, Amanat F, Krammer F, Wilson KM, Onel K, Geanon D, Tuballes K, Patel M, Mouskas K, O'Donnell T, Merritt E, Simons NW, Barcessat V, Del Valle DM, Udondem S, Kang G, Gangadharan S, Ofori-Amanfo G, Laserson U, Rahman A, Kim-Schulze S, Charney AW, Gnjatic S, Gelb BD, Merad M, Bogunovic D. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell 2020; 183:982-995.e14. [PMID: 32991843 PMCID: PMC7489877 DOI: 10.1016/j.cell.2020.09.034] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1), and mucosal immune dysregulation (IL-17A, CCL20, and CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK and T lymphocytes, suggesting extravasation to affected tissues. Finally, profiling the autoantigen reactivity of MIS-C plasma revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal, and immune-cell antigens. All patients were treated with anti-IL-6R antibody and/or IVIG, which led to rapid disease resolution.
Collapse
Affiliation(s)
- Conor N Gruber
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Roosheel S Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Rebecca Trachtman
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Lauren Lepow
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Karen M Wilson
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Kenan Onel
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Daniel Geanon
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Konstantinos Mouskas
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Timothy O'Donnell
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Elliot Merritt
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nicole W Simons
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Vanessa Barcessat
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Diane M Del Valle
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Samantha Udondem
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Gurpawan Kang
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Sandeep Gangadharan
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - George Ofori-Amanfo
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Uri Laserson
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Adeeb Rahman
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Alexander W Charney
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Dusan Bogunovic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA.
| |
Collapse
|
235
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
236
|
van Pul KM, Vuylsteke RJCLM, de Beijer MTA, van de Ven R, van den Tol MP, Stockmann HBAC, de Gruijl TD. Breast cancer-induced immune suppression in the sentinel lymph node is effectively countered by CpG-B in conjunction with inhibition of the JAK2/STAT3 pathway. J Immunother Cancer 2020; 8:jitc-2020-000761. [PMID: 33046620 PMCID: PMC7552844 DOI: 10.1136/jitc-2020-000761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We previously showed selectively hampered activation of lymph node-resident (LNR) dendritic cell (DC) subsets in the breast cancer (BrC) sentinel lymph node (SLN) to precede a state of profound T cell anergy. Reactivating these DC subsets by intratumoral delivery of the Toll-like receptor-9 (TLR9) agonist CpG-B could potentially offer a promising immune therapeutic strategy to combat this immune suppression and prevent disease spread. Unfortunately, CpG-B can limit its own immune stimulatory activity through direct TLR9-mediated activation of signal transducer and activator of transcription 3 (STAT3), pinpointed as a key regulator of immune suppression in the tumor microenvironment. Here, we have investigated whether in vitro exposure to CpG-B, with or without simultaneous inhibition of STAT3 signaling, could overcome immune suppression in BrC SLN. METHODS Immune modulatory effects of CpG-B (CPG7909) with or without the JAK2/STAT3 inhibitor (STAT3i) AG490 were assessed in ex vivo cultured BrC SLN-derived single-cell suspensions (N=29). Multiparameter flow cytometric analyses were conducted for DC and T cell subset characterization and assessment of (intracellular) cytokine profiles. T cell reactivity against the BrC-associated antigen Mammaglobin-A was determined by means of interferon-γ ELISPOT assay. RESULTS Although CpG-B alone induced activation of all DC subsets, combined inhibition of the JAK2/STAT3 pathway resulted in superior DC maturation (ie, increased CD83 expression), with most profound activation and maturation of LNR DC subsets. Furthermore, combined CpG-B and JAK2/STAT3 inhibition promoted Th1 skewing by counterbalancing the CpG-induced Th2/regulatory T cell response and significantly enhanced Mammaglobin-A specific T cell reactivity. CONCLUSION Ex vivo immune modulation of the SLN by CpG-B and simultaneous JAK2/STAT3 inhibition can effectively overcome BrC-induced immune suppression by preferential activation of LNR DC, ultimately restoring type 1-mediated antitumor immunity, thereby securing a BrC-specific T cell response. These findings provide a clear rationale for clinical exploration of SLN-immune potentiation through local CpG/STAT3i administration in patients with BrC.
Collapse
Affiliation(s)
- Kim M van Pul
- Medical Oncology-Cancer Center Amsterdam, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands.,Surgical Oncology, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands
| | | | - Monique T A de Beijer
- Medical Oncology-Cancer Center Amsterdam, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Medical Oncology and Otolaryngology-Head and Neck Surgery-Cancer Center Amsterdam, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands
| | | | | | - Tanja D de Gruijl
- Medical Oncology-Cancer Center Amsterdam, Amsterdam UMC-VUMC location, Amsterdam, The Netherlands
| |
Collapse
|
237
|
Gruber T, Kremenovic M, Sadozai H, Rombini N, Baeriswyl L, Maibach F, Modlin RL, Gilliet M, von Werdt D, Hunger RE, Seyed Jafari SM, Parisi G, Abril-Rodriguez G, Ribas A, Schenk M. IL-32γ potentiates tumor immunity in melanoma. JCI Insight 2020; 5:138772. [PMID: 32841222 PMCID: PMC7526542 DOI: 10.1172/jci.insight.138772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Myeloid cells orchestrate the antitumor immune response and influence the efficacy of immune checkpoint blockade (ICB) therapies. We and others have previously shown that IL-32 mediates DC differentiation and macrophage activation. Here, we demonstrate that IL-32 expression in human melanoma positively correlates with overall survival, response to ICB, and an immune-inflamed tumor microenvironment (TME) enriched in mature DC, M1 macrophages, and CD8+ T cells. Treatment of B16F10 murine melanomas with IL-32 increased the frequencies of activated, tumor-specific CD8+ T cells, leading to the induction of systemic tumor immunity. Our mechanistic in vivo studies revealed a potentially novel role of IL-32 in activating intratumoral DC and macrophages to act in concert to prime CD8+ T cells and recruit them into the TME through CCL5. Thereby, IL-32 treatment reduced tumor growth and rendered ICB-resistant B16F10 tumors responsive to anti-PD-1 therapy without toxicity. Furthermore, increased baseline IL-32 gene expression was associated with response to nivolumab and pembrolizumab in 2 independent cohorts of patients with melanoma, implying that IL-32 is a predictive biomarker for anti-PD-1 therapy. Collectively, this study suggests IL-32 as a potent adjuvant in immunotherapy to enhance the efficacy of ICB in patients with non-T cell-inflamed TME.
Collapse
Affiliation(s)
- Thomas Gruber
- Institute of Pathology, Experimental Pathology, and.,Graduate School Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mirela Kremenovic
- Institute of Pathology, Experimental Pathology, and.,Graduate School Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Hassan Sadozai
- Institute of Pathology, Experimental Pathology, and.,Graduate School Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | - Robert L Modlin
- Division of Dermatology, Department of Medicine and Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Dermatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Diego von Werdt
- Institute of Pathology, Experimental Pathology, and.,Graduate School Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Robert E Hunger
- Department of Dermatology, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - S Morteza Seyed Jafari
- Department of Dermatology, Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, and UCLA Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Gabriel Abril-Rodriguez
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, and UCLA Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, and UCLA Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | | |
Collapse
|
238
|
Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality? Mol Ther 2020; 28:2320-2339. [PMID: 32979309 DOI: 10.1016/j.ymthe.2020.09.015] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has garnered significant excitement due to its success for hematological malignancies in clinical studies leading to the US Food and Drug Administration (FDA) approval of three CD19-targeted CAR T cell products. In contrast, the clinical experience with CAR T cell therapy for solid tumors and brain tumors has been less encouraging, with only a few patients achieving complete responses. Clinical and preclinical studies have identified multiple "roadblocks," including (1) a limited array of targetable antigens and heterogeneous antigen expression, (2) limited T cell fitness and survival before reaching tumor sites, (3) an inability of T cells to efficiently traffic to tumor sites and penetrate physical barriers, and (4) an immunosuppressive tumor microenvironment. Herein, we review these challenges and discuss strategies that investigators have taken to improve the effector function of CAR T cells for the adoptive immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
239
|
Ibrahim OM, Pandey RK, Chatta G, Kalinski P. Role of tumor microenvironment in the efficacy of BCG therapy. ACTA ACUST UNITED AC 2020; 3. [PMID: 33178990 PMCID: PMC7654968 DOI: 10.15761/tr.1000170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite its significant overall efficacy, BCG fails to benefit a substantial proportion of bladder cancer (BlCa) patients. Here, we review recent data highlighting the role of tumor microenvironment (TME) in limiting antitumoral activity of BCG treatment and emerging opportunities to target TME to enhance the overall outcomes in BCG-treated BlCa patients.
Collapse
Affiliation(s)
- Omar M Ibrahim
- Department of Medicine, Division of Translational Research, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ravindra K Pandey
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Gurkamal Chatta
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Pawel Kalinski
- Department of Medicine, Division of Translational Research, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
240
|
Ling M, Yang X. Correlation between cancer stem cells (CSCs) and tumor-infiltrating lymphocytes (TILs): do TILs interact with CSCs in non-small cell lung cancer? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:914. [PMID: 32953714 PMCID: PMC7475387 DOI: 10.21037/atm-20-1556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Min Ling
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
241
|
Gruber C, Patel R, Trachman R, Lepow L, Amanat F, Krammer F, Wilson KM, Onel K, Geanon D, Tuballes K, Patel M, Mouskas K, Simons N, Barcessat V, Valle DD, Udondem S, Kang G, Gangadharan S, Ofori-Amanfo G, Rahman A, Kim-Schulze S, Charney A, Gnjatic S, Gelb BD, Merad M, Bogunovic D. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.04.20142752. [PMID: 32676612 PMCID: PMC7359537 DOI: 10.1101/2020.07.04.20142752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Initially, the global outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spared children from severe disease. However, after the initial wave of infections, clusters of a novel hyperinflammatory disease have been reported in regions with ongoing SARS-CoV-2 epidemics. While the characteristic clinical features are becoming clear, the pathophysiology remains unknown. Herein, we report on the immune profiles of eight Multisystem Inflammatory Syndrome in Children (MIS-C) cases. We document that all MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with normal isotype-switching and neutralization capability. We further profiled the secreted immune response by high-dimensional cytokine assays, which identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1) and mucosal immune dysregulation (IL-17A, CCL20, CCL28). Mass cytometry immunophenotyping of peripheral blood revealed reductions of mDC1 and non-classical monocytes, as well as both NK- and T- lymphocytes, suggesting extravasation to affected tissues. Markers of activated myeloid function were also evident, including upregulation of ICAM1 and FcγR1 in neutrophil and non-classical monocytes, well-documented markers in autoinflammation and autoimmunity that indicate enhanced antigen presentation and Fc-mediated responses. Finally, to assess the role for autoimmunity secondary to infection, we profiled the auto-antigen reactivity of MIS-C plasma, which revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal and immune-cell antigens. All patients were treated with anti-IL6R antibody or IVIG, which led to rapid disease resolution tracking with normalization of inflammatory markers.
Collapse
Affiliation(s)
- Conor Gruber
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Roosheel Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Rebecca Trachman
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Lauren Lepow
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Karen M. Wilson
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Kenan Onel
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Daniel Geanon
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Konstantinos Mouskas
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nicole Simons
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Vanessa Barcessat
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Diane Del Valle
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Samantha Udondem
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Gurpawan Kang
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Sandeep Gangadharan
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - George Ofori-Amanfo
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Adeeb Rahman
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Alexander Charney
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Dusan Bogunovic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| |
Collapse
|
242
|
Lin Y, Li Z, Ma H, Wang Y, Wang X, Song S, Zhao L, Wu S, Tian S, Fu C, Luo L, Zhu F, He S, Zheng J, Zhang X. Design, Synthesis, and Characterization of Novel CXCR4 Antagonists Featuring Cyclic Amines. ChemMedChem 2020; 15:1150-1162. [PMID: 32391652 DOI: 10.1002/cmdc.202000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 11/06/2022]
Abstract
Chemokine receptor CXCR4 and its natural ligand CXCL12 (also known as stromal cell-derived factor-1, or SDF-1) regulate a broad range of physiological functions. Dysregulation of the CXCL12/CXCR4 axis is involved in numerous pathological conditions such as HIV infection, inflammation and cancer. Herein, we report the design, synthesis, and characterization of novel CXCR4 antagonists based on cyclic amine scaffolds. Compound 24 was identified as a potent CXCR4 receptor antagonist (competitive inhibition of 12G5 binding, IC50 =24 nM; functional inhibition of CXCL12-induced cytosolic calcium increase, IC50 =0.1 nM). In addition, compound 24 potently inhibited cell migration in CXCR4/CXCL12-mediated chemotaxis in a matrigel invasion assay. The absolute configuration of compound 24 was elucidated by X-ray crystallography.
Collapse
Affiliation(s)
- Yu Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhanhui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.,Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Yujie Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xu Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shiwei Song
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Li Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chunyan Fu
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, P. R. China
| | - Lusong Luo
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, P. R. China
| | - Fang Zhu
- Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, P. R. China
| | - Sudan He
- Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, P. R. China
| | - Jiyue Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
243
|
Perry JL, Tian S, Sengottuvel N, Harrison EB, Gorentla BK, Kapadia CH, Cheng N, Luft JC, Ting JPY, DeSimone JM, Pecot CV. Pulmonary Delivery of Nanoparticle-Bound Toll-like Receptor 9 Agonist for the Treatment of Metastatic Lung Cancer. ACS NANO 2020; 14:7200-7215. [PMID: 32463690 PMCID: PMC7531260 DOI: 10.1021/acsnano.0c02207] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CpG oligodeoxynucleotides are potent toll-like receptor (TLR) 9 agonists and have shown promise as anticancer agents in preclinical studies and clinical trials. Binding of CpG to TLR9 initiates a cascade of innate and adaptive immune responses, beginning with activation of dendritic cells and resulting in a range of secondary effects that include the secretion of pro-inflammatory cytokines, activation of natural killer cells, and expansion of T cell populations. Recent literature suggests that local delivery of CpG in tumors results in superior antitumor effects as compared to systemic delivery. In this study, we utilized PRINT (particle replication in nonwetting templates) nanoparticles as a vehicle to deliver CpG into murine lungs through orotracheal instillations. In two murine orthotopic metastasis models of non-small-cell lung cancer-344SQ (lung adenocarcinoma) and KAL-LN2E1 (lung squamous carcinoma), local delivery of PRINT-CpG into the lungs effectively promoted substantial tumor regression and also limited systemic toxicities associated with soluble CpG. Furthermore, cured mice were completely resistant to tumor rechallenge. Additionally, nanodelivery showed extended retention of CpG within the lungs as well as prolonged elevation of antitumor cytokines in the lungs, but no elevated levels of proinflammatory cytokines in the serum. These results demonstrate that PRINT-CpG is a potent nanoplatform for local treatment of lung cancer that has collateral therapeutic effects on systemic disease and an encouraging toxicity profile and may have the potential to treat lung metastasis of other cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jenny P-Y Ting
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Joseph M DeSimone
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
244
|
Yang X, Wu W, Pan Y, Zhou Q, Xu J, Han S. Immune-related genes in tumor-specific CD4 + and CD8 + T cells in colon cancer. BMC Cancer 2020; 20:585. [PMID: 32571262 PMCID: PMC7310260 DOI: 10.1186/s12885-020-07075-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background Immune escape is an immunological mechanism underlying tumorigenesis, and T cells play an important role in this process. In this study, immune-related genes were evaluated in tumor-infiltrating CD4+ and CD8+ T cells in colon cancer. Methods ESTIMATE was used to calculate stromal and immune scores for tumor datasets downloaded from The Cancer Genome Atlas–Colon Cancer (COAD). Differentially expressed genes (DEGs) between samples with high and low stromal and immune scores were screened, followed by a functional enrichment analysis of the overlapping DEGs. The DEGs related to CD4+ and the CD8+ T cells were then screened. Predicted miRNA–mRNA and lncRNA–miRNA pairs were used to construct a competing endogenous RNA (ceRNA) network. Furthermore, chemical–gene interactions were predicted for genes in the ceRNA network. Kaplan–Meier survival curves were also plotted. Results In total, 83 stromal-related DEGs (5 up-regulated and 78 down-regulated) and 1270 immune-related DEGs (807 up-regulated and 293 down-regulated genes) were detected. The 79 overlapping DEGs were enriched for 39 biological process terms. Furthermore, 79 CD4+ T cell-related genes and 8 CD8+ T cell-related genes, such as ELK3, were screened. Additionally, ADAD1 and DLG3, related to CD4+ T cells, were significantly associated with the prognosis of patients with colon cancer. The chr22-38_28785274–29,006,793.1–miR-106a-5p-DDHD1 and chr22-38_28785274–29,006,793.1–miR-4319-GRHL1 axes obtained from CD4+ and CD8+ T cell-related ceRNAs were identified as candidates for further studies. Conclusion ELK3 is a candidate immune-related gene in colon cancer. The chr22-38_28785274–29,006,793.1–miR-106a-5p-DDHD1 and chr22-38_28785274–29,006,793.1–miR-4319-GRHL1 axes may be related to CD4+ and CD8+ T cell infiltration in colon cancer.
Collapse
Affiliation(s)
- Xi Yang
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University, No. 198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University, No.198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Yuefen Pan
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University, No. 198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Qing Zhou
- Department of Critical Care Medicine, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University, No. 198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Jiamin Xu
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Huzhou, 313000, Zhejiang Province, China
| | - Shuwen Han
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University, No. 198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
245
|
Cui B, Fan X, Zhou D, He L, Li Y, Li D, Lin H. CSF1R methylation is a key regulatory mechanism of tumor-associated macrophages in hepatocellular carcinoma. Oncol Lett 2020; 20:1835-1845. [PMID: 32724427 PMCID: PMC7377184 DOI: 10.3892/ol.2020.11726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are important in tumor microenvironments and are closely associated with cancer occurrence, metastasis and progression. Colony stimulating factor 1 receptor (CSF1R) serves a crucial role in TAM formation. Whether CSF1R expression is regulated by DNA methylation in hepatocellular carcinoma (HCC) has not been fully elucidated. In the current study, HCC and adjacent non-cancerous tissue (ANT) samples were collected from 160 patients with HCC. CSF1R methylation levels were analyzed using a Mass ARRAY Analyzer to establish the potential impact of CSF1R methylation alternations on HCC clinicopathological characteristics. The mean methylation level of the CSF1R promoter (chr 5:149492491-149492958) was demonstrated to be significantly higher in ANTs compared with HCC tissues (65.3±7.5% vs. 57.3±14.4%, respectively; P<0.0001). CSF1R also exhibited decreased expression in HCC tissues compared with ANTs (P=0.0026). However, CSF1R expression was negatively correlated with CSF1R methylation levels in ANTs (r>0.4; P<0.0001). Further analysis indicated that patients with diabetes exhibited lower methylation levels in ANTs compared with HCC tissues (P=0.0062). Furthermore, CSF1R hypomethylation in ANTs was associated with a larger number of tumors (P=0.0332), larger tumor size (P=0.0494) and higher tumor grade (P=0.0244). Therefore, methylation alternation of the CSF1R promoter region analyzed in the present study was a key regulatory mechanism on CSF1R expression and ANT hypomethylation indicated poor clinicopathological characteristics of HCC. CSF1R may be a potential immunological therapeutic target for HCC.
Collapse
Affiliation(s)
- Bin Cui
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
246
|
Li A, Zhang N, Zhao Z, Chen Y, Zhang L. Overexpression of B7-H4 promotes renal cell carcinoma progression by recruiting tumor-associated neutrophils via upregulation of CXCL8. Oncol Lett 2020; 20:1535-1544. [PMID: 32724395 PMCID: PMC7377185 DOI: 10.3892/ol.2020.11701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
The immune checkpoint molecule B7 family member H4 (B7-H4) plays a similar role to programmed death-ligand 1 in tumor immune evasion by regulating T-cell-mediated immune responses. However, besides the role in T-cell immunity, B7-H4 also affects tumor cell biology by promoting tumor cell proliferation, metastasis and angiogenesis. In order to explore the effect of B7-H4 on tumor cell biology, it is necessary to investigate the gene expression profile when B7-H4 is overexpressed. In the present study, 786-O cells were transfected to stably express B7-H4. A microarray technique was subsequently used to screen B7-H4-related differentially expressed genes (DEGs) in B7-H4/786-O cells compared with negative control (NC)/786-O cells. The protein expression of the upregulated DEGs, including non-metastatic cells 5, NME/NM23 family member 5 (NME5), membrane metalloendopeptidase (MME), vascular non-inflammatory molecule 1 (VNN1), matrix metalloproteinase (MMP) 7, tumor necrosis factor, C-X-C motif chemokine ligand (CXCL) 8, CXCL1 and C-C motif chemokine ligand (CCL) 2, was investigated using western blotting. Kidney renal papillary cell carcinoma mRNA-sequencing data obtained from The Cancer Genome Atlas revealed that chemokines, including CXCL1/2/3, CXCL8, MMP7 and CCL20, were positively correlated with B7-H4 gene expression. Furthermore, 59 clinical renal cell carcinoma tissues were collected and analyzed by immunohistochemical staining. The results revealed the positive correlation of B7-H4 with CCL20 and CXCL8, and validated the DEGs identified in tumor cell lines. 786-O transfectants were inoculated into non-obese diabetic/severe combined immunodeficiency mice, and tumor growth was investigated. B7-H4 overexpression promoted tumor growth and administration of anti-CXCL8 antibody reversed this effect. Furthermore, B7-H4 overexpression increased the number of tumor-infiltrating neutrophils while inhibition of CXCL8 abrogated this effect. These data indicated that recruitment of neutrophils in the tumor microenvironment by CXCL8 serves an important role in the tumor promotion effect of B7-H4. The present study revealed a novel mechanism of B7-H4 in tumor promotion in addition to T cell inhibition.
Collapse
Affiliation(s)
- Anqi Li
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ningyue Zhang
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhiming Zhao
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yali Chen
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liang Zhang
- Department of Biological Pharmacy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
247
|
Morein D, Erlichman N, Ben-Baruch A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front Immunol 2020; 11:952. [PMID: 32582148 PMCID: PMC7287041 DOI: 10.3389/fimmu.2020.00952] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
The anti-tumor activities of some members of the chemokine family are often overcome by the functions of many chemokines that are strongly and causatively linked with increased tumor progression. Being key leukocyte attractants, chemokines promote the presence of inflammatory pro-tumor myeloid cells and immune-suppressive cells in tumors and metastases. In parallel, chemokines elevate additional pro-cancerous processes that depend on cell motility: endothelial cell migration (angiogenesis), recruitment of mesenchymal stem cells (MSCs) and site-specific metastasis. However, the array of chemokine activities in cancer expands beyond such “typical” migration-related processes and includes chemokine-induced/mediated atypical functions that do not activate directly motility processes; these non-conventional chemokine functions provide the tumor cells with new sets of detrimental tools. Within this scope, this review article addresses the roles of chemokines and their receptors at atypical levels that are exerted on the cancer cell themselves: promoting tumor cell proliferation and survival; controlling tumor cell senescence; enriching tumors with cancer stem cells; inducing metastasis-related functions such as epithelial-to-mesenchymal transition (EMT) and elevated expression of matrix metalloproteinases (MMPs); and promoting resistance to chemotherapy and to endocrine therapy. The review also describes atypical effects of chemokines at the tumor microenvironment: their ability to up-regulate/stabilize the expression of inhibitory immune checkpoints and to reduce the efficacy of their blockade; to induce bone remodeling and elevate osteoclastogenesis/bone resorption; and to mediate tumor-stromal interactions that promote cancer progression. To illustrate this expanding array of atypical chemokine activities at the cancer setting, the review focuses on major metastasis-promoting inflammatory chemokines—including CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES)—and their receptors. In addition, non-conventional activities of CXCL12 which is a key regulator of tumor progression, and its CXCR4 receptor are described, alongside with the other CXCL12-binding receptor CXCR7 (RDC1). CXCR7, a member of the subgroup of atypical chemokine receptors (ACKRs) known also as ACKR3, opens the gate for discussion of atypical activities of additional ACKRs in cancer: ACKR1 (DARC, Duffy), ACKR2 (D6), and ACKR4 (CCRL1). The mechanisms involved in chemokine activities and the signals delivered by their receptors are described, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Erlichman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
248
|
Reyes ME, de La Fuente M, Hermoso M, Ili CG, Brebi P. Role of CC Chemokines Subfamily in the Platinum Drugs Resistance Promotion in Cancer. Front Immunol 2020; 11:901. [PMID: 32499779 PMCID: PMC7243460 DOI: 10.3389/fimmu.2020.00901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a significant medical issue, being one of the main causes of mortality around the world. The therapies for this pathology depend on the stage in which the cancer is found, but it is usually diagnosed at an advanced stage in which the treatment is chemotherapy. Platinum drugs are among the most commonly used in therapy, unfortunately, one of the main obstacles to this treatment is the development of chemoresistance, which is the ability of cancer cells to evade the effects of drugs. Although some molecular mechanisms involved in resistance to platinum drugs are described, elucidation is still required of others. Secretion of inflammatory mediators such as cytokines and chemokines, by tumor microenvironment components or tumor cells, show direct influence on proliferation, metastasis and progression of cancer and are related to chemoresistance and poor prognosis. In this review, the general mechanisms associated with resistance to platinum drugs, inflammation on cancer development and chemoresistance in various types of cancer will be approached with special emphasis on the current history of CC chemokines subfamily-mediated chemoresistance.
Collapse
Affiliation(s)
- Maria E. Reyes
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Marjorie de La Fuente
- Laboratorio de Inmunidad Innata, Programa de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Dirección Académica, Clínica Las Condes, Santiago, Chile
| | - Marcela Hermoso
- Laboratorio de Inmunidad Innata, Programa de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen G. Ili
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Priscilla Brebi
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| |
Collapse
|
249
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
250
|
Tsakonas G, Lewensohn R, Botling J, Ortiz-Villalon C, Micke P, Friesland S, Nord H, Lindskog M, Sandelin M, Hydbring P, Ekman S. An immune gene expression signature distinguishes central nervous system metastases from primary tumours in non-small-cell lung cancer. Eur J Cancer 2020; 132:24-34. [PMID: 32325417 DOI: 10.1016/j.ejca.2020.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Dissemination of non-small-cell lung cancer (NSCLC) in the central nervous system is a frequent and challenging clinical problem. Systemic or local therapies rarely prolong survival and have modest activity regarding local control. Alterations in gene expression in brain metastasis versus primary tumour may increase aggressiveness and impair therapeutic efforts. METHODS We identified 25 patients with surgically removed NSCLC brain metastases in two different patient cohorts. For 13 of these patients, primary tumour samples were available. Gene expression analysis using the nCounter® PanCancer Immune Profiling gene expression panel (nanoString technologies Inc.) was performed in brain metastases and primary tumour samples. Identification of differentially expressed genes was conducted on normalized data using the nSolver analysis software. RESULTS We compared gene expression patterns in brain metastases with primary tumours. Brain metastasis samples displayed a distinct clustering pattern compared to primary tumour samples with a statistically significant downregulation of genes related to immune response and immune cell activation. Results from KEGG term analysis on differentially expressed genes revealed a concomitant enrichment of multiple KEGG terms associated with the immune system. We identified a 12-gene immune signature that clearly separated brain metastases from primary tumours. CONCLUSIONS We identified a unique gene downregulation pattern in brain metastases compared with primary tumours. This finding may explain the lower intracranial efficacy of systemic therapy, especially immunotherapy, in brain metastasis of patients with NSCLC.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/pathology
- Adenocarcinoma of Lung/therapy
- Biomarkers, Tumor/genetics
- Brain Neoplasms/genetics
- Brain Neoplasms/secondary
- Brain Neoplasms/therapy
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Large Cell/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Combined Modality Therapy
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Lymphatic Metastasis
- Male
- Middle Aged
- Prognosis
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/pathology
- Small Cell Lung Carcinoma/therapy
- Transcriptome
Collapse
Affiliation(s)
- Georgios Tsakonas
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Rolf Lewensohn
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala Sweden
| | - Cristian Ortiz-Villalon
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala Sweden
| | - Signe Friesland
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University/Department of Oncology, Uppsala University Hospital, Sweden
| | - Martin Sandelin
- Department of Medical Sciences, Uppsala University/ Department of Oncology, Uppsala University Hospital, Sweden
| | - Per Hydbring
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Simon Ekman
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden.
| |
Collapse
|