28701
|
Phillis JW, Diaz FG, O'Regan MH, Pilitsis JG. Effects of immunosuppressants, calcineurin inhibition, and blockade of endoplasmic reticulum calcium channels on free fatty acid efflux from the ischemic/reperfused rat cerebral cortex. Brain Res 2002; 957:12-24. [PMID: 12443975 DOI: 10.1016/s0006-8993(02)03578-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elevated levels of free fatty acids (FFA) have been implicated in the pathogenesis of neuronal injury and death induced by cerebral ischemia. This study evaluated the effects of immunosuppressants agents, calcineurin inhibitors and blockade of endoplasmic reticulum (ER) calcium channels on free fatty acid formation and efflux in the ischemic/reperfused (I/R) rat brain. Changes in the extracellular levels of arachidonic, docosahexaenoic, linoleic, myristic, oleic and palmitic acids in cerebral cortical superfusates during four-vessel occlusion-elicited global cerebral ischemia were examined using a cortical cup technique. A 20-min period of ischemia elicited large increases in the efflux of all six FFAs, which were sustained during the 40 min of reperfusion. Cyclosporin A (CsA) and trifluoperazine, which reportedly inhibit the I/R elicited opening of a mitochondrial permeability transition (MPT) pore, were very effective in suppressing ischemia/reperfusion evoked release of all six FFAs. FK506, an immunosuppressant which does not directly affect the MPT, but is a calcineurin inhibitor, also suppressed the I/R-evoked efflux of FFAs, but less effectively than CsA. Rapamycin, a derivative of FK506 which does not inhibit calcineurin, did not suppress I/R-evoked FFA efflux. Gossypol, a structurally unrelated inhibitor of calcineurin, was also effective, significantly reducing the efflux of docosahexaenoic, arachidonic and oleic acids. As previous experiments had implicated elevated Ca(2+) levels in the activation of phospholipases with FFA formation, agents affecting endoplasmic reticulum stores were also evaluated. Dantrolene, which blocks the ryanodine receptor (RyR) channel of the ER, significantly inhibited I/R-evoked release of docosahexaenoic, arachidonic, linoleic and oleic acids. Ryanodine, which can either accentuate or block Ca(2+) release, significantly enhanced ischemia/reperfusion-elicited efflux of linoleic acid, with non-significant increases in the efflux of myristic, arachidonic, palmitic and oleic acids. Xestospongin C, an inhibitor of the inositol triphosphate (IP(3)R) channel, failed to affect I/R-evoked FFA efflux. Thapsigargin, an inhibitor of the Ca(2+)-ATPase ER uptake pump, elicited significant elevations in the efflux of myristic, arachidonic and linoleic acids, in the absence of ischemia. Collectively, the data suggest an involvement of both ER and mitochondrial Ca(2+) stores in the chain of events which lead to PLA(2) activation and FFA formation.
Collapse
Affiliation(s)
- J W Phillis
- Department of Physiology, Wayne State University School of Medicine, 5374 Scott Hall, 540 E Canfield Ave, Detroit, MI 48201-1928, USA.
| | | | | | | |
Collapse
|
28702
|
Fuglsang J, Stender M, Zhou J, Møller J, Falk E, Ravn HB. Platelet activity and in vivo arterial thrombus formation in rats with mild hyperhomocysteinaemia. Blood Coagul Fibrinolysis 2002; 13:683-9. [PMID: 12441906 DOI: 10.1097/00001721-200212000-00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Elevated plasma levels of total homocysteine (hcy) have been associated with an increased occurrence of arterial thrombosis. In the present study, we investigated the influence of hyperhomocysteinaemia on platelet aggregation and arterial thrombus formation in vivo. Fifty-one rats were included in the study, of which 29 received hcy in the drinking water for 4 weeks. Blood samples were withdrawn for measurement of platelet count and mean platelet volume. Platelet aggregation response in platelet-rich plasma following adenosine diphosphate or collagen stimulation were examined. In vivo thrombus formation was investigated by transillumination and videotape recording of the rat femoral artery after a thrombogenic injury was established. Off-line videotape analysis using computer-assisted planimetry permitted quantification of the thrombus area, and area versus time curves were obtained. In the intervention group receiving hcy, total hcy in plasma increased two-fold to 14.3 micromol/l, as compared with 7.3 micromol/l in the control group (P < 0.001). The platelet count and mean platelet volume did not differ between the two groups. In vivo thrombus formation expressed as the area under the curve or maximum thrombus area was not found to be altered in the presence of an increased homocysteine level, neither was adenosine diphosphate-induced platelet aggregation. However, collagen-induced platelet aggregation significantly decreased in the hcy group (P = 0.02). Pro-thrombotic effects of isolated mild hyperhomocysteinaemia are not supported by the present study in rats.
Collapse
Affiliation(s)
- J Fuglsang
- Institute of Experimental Clinical Research, Aarhus University Hospital, Skejby Hospital, Denmark.
| | | | | | | | | | | |
Collapse
|
28703
|
Okamoto H, Takasawa S. Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in beta-cells. Diabetes 2002; 51 Suppl 3:S462-73. [PMID: 12475791 DOI: 10.2337/diabetes.51.2007.s462] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Twenty years ago, we first proposed our hypothesis on beta-cell damage and its prevention (the Okamoto model), according to which poly(ADP-ribose) synthetase/polymerase (PARP) activation is critically involved in the consumption of NAD(+), leading to energy depletion and cell death by necrosis. Recently, the model was reconfirmed by results using PARP knockout mice and has been recognized as providing the basis for necrotic death of various cells and tissues. Based on the model, we proposed two signal systems in beta-cells: one is the CD38-cyclic ADP-ribose (cADPR) signal system for insulin secretion, and the other is the regenerating gene protein (Reg)-Reg receptor system for beta-cell regeneration. The physiological and pathological significance of the two signal systems in a variety of cells and tissues as well as in pancreatic beta-cells has recently been recognized. Here, we describe the Okamoto model and its descendents, the CD38-cADPR signal system and the Reg-Reg receptor system, focusing on recent advances and how their significance came to light. Because PARP is involved in Reg gene transcription to induce beta-cell regeneration, and the PARP activation reduces the cellular NAD(+) to decrease the formation of cADPR (a second messenger for insulin secretion) and further to cause necrotic beta-cell death, PARP and its inhibitors have key roles in the induction of beta-cell regeneration, the maintenance of insulin secretion, and the prevention of beta-cell death.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | |
Collapse
|
28704
|
Popoff I, Jijon H, Monia B, Tavernini M, Ma M, McKay R, Madsen K. Antisense oligonucleotides to poly(ADP-ribose) polymerase-2 ameliorate colitis in interleukin-10-deficient mice. J Pharmacol Exp Ther 2002; 303:1145-54. [PMID: 12438538 DOI: 10.1124/jpet.102.039768] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
poly(ADP-ribose) polymerase-2 (PARP-2) is a newly described member of the PARP family of nuclear enzymes. Previous studies have shown pharmacological inhibition of PARP activity to have a beneficial role in attenuating inflammation. We developed a chemically modified 2'-O-(2-methoxy)ethyl antisense oligonucleotide (ISIS 110251) inhibitor of PARP-2 and tested it for efficacy in the interleukin (IL)-10-deficient mouse. In tissue culture, ISIS 110251 reduced PARP-2 mRNA expression in a concentration- and sequence-specific manner. In 129 Sv/Ev mice, ISIS 110251 reduced PARP-2 mRNA in liver by 80%. This reduction was dependent upon treatment duration and was independent of the method of delivery. In interleukin-10-deficient mice with established colitis, treatment with ISIS 110251 normalized colonic epithelial barrier and transport function, reduced proinflammatory cytokine secretion and inducible nitric-oxide synthase activity, and attenuated inflammation. Our data demonstrate that selective inhibition of PARP-2 activity results in a marked improvement of colonic inflammatory disease in a mouse model of chronic colitis and a normalization of colonic function.
Collapse
Affiliation(s)
- Ian Popoff
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
28705
|
Lagaud G, Gaudreault N, Moore EDW, Van Breemen C, Laher I. Pressure-dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation. Am J Physiol Heart Circ Physiol 2002; 283:H2187-95. [PMID: 12388215 DOI: 10.1152/ajpheart.00554.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pressure-induced decreases in arterial diameter are accompanied by membrane depolarization and Ca(2+) entry via voltage-gated Ca(2+) channels. Recent evidence also suggests the involvement of Ca(2+) sensitization of the contractile proteins. Both PKC and Rho kinase are candidate second messengers for the mediation of the sensitization process. We investigated the signaling pathways of pressure-induced decreases in rat cerebral artery diameter in vessels that were depolarized with a 60 mM potassium-physiological salt solution (KPSS). Arteries were mounted on a pressure myograph, and pressure-induced constrictions were recorded. In some experiments simultaneous changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) were recorded by using fura 2 fluorescence photometry. Pressure increases induced constriction with significant changes in [Ca(2+)](i) at high pressures (60-100 mmHg). The ratio of the change in diameter to change in [Ca(2+)](i) was greater for pressure-induced constriction compared with constriction produced by depolarization with 60 mM KPSS, suggesting that in addition to increases in [Ca(2+)](i), enhanced myofilament Ca(2+) sensitivity occurs during pressure-induced decreases in arterial diameter. Depolarizing the membrane with 60 mM KPSS increased [Ca(2+)](i) via a Ca(2+) influx pathway insensitive to PKC inhibition. Cerebral arteries were able to maintain their diameters in the continued presence of 60 mM KPSS. Pressure-induced constriction under these conditions was not associated with further increases in Ca(2+) but was abolished by selective inhibitors of PLC, PKC, and Rho kinase. We report for the first time that in rat cerebral arteries, pressure-induced decreases in arterial diameter are not only due to increases in voltage-gated Ca(2+) influx but also to accompanying increases in myofilament sensitivity to Ca(2+) mediated by PKC/Rho kinase activation.
Collapse
Affiliation(s)
- G Lagaud
- Department of Pharmacology, Faculty of Medicine, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
28706
|
Frisbee JC, Maier KG, Stepp DW. Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol 2002; 283:H2160-8. [PMID: 12388303 DOI: 10.1152/ajpheart.00379.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study characterized myogenic activation of skeletal muscle (gracilis) resistance arteries from lean (LZR) and obese Zucker rats (OZR). Arteries from OZR exhibited increased myogenic activation versus LZR; this increase was impaired by endothelium denudation or nitric oxde synthase inhibition. Treatment of vessels with 17-octadecynoic acid impaired responses in both strains by comparable amounts. Dihydroethidine microfluorography indicated elevated vascular superoxide levels in OZR versus LZR; immunohistochemistry demonstrated elevated vascular nitrotyrosine levels in OZR, indicating increased peroxynitrite presence. Vessel treatment with oxidative radical scavengers (polythylene glycol-superoxide dismutase/catalase) or inhibition of Ca(2+)-activated K(+) (K(Ca)) channels (iberiotoxin) did not alter myogenic activation in LZR but normalized activation in OZR. Application of peroxynitrite to vessels of OZR caused a greater vasoconstriction versus LZR; the response was impaired in OZR by elevated intraluminal pressure and was abolished in both strains by iberiotoxin. These results suggest that enhanced myogenic activation of gracilis arteries of OZR versus LZR 1) is not due to alterations in cytochrome P-450 contribution, and 2) may be due to elevated peroxynitrite levels inhibiting K(Ca) channels following increased intraluminal pressure.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | |
Collapse
|
28707
|
Massett MP, Ungvari Z, Csiszar A, Kaley G, Koller A. Different roles of PKC and MAP kinases in arteriolar constrictions to pressure and agonists. Am J Physiol Heart Circ Physiol 2002; 283:H2282-7. [PMID: 12427592 DOI: 10.1152/ajpheart.00544.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) and mitogen-activated protein (MAP) kinases have been implicated in the modulation of agonist-induced contractions of large vessels. However, their role in pressure- and agonist-induced constrictions of skeletal muscle arterioles, which have a major role in regulating peripheral resistance, is not clearly elucidated. Thus constrictions of isolated rat gracilis muscle arterioles (approximately 80 microm in diameter) to increases in intraluminal pressure and to norepinephrine (NE) or angiotensin II (ANG II) were assessed in the absence or presence of chelerythrine, PD-98058, and SB-203580 (inhibitors of PKC, p42/44 and p38 MAP kinase pathways, respectively). Arteriolar constriction to NE and ANG II were significantly reduced by chelerythrine (by approximately 90%) and unaffected by SB-203580, whereas PD-98058 decreased only ANG II-induced constrictions (by approximately 60%). Pressure-induced increases in wall tension (from 0.1 to 0.7 N/m) resulted in significant arteriolar constrictions (50% maximum) that were abolished by chelerythrine without altering smooth muscle intracellular Ca(2+) concentration ([Ca(2+)](i)) (fura 2 microfluorimetry). PD-98058 and SB-203580 significantly decreased the magnitude of myogenic tone (by 20% and 60%, respectively) and reduced the sensitivity of the myogenic mechanism to wall tension, causing a significant rightward shift in the wall tension-myogenic tone relationship without affecting smooth muscle [Ca(2+)i]. MAP kinases were demonstrated with Western blotting. Thus in skeletal muscle arterioles 1) PKC is involved in both myogenic and agonist-induced constrictions, 2) PD-98058-sensitive p42/44 MAP kinases modulate both wall tension-dependent and ANG II-induced constrictions, whereas 3) a SB-203580-sensitive p38 MAP kinase pathway seems to be specifically involved in the mechanotransduction of wall tension.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Physiology, New York Medical College, Valhalla 10595, USA
| | | | | | | | | |
Collapse
|
28708
|
Kamishima T, Quayle JM. Mitochondrial Ca2+ uptake is important over low [Ca2+]i range in arterial smooth muscle. Am J Physiol Heart Circ Physiol 2002; 283:H2431-9. [PMID: 12388251 DOI: 10.1152/ajpheart.00865.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial Ca(2+) uptake is usually thought to occur only when intracellular Ca(2+) concentration ([Ca(2+)](i)) is high. We investigated whether mitochondrial Ca(2+) removal participates in shaping [Ca(2+)](i) signals in arterial smooth muscle over a low [Ca(2+)](i) range. [Ca(2+)](i) was measured using fura 2-loaded, voltage-clamped cells from rat femoral arteries. Both diazoxide and carbonyl cyanide m-chlorophenylhydrazone (CCCP) depolarized the mitochondria. Diazoxide application increased resting [Ca(2+)](i), suggesting that Ca(2+) is sequestered in mitochondria. Over a low [Ca(2+)](i) range, diazoxide and CCCP slowed Ca(2+) removal rate, determined after a brief depolarization. When [Ca(2+)](i) was measured during sustained depolarization to -30 mV, CCCP application increased [Ca(2+)](i). When Ca(2+) transients were repeatedly evoked by caffeine applications, CCCP application elevated resting [Ca(2+)](i). Caffeine-induced Ca(2+) transients were compared before and after CCCP application using the half decay time, or time required to reduce increase in [Ca(2+)](i) by 50% (t((1/2))). CCCP treatment significantly increased t((1/2)). These results suggest that Ca(2+) removal to mitochondria in arterial smooth muscle cells may be important at a low [Ca(2+)](i).
Collapse
Affiliation(s)
- Tomoko Kamishima
- Department of Human Anatomy and Cell Biology, University of Liverpool, United Kingdom.
| | | |
Collapse
|
28709
|
Kirov MY, Evgenov OV, Kuklin VN, Virag L, Pacher P, Southan GJ, Salzman AL, Szabo C, Bjertnaes LJ. Aerosolized linear polyethylenimine-nitric oxide/nucleophile adduct attenuates endotoxin-induced lung injury in sheep. Am J Respir Crit Care Med 2002; 166:1436-1442. [PMID: 12450933 DOI: 10.1164/rccm.2202021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pulmonary hypertension and edema are mainstays of acute lung injury (ALI). We synthesized linear polyethylenimine-nitric oxide/nucleophile adduct (DS-1), a water-soluble nitric oxide donor, and demonstrated that it is a potent relaxant of precontracted rat aortic rings without inducing desensitization. Moreover, DS-1 does not suppress the viability of human pulmonary epithelial cells in vitro. We also tested whether DS-1 counteracts ALI in endotoxemic sheep. Animals were instrumented for a chronic study. In 16 awake, spontaneously breathing sheep, Escherichia coli endotoxin (10 ng/kg/minute) was infused for 8 hours. From 2 hours of endotoxemia, sheep received either nebulized DS-1 (1 mg/kg/hour) or isotonic saline. DS-1 reduced endotoxin-induced rises in pulmonary arterial and microwedge pressures and vascular resistance index by 40-70%. In parallel, DS-1 decreased the accumulation of extravascular lung water by 60-70% and reduced the increment in right ventricle stroke work index and the falls in right ventricle ejection fraction, stroke volume, and left ventricle stroke work indices. Furthermore, DS-1 reduced venous admixture and improved arterial oxygen saturation. In four healthy animals, DS-1 alone slightly increased arterial oxygenation but had no other effects. Thus, aerosolized DS-1 attenuates endotoxin-induced ALI in sheep by reducing pulmonary hypertension and edema and improving myocardial function and gas exchange.
Collapse
Affiliation(s)
- Mikhail Y Kirov
- Department of Anesthesiology, Faculty of Medicine, University of Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
28710
|
McCully JD, Wakiyama H, Cowan DB, Federman M, Parker RA, Levitsky S. Diazoxide amelioration of myocardial injury and mitochondrial damage during cardiac surgery. Ann Thorac Surg 2002; 74:2138-45; discussion 2146. [PMID: 12643408 PMCID: PMC3668433 DOI: 10.1016/s0003-4975(02)04348-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recently, we have shown that the selective opening of mitochondrial ATP-sensitive potassium channels with diazoxide significantly decreases myocardial injury. The purpose of this study was to determine the effects of diazoxide on apoptosis and the mechanisms modulating apoptosis and myocardial injury in a blood-perfused model of acute myocardial infarction. METHODS Pigs (32 to 42 kg) undergoing total cardiopulmonary bypass underwent left anterior descending coronary artery occlusion for 30 minutes. The aorta was cross-clamped and magnesium-supplemented potassium cold-blood cardioplegia (DSA; n = 6) or magnesium-supplemented potassium cardioplegia containing 50 micromol/L diazoxide (DZX; n = 6) was administered, followed by 30 minutes of global ischemia and 120 minutes of reperfusion. Left ventricular tissue samples from DSA and DZX hearts were obtained after reperfusion. Apoptosis was determined by TUNEL, caspase-3 and PARP cleavage, and caspase-3 activity. Bax and bcl-2 levels were determined and tissue morphology was examined by light and transmission electron microscopy. RESULTS Apoptosis, as estimated by TUNEL-positive nuclei/3,000 myocardial cells, was 120.3 +/- 48.8 in DSA hearts and was significantly decreased to 21.4 +/- 5.3 in DZX hearts (p < 0.05 vs control). Caspase-3 and poly-ADP-ribose polymerase cleavage and pro-apoptotic bax protein levels were significantly decreased with diazoxide (p < 0.05 vs DSA). Light and transmission electron microscopy indicated severe disruption of tissue with capillary dilatation, mitochondrial cristae damage, and evidence of increased presence of mitochondrial granules in DSA as compared with DZX hearts. CONCLUSIONS The addition of diazoxide (50 micromol/L) to cardioplegia significantly decreases regional myocardial apoptosis and mitochondrial damage, and provides an additional modality for achieving myocardial protection.
Collapse
Affiliation(s)
- James D McCully
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
28711
|
|
28712
|
Szabó C, Zanchi A, Komjáti K, Pacher P, Krolewski AS, Quist WC, LoGerfo FW, Horton ES, Veves A. Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 2002; 106:2680-2686. [PMID: 12438293 DOI: 10.1161/01.cir.0000038365.78031.9c] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND We have previously shown that endothelial function is impaired not only in diabetes but also in subjects at risk of developing type 2 diabetes. We hypothesized that changes in the expression or activity of the endothelial isoform of nitric oxide synthase (eNOS), the receptor for advanced glycation end products (RAGE), and poly(ADP-ribose) polymerase (PARP) are related to this impairment. METHODS AND RESULTS We included a control group of 21 healthy subjects, a group of 22 healthy individuals with parental history of type 2 diabetes, a group of 23 subjects with impaired glucose tolerance, and a group of 21 type 2 diabetic patients. Two 2-mm forearm skin biopsies were taken from each participant and used for measurements. The percentage of PARP-positive endothelial nuclei was higher in the group with parental history of type 2 diabetes and diabetic patients compared with the controls (P<0.001). Immunoreactivity for nitrotyrosine (a marker of reactive nitrogen species) was higher in the diabetic group compared with all other groups (P<0.01). No differences in the expression of eNOS and RAGE were found among all 4 groups. The polymorphism of the eNOS gene was also studied and was not found to influence eNOS expression or microvascular functional measurements. CONCLUSIONS PARP activation is present in healthy subjects at risk of developing diabetes as well as in established type 2 diabetic patients, and it is associated with impairments in the vascular reactivity in the skin microcirculation.
Collapse
Affiliation(s)
- Csaba Szabó
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
28713
|
Abstract
Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.
Collapse
Affiliation(s)
- Mark A Sussman
- Children's Hospital and Research Foundation, Division of Molecular Cardiovascular Biology, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
28714
|
Thickett DR, Armstrong L, Millar AB. A role for vascular endothelial growth factor in acute and resolving lung injury. Am J Respir Crit Care Med 2002; 166:1332-7. [PMID: 12421742 DOI: 10.1164/rccm.2105057] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have previously reported, in patients with acute respiratory distress syndrome (ARDS), elevated plasma levels of vascular endothelial growth factor (VEGF) that became reduced in those who recovered. To examine the potential effect of VEGF on the epithelial side of the alveolar-capillary membrane, we compared VEGF levels in the epithelial lining fluid (ELF) of the same 40 patients with ARDS, and in 28 patients at risk of ARDS. We measured intrapulmonary VEGF levels in 23 patients on Days 1 and 4 after admission to the intensive therapy unit and related these levels to recovery. ELF from subjects with ARDS contained lower levels of VEGF than did ELF from at-risk subjects (1,076 and 7,674 pg/ml, respectively, p = 0.0004) and increased ELF levels at Day 4 were associated with recovery (p = 0.001). Alveolar macrophages from subjects with ARDS produced significantly less VEGF than those from at-risk subjects (6.3 and 13.0 pg/ml, respectively, p = 0.005). Similarly, alveolar neutrophils from subjects with ARDS produced significantly less VEGF than those at risk (13.9 and 31.5 pg/ml, respectively, p = 0.03). ELF VEGF levels inversely correlated with Lung Injury Score (p = 0.003). These studies suggest that VEGF in the alveolar space may reflect the development of, and recovery from, acute lung injury in a manner opposite to that in plasma.
Collapse
Affiliation(s)
- David R Thickett
- Lung Research Group, University of Bristol Medical School Unit, Southmead Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
28715
|
Marion DW. Is it poly(adenosine 5'-diphosphate-ribose) polymerase or hypothermia? Crit Care Med 2002; 30:2595-6. [PMID: 12441778 DOI: 10.1097/00003246-200211000-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28716
|
Ferrari D, Pinton P, Szabadkai G, Chami M, Campanella M, Pozzan T, Rizzuto R. Endoplasmic reticulum, Bcl-2 and Ca2+ handling in apoptosis. Cell Calcium 2002; 32:413-20. [PMID: 12543100 DOI: 10.1016/s0143416002002014] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the complex signalling interplay that allows extracellular signals to be decoded into activation of apoptotic cell death, Ca(2+) plays a significant role. This is supported not only by evidence linking alterations in Ca(2+) homeostasis to the triggering of apoptotic (and in some cases necrotic) cell death, but also by recent data indicating that a key anti-apoptotic protein, Bcl-2, has a direct effect on ER Ca(2+) handling. We will briefly summarise the first aspect, and describe in more detail these new data, demonstrating that (i) Bcl-2 reduces the state of filling of the ER Ca(2+) store and (ii) this Ca(2+) signalling alteration renders the cells less sensitive to apoptotic stimuli. Overall, these results suggest that calcium homeostasis may represent a pharmacological target in the fundamental pathological process of apoptosis.
Collapse
Affiliation(s)
- D Ferrari
- Department of Experimental Medicine, Section of General Pathology, Telethon Center for Cell Imaging, Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Borsari 46, I-44100, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
28717
|
Hajnóczky G, Csordás G, Yi M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 2002; 32:363-77. [PMID: 12543096 DOI: 10.1016/s0143416002001872] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In many cell types, IP(3) and ryanodine receptor (IP(3)R/RyR)-mediated Ca(2+) mobilization from the sarcoendoplasmic reticulum (ER/SR) results in an elevation of mitochondrial matrix [Ca(2+)]. Although delivery of the released Ca(2+) to the mitochondria has been established as a fundamental signaling process, the molecular mechanism underlying mitochondrial Ca(2+) uptake remains a challenge for future studies. The Ca(2+) uptake can be divided into the following three steps: (1) Ca(2+) movement from the IP(3)R/RyR to the outer mitochondrial membrane (OMM); (2) Ca(2+) transport through the OMM; and (3) Ca(2+) transport through the inner mitochondrial membrane (IMM). Evidence has been presented that Ca(2+) delivery to the OMM is facilitated by a local coupling between closely apposed regions of the ER/SR and mitochondria. Recent studies of the dynamic changes in mitochondrial morphology and visualization of the subcellular pattern of the calcium signal provide important clues to the organization of the ER/SR-mitochondrial interface. Interestingly, key steps of phospholipid synthesis and transfer to the mitochondria have also been confined to subdomains of the ER tightly associated with the mitochondria, referred as mitochondria-associated membranes (MAMs). Through the OMM, the voltage-dependent anion channels (VDAC, porin) have been thought to permit free passage of ions and other small molecules. However, recent studies suggest that the VDAC may represent a regulated step in Ca(2+) transport from IP(3)R/RyR to the IMM. A novel proposal regarding the IMM Ca(2+) uptake site is a mitochondrial RyR that would mediate rapid Ca(2+) uptake by mitochondria in excitable cells. An overview of the progress in these directions is described in the present paper.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 19107, Philadelphia, PA, USA.
| | | | | |
Collapse
|
28718
|
Hong SJ. Mechanism of endothelin-1-induced cytosolic Ca(2+) mobility in cultured H9c2 myocardiac ventricular cells. Cell Signal 2002; 14:811-7. [PMID: 12135702 DOI: 10.1016/s0898-6568(02)00020-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of endothelin-1 (ET-1) on the intracellular free Ca(2+) ([Ca(2+)](i)) mobility in cultured H9c2 myocardiac ventricular cells was studied after loading with fura-2-AM. In Ca(2+)-containing buffer, ET-1 induced [Ca(2+)](i) rise from 10(-7) to 10(-9) M. ET-1 induced [Ca(2+)](i), which was composed of a first small peak and a secondary persistent plateau. In Ca(2+)-free buffer, pretreatment with 10(-7) M ET-1 inhibited the thapsigargin and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced [Ca(2+)](i) increase. Meanwhile, pretreatment with thapsigargin and CCCP also inhibited ET-1-induced [Ca(2+)](i) rise. In Ca(2+)-containing buffer, the ET(A) receptor antagonist (BQ123) completely abolished the secondary rising peak and plateau. Conversely, the ET(B) receptor antagonist (BQ788) completely inhibited the first small peak and secondary peak plateau. Nifedipine and La(3+) also abolished the 10(-7) M ET-1-induced [Ca(2+)](i) in the first rising peak. The internal Ca(2+) release induced by ET-1 was inhibited by U73122 (phospholipase C inhibitor), propranolol (phospholipase D inhibitor) and aristolochic acid (phospholipase A2 inhibitor). After incubation of 10(-7) M ET-1 in Ca(2+)-free buffer, the addition of 5 mM CaCl(2) increased Ca(2+) influx, implying that release of Ca(2+) from internal stores further induces capacitative Ca(2+) entry. Taken together, these results suggest that both ET(A) and ET(B) receptors are involved in ET-1-induced [Ca(2+)](i) rise in H9c2 myocardiac ventricular cells. Whereas ET(B) receptor seems to mediate the initial Ca(2+) influx via L-type Ca(2+) channel, ET(A) receptor appears to be involved in the subsequent Ca(2+) release from endoplasmic reticulum and mitochondria Ca(2+) stores.
Collapse
Affiliation(s)
- Show-Jen Hong
- Department of Pharmacology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan.
| |
Collapse
|
28719
|
Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2002; 11:621-36. [PMID: 12462142 DOI: 10.1002/pds.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28720
|
Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, Jungbluth H, Straub V, Villanova M, Leroy JP, Romero NB, Martin JJ, Muntoni F, Voit T, Estournet B, Richard P, Fardeau M, Guicheney P. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 2002; 71:739-49. [PMID: 12192640 PMCID: PMC378532 DOI: 10.1086/342719] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Accepted: 06/25/2002] [Indexed: 11/04/2022] Open
Abstract
Multiminicore disease (MmD) is an autosomal recessive congenital myopathy characterized by the presence of multiple, short core lesions (known as "minicores") in most muscle fibers. MmD is a clinically heterogeneous condition, in which four subgroups have been distinguished. Homozygous RYR1 mutations have been recently identified in the moderate form of MmD with hand involvement. The genes responsible for the three other forms (including the most prevalent phenotype, termed the "classical" phenotype) remained, so far, unknown. To further characterize the genetic basis of MmD, we analyzed a series of 62 patients through a combined positional/candidate-gene approach. On the basis of clinical and morphological data, we suspected a relationship between classical MmD and the selenoprotein N gene (SEPN1), which is located on chromosome 1p36 (RSMD1 locus) and is responsible for the congenital muscular dystrophy with rigid spine syndrome (RSMD). A genomewide screening, followed by the analysis of 1p36 microsatellite markers in 27 informative families with MmD, demonstrated linkage to RSMD1 in eight families. All showed an axial myopathy with scoliosis and respiratory failure, consistent with the most severe end of the classical MmD spectrum; spinal rigidity was evident in some, but not all, patients. We excluded linkage to RSMD1 in 19 families with MmD, including 9 with classical MmD. Screening of SEPN1 in the 8 families that showed linkage and in 14 patients with classical sporadic disease disclosed 9 mutations affecting 17 patients (12 families); 6 were novel mutations, and 3 had been described in patients with RSMD. Analysis of three deltoid biopsy specimens from patients with typical RSMD revealed a wide myopathological variability, ranging from a dystrophic to a congenital myopathy pattern. A variable proportion of minicores was found in all the samples. The present study represents the first identification of a gene responsible for classical MmD, demonstrates its genetic heterogeneity, and reassesses the nosological boundaries between MmD and RSMD.
Collapse
Affiliation(s)
- Ana Ferreiro
- INSERM U523, Institut de Myologie, Institut Fédératif de Recherche 14 (Coeur, Muscle et Vaisseaux), Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28721
|
Szabó C, Mabley JG, Moeller SM, Shimanovich R, Pacher P, Virag L, Soriano FG, Van Duzer JH, Williams W, Salzman AL, Groves JT. Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 2002; 8:571-580. [PMID: 12477967 DOI: 10.1007/bf03402167] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2002] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Peroxynitrite is a cytotoxic oxidant formed from nitric oxide (NO) and superoxide. Tyrosine nitration, a footprint of peroxynitrite, has been demonstrated in the pancreatic islets as well as in the cardiovascular system of diabetic subjects. Delineation of the pathogenetic role of peroxynitrite in disease conditions requires the use of potent, in vivo active peroxynitrite decomposition catalysts. The aim of the current work was to produce a potent peroxynitrite decomposition catalyst and to test its effects in rodent models of diabetes and its complications. METHODS FP15 was synthesized and analyzed using standard chemical methods. Diabetes was triggered by the administration of streptozotocin. Tyrosine nitration was measured immunohistochemically. Cardiovascular and vascular measurements were conducted according to standard physiologic methods. RESULTS FP15, a potent porphyrinic peroxynitrite decomposition catalyst, potently inhibited tyrosine nitration and peroxynitrite-induced cytotoxicity in vitro and in vivo. FP15 treatment (3-10 mg/kg/d) dose dependently and reduced the incidence and severity of diabetes mellitus in rats subjected to multiple low doses of streptozotocin, as well as in nonobese mice developing spontaneous autoimmune diabetes. Furthermore, treatment with FP15 protected against the development of vascular dysfunction (loss of endothelium-dependent relaxations) and the cardiac dysfunction (loss of myocardial contractility) in diabetic mice. FP15 treatment reduced tyrosine nitration in the diabetic pancreatic islets. CONCLUSIONS The current results demonstrate the importance of endogenous peroxynitrite generation in the pathogenesis of autoimmune diabetes and diabetic cardiovascular complications. Peroxynitrite decomposition catalysts may be of therapeutic utility in diabetes and other pathophysiologic conditions.
Collapse
Affiliation(s)
- Csaba Szabó
- Inotek Pharmaceuticals Corporation, Beverly, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28722
|
Hunt MJ, Tyagi SC. Peroxisome proliferators compete and ameliorate Hcy-mediated endocardial endothelial cell activation. Am J Physiol Cell Physiol 2002; 283:C1073-9. [PMID: 12225971 DOI: 10.1152/ajpcell.00152.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether homocysteine (Hcy)-mediated activation of endocardial endothelial (EE) cells is ameliorated by peroxisome proliferator-activated receptor (PPAR), we isolated EE cells from mouse endocardium. Matrix metalloproteinase (MMP) activity and intercellular adhesion molecule (ICAM)-1 in EE cells were measured in the presence and absence of Hcy, and ciprofibrate (CF; PPAR-alpha agonist) or 15-deoxy-Delta(12,14)-prostaglandin J(2) (PGJ(2); PPAR-gamma agonist) by zymography and Western blot analyses, respectively. Results suggest that Hcy-mediated MMP activation and ICAM-1 expression are ameliorated by CF and PGJ(2). To test the hypothesis that Hcy competes with other ligands for binding to PPARalpha and -gamma, we prepared cardiac nuclear extracts. Extracts were loaded onto an Hcy-cellulose affinity column. Bound proteins were eluted with CF and PGJ(2). To determine conformational changes in PPAR upon binding to Hcy, we measured PPAR fluorescence at 334 nm. Dose-dependent increase in PPAR fluorescence demonstrated a primary binding affinity of 0.32 +/- 0.06 microM. There was dose-dependent quenching of PPAR fluorescence by fluorescamine-homocysteine (F-Hcy). PPAR-alpha fluorescence quenching was abrogated by the addition of CF but not by PGJ(2). PPAR-gamma fluorescence quenching was abrogated by the addition of PGJ(2) but not by CF. These results suggest that Hcy competes with CF and PGJ(2) for binding to PPAR-alpha and -gamma, respectively, indicating a role of PPAR in amelioration of Hcy-mediated EE dysfunction.
Collapse
Affiliation(s)
- Matthew J Hunt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | |
Collapse
|
28723
|
Sood HS, Cox MJ, Tyagi SC. Generation of nitrotyrosine precedes activation of metalloproteinase in myocardium of hyperhomocysteinemic rats. Antioxid Redox Signal 2002; 4:799-804. [PMID: 12470508 DOI: 10.1089/152308602760598954] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hypothesis is that homocysteine decreases endothelial nitric oxide (NO) availability by generating nitrotyrosine. In the absence of NO, and in an attempt to reduce endocardial load by dilatation, the matrix metalloproteinase (MMP) is activated. To address this hypothesis, homocysteine (0.67 mg/ml) was administered in drinking water of Sprague-Dawley rats for 8 weeks. To elicit the reversible effects of homocysteine, homocysteine was removed from the water after 8 weeks. The plasma levels of homocysteine were 2.79 +/- 0.5 microM in control (n = 6), measured by spectrofluorometry. The levels of homocysteine increased to 22 +/- 1.3 and 17 +/- 2.8 microM following 4 (n = 6) and 8 (n = 6) weeks of homocysteine treatment, respectively. The level of homocysteine decreased to 5.8 +/- 1.0 microM (n = 6) when homocysteine was removed from the drinking water. The mean arterial pressure (MAP) of control rats was 108 +/- 10 mm Hg and increased to 128 +/- 2 and 130 +/- 3 mm Hg following 4 and 8 weeks of homocysteine treatment, respectively. When homocysteine was removed from the drinking water, the MAP was decreased to 118 +/- 3 mm Hg. Left ventricle (LV) parameters were measured by a catheter in the LV through right common carotid artery in anesthetized rats. The LV tissue was analyzed for MMP activity by zymography. Levels of nitrotyrosine and cardiospecific tissue inhibitor of metalloproteinase-4 (TIMP-4/CIMP) were measured by western blot analysis using the respective antibodies. The specific bands in zymographic gel and western blot were scanned and normalized with beta-actin. The results suggest a continuous increase in nitrotyrosine levels at 4 and 8 weeks after homocysteine administration. The removal of homocysteine did not decrease the levels of nitrotyrosine. The zymographic analysis revealed a temporal increase in MMP-2 activity from 4 to 8 weeks post homocysteine administration. However, removal of homocysteine did not decrease the MMP-2 activity. The cardiac active diastolic function, -dP/dt, was decreased at 4 weeks and stayed depressed up to 12 weeks. The end-diastolic pressure started increasing at 8 weeks; at this point the MMP-2 activity was also increased. The results suggest that in the absence of endothelial NO, and in an attempt to reduce LV load, MMP-2 is activated and CIMP is inactivated, by increasing nitrotyrosine.
Collapse
Affiliation(s)
- Harpreet S Sood
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
28724
|
Charkoudian N, Vella A, Reed AS, Minson CT, Shah P, Rizza RA, Joyner MJ. Cutaneous vascular function during acute hyperglycemia in healthy young adults. J Appl Physiol (1985) 2002; 93:1243-50. [PMID: 12235021 DOI: 10.1152/japplphysiol.00345.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is well established that severe chronic hyperglycemia is associated with microvascular disease, it is not known whether transient hyperglycemia similar to that observed with impaired glucose tolerance or early Type 2 diabetes contributes to this pathology by altering microvascular function. To test the hypothesis that acute hyperglycemia decreases microvascular vasodilator responsiveness in human skin, we measured the cutaneous vasodilator response to local warming. This response can be divided into two phases, an initial peak that relies predominantly on local sensory nerves and a second slower phase that is largely dependent on endothelial nitric oxide. We reasoned that a change in one or both phases would indicate a change in the corresponding mechanism(s) with hyperglycemia. Twenty-eight healthy volunteers (14 women, 14 men) were randomly divided into three groups, corresponding to 6 h of euglycemia (n = 8), 6 h when glucose was clamped at approximately 7 mmol/l (n = 10), or 6 h when glucose was varied to mimic a postprandial pattern (i.e., peak glucose approximately 11.1 mmol/l) commonly observed in individuals with impaired glucose tolerance (n = 10). Insulin concentrations in all instances were maintained at approximately 65 pmol/l by means of continuous infusions of somatostatin and insulin. Glucagon and growth hormone were also continuously infused to maintain their basal concentrations. Despite substantial differences in both the level and pattern of glucose concentrations, neither maximum cutaneous vasodilation nor the pattern of the vasodilator response to local warming differed over the 6 h of study. We conclude that acute hyperglycemia similar to levels commonly observed in people with either early Type 2 diabetes or impaired glucose tolerance does not alter the vasodilator response to local warming of the skin in humans.
Collapse
Affiliation(s)
- N Charkoudian
- Department of Anesthesiology, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
28725
|
Fenelon G, Protter AA, Stambler BS. Examination of the in vivo cardiac electrophysiological effects of nesiritide (human brain natriuretic peptide) in conscious dogs. J Card Fail 2002; 8:320-5. [PMID: 12411983 DOI: 10.1054/jcaf.2002.127772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Human brain natriuretic peptide (hBNP) is a new therapeutic agent, nesiritide, indicated in patients with decompensated congestive heart failure, a group at significant risk of developing cardiac arrhythmias. Whether hBNP has cardiac electrophysiologic effects has not been reported. METHODS AND RESULTS In 9 healthy, chronically instrumented, conscious dogs, hemodynamic and electrophysiologic parameters were assessed at baseline and during recombinant hBNP (nesiritide) infusion at 0.03 and 0.09 microg/kg/min after 1 hour at each dose. Infusion of hBNP produced dose-related increases (P <.001) in hBNP and cyclic GMP plasma levels and reductions (P <.05) in mean arterial pressure. Mean central venous pressure and sinus cycle length did not change significantly. Infusion of hBNP produced no significant changes in any of the electrophysiologic parameters including no change in surface ECG variables (P wave duration, PR interval, QRS duration, and QTc interval), corrected sinus node recovery time, atrioventricular nodal Wenckebach cycle length, and atrial and ventricular effective refractory periods measured at a 400 ms cycle length. Spontaneous or induced arrhythmias were not observed during hBNP infusion. CONCLUSIONS In conscious, healthy dogs, short-term infusion of recombinant hBNP has no significant effects on atrial or ventricular electrophysiologic parameters.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/physiopathology
- Consciousness/physiology
- Cyclic GMP/blood
- Dogs
- Dose-Response Relationship, Drug
- Electric Stimulation
- Electrocardiography
- Electrophysiologic Techniques, Cardiac
- Heart Atria/drug effects
- Heart Conduction System/drug effects
- Heart Conduction System/physiology
- Heart Ventricles/drug effects
- Hemodynamics/drug effects
- Infusions, Intravenous
- Models, Animal
- Models, Cardiovascular
- Natriuretic Agents/physiology
- Natriuretic Peptide, Brain/blood
- Natriuretic Peptide, Brain/drug effects
- Natriuretic Peptide, Brain/pharmacology
- Reference Values
- Treatment Outcome
- Ventricular Function
Collapse
Affiliation(s)
- Guilherme Fenelon
- Department of Medicine, West Roxbury Veterans Affairs Medical Center, Harvard Medical School, West Roxbury, Massachusetts, USA
| | | | | |
Collapse
|
28726
|
Mabley JG, Liaudet L, Pacher P, Southan GJ, Groves JT, Salzman AL, Szabó C. Part II: beneficial effects of the peroxynitrite decomposition catalyst FP15 in murine models of arthritis and colitis. Mol Med 2002; 8:581-590. [PMID: 12477968 DOI: 10.1007/bf03402168] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2002] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Peroxynitrite is a reactive oxidant species produced from nitric oxide and superoxide, which has been indirectly implicated in the pathogenesis of many inflammatory conditions including arthritis and colitis. Here, using a novel peroxynitrite decomposition catalyst, FP15, we directly investigate the role of peroxynitrite in the pathogenesis of arthritis and colitis in rodent models. METHODS Arthritis was induced in mice by intradermal collagen injection; incidence and severity of arthritis was monitored using a macroscopic scoring system. At the end of the experiment paws were taken for determination of neutrophil infiltration (myeloperoxidase [MPO] activity), oxidative stress (malondialdehyde [MDA] level), and cytokine/chemokine levels. Colitis was induced in mice by 5% dextran sodium sulfate (DSS) in their drinking water. Colitis symptoms were assessed 10 days later, the parameters determined included body weight, rectal bleeding, colon length, colonic MPO and MDA levels, and colon histologic damage. RESULTS Treatment with FP15 significantly reduced the inflammation and oxidative stress in arthritis and colitis. FP15 reduced both the incidence and severity of arthritis in mice and this was associated with reduced paw MPO and MDA levels. Similarly, in colitis, FP15 reduced colon damage, and this was associated with reduced colon neutrophil infiltration and oxidative stress. CONCLUSIONS The protective effect of FP15 suggests that peroxynitrite plays a significant pathogenetic role in arthritis and colitis in the currently employed rodent models. Further work is needed to determine whether neutralization of peroxynitrite also represents a promising strategy to treat human inflammatory diseases such as arthritis and colitis.
Collapse
Affiliation(s)
- Jon G Mabley
- Inotek Pharmaceuticals Corporation, Cummings Center, Beverly, Massachusetts 01905, USA
| | | | | | | | | | | | | |
Collapse
|
28727
|
Ungvari Z, Brown G, Venuto R, Koller A, Losonczy G. Increased NO-mediated and reduced TxA2-dependent responses in skeletal muscle arterioles in pregnancy. Hypertens Pregnancy 2002; 21:135-46. [PMID: 12175442 DOI: 10.1081/prg-120005358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The contribution of skeletal muscle microvessels to pregnancy-induced decrease in peripheral vascular resistance and its underlying mechanisms are not fully understood. We aimed to test the hypothesis that pregnancy enhances arteriolar dilation and reduces constriction by increasing NO-mediation and decreasing reactivity to TxA2. Thus, changes in diameter of isolated, pressurized gracilis muscle arterioles (d: approximately 180 microm) of non-pregnant (NP) and pregnant (P) rabbits to vasoactive agents were measured by videomicroscopy. Acetylcholine (ACh) elicited significantly greater dilations in P than in NP arterioles that could be inhibited by L-NAME, a NO synthase blocker. Dilations to the NO donor SNP did not differ between P and NP arterioles. Constrictions to norepinephrine and the TxA2 receptor agonist U46619 were significantly attenuated in P as compared to NP arterioles. L-NAME increased norepinephrine-induced arteriolar constrictions eliminating the difference between responses of NP and P arterioles. L-NAME enhanced constrictions to U46619 in P and NP arterioles, but the constrictions were still greater in NP vessels. The number of vascular TxA2 receptors-characterized by the TxA2 analog [125I]-BOP in aortic membrane preparations-was significantly less in P as compared to NP rabbits (NP: 284 +/- 83, P: 62 +/- 14 fmol/mg protein, p<0.01). Thus, pregnancy up-regulates endothelial NO- and down regulates TxA2-mediation of responses of skeletal muscle arterioles. These changes in the local regulation of microvascular tone are likely to favor a dilated state of skeletal muscle arterioles, which may contribute to the decreased peripheral vascular resistance during normal pregnancy.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Pulmonology and Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
28728
|
Johnson AJ, Hsu AL, Lin HP, Song X, Chen CS. The cyclo-oxygenase-2 inhibitor celecoxib perturbs intracellular calcium by inhibiting endoplasmic reticulum Ca2+-ATPases: a plausible link with its anti-tumour effect and cardiovascular risks. Biochem J 2002; 366:831-7. [PMID: 12076251 PMCID: PMC1222837 DOI: 10.1042/bj20020279] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Revised: 05/29/2002] [Accepted: 06/20/2002] [Indexed: 12/21/2022]
Abstract
Substantial evidence indicates that the cyclo-oxygenase-2 (COX-2) inhibitor celecoxib, a widely prescribed anti-inflammatory agent, displays anti-tumour effect by sensitizing cancer cells to apoptosis. As part of our effort to understand the mechanism by which celecoxib mediates apoptosis in androgen-independent prostate cancer cells, we investigated its effect on intracellular calcium concentration ([Ca(2+)](i)). Digital ratiometric imaging analysis indicates that exposure of PC-3 cells to celecoxib stimulates an immediate [Ca(2+)](i) rise in a dose- and time-dependent manner. Kinetic data show that this Ca(2+) signal arises from internal Ca(2+) release in conjunction with external Ca(2+) influx. Examinations of the biochemical mechanism responsible for this Ca(2+) mobilization indicate that celecoxib blocks endoplasmic reticulum (ER) Ca(2+)-ATPases. Consequently, inhibition of this Ca(2+) reuptake mechanism results in Ca(2+) mobilization from ER stores followed by capacitative calcium entry, leading to [Ca(2+)](i) elevation. In view of the important role of Ca(2+) in apoptosis regulation, this Ca(2+) perturbation may represent part of the signalling mechanism that celecoxib uses to trigger rapid apoptotic death in cancer cells. This Ca(2+)-ATPase inhibitory activity is highly specific for celecoxib, and is not noted with other COX inhibitors tested, including aspirin, ibuprofen, naproxen, rofecoxib (Vioxx), DuP697 and NS398. Moreover, it is noteworthy that this activity is also observed in many other cell lines examined, including A7r5 smooth muscle cells, NIH 3T3 fibroblast cells and Jurkat T cells. Consequently, this Ca(2+)-perturbing effect may provide a plausible link with the reported toxicities of celecoxib such as increased cardiovascular risks in long-term anti-inflammatory therapy.
Collapse
Affiliation(s)
- Amy J Johnson
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington 40536-0082, USA
| | | | | | | | | |
Collapse
|
28729
|
Pacher P, Liaudet L, Mabley JG, Komjáti K, Szabó C. Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol 2002; 40:1006-1016. [PMID: 12225730 DOI: 10.1016/s0735-1097(02)02062-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES We investigated the effects of a novel ultrapotent poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor, PJ34, on cardiac and endothelial dysfunction in a rat model of chronic heart failure (CHF). BACKGROUND Overactivation of the nuclear enzyme PARP importantly contributes to the development of cell dysfunction and tissue injury in various pathophysiologic conditions associated with oxidative stress, including myocardial reperfusion injury, heart transplantation, stroke, shock, and diabetes. METHODS Chronic heart failure was induced in Wistar rats by chronic ligation of the left anterior descending coronary artery. Left ventricular (LV) function and ex vivo vascular contractility and relaxation were measured 10 weeks after the surgery. Nitrotyrosine (NT) formation and PARP activation were detected by immunohistochemistry. RESULTS Chronic heart failure induced increased NT formation and PARP activation in the myocardium and intramural vasculature, depressed LV performance, and impaired vascular relaxation of aortic rings. PJ34 significantly decreased myocardial PARP activation but not NT formation, and improved both cardiac dysfunction and vascular relaxation. CONCLUSIONS Poly(ADP-ribose) polymerase inhibition represents a novel approach for the experimental treatment of CHF.
Collapse
Affiliation(s)
- Pál Pacher
- Inotek Pharmaceuticals Corporation, Beverly, Massachusetts 19105, USA
| | | | | | | | | |
Collapse
|
28730
|
Wu B, Iwakiri R, Tsunada S, Utsumi H, Kojima M, Fujise T, Ootani A, Fujimoto K. iNOS enhances rat intestinal apoptosis after ischemia-reperfusion. Free Radic Biol Med 2002; 33:649-58. [PMID: 12208351 DOI: 10.1016/s0891-5849(02)00917-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this study was to demonstrate (i) the role of iNOS (inducible nitric oxide synthase) on apoptosis in the rat intestinal mucosa after ischemia-reperfusion, and (ii) the effect of iNOS on the release of cytochrome c from mitochondria. The superior mesenteric artery was occluded for 60 min and was followed by a 60 min reperfusion. Rats were pretreated with an intraperitoneal injection of the following iNOS inhibitors: N-nitro-L-arginine methyl ester, aminoguanidine, and (1S,5S,6R,7R)-7- chloro-3-imino-5-methyl-2-azabicyclo [4. 1. 0] heptane hydrochloride (ONO-1714). Apoptosis was evaluated and NO(X) in the portal vein was assayed. The amount of iNOS, caspase-3, and cytochrome c were determined by a Western blot analysis. Intestinal mucosal epithelial mitochondrial dehydrogenase activity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoilium bromide. Ischemia-reperfusion increased intestinal mucosal apoptosis, NO(X) production in the portal vein, the amount of iNOS protein, and the release of cytochrome c, but not caspase-3. Inhibitors of iNOS significantly attenuated the induction of apoptosis, increased NO(X) production, and release of cytochrome c. Mitochondrial dysfunction was induced by ischemia-reperfusion, which was ameliorated by iNOS inhibitors. Our results indicate that iNOS is related to increased mucosal apoptosis in the rat small intestine after ischemia-reperfusion, which is partly explained by the release of cytochrome c from mitochondria to cytosols following mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bin Wu
- Department of Internal Medicine, Saga Medical School, Nabeshima, Saga, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28731
|
Yatsuhashi T, Hisatome I, Kurata Y, Sasaki N, Ogura K, Kato M, Kinugasa R, Matsubara K, Yamawaki M, Yamamoto Y, Tanaka Y, Ogino K, Igawa O, Makita N, Shigemasa C. L-cysteine prevents oxidation-induced block of the cardiac Na+ channel via interaction with heart-specific cysteinyl residues in the P-loop region. Circ J 2002; 66:846-50. [PMID: 12224824 DOI: 10.1253/circj.66.846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study investigated the protective effects of L-cysteine on the oxidation-induced blockade of Na+ channel a-subunits, hH1 (cardiac) and hSkM1 (skeletal), expressed in COS7 cells. Na+ currents were recorded by the whole-cell patch clamp technique (n = 3-7). L-cysteine alone blocked hH1 and hSkM1 in a dose-dependent manner, with saturating L-cysteine block at 3,000 micromol/L. Hg2+, a potent sulfhydryl oxidizing agent, blocked hH1 with a time to 50% inhibition (Time50%) of 20s. Preperfusion of COS7 cells with 100 micromol/L L-cysteine significantly slowed the Hg2+ block of hH1 (Time50% = 179 s). L-cysteine did not prevent Hg2+ block of hSkM1 (Time50% = 37s) or the C373Y hH1 mutant (Time50% = 43s). As for other sulfo-amino acids, homocysteine prevented the Hg2+ block of hH1, with the Time50% (70s) being significantly smaller than that of L-cysteine, whereas methionine did not prevent the Hg2+ block of hH1. L-cysteine did not prevent the Cd2+ block of hH1. These results indicate that L-cysteine selectively acts on heart-specific Cys373 in the P-loop region of hH1 to prevent Cys373 from the oxidation-induced sulfur-Hg-sulfur bridge formation.
Collapse
Affiliation(s)
- Toru Yatsuhashi
- Department of Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28732
|
Li N, Yi FX, Rute E, Zhang DX, Slocum GR, Zou AP. Effects of homocysteine on intracellular nitric oxide and superoxide levels in the renal arterial endothelium. Am J Physiol Heart Circ Physiol 2002; 283:H1237-43. [PMID: 12181155 DOI: 10.1152/ajpheart.00680.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to test the hypothesis that homocysteine (Hcys) reduces intracellular nitric oxide (NO) concentrations ([NO](i)) and stimulates superoxide (O.) production in the renal arterial endothelium, thereby resulting in endothelial dysfunction. With the use of fluorescence microscopic imaging analysis, a calcium ionophore, A-23187 (2 microM), and bradykinin (2 microM) were found to increase endothelial [NO](i) in freshly dissected lumen-opened small renal arteries loaded with 4,5-diaminofluorescein diacetate (DAF-2DA; 10 microM). Preincubation of the arteries with L-Hcys (20-40 microM) significantly attenuated the increase in endothelial [NO](i). However, L-Hcys had no effect on NO synthase activity in the renal arteries, as measured by the conversion rate of [(3)H]arginine to [(3)H]citrulline, but it concentration dependently decreased DAF-2DA-sensitive fluorescence induced by PAPA-NONOate in the solution, suggesting that L-Hcys reduces endothelial [NO](i) by its scavenging action. Because other thiol compounds such as L-cysteine and glutathione were also found to reduce [NO](i), it seems that decreased NO is not the only mechanism resulting in endothelial dysfunction or arteriosclerosis in hyperhomocysteinemia (hHcys). By analysis of intracellular O. levels using dihydroethidium trapping, we found that only L-Hcys among the thiol compounds studied markedly increased O. levels in the renal endothelium. These results indicate that L-Hcys inhibits the agonist-induced NO increase but stimulates O. production within endothelial cells. These effects of L-Hcys on [NO](i) and [O.] may contribute to endothelial injury associated with hHcys.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
28733
|
Hagar HH. Folic acid and vitamin B(12) supplementation attenuates isoprenaline-induced myocardial infarction in experimental hyperhomocysteinemic rats. Pharmacol Res 2002; 46:213-19. [PMID: 12220963 DOI: 10.1016/s1043-6618(02)00095-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hyperhomocysteinemia (Hhcy) is an independent risk factor for cardiovascular disease. Oxidative stress may contribute to the deleterious effects of homocysteine (Hcy). The aim of the present study is to study the effect of folic acid and Vitamin B(12) supplementation on isoprenaline (ISO)-induced myocardial infarction (MI) in hyperhomocysteinemic rats. Hhcy was induced by daily intake of methionine (1 g kg(-1) body weight) in the drinking water for 4 weeks. MI was then produced by a single subcutaneous injection of ISO (300 mg kg(-1), s.c.). Electrocardiographic parameters, heart rate, ST segment, and blood pressure as well as serum marker enzymes, creatine kinase (CK) and lactate dehydrogenase (LDH) were measured. Lipid peroxidation measured as malondialdehyde (MDA) and reduced glutathione (GSH) concentrations in heart tissue were estimated as indices of oxidative stress. Hhcy resulted in significant blood pressure reduction, ST segment elevation and increase in heart rate and serum CK and LDH levels. Cardiac MDA was significantly increased, while GSH was decreased in Hhcy group compared to the normal control group. All the measured parameters were greatly exaggerated in Hhcy rats treated with ISO in comparison with Hhcy rats alone. Administration of folic acid (10 mg kg(-1), orally via gavage) and Vitamin B(12) (500 microg kg(-1), i.m.) concurrently for 4 weeks during the induction of Hhcy markedly reduced the increase in heart rate, ST segment elevation and blood pressure reduction as well as the increase in serum CK and LDH levels. Cardiac MDA content was decreased while cardiac GSH was elevated in the treated group compared to Hhcy + ISO group. Moreover, the severe cardiac histopathological changes observed in Hhcy + ISO group were attenuated by folic acid and Vitamin B(12). These results suggest that Hhcy aggravates MI via oxidative stress mechanisms and that lowering Hcy level with folic acid and Vitamin B(12) can ameliorate the detrimental effects of Hhcy and may reduce the risk of MI.
Collapse
Affiliation(s)
- Hanan H Hagar
- Department of Pharmacology, College of Medicine & KHUH, King Saud University, PO Box 2925, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
28734
|
Shimizu K, Shintani Y, Ding WG, Matsuura H, Bamba T. Potentiation of slow component of delayed rectifier K(+) current by cGMP via two distinct mechanisms: inhibition of phosphodiesterase 3 and activation of protein kinase G. Br J Pharmacol 2002; 137:127-37. [PMID: 12183338 PMCID: PMC1573469 DOI: 10.1038/sj.bjp.0704843] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Accepted: 06/13/2002] [Indexed: 11/08/2022] Open
Abstract
1. Regulation of the slowly activating component of delayed rectifier K(+) current (I(Ks)) by intracellular guanosine 3'5' cyclic monophosphate (cGMP) was investigated in guinea-pig sino-atrial (SA) node cells using the whole-cell patch-clamp method. 2. When a cell was dialyzed with pipette solution containing 100 micro M cGMP, I(Ks) started to gradually increase and reached a maximum increase of a factor of 2.37 +/- 0.39 (n = 4) about 10-15 min after rupture of patch membrane. Atrial natriuretic peptide (ANP, 100 nM) also potentiated I(Ks), consistent with intracellular cGMP-induced enhancement of I(Ks). 3. Bath application of a selective blocker of the cGMP-inhibited phosphodiesterase (PDE3) milrinone (100 microM) enhanced I(Ks) by a factor of 1.50 +/- 0.09 (n = 4) but failed to further enhance I(Ks) after a maximum stimulation by intracellular cGMP (100 microM), suggesting that blockade of PDE3 activity is involved in the enhancement of I(Ks). A potent but nonspecific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX, 100 microM) further increased I(Ks) stimulated by 100 microM milrinone, indicating that PDE subtypes other than PDE3 are also involved in the regulation of basal I(Ks) in guinea-pig SA node cells. 4. Bath application of 100 microM 8-bromoguanosine 3'5' cyclic monophosphate (8-Br-cGMP) increased I(Ks) by a factor of 1.48 +/- 0.11 (n = 5) and this stimulatory effect was totally abolished by cGMP-dependent protein kinase (PKG) inhibitor KT-5823 (500 nM), suggesting that the activation of PKG also mediates cGMP-induced potentiation of I(Ks). 5. These results strongly suggest that intracellular cGMP potentiates I(Ks) not only by blocking PDE3 but also by activating PKG in guinea-pig SA node cells.
Collapse
Affiliation(s)
- Kentaro Shimizu
- Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yutaka Shintani
- Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Tadao Bamba
- Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
28735
|
Weiss N, Keller C, Hoffmann U, Loscalzo J. Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 2002; 7:227-39. [PMID: 12553746 DOI: 10.1191/1358863x02vm428ra] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mildly elevated plasma homocysteine levels are an independent risk factor for atherothrombotic vascular disease in the coronary, cerebrovascular, and peripheral arterial circulation. Endothelial dysfunction as manifested by impaired endothelium-dependent regulation of vascular tone and blood flow, by increased recruitment and adhesion of circulating inflammatory cells to the endothelium, and by a loss of endothelial cell antithrombotic function contributes to the vascular disorders linked to hyperhomocysteinemia. Increased vascular oxidant stress through imbalanced thiol redox status and inhibition of important antioxidant enzymes by homocysteine results in decreased bioavailability of the endothelium-derived signaling molecule nitric oxide via oxidative inactivation. This plays a central role in the molecular mechanisms underlying the effects of homocysteine on endothelial function. Supplementation of folic acid and vitamin B12 has been demonstrated to be efficient in lowering mildly elevated plasma homocysteine levels and in reversing homocysteine-induced impairment of endothelium-dependent vasoreactivity. Results from ongoing intervention trials will determine whether homocysteine-lowering therapies contribute to the prevention and reduction of atherothrombotic vascular disease and may thereby provide support for the causal relationship between hyperhomocysteinemia and atherothrombosis.
Collapse
Affiliation(s)
- Norbert Weiss
- Medical Policlinic, Division of Angiology, University Hospital, Innenstadt, Munich, Germany.
| | | | | | | |
Collapse
|
28736
|
Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB. Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2002; 99:9830-5. [PMID: 12118121 PMCID: PMC125032 DOI: 10.1073/pnas.152571899] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An oligonucleotide-based microarray analysis of 9,500 genes and expressed sequence tags (ESTs) demonstrated that the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R) was significantly down-regulated in Bcl-X(L)-expressing as compared with control cells. This result was confirmed at the mRNA and protein levels by Northern and Western blot analyses of two independent hematopoietic cell lines and murine primary T cells. Bcl-X(L) expression resulted in a dose-dependent decrease in IP(3)R protein. IP(3)R expression is regulated as part of a mitochondrion-to-nucleus stress-responsive pathway. The uncoupling of mitochondrial oxidative phosphorylation resulted in induction of binding of the transcription factor NFATc2 to the IP(3)R promoter and transcriptional activation of IP(3)R. Expression of Bcl-X(L) led to a decreased induction of both NFATc2 DNA binding to the IP(3)R promoter and IP(3)R expression in response to the inhibition of mitochondrial oxidative phosphorylation. The Bcl-X(L)-dependent decrease in IP(3)R expression also correlated with a reduced T cell antigen receptor ligation-induced Ca(2+) flux in Bcl-X(L) transgenic murine T cells, and microsomal vesicles prepared from Bcl-X(L)-overexpressing cells exhibited lower IP(3)-mediated Ca(2+) release capacity. Furthermore, reintroducing IP(3)R into Bcl-X(L)-transfected cells partially reversed Bcl-X(L)-dependent anti-apoptotic activity. These results suggest that even under non-apoptotic conditions, expression of Bcl-2-family proteins influences a signaling network that links changes in mitochondrial metabolism to alterations in nuclear gene expression.
Collapse
MESH Headings
- Animals
- Apoptosis
- Binding Sites
- Biological Transport
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology
- Cell Line
- Gene Expression Regulation
- Genes, Reporter
- Homeostasis
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Kinetics
- Mice
- Microsomes/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/physiology
- Receptors, Antigen, T-Cell/physiology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- bcl-X Protein
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Chi Li
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
28737
|
Montero M, Alonso MT, Albillos A, Cuchillo-Ibáñez I, Olivares R, Villalobos C, Alvarez J. Effect of inositol 1,4,5-trisphosphate receptor stimulation on mitochondrial [Ca2+] and secretion in chromaffin cells. Biochem J 2002; 365:451-9. [PMID: 11931633 PMCID: PMC1222678 DOI: 10.1042/bj20011722] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 04/02/2002] [Accepted: 04/04/2002] [Indexed: 11/17/2022]
Abstract
Ca(2+) uptake by mitochondria is a potentially important buffering system able to control cytosolic [Ca(2+)]. In chromaffin cells, we have shown previously that stimulation of either Ca(2+) entry or Ca(2+) release via ryanodine receptors triggers large increases in mitochondrial [Ca(2+)] ([Ca(2+)](M)) approaching the millimolar range, whose blockade dramatically enhances catecholamine secretion [Montero, Alonso, Carnicero, Cuchillo-Ibañez, Albillos, Garcia, Carcia-Sancho and Alvarez (2000) Nat. Cell Biol. 2, 57-61]. In the present study, we have studied the effect of stimulation of inositol 1,4,5-trisphosphate (InsP(3)) receptors using histamine. We find that histamine produces a heterogeneous increase in [Ca(2+)](M), reaching peak levels at approx. 1 microM in 70% of the mitochondrial space to several hundred micromolar in 2-3% of mitochondria. Intermediate levels were found in the rest of the mitochondrial space. Single-cell imaging experiments with aequorin showed that the heterogeneity had both an intercellular and a subcellular origin. Those mitochondria responding to histamine with increases in [Ca(2+)](M) much greater than 1 microM (30%) were the same as those that also responded with large increases in [Ca(2+)](M) following stimulation with either high-K(+) medium or caffeine. Blocking mitochondrial Ca(2+) uptake with protonophores or mitochondrial inhibitors also enhanced catecholamine secretion induced by histamine. These results suggest that some InsP(3) receptors tightly co-localize with ryanodine receptors and voltage-dependent Ca(2+) channels in defined subplasmalemmal functional units designed to control secretion induced by different stimuli.
Collapse
Affiliation(s)
- Mayte Montero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | | | | | | | | | | | | |
Collapse
|
28738
|
Ungvari Z, Csiszar A, Bagi Z, Koller A. Impaired nitric oxide-mediated flow-induced coronary dilation in hyperhomocysteinemia: morphological and functional evidence for increased peroxynitrite formation. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:145-53. [PMID: 12107099 PMCID: PMC1850707 DOI: 10.1016/s0002-9440(10)64166-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyperhomocysteinemia (HHcy) is a newly recognized risk factor for myocardial infarction, however, the effect of HHcy on endothelium-dependent flow-induced dilation of coronary arteries is not known. Thus, changes in diameter of small intramural coronary arteries (diameter, approximately 145 microm) isolated from control rats and rats with methionine diet-induced HHcy were investigated by videomicroscopy. Increases in intraluminal flow (from 0 to 40 microl/min) elicited dilations of control vessels (maximum, 25 +/- 2 microm), responses that were absent in HHcy arteries. The nitric oxide (NO) synthase inhibitor L-NAME inhibited flow-induced dilation of control coronaries, whereas it had no effect on responses of HHcy arteries. Dilations of control and HHcy arteries to the NO donor sodium nitroprusside were not different. Responses to flow in HHcy coronary arteries were unaffected by administration of L-arginine or the prostaglandin H(2)/thromboxane A(2) receptor antagonist SQ 29,548. However, in the presence of superoxide dismutase (plus catalase) or the superoxide scavenger Tiron increases in flow elicited L-NAME-sensitive dilations of HHcy coronaries (maximum, 18 +/- 5 microm). Also, superoxide dismutase significantly reduced the enhanced superoxide production of HHcy coronaries (measured by the lucigenin chemiluminescence method). Single vessel Western blotting showed an increased tyrosine nitrosation (a stable biomarker of tissue peroxynitrite formation) in HHcy coronaries. Also, extensive prevalence of 3-nitrotyrosine immunoreactivity was observed in HHcy coronaries that was confined primarily to the subendothelial layers of smooth muscle. We propose that in HHcy an increased level of superoxide scavenges NO forming peroxynitrite, which increases protein nitrosation. The reduced bioavailability of NO impairs flow-induced dilations of coronary arteries, which may contribute to the development of coronary atherosclerosis and ischemic heart disease.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
28739
|
Sylvester FA, Stepp DW, Frisbee JC, Lombard JH. High-salt diet depresses acetylcholine reactivity proximal to NOS activation in cerebral arteries. Am J Physiol Heart Circ Physiol 2002; 283:H353-63. [PMID: 12063309 DOI: 10.1152/ajpheart.00127.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats were fed a low-salt (LS; 0.4% NaCl) or high-salt (HS; 4.0% NaCl) diet for 3 days, and the responses of isolated cerebral arteries to acetylcholine (ACh), the nitric oxide (NO)-dependent dilator bradykinin, and the NO donor 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hex-anamine (NOC-9) were determined. ACh-induced vasodilation and NO release, assessed with the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2) diacetate, were eliminated with the HS diet. Inhibition of cyclooxygenase, cytochrome P-450 epoxygenase, and acetylcholinesterase did not alter ACh responses. Bradykinin and NOC-9 caused a similar dilation in cerebral arteries of all groups. Arteries from animals on LS or HS diets exhibited similar levels of basal superoxide (O(2)(-)) production, assessed by dihydroethidine fluorescence, and ACh responses were unaffected by O(2)(-) scavengers. Muscarinic type 3 receptor expression was unaffected by dietary salt intake. These results indicate that 1) a HS diet attenuates ACh reactivity in cerebral arteries by inhibiting NO release, 2) this attenuation is not due to production of a cyclooxygenase-derived vasoconstrictor or elevated O(2)(-) levels, and 3) alteration(s) in ACh signaling are located upstream from NO synthase.
Collapse
Affiliation(s)
- Francis A Sylvester
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
28740
|
Mbebi C, Sée V, Mercken L, Pradier L, Müller U, Loeffler JP. Amyloid precursor protein family-induced neuronal death is mediated by impairment of the neuroprotective calcium/calmodulin protein kinase IV-dependent signaling pathway. J Biol Chem 2002; 277:20979-90. [PMID: 11877414 DOI: 10.1074/jbc.m107948200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aberrant metabolism of beta-amyloid precursor protein (APP) and the progressive deposition of its derived fragment beta-amyloid peptide are early and constant pathological hallmarks of Alzheimer's disease. Because APP is able to function as a cell surface receptor, we investigated here whether a disruption of the normal function of APP may contribute to the pathogenic mechanisms in Alzheimer's disease. To this aim, we generated a specific chicken polyclonal antibody directed against the extracellular domain of APP, which is common with the beta-amyloid precursor-like protein type 2. Exposure of cultured cortical neurons to this antibody (APP-Ab) induced cell death preceded by neurite degeneration, oxidative stress, and nuclear condensation. Interestingly, caspase-3-like protease was not activated in this neurotoxic action suggesting a different mode of cell death than classical apoptosis. Further analysis of the molecular mechanisms revealed a calpain- and calcineurin-dependent proteolysis of the neuroprotective calcium/calmodulin-dependent protein kinase IV and its nuclear target protein cAMP responsive element binding protein. These effects were abolished by the G protein inhibitor pertussis toxin, strongly suggesting that APP binding operates via a GTPase-dependent pathway to cause neuronal death.
Collapse
Affiliation(s)
- Corinne Mbebi
- Université Louis Pasteur, Faculté de Médecine, EA 3433 Molecular signaling and neurodegeneration, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
28741
|
Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG, O'Neil RG, McConkey DJ. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 2002; 277:20301-8. [PMID: 11909872 DOI: 10.1074/jbc.m201604200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that Ca(2+) is released from the endoplasmic reticulum (ER) in some models of apoptosis, but the mechanisms involved and the functional significance remain obscure. We confirmed that apoptosis induced by some (but not all) proapoptotic stimuli was associated with caspase-independent, BCL-2-sensitive emptying of the ER Ca(2+) pool in human PC-3 prostate cancer cells. This mobilization of ER Ca(2+) was associated with a concomitant increase in mitochondrial Ca(2+) levels, and neither ER Ca(2+) mobilization nor mitochondrial Ca(2+) uptake occurred in Bax-null DU-145 cells. Importantly, restoration of DU-145 Bax expression via adenoviral gene transfer restored ER Ca(2+) release and mitochondrial Ca(2+) uptake and dramatically accelerated the kinetics of staurosporine-induced cytochrome c release, demonstrating a requirement for Bax expression in this model system. In addition, an inhibitor of the mitochondrial Ca(2+) uniporter (RU-360) attenuated mitochondrial Ca(2+) uptake, cytochrome c release, and DNA fragmentation, directly implicating the mitochondrial Ca(2+) changes in cell death. Together, our data demonstrate that Bax-mediated alterations in ER and mitochondrial Ca(2+) levels serve as important upstream signals for cytochrome c release in some examples of apoptosis.
Collapse
Affiliation(s)
- Leta K Nutt
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
28742
|
Abstract
Tumour necrosis factor-alpha (TNF alpha) is a multifunctional cytokine belonging to a family of ligands with an associated family of receptor proteins. The pleiotropic actions of TNF range from proliferative responses such as cell growth and differentiation, to inflammatory effects and the mediation of immune responses, to destructive cellular outcomes such as apoptotic and necrotic cell death mechanisms. Activated TNF receptors mediate the association of distinct adaptor proteins that regulate a variety of signalling processes including kinase or phosphatase activation, lipase stimulation, and protease induction. Moreover, the cytokine regulates the activities of transcription factors, heterotrimeric or monomeric G-proteins and calcium ion homeostasis in order to orchestrate its cellular functions. This review addresses the structural basis of TNF signalling, the pathways employed with their cellular consequences, and focuses on the specific role played by each of the two TNF receptor isotypes, TNFR1 and TNFR2.
Collapse
Affiliation(s)
- David J MacEwan
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
28743
|
Pochet S, Keskiner N, Fernandez M, Marino A, Chaïb N, Dehaye JP, Métioui M. Multiple effects of trichloroethanol on calcium handling in rat submandibular acinar cells. Br J Pharmacol 2002; 136:568-80. [PMID: 12055135 PMCID: PMC1573375 DOI: 10.1038/sj.bjp.0704745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of trichloroethanol (TCEt), the active metabolite of chloral hydrate, on the intracellular concentration of calcium ([Ca(2+)](i)) was investigated in rat submandibular glands (RSMG) acini loaded with fura-2. TCEt (1 - 10 mM) increased the [Ca(2+)](i) independently of the presence of calcium in the extracellular medium. Dichloroethanol (DCEt) and monochloroethanol (MCEt) reproduced the stimulatory effect of TCEt but at much higher concentrations (about 6 fold higher for DCEt and 20 fold higher for MCEt). TCEt mobilized an intracellular pool of calcium, which was depleted by a pretreatment with thapsigargin, an inhibitor of the sarcoplasmic and endoplasmic reticulum calcium-dependent ATPases, but not with FCCP, an uncoupler of mitochondria. TCEt 10 mM inhibited by 50% the thapsigargin-sensitive microsomal Ca(2+)-ATPase. DCEt 10 mM and MCEt 10 mM inhibited the ATPase by 20 and 10%, respectively. TCEt inhibited the increase of the [Ca(2+)](i) and the production of inositol phosphates in response to carbachol, epinephrine and substance P. TCEt inhibited the uptake of calcium mediated by the store-operated calcium channel (SOCC). ATP and Bz-ATP increased the [Ca(2+)](i) in RSMG acini and this effect was blocked by extracellular magnesium, by Coomassie blue and by oxydized ATP (oATP). TCEt potentiated the increase of the [Ca(2+)](i) and of the uptake of extracellular calcium in response to ATP and Bz-ATP. TCEt had no effect on the uptake of barium and of ethidium bromide in response to purinergic agonists. These results suggest that TCEt, at sedative concentrations, exerts various effects on the calcium regulation: (1) it mobilizes a thapsigargin-sensitive intracellular pool of calcium in RSMG acini; (2) it inhibits the uptake of calcium via the SOCC; (3) it inhibits the activation by G protein-coupled receptors of a polyphosphoinositide-specific phospholipase C. It does not interfere with the activation of the ionotropic P2X receptors. The use of chloral hydrate should be avoided in studies exploring the in vivo responses to sialagogues.
Collapse
Affiliation(s)
- S Pochet
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - N Keskiner
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - M Fernandez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad del País Vasco, 48080 Bilbao, Spain
| | - A Marino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad del País Vasco, 48080 Bilbao, Spain
| | - N Chaïb
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - J P Dehaye
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - M Métioui
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
- Author for correspondence:
| |
Collapse
|
28744
|
Janssen LJ. Ionic mechanisms and Ca(2+) regulation in airway smooth muscle contraction: do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 2002; 282:L1161-78. [PMID: 12003770 DOI: 10.1152/ajplung.00452.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In general, excitation-contraction coupling in muscle is dependent on membrane depolarization and hyperpolarization to regulate the opening of voltage-dependent Ca(2+) channels and, thereby, influence intracellular Ca(2+) concentration ([Ca(2+)](i)). Thus Ca(2+) channel blockers and K(+) channel openers are important tools in the arsenals against hypertension, stroke, and myocardial infarction, etc. Airway smooth muscle (ASM) also exhibits robust Ca(2+), K(+), and Cl(-) currents, and there are elaborate signaling pathways that regulate them. It is easy, then, to presume that these also play a central role in contraction/relaxation of ASM. However, several lines of evidence speak to the contrary. Also, too many researchers in the ASM field view the sarcoplasmic reticulum as being centrally located and displacing its contents uniformly throughout the cell, and they have focused almost exclusively on the initial single [Ca(2+)] spike evoked by excitatory agonists. Several recent studies have revealed complex spatial and temporal heterogeneity in [Ca(2+)](i), the significance of which is only just beginning to be appreciated. In this review, we will compare what is known about ion channels in ASM with what is believed to be their roles in ASM physiology. Also, we will examine some novel ionic mechanisms in the context of Ca(2+) handling and excitation-contraction coupling in ASM.
Collapse
Affiliation(s)
- Luke J Janssen
- Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph's Hospital, McMaster University, Hamilton, Ontario, Canada L8N 4A6.
| |
Collapse
|
28745
|
Marchant JS, Ramos V, Parker I. Structural and functional relationships between Ca2+ puffs and mitochondria in Xenopus oocytes. Am J Physiol Cell Physiol 2002; 282:C1374-86. [PMID: 11997252 DOI: 10.1152/ajpcell.00446.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+ uptake and release from endoplasmic reticulum (ER) and mitochondrial Ca2+ stores play important physiological and pathological roles, and these processes are shaped by interactions that depend on the structural intimacy between these organelles. Here we investigate the morphological and functional relationships between mitochondria, ER, and the sites of intracellular Ca2+ release in Xenopus laevis oocytes by combining confocal imaging of local Ca2+ release events ("Ca2+ puffs") with mitochondrial localization visualized using vital dyes and subcellularly targeted fluorescent proteins. Mitochondria and ER are localized in cortical bands approximately 6-8 microm wide, with the mitochondria arranged as densely packed "islands" interconnected by discrete strands. The ER is concentrated more superficially than mitochondria, and the mean separation between Ca2+ puff sites and mitochondria is approximately 2.3 microm. However, a subpopulation of Ca2+ puff sites is intimately associated with mitochondria (approximately 28% within <600 nm), a greater number than expected if Ca2+ puff sites were randomly distributed. Ca2+ release sites close to mitochondria exhibit lower Ca2+ puff activity than Ca2+ puff sites in regions with lower mitochondrial density. Furthermore, Ca2+ puff sites in close association with mitochondria rarely serve as the sites for Ca2+ wave initiation. We conclude that mitochondria play important roles in regulating local ER excitability, Ca2+ wave initiation, and, thereby, spatial patterning of global Ca2+ signals.
Collapse
Affiliation(s)
- Jonathan S Marchant
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA
| | | | | |
Collapse
|
28746
|
Current literature in diabetes. Diabetes Metab Res Rev 2002; 18:245-52. [PMID: 12112943 DOI: 10.1002/dmrr.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28747
|
Csordás G, Madesh M, Antonsson B, Hajnóczky G. tcBid promotes Ca(2+) signal propagation to the mitochondria: control of Ca(2+) permeation through the outer mitochondrial membrane. EMBO J 2002; 21:2198-206. [PMID: 11980717 PMCID: PMC125984 DOI: 10.1093/emboj/21.9.2198] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Calcium spikes established by IP(3) receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER) are transmitted effectively to the mitochondria, utilizing local Ca(2+) interactions between closely associated subdomains of the ER and mitochondria. Since the outer mitochondrial membrane (OMM) has been thought to be freely permeable to Ca(2+), investigations have focused on IP(3)-driven Ca(2+) transport through the inner mitochondrial membrane (IMM). Here we demonstrate that selective permeabilization of the OMM by tcBid, a proapoptotic protein, results in an increase in the magnitude of the IP(3)-induced mitochondrial [Ca(2+)] signal. This effect of tcBid was due to promotion of activation of Ca(2+) uptake sites in the IMM and, in turn, to facilitation of mitochondrial Ca(2+) uptake. In contrast, tcBid failed to control the delivery of sustained and global Ca(2+) signals to the mitochondria. Thus, our data support a novel model that Ca(2+) permeability of the OMM at the ER- mitochondrial interface is an important determinant of local Ca(2+) signalling. Facilitation of Ca(2+) delivery to the mitochondria by tcBid may also support recruitment of mitochondria to the cell death machinery.
Collapse
Affiliation(s)
| | | | - Bruno Antonsson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA and
Department of Protein Biochemistry, Serono Pharmaceutical Research Institute, CH-1228 Geneva, Switzerland Corresponding author e-mail:
| | - György Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA and
Department of Protein Biochemistry, Serono Pharmaceutical Research Institute, CH-1228 Geneva, Switzerland Corresponding author e-mail:
| |
Collapse
|
28748
|
Muller-Delp J, Spier SA, Ramsey MW, Lesniewski LA, Papadopoulos A, Humphrey JD, Delp MD. Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles. Am J Physiol Heart Circ Physiol 2002; 282:H1843-54. [PMID: 11959651 DOI: 10.1152/ajpheart.00666.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.
Collapse
Affiliation(s)
- Judy Muller-Delp
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
28749
|
Liaudet L, Mabley JG, Pacher P, Virág L, Soriano FG, Marton A, Haskó G, Deitch EA, Szabó C. Inosine exerts a broad range of antiinflammatory effects in a murine model of acute lung injury. Ann Surg 2002; 235:568-578. [PMID: 11923614 PMCID: PMC1422473 DOI: 10.1097/00000658-200204000-00016] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the effects of inosine on the acute lung inflammation induced by lipopolysaccharide (LPS) in vivo and on the activation and cytotoxicity elicited by proinflammatory cytokines on human lung epithelial (A549) cells in vitro. SUMMARY BACKGROUND DATA Inosine is an endogenous purine recently shown to exert immunomodulatory and antiinflammatory effects. METHODS Mice challenged with intratracheal LPS (50 microg) were treated after 1, 6, and 12 hours with inosine (200 mg/kg intraperitoneal) or vehicle. After 24 hours, bronchoalveolar lavage fluid was obtained to measure proinflammatory (tumor necrosis factor-alpha [TNF-alpha], interleukin [IL]-1beta, IL-6), and antiinflammatory (IL-10, IL-4) cytokines, chemokines (MIP-1alpha and MIP-2), myeloperoxidase activity and total cell counts, nitric oxide production, and proteins. Lung histology and immunohistochemical detection of 3-nitrotyrosine, a marker of nitrosative stress, were performed in inflated-fixed lungs. In vitro, cell viability and production of the chemokine IL-8 were evaluated in A549 cells stimulated with a mixture of cytokines in the presence or absence of inosine. RESULTS Inosine downregulated the LPS-induced expression of TNF-alpha, IL-1beta, IL-6 and MIP-2 and tended to reduce MIP-1alpha, whereas it enhanced the production of IL-4. Total leukocyte counts, myeloperoxidase, nitric oxide production, and proteins were all significantly decreased by inosine. The purine also improved lung morphology and suppressed 3-nitrotyrosine staining in the lungs after LPS. Inosine attenuated the cytotoxicity and the expression of IL-8 induced by proinflammatory cytokines in A549 cells. CONCLUSIONS Inosine largely suppressed LPS-induced lung inflammation in vivo and reduced the toxicity of cytokines in lung cells in vitro. These data support the proposal that inosine might represent a useful adjunct in the therapy of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Lucas Liaudet
- Inotek Corporation, Beverly, Massachusetts 01915, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28750
|
Torta R, Scalabrino A. [Depression, anxiety and cardiovascular disease: biological correlations and therapeutic strategies]. EPIDEMIOLOGIA E PSICHIATRIA SOCIALE 2002; 11:73-82. [PMID: 12212468 DOI: 10.1017/s1121189x00005534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|