251
|
Nieuwenhuis E, Motoyama J, Barnfield PC, Yoshikawa Y, Zhang X, Mo R, Crackower MA, Hui CC. Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol 2006; 26:6609-22. [PMID: 16914743 PMCID: PMC1592833 DOI: 10.1128/mcb.00295-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hedgehog (Hh) signaling plays pivotal roles in tissue patterning and development in Drosophila melanogaster and vertebrates. The Patched1 (Ptc1) gene, encoding the Hh receptor, is mutated in nevoid basal cell carcinoma syndrome, a human genetic disorder associated with developmental abnormalities and increased incidences of basal cell carcinoma (BCC) and medulloblastoma (MB). Ptc1 mutations also occur in sporadic forms of BCC and MB. Mutational studies with mice have verified that Ptc1 is a tumor suppressor. We previously identified a second mammalian Patched gene, Ptc2, and demonstrated its distinct expression pattern during embryogenesis, suggesting a unique role in development. Most notably, Ptc2 is expressed in an overlapping pattern with Shh in the epidermal compartment of developing hair follicles and is highly expressed in the developing limb bud, cerebellum, and testis. Here, we describe the generation and phenotypic analysis of Ptc2(tm1/tm1) mice. Our molecular analysis suggests that Ptc2(tm1) likely represents a hypomorphic allele. Despite the dynamic expression of Ptc2 during embryogenesis, Ptc2(tm1/tm1) mice are viable, fertile, and apparently normal. Interestingly, adult Ptc2(tm1/tm1) male animals develop skin lesions consisting of alopecia, ulceration, and epidermal hyperplasia. While functional compensation by Ptc1 might account for the lack of a strong mutant phenotype in Ptc2-deficient mice, our results suggest that normal Ptc2 function is required for adult skin homeostasis.
Collapse
Affiliation(s)
- Erica Nieuwenhuis
- Program in Developmental Biology, The Hospital for Sick Children, Toronto Medical Discovery Towers, MaRS Building, East Tower, Room 13-314, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Lelievre V, Ghiani CA, Seksenyan A, Gressens P, de Vellis J, Waschek JA. Growth factor-dependent actions of PACAP on oligodendrocyte progenitor proliferation. ACTA ACUST UNITED AC 2006; 137:58-66. [PMID: 16989910 DOI: 10.1016/j.regpep.2006.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/20/2006] [Accepted: 04/22/2006] [Indexed: 11/28/2022]
Abstract
We previously reported that rat oligodendrocyte progenitors (OLP) express receptors for the pituitary adenylyl cyclase-activating peptide (PACAP) in vivo and in vitro. Addition of PACAP to cultured OLP triggered a potent elevation in intracellular cAMP contents, a dose-dependent stimulation of proliferation, and a delay in myelinogenesis (Lee M, Lelievre V, Zhao P, Torres M, Rodriguez W, Byun JY, Doshi S, Ioffe Y, Gupta G, de los Monteros AE, de Vellis J, Waschek J. Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. J Neurosci. 2001 21:3849-59.). In an attempt to understand how PACAP might interact with growth factors known to stimulate OLP proliferation, we investigated PACAP actions on OLP proliferation in the presence of Fibroblast Growth Factor-2 (FGF-2) and PDGF. Multiple PACAP receptor subtype mRNAs and splice variants were detected in these cultures. PACAP by itself potently stimulated OLP proliferation and enhanced the ability of FGF-2 to stimulate DNA synthesis. In contrast, this peptide strongly antagonized the mitogenic effects of PDGF in association with a reduction of PDGFalpha receptor gene expression. Additionally, we investigated the interaction of PACAP with the morphogenetic factor sonic hedgehog (Shh), which recently was shown to be crucial for oligodendrocyte generation. OLP cultures were found to express mRNAs for both ptc1 (Shh receptor) and gli1 (Shh target gene) and responded to Shh treatment with an increase in proliferation. PACAP antagonized the ability of Shh to stimulate OLP proliferation. Moreover, transcriptional targets of Shh signaling were also reduced by this treatment, suggesting that PACAP directly antagonized Shh signaling. These studies reveal complex in vitro interactions of PACAP with other factors involved in OLP development.
Collapse
Affiliation(s)
- Vincent Lelievre
- David Geffen School of Medicine, Department of Psychiatry, Semel Institute for Neuroscience and Mental Retardation Research Center, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
253
|
Nakashima H, Nakamura M, Yamaguchi H, Yamanaka N, Akiyoshi T, Koga K, Yamaguchi K, Tsuneyoshi M, Tanaka M, Katano M. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res 2006; 66:7041-9. [PMID: 16849549 DOI: 10.1158/0008-5472.can-05-4588] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hedgehog (Hh) signaling pathway, which functions as an organizer in embryonic development, is implicated in the development of various tumors. In pancreatic cancer, pathway activation is reported to result from aberrant expression of the ligand, sonic Hh (Shh). However, the details of the mechanisms regulating Shh expression are not yet known. We hypothesized that nuclear factor-kappaB (NF-kappaB), a hallmark transcription factor in inflammatory responses, contributes to the overexpression of Shh in pancreatic cancer. In the present study, we found a close positive correlation between NF-kappaB p65 and Shh expression in surgically resected pancreas specimens, including specimens of chronic pancreatitis and pancreatic adenocarcinoma. We showed that blockade of NF-kappaB suppressed constitutive expression of Shh mRNA in pancreatic cancer cells. Further activation of NF-kappaB by inflammatory stimuli, including interleukin-1beta, tumor necrosis factor-alpha, and lipopolysaccharide, induced overexpression of Shh, resulting in activation of the Hh pathway. Overexpression of Shh induced by these stimuli was also suppressed by blockade of NF-kappaB. NF-kappaB-induced Shh expression actually activated the Hh pathway in a ligand-dependent manner and enhanced cell proliferation in pancreatic cancer cells. In addition, inhibition of the Hh pathway as well as NF-kappaB suppressed the enhanced cell proliferation. Our data suggest that NF-kappaB activation is one of the mechanisms underlying Shh overexpression in pancreatic cancer and that proliferation of pancreatic cancer cells is accelerated by NF-kappaB activation in part through Shh overexpression.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Zhao M, Qiao M, Harris SE, Chen D, Oyajobi BO, Mundy GR. The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol Cell Biol 2006; 26:6197-208. [PMID: 16880529 PMCID: PMC1592805 DOI: 10.1128/mcb.02214-05] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) plays a critical role in osteoblast function. In Drosophila, Cubitus interruptus (Ci), which mediates hedgehog signaling, regulates gene expression of dpp, the ortholog of mammalian BMP-2. Null mutation of the transcription factor Gli2, a mammalian homolog of Ci, results in severe skeletal abnormalities in mice. We hypothesize that Gli2 regulates BMP-2 gene transcription and thus osteoblast differentiation. In the present study, we show that overexpression of Gli2 enhances BMP-2 promoter activity and mRNA expression in osteoblast precursor cells. In contrast, knocking down Gli2 expression by Gli2 small interfering RNA or genetic ablation of the Gli2 gene results in significant inhibition of BMP-2 gene expression in osteoblasts. Promoter analyses, including chromatin immunoprecipitation and electrophoretic mobility shift assays, provided direct evidence that Gli2 physically interacts with the BMP-2 promoter. Functional studies showed that Gli2 is required for osteoblast maturation in a BMP-2-dependent manner. Finally, Sonic hedgehog (Shh) stimulates BMP-2 promoter activity and osteoblast differentiation, and the effects of Shh are mediated by Gli2. Taken together, these results indicate that Gli2 mediates hedgehog signaling in osteoblasts and is a powerful activator of BMP-2 gene expression, which is required in turn for normal osteoblast differentiation.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Cellular and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
255
|
Abstract
Cancer-associated genodermatoses are a group of genetic disorders inherited in an autosomal-dominant fashion in which unique cutaneous findings are a reliable marker for the risk of developing internal malignancies. The historical, clinical and dermatopathological aspects of basal cell nevus syndrome, Muir-Torre syndrome, Cowden syndrome, Carney complex and Birt-Hogg-Dubé syndrome are reviewed in a personal and informal fashion. The latest advances in the molecular genetics of the disorders are also summarized.
Collapse
|
256
|
Cohen MM. Holoprosencephaly: clinical, anatomic, and molecular dimensions. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2006; 76:658-673. [PMID: 17001700 DOI: 10.1002/bdra.20295] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Holoprosencephaly is addressed under the following headings: alobar, semilobar, and lobar holoprosencephaly; arrhinencephaly; agenesis of the corpus callosum; pituitary abnormalities; hindbrain abnormalities; syntelencephaly; aprosencephaly/atelencephaly; neural tube defects; facial anomalies; median cleft lip; minor facial anomalies; single maxillary central incisor; holoprosencephaly-like phenotype; epidemiology; genetic causes of holoprosencephaly; teratogenic causes of holoprosencephaly; SHH mutations; ZIC2 mutations; SIX3 mutations; TGIF mutations; PTCH mutations; GLI2 mutations; FAST1 mutations; TDGF1 mutations; and DHCR7 mutations.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
257
|
Meloni AR, Fralish GB, Kelly P, Salahpour A, Chen JK, Wechsler-Reya RJ, Lefkowitz RJ, Caron MG. Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol 2006; 26:7550-60. [PMID: 16908539 PMCID: PMC1636865 DOI: 10.1128/mcb.00546-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deregulation of the Sonic hedgehog pathway has been implicated in an increasing number of human cancers. In this pathway, the seven-transmembrane (7TM) signaling protein Smoothened regulates cellular proliferation and differentiation through activation of the transcription factor Gli. The activity of mammalian Smoothened is controlled by three different hedgehog proteins, Indian, Desert, and Sonic hedgehog, through their interaction with the Smoothened inhibitor Patched. However, the mechanisms of signal transduction from Smoothened are poorly understood. We show that a kinase which regulates signaling by many "conventional" 7TM G-protein-coupled receptors, G protein-coupled receptor kinase 2 (GRK2), participates in Smoothened signaling. Expression of GRK2, but not catalytically inactive GRK2, synergizes with active Smoothened to mediate Gli-dependent transcription. Moreover, knockdown of endogenous GRK2 by short hairpin RNA (shRNA) significantly reduces signaling in response to the Smoothened agonist SAG and also inhibits signaling induced by an oncogenic Smoothened mutant, Smo M2. We find that GRK2 promotes the association between active Smoothened and beta-arrestin 2. Indeed, Gli-dependent signaling, mediated by coexpression of Smoothened and GRK2, is diminished by beta-arrestin 2 knockdown with shRNA. Together, these data suggest that GRK2 plays a positive role in Smoothened signaling, at least in part, through the promotion of an association between beta-arrestin 2 and Smoothened.
Collapse
Affiliation(s)
- Alison R Meloni
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Endo H, Momota Y, Oikawa A, Shinkai H. Psoriatic skin expresses the transcription factor Gli1: possible contribution of decreased neurofibromin expression. Br J Dermatol 2006; 154:619-23. [PMID: 16536802 DOI: 10.1111/j.1365-2133.2005.06975.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disorder of skin characterized by hyperproliferation of keratinocytes. Intracellular signalling pathways inducing the hyperproliferation of keratinocytes remain to be elucidated. An inhibitor of Hedgehog (Hh) signalling, cyclopamine, was recently reported to clear psoriatic skin lesions, suggesting involvement of the Hh signalling pathway in the hyperproliferation of lesional keratinocytes. We have previously observed activation of the Hh signalling pathway in Schwann cells of plexiform neurofibroma in neurofibromatosis type 1 (NF1), which results from functional loss of the NF1 encoding protein, neurofibromin. In psoriasis, deficiency of neurofibromin expression has been observed in lesional keratinocytes. OBJECTIVES To investigate whether the Hh signalling pathway would be activated in psoriasis and whether inhibition of neurofibromin expression would enhance the activation of the Hh signalling pathway. METHODS Activation of the Hh signalling pathway was examined by protein expression of one of the target genes, GLI1, coding for the transcription factor Gli1. Immunohistochemical studies were performed on seven psoriatic skin samples and seven control normal skin samples with a standard immunoperoxidase technique. mRNA expression of GLI1 was analysed by reverse transcriptase-polymerase chain reaction in HaCaT cells transfected with double-strand small interfering RNA for NF1. RESULTS Our results showed Gli1 expression in psoriatic skin but not in control normal skin. Inhibition of neurofibromin expression in HaCaT cells upregulated mRNA expression of GLI1. CONCLUSIONS Our findings indicate that the Hh signalling pathway is activated in psoriasis and that neurofibromin deficiency may upregulate the pathway.
Collapse
Affiliation(s)
- H Endo
- Department of Dermatology, Chiba Aoba Municipal Hospital, 1273-2 Aoba-cho, Chuo-ku, Chiba 260-0852, Japan.
| | | | | | | |
Collapse
|
259
|
Fisher CE, Howie SEM. The role of megalin (LRP-2/Gp330) during development. Dev Biol 2006; 296:279-97. [PMID: 16828734 DOI: 10.1016/j.ydbio.2006.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/21/2006] [Accepted: 06/05/2006] [Indexed: 11/17/2022]
Abstract
Megalin (LRP-2/GP330), a member of the LDL receptor family, is an endocytic receptor expressed mainly in polarised epithelial cells. Identified as the pathogenic autoantigen of Heymann nephritis in rats, its functions have been studied in greatest detail in adult mammalian kidney, but there is increasing recognition of its involvement in embryonic development. The megalin homologue LRP-1 is essential for growth and development in Caenorhabditis elegans and megalin plays a role in CNS development in zebrafish. There is now also evidence for a homologue in Drosophila. However, most research concerns mammalian embryogenesis; it is widely accepted to be important during forebrain development and the developing renal proximal tubule. Megalin is also expressed in lung, eye, intestine, uterus, oviduct, and male reproductive tract. It is found in yolk sacs and the outer cells of pre-implantation mouse embryos, where interactions with cubilin result in nutrient endocytosis, and it may be important during implantation. Models for megalin interaction(s) with Sonic Hedgehog (Shh) have been proposed. The importance of Shh signalling during embryogenesis is well established; how and when megalin interacts with Shh is becoming a pertinent question in developmental biology.
Collapse
Affiliation(s)
- Carolyn E Fisher
- Centre for Inflammation Research, Queen's Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH 16 4JT, Scotland, UK.
| | | |
Collapse
|
260
|
Lee DA, Grossman ME, Schneiderman P, Celebi JT. Genetics of skin appendage neoplasms and related syndromes. J Med Genet 2006; 42:811-9. [PMID: 16272260 PMCID: PMC1735949 DOI: 10.1136/jmg.2004.025577] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the past decade the molecular basis of many inherited syndromes has been unravelled. This article reviews the clinical and genetic aspects of inherited syndromes that are characterised by skin appendage neoplasms, including Cowden syndrome, Birt-Hogg-Dube syndrome, naevoid basal cell carcinoma syndrome, generalised basaloid follicular hamartoma syndrome, Bazex syndrome, Brooke-Spiegler syndrome, familial cylindromatosis, multiple familial trichoepitheliomas, and Muir-Torre syndrome.
Collapse
Affiliation(s)
- D A Lee
- Department of Dermatology, Columbia University Medical Center, New York, USA
| | | | | | | |
Collapse
|
261
|
Kim JH, Huang Z, Mo R. Gli3 null mice display glandular overgrowth of the developing stomach. Dev Dyn 2006; 234:984-91. [PMID: 16247775 DOI: 10.1002/dvdy.20542] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of the Hedgehog signaling pathway in various aspects of gut development is still poorly understood. In the developing stomach, Sonic (Shh) and Indian (Ihh) hedgehog are expressed in both distinct and overlapping regions. Loss of Sonic hedgehog function in the stomach results in a glandular phenotype of intestinal transformation and overgrowth. These changes are reminiscent of the pre-malignant lesion, intestinal metaplasia. To determine the role of Hedgehog-related transcription factors, Gli2 and Gli3, in Shh signaling during stomach development, we conducted a mutant analysis of glandular stomach from Shh, Gli2, and Gli3 mutant mice. Although Gli2 principally mediates the activator function of Shh, surprisingly we observed minimal changes in glandular development in the Gli2 mutant stomach. Furthermore, Gli3, which typically functions as a repressor of Hedgehog signal, showed a striking phenocopy of the glandular expansion and intestinal transformation found in Shh mutant stomach. A reduction in apoptotic events was seen in all mutant stomachs with no appreciable changes in proliferation. Both Shh and Gli3 mutant stomachs displayed early changes of intestinal transformation but these did not impact on the overall differentiation of the gastric epithelium. Interestingly, the observation that Gli3 shares a similar glandular phenotype to Shh mutant stomach reveals a possible novel role of Gli3 activator in the developing stomach. The embryonic stomach is a unique model of the Hedgehog pathway function and one that may help to uncover some of the mechanisms underlying the development of intestinal metaplasia.
Collapse
Affiliation(s)
- Jae H Kim
- Program in Integrative Biology, The Research Institute, The Hospital for Sick Children, Toronto, Canada.
| | | | | |
Collapse
|
262
|
Klein RD, Dykas DJ, Bale AE. Clinical testing for the nevoid basal cell carcinoma syndrome in a DNA diagnostic laboratory. Genet Med 2006; 7:611-9. [PMID: 16301862 DOI: 10.1097/01.gim.0000182879.57182.b4] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE This study determines which clinical features predict positive test results among samples submitted for DNA-based diagnostic nevoid basal cell carcinoma syndrome (NBCCS) testing, and further defines the mutational spectrum of the PTCH gene. METHODS DNA was extracted from peripheral blood leukocytes, and polymerase chain reaction products from exons 1 to 23 of the PTCH gene were directly sequenced. Pedigree phenotypic information was obtained by written questionnaire. RESULTS Among 106 presumably unrelated pedigrees, 44 independent mutations were found in 47 families. There were 11 nonsense mutations; 1 in-frame deletion; 17 deletions, 6 insertions, and 1 deletion-insertion that generated frameshifts; 5 splice-site mutations; 1 in-frame duplication; and 2 presumptive missense mutations. Twenty-seven of 46 pedigrees (58.7%) with two or more typical radiographic or pathologic features of NBCCS tested positive for PTCH mutations. Of these, 26 had jaw cysts in combination with other characteristics or neoplasms including basal cell carcinomas, palmar pits, skeletal abnormalities, ocular abnormalities, medulloblastomas, cardiac or ovarian fibromas, calcification of the falx cerebri, polydactyly, cleft lip and/or palate, and agenesis of the corpus callosum or other central nervous system malformations. None of the 13 pedigrees solely affected by multiple or early-onset basal cell carcinomas and none of the four pedigrees with jaw cysts alone had PTCH mutations. CONCLUSIONS Pedigrees with multiple features of NBCCS were most likely to test positive for PTCH mutations. Pedigrees with multiple or early-onset basal cell carcinomas without other features of the disease did not test positive for PTCH mutations.
Collapse
Affiliation(s)
- Roger D Klein
- DNA Diagnostic Laboratory, Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
263
|
Bhatia N, Thiyagarajan S, Elcheva I, Saleem M, Dlugosz A, Mukhtar H, Spiegelman VS. Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J Biol Chem 2006; 281:19320-6. [PMID: 16651270 DOI: 10.1074/jbc.m513203200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway plays a crucial role in embryogenesis and has been linked to the development of several human malignancies. The transcription factor Gli2 plays a key role in the transduction of Hh signals by modulating transcription of some Hh target genes, yet the mechanisms that control Gli2 protein expression are largely unknown. Here we report that beta-transducin repeat-containing protein (beta-TrCP) E3 ubiquitin ligase is required for Gli2 degradation. beta-TrCP2 directly binds wild type Gli2 and promotes its ubiquitination. Single amino acid substitution in Gli2 putative binding site inhibits its interaction with beta-TrCP2, its ubiquitination, and stabilizes the Gli2 protein. Stable Gli2 mutant is expressed in higher levels and is more potent in the activation of Gli-dependent transcription as compared with wild type Gli2. We also found that GLI2 protein is expressed highly in prostate cancer cell lines and primary tumors, whereas the level of GLI2 mRNA is not appreciably different in normal and neoplastic prostate. These data identify beta-TrCP2 as a pivotal regulator of Gli2 expression and point to an important role for posttranslational modulation of GLI2 protein levels in Hh pathway-associated human prostate cancer.
Collapse
Affiliation(s)
- Neehar Bhatia
- Department of Dermatology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
264
|
Kovarova M, Wassif CA, Odom S, Liao K, Porter FD, Rivera J. Cholesterol deficiency in a mouse model of Smith-Lemli-Opitz syndrome reveals increased mast cell responsiveness. ACTA ACUST UNITED AC 2006; 203:1161-71. [PMID: 16618793 PMCID: PMC2121200 DOI: 10.1084/jem.20051701] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutation of the 3β-hydroxysterol Δ7-reductase gene (Dhcr7−/−) results in Smith-Lemli-Opitz syndrome (SLOS). Patients, and genetically altered mice, are unable to produce cholesterol and accumulate 7-dehydrocholesterol (DHC) in serum and tissue. This causes multiple growth and developmental abnormalities as well as immune system anomalies including allergy. Because cholesterol is a key component of liquid-ordered membranes (lipid rafts) and these domains have been implicated in regulating mast cell activation, we examined whether mast cell responsiveness is altered in this model. Mast cells derived from Dhcr7−/− mice (DHCR KO) showed constitutive cytokine production and hyper-degranulation after stimulation of the high affinity IgE receptor (FcɛRI). DHCR KO mast cells, but not wild-type mast cells, accumulated DHC in lipid rafts. DHC partially disrupted lipid raft stability and displaced Lyn kinase protein and activity from lipid rafts. This led to down-regulation of some Lyn-dependent signaling events but increased Fyn kinase activity and Akt phosphorylation. The Lyn-dependent phosphorylation of Csk-binding protein, which negatively regulates Fyn activity, was decreased. This phenotype reproduces some of the characteristics of Lyn-null mast cells, which also demonstrate hyper-degranulation. These findings provide the first evidence of lipid raft dysfunction in SLOS and may explain the observed association of allergy with SLOS.
Collapse
Affiliation(s)
- Martina Kovarova
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
265
|
Lipinski RJ, Gipp JJ, Zhang J, Doles JD, Bushman W. Unique and complimentary activities of the Gli transcription factors in Hedgehog signaling. Exp Cell Res 2006; 312:1925-38. [PMID: 16571352 DOI: 10.1016/j.yexcr.2006.02.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/15/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
The Gli family of transcription factors (Gli1, 2 and 3) mediate the Hedgehog morphogenetic signal by regulating the expression of downstream target genes. Aberrations in Hedgehog signaling seriously affect vertebrate development. Postnatally, Hedgehog signaling has been postulated to play a pivotal role in healing and repair processes and inappropriate pathway activation has been implicated in several types of cancers. To better understand both the upstream regulation of the Gli transcription factors, as well as their unique and combinatorial roles in regulating the expression of Hedgehog target genes, we have characterized embryonic fibroblasts (MEFs) from Gli mutant mice. Stimulation of wild-type MEFs by Sonic Hedgehog (Shh) peptide elicited unique profiles of induction of Hedgehog target genes Gli1, Ptc1, and Hip1. Gli2 loss-of-function was associated with diminished Shh-induced target gene expression, while Gli3 loss-of-function was associated with increased basal and Shh-induced target gene expression. The loss of Gli1 alone had no effect on target gene induction but did diminish Shh-induced target gene expression when combined with the loss of Gli2 or Gli3. Additionally, overexpression of Gli1 induced target gene expression in Gli2(-/-)3(-/-) MEFs, while Shh stimulation did not. Using MEFs expressing only Gli2 or Gli3, we found that both cyclopamine and the PKA activator forskolin inhibited target gene induction mediated by Gli2 and Gli3. These results demonstrate that Gli2 and Gli3 share common regulatory mechanisms and modulate Hedgehog target gene expression directly and independently while also regulating Gli1 expression, which in specific contexts, coordinately contributes to target gene activation.
Collapse
Affiliation(s)
- Robert J Lipinski
- Molecular and Environmental Toxicology Center, Madison, WI 53705-222, USA
| | | | | | | | | |
Collapse
|
266
|
|
267
|
Abstract
With advancing age, the mammalian thymus undergoes involution, a progressive loss of architectural integrity and lymphoid cellularity that results in reduced T lymphopoiesis. Thymic involution also is associated with extreme malnutrition and states of immune deficiency, such as active HIV infection, after chemotherapy, or during pregnancy. Immune recovery appears to require restoration of normal thymopoiesis. Although several means are known to increase thymic cellularity in the aged, including systemic administration of hormones, androgen ablation, and thymic tissue transplantation, each suffers from specific limitations that prevent widespread application. This paper presents a novel approach to rejuvenate T cell differentiation in the aged that employs intrathymic implantation of engineered stromal cells. Two different proteins have been examined for their impact on thymopoiesis after delivery by somatic cell implantation. Intrathymic injection of IL-7-producing stromal cells enhances the earliest specification steps of T cell development, resulting in the increased representation of pro-T cells in the aged thymus. In contrast, increasing the intrathymic levels of sonic hedgehog diminishes this aspect of T cell poiesis.
Collapse
|
268
|
Hao L, Aspöck G, Bürglin TR. The hedgehog-related gene wrt-5 is essential for hypodermal development in Caenorhabditis elegans. Dev Biol 2006; 290:323-36. [PMID: 16413526 DOI: 10.1016/j.ydbio.2005.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 10/17/2005] [Accepted: 11/14/2005] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans genome encodes a series of hedgehog-related genes, which are thought to have evolved and diverged from an ancestral Hh gene. They are classified into several families based on their N-terminal domains. Here, we analyze the expression and function of a member of the warthog gene family, wrt-5, that lacks the Hint/Hog domain. wrt-5 is expressed in seam cells, the pharynx, pharyngeal-intestinal valve cells, neurons, neuronal support cells, the excretory cell, and the reproductive system. WRT-5 protein is secreted into the extracellular space during embryogenesis. Furthermore, during larval development, WRT-5 protein is secreted into the pharyngeal lumen and the pharyngeal expression changes in a cyclical manner in phase with the molting cycle. Deletion mutations in wrt-5 cause embryonic lethality, which are temperature sensitive and more severe at 15 degrees C than at 25 degrees C. Animals that hatch exhibit variable abnormal morphology, for example, bagging worms, blistering, molting defects, or Roller phenotypes. We examined hypodermal cell junctions using the AJM-1Colon, two colonsGFP marker in the wrt-5 mutant background and observed cell boundary abnormalities in the arrested embryos. AJM-1Colon, two colonsGFP protein is also misplaced in pharyngeal muscle cells in the absence of WRT-5. In conclusion, we show that wrt-5 is an essential gene that - despite its lack of a Hint domain - has multiple functions in C. elegans and is implicated in cell shape integrity.
Collapse
Affiliation(s)
- Limin Hao
- Department of Biosciences at Novum, and Center for Genomics and Bioinformatics, Karolinska Institutet, Hälsovägen 7, SE-141 57 Huddinge, Sweden
| | | | | |
Collapse
|
269
|
Coon DR, Roberts DJ, Loscertales M, Kradin R. Differential epithelial expression of SHH and FOXF1 in usual and nonspecific interstitial pneumonia. Exp Mol Pathol 2006; 80:119-23. [PMID: 16448649 DOI: 10.1016/j.yexmp.2005.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 12/09/2005] [Indexed: 12/21/2022]
Abstract
Morphogenetic factors have been shown to play a role in embryogenesis and post-embryonic disease. Interstitial pulmonary fibrosis is a chronic and often progressive disorder that can lead to end-stage cystic lung. Its two major subtypes, usual interstitial pneumonitis (UIP) and nonspecific interstitial pneumonitis (NSIP) differ in their response to immunosuppressive regimens, with UIP having a significantly worse prognosis. The clinical and histologic overlap between these disorders is substantial, and there are no ancillary findings that can accurately distinguish them. We examined surgical and autopsy specimens of lung in 13 cases of patients with either UIP or the fibrotic variant of NSIP (NSIP-F) for their expression of Sonic hedgehog (Shh) and Foxf1 in situ. We identified a pattern of strong Shh expression with weak expression of Foxf1 in all cases of UIP and a complementary expression of Shh and Foxf1 in cases of NSIP-F. We conclude that morphogenetic genes may participate differentially in the pathogenesis of UIP and NSIP-F.
Collapse
Affiliation(s)
- David R Coon
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
270
|
Abstract
Mammary gland stem cells are a quiescent and self-renewing population within the mammary gland that are capable of giving rise to the differentiated ductal, alveolar and myoepithelial cells. To identify mammary gland stem cells, several investigators have employed a variety of methods including: non-adherent mammosphere cultures; 5-bromo-2-deoxy-uridine (BrdU) label-retention studies; cell-surface markers, such as Sca1 and CD49f; and Hoechst dye efflux. These methods have helped identify and further characterize signal transduction pathways such as the Notch, Wnt and Hedgehog pathways that may be important for the self-renewal and fate determination of mammary gland stem cells. Stem cells within the mammary gland have been proposed to underpin many types of breast cancer. A better understanding of the signal transduction pathways and the molecules that are responsible for the self-renewal and survival of these cells will be essential in the design of more effective therapies aimed at the eradication of both cancer-initiating cells and breast cancer stem cells.
Collapse
Affiliation(s)
- Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-3498, USA
| | | | | | | |
Collapse
|
271
|
Nagase M, Nagase T, Koshima I, Fujita T. Critical time window of hedgehog-dependent angiogenesis in murine yolk sac. Microvasc Res 2006; 71:85-90. [PMID: 16414085 DOI: 10.1016/j.mvr.2005.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 10/17/2005] [Accepted: 11/08/2005] [Indexed: 11/22/2022]
Abstract
Hedgehog family was reported to be involved in murine yolk sac angiogenesis. However, it has not been clarified whether impaired angiogenesis under hedgehog signaling blockade is attributable to true defect in angiogenic process or just a sequel of earlier vasculogenic abnormalities. In the present study, we examined the effects of stage-specific inhibition of hedgehog cascade on vascular morphogenesis by applying cyclopamine or jervine to culture media of whole embryo culture system from embryonic days 8.0 until 9.5. Whole-mount immunostaining revealed that cyclopamine or jervine treatment in a narrow time window impaired angiogenic remodeling such as ramification into large and small branches and pericyte recruitment, although vasculogenesis was grossly normal. Molecular analyses suggest that indian hedgehog in the yolk sac endoderm regulates the induction of VEGF, Flk-1 and Notch-1. Our results indicate that hedgehog signaling is indispensable for mouse yolk sac angiogenesis, even when vasculogenesis is not perturbed.
Collapse
Affiliation(s)
- Miki Nagase
- Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
272
|
Abstract
Bone and cartilage and their disorders are addressed under the following headings: functions of bone; normal and abnormal bone remodeling; osteopetrosis and osteoporosis; epithelial-mesenchymal interaction, condensation and differentiation; osteoblasts, markers of bone formation, osteoclasts, components of bone, and pathology of bone; chondroblasts, markers of cartilage formation, secondary cartilage, components of cartilage, and pathology of cartilage; intramembranous and endochondral bone formation; RUNX genes and cleidocranial dysplasia (CCD); osterix; histone deacetylase 4 and Runx2; Ligand to receptor activator of NFkappaB (RANKL), RANK, osteoprotegerin, and osteoimmunology; WNT signaling, LRP5 mutations, and beta-catenin; the role of leptin in bone remodeling; collagens, collagenopathies, and osteogenesis imperfecta; FGFs/FGFRs, FGFR3 skeletal dysplasias, craniosynostosis, and other disorders; short limb chondrodysplasias; molecular control of the growth plate in endochondral bone formation and genetic disorders of IHH and PTHR1; ANKH, craniometaphyseal dysplasia, and chondrocalcinosis; transforming growth factor beta, Camurati-Engelmann disease (CED), and Marfan syndrome, types I and II; an ACVR1 mutation and fibrodysplasia ossificans progressiva; MSX1 and MSX2: biology, mutations, and associated disorders; G protein, activation of adenylyl cyclase, GNAS1 mutations, McCune-Albright syndrome, fibrous dysplasia, and Albright hereditary osteodystrophy; FLNA and associated disorders; and morphological development of teeth and their genetic mutations.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
273
|
Reijntjes S, Blentic A, Gale E, Maden M. The control of morphogen signalling: regulation of the synthesis and catabolism of retinoic acid in the developing embryo. Dev Biol 2005; 285:224-37. [PMID: 16054125 DOI: 10.1016/j.ydbio.2005.06.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/18/2005] [Accepted: 06/10/2005] [Indexed: 11/16/2022]
Abstract
We consider here how morphogenetic signals involving retinoic acid (RA) are switched on and off in the light of positive and negative feedback controls which operate in other embryonic signalling systems. Switching on the RA signal involves the synthetic retinaldehyde dehydrogenase (RALDH) enzymes and it is currently thought that switching off the RA signal involves the CYP26 enzymes which catabolise RA. We have tested whether these enzymes are regulated by the presence or absence of all-trans-RA using the vitamin A-deficient quail model system and the application of excess retinoids on beads to various locations within the embryo. The Raldhs are unaffected either by the absence or presence of excess RA, whereas the Cyps are strongly affected. In the absence of RA some, but not all domains of Cyp26A1, Cyp26B1 and Cyp26C1 are down-regulated, in particular the spinal cord (Cyp26A1), the heart and developing vasculature (Cyp26B1) and the rhombomeres (Cyp26C1). In the presence of excess RA, the Cyps show a differential regulation-Cyp26A1 and Cyp26B1 are up-regulated whereas Cyp26C1 is down-regulated. We tested whether the Cyp products have a similar influence on these genes and indeed 4-oxo-RA, 4-OH-RA and 5,6-epoxy-RA do. Furthermore, these 3 metabolites are biologically active in that they fully rescue the vitamin A-deficient quail embryo. Finally, by using retinoic acid receptor selective agonists we show that these compounds regulate the Cyps through the RARalpha receptor. These results are discussed with regard to positive and negative feedback controls in developing systems.
Collapse
Affiliation(s)
- Susan Reijntjes
- MRC Centre for Developmental Neurobiology, 4th floor New Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | | | |
Collapse
|
274
|
Abstract
Medulloblastoma is a malignant tumor that arises in the cerebellum in children, presumably by transformation of granule neuron precursor cells. In vivo models of medulloblastoma in genetically engineered mice have shown that activation of signal transduction pathways that stimulate proliferation and inhibit differentiation of neural progenitor cells during cerebellar development initiate medulloblastoma formation. Activation of the Sonic hedgehog (Shh)/Patched signaling pathway in the postnatal cerebellum is sufficient to induce medulloblastoma in mice. Activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway by insulin-like growth factor-II, inactivation of the p53 tumor suppressor protein, loss of DNA damage repair mechanisms, and ectopic expression of Myc oncoproteins cooperate with Shh/Patched signaling to enhance tumor formation in mice. Ectopic expression of alpha and beta interferons in the developing brain also induces Shh-mediated medulloblastoma formation, suggesting a possible role for antiviral response in the genesis of medulloblastoma. By revealing which cell signaling proteins can initiate medulloblastoma formation, mouse models have enabled investigators to identify molecular targets for designing new therapies. Small-molecule inhibitors of the Shh/Patched and PI3K pathways are potential chemotherapeutic agents for patients with medulloblastoma.
Collapse
Affiliation(s)
- Daniel W Fults
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84132-2303, USA.
| |
Collapse
|
275
|
Piedimonte LR, Wailes IK, Weiner HL. Medulloblastoma: mouse models and novel targeted therapies based on the Sonic hedgehog pathway. Neurosurg Focus 2005; 19:E8. [PMID: 16398472 DOI: 10.3171/foc.2005.19.5.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding molecular pathways, signaling cascades, and genetic alterations activated during tumorigenesis is essential for the development of targeted cancer treatments. In children, tumors of the central nervous system are thought to arise from progenitor cells that show considerable temporal and spatial heterogeneity in a developmental environment that is different from that of the adult. Investigating the molecular basis of pediatric tumors is critical because it is likely to generate novel treatments. Animal models have brought many important advances in this field. In this review the authors discuss the mouse models based on the Sonic hedgehog pathway, which have provided a better knowledge of the genetic and molecular alterations of medulloblastoma.
Collapse
Affiliation(s)
- Leandro R Piedimonte
- Division of Pediatric Neurosurgery, Department of Neurosurgery, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
276
|
Abstract
Congenital colobomata of the eye are important causes of childhood visual impairment and blindness. Ocular coloboma can be seen in isolation and in an impressive number of multisystem syndromes, where the eye phenotype is often seen in association with severe neurological or craniofacial anomalies or other systemic developmental defects. Several studies have shown that, in addition to inheritance, environmental influences may be causative factors. Through work to identify genes underlying inherited coloboma, significant inroads are being made into understanding the molecular events controlling closure of the optic fissure. In general, severity of disease can be linked to the temporal expression of the gene, but this is modified by factors such as tissue specificity of gene expression and genetic redundancy.
Collapse
|
277
|
Abstract
Members of the Wnt gene family play important roles in the regulation of a number of basic developmental processes. Because Wnt is such a potent morphogen, its expression must be controlled tightly and precisely. While many review papers focused on Wnt signaling downstream of the receptor, this review addresses regulations of Wnt itself on several levels, including the transcriptional level, RNA splicing, the post-transcriptional level, the translational level, and the post-translational level. It is these multiple, precise and tight regulations that guarantee that Wnts function correctly both temporally and spatially.
Collapse
Affiliation(s)
- Qi Tian
- Department of Pathology, Oregon Health Sciences University, School of Medicine, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
278
|
Pan H, O'brien MJ, Wigglesworth K, Eppig JJ, Schultz RM. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev Biol 2005; 286:493-506. [PMID: 16168984 DOI: 10.1016/j.ydbio.2005.08.023] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 08/09/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
The molecular basis for acquisition of meiotic and developmental competence, the two main outcomes of oocyte development and essential for producing an egg capable of being fertilized and supporting development to term, is largely unknown. Using microarrays, we characterized global changes in gene expression in oocytes derived from primordial, primary, secondary, small antral, and large antral follicles and used Expression Analysis Systematic Explorer (EASE) to identify biological and molecular processes that accompany these transitions and likely underpin acquisition of meiotic and developmental competence. The greatest degree of change in gene expression occurs during the primordial to primary follicle transition. Of particular interest is that specific chromosomes display significant changes in their overall transcriptional activity and that in some cases these changes are largely confined to specific regions on these chromosomes. We also examined the transcript profile of oocytes that developed in vitro, as well as following eCG priming. Remarkably, the expression profiles only differed by 4% and 2% from oocytes that developed in vivo when compared to oocytes that developed in vitro from either primordial or secondary follicles, respectively. About 1% of the genes were commonly mis-expressed, and EASE analysis revealed there is an over-representation of genes involved in transcription. Developmental competence of oocytes obtained from eCG-primed mice was substantially improved when compared to oocytes obtained from unprimed mice, and this correlated with decreased expression of genes implicated in basal transcription.
Collapse
Affiliation(s)
- Hua Pan
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | | | | | | | |
Collapse
|
279
|
Nagao K, Togawa N, Fujii K, Uchikawa H, Kohno Y, Yamada M, Miyashita T. Detecting tissue-specific alternative splicing and disease-associated aberrant splicing of the PTCH gene with exon junction microarrays. Hum Mol Genet 2005; 14:3379-88. [PMID: 16203740 DOI: 10.1093/hmg/ddi369] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the human ortholog of Drosophila patched (PTCH) have been identified in patients with autosomal dominant nevoid basal cell carcinoma syndrome (NBCCS), characterized by minor developmental anomalies and an increased incidence of cancers such as medulloblastoma and basal cell carcinoma. We identified many isoforms of PTCH mRNA involving exons 1-5, exon 10 and a novel exon, 12b, generated by alternative splicing (AS), most of which have not been deposited in GenBank nor discussed earlier. To monitor splicing events of the PTCH gene, we designed oligonucleotide arrays on which exon probes and exon-exon junction probes as well as a couple of intron probes for the PTCH gene were placed in duplicate. Probe intensities were normalized on the basis of the total expression of PTCH and probe sensitivity. Tissue-specific regulation of AS identified with the microarrays closely correlated with the results obtained by RT-PCR. Of note, the novel exon, exon 12b, was specifically expressed in the brain and heart, especially in the cerebellum. Additionally, using these microarrays, we were able to detect disease-associated aberrant splicings of the PTCH gene in two patients with NBCCS. In both cases, cryptic splice donor sites located either in an exon or in an intron were activated because of the partial disruption of the consensus sequence for the authentic splice donor sites due to point mutations. Taken together, oligonucleotide microarrays containing exon junction probes are demonstrated to be a powerful tool to investigate tissue-specific regulation of AS and aberrant splicing taking place in genetic disorders.
Collapse
Affiliation(s)
- Kazuaki Nagao
- Department of Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
280
|
Kudo F, Numakura M, Tamegai H, Yamamoto H, Eguchi T, Kakinuma K. Extended sequence and functional analysis of the butirosin biosynthetic gene cluster in Bacillus circulans SANK 72073. J Antibiot (Tokyo) 2005; 58:373-9. [PMID: 16156513 DOI: 10.1038/ja.2005.47] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Butirosin produced by Bacillus circulans is among the clinically important 2-deoxystreptamine containing aminoglycoside antibiotics and its unique structure is found in (S)-4-amino-2-hydroxyburyric acid substituted at C-1 of 2-deoxystreptamine. Recently, the key part of the butirosin biosynthetic gene cluster has been identified from Bacillus circulans SANK 72073, however the whole gene for the biosynthesis awaited for identification. In the present study, we undertook extended analysis of the butirosin biosynthetic gene cluster and found nine additional open reading flames (ORFs), btrQ, btrR1, btrR2, btrT, btrU, btrV, btrW, btrX and orf1 in the cluster. In addition, we constructed disruption mutants of btrR1 and btrP-V, and found that the btr genes (ca. 24Kb) between btrR1 and btrP-V are at least required for the butirosin biosynthesis.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | | | | | |
Collapse
|
281
|
Peitsch WK, Hofmann I, Bulkescher J, Hergt M, Spring H, Bleyl U, Goerdt S, Franke WW. Drebrin, an Actin-Binding, Cell-Type Characteristic Protein: Induction and Localization in Epithelial Skin Tumors and Cultured Keratinocytes. J Invest Dermatol 2005; 125:761-74. [PMID: 16185277 DOI: 10.1111/j.0022-202x.2005.23793.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Isoform E2 of drebrin, an actin-binding protein originally identified in neuronal cells, has recently been identified in diverse non-neuronal cells, mostly in association with cell processes and intercellular junctions. Here, we report on the presence of drebrin in normal human skin, epithelial skin cancers, and cultured keratinocytes. Keratinocytes of normal epidermis contain almost no drebrin but the protein is readily seen in hair follicles. By immunohistochemistry and immunoblot, basal cell carcinomas (BCC) are rich in drebrin, and confocal laser scanning and immunoelectron microscopy show accumulation at adhering junctions, in co-localization with actin and partially with plaque proteins. In squamous cell carcinomas, keratoacanthomas, and in epidermal precancers, drebrin is heterogeneously distributed, appearing as mosaics. Primary keratinocyte cultures contain significant amounts of drebrin enriched at adhering junctions. When epithelium-derived cells devoid of drebrin are transfected with drebrin-enhanced green fluorescent protein, constructs accumulate in the cell periphery, and immunoprecipitation shows complexes with actin. During epidermal growth factor induced formation of cell processes, drebrin retains this junction association, as observed by live cell microscopy. Our results suggest novel functions of drebrin such as an involvement in cell-cell adhesion and tumorigenesis and a potential value in diagnosis of BCC.
Collapse
Affiliation(s)
- Wiebke K Peitsch
- Department of Dermatology, Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
282
|
Ribeiro LA, Richieri-Costa A. Single median maxillary central incisor, hypophyseal tumor, and SHH mutation. Am J Med Genet A 2005; 136A:346-7. [PMID: 15942953 DOI: 10.1002/ajmg.a.30625] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
283
|
Siebert JR, Schoenecker KA, Resta RG, Kapur RP. Holoprosencephaly and limb reduction defects: a consideration of Steinfeld syndrome and related conditions. Am J Med Genet A 2005; 134:381-92. [PMID: 15779021 DOI: 10.1002/ajmg.a.30648] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Individuals with holoprosencephaly (HPE) and limb reduction defects have been ascribed historically to a variety of syndromes with overlapping phenotypic features. As such, these patients are challenges for clinicians and researchers alike. In an effort to better understand this association, we reviewed our autopsy records and identified five cases of HPE with reduction defects of the limbs and other anomalies. One case appears to be the third reported instance of Steinfeld syndrome, while others represent microgastria-limb reduction sequence, VATER/VACTERL association, and an additional unique condition characterized by HPE, rhombencephalosynapsis, absent left radius, first metacarpal, and thumb, and congenital heart disease. The phenotypic heterogeneity inherent in these patients continues to complicate diagnosis, which will hopefully be simplified by continuing delineation at morphologic and especially genetic levels.
Collapse
Affiliation(s)
- Joseph R Siebert
- Department of Laboratories, Children's Hospital and Regional Medical Center, Seattle, Washington 98105, USA.
| | | | | | | |
Collapse
|
284
|
Seifert T, Bauer J, Weissert R, Fazekas F, Storch MK. Differential expression of sonic hedgehog immunoreactivity during lesion evolution in autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2005; 64:404-11. [PMID: 15892298 DOI: 10.1093/jnen/64.5.404] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The signaling molecule Sonic hedgehog (Shh) is involved in several processes of central nervous system development. Recent reports indicate that Shh expression plays a role also in certain pathologic conditions in the adult brain, including multiple sclerosis and its animal model. However, the role of Shh signaling in immune-mediated demyelinating disease remains still uncertain. The aim of our study was to investigate the distribution pattern of Shh immunoreactivity (Shh-IR) during lesion evolution in myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE), a model strongly mimicking multiple sclerosis. MOG-EAE was actively induced in DA rats. Histologic evaluation was performed with light and confocal microscopy on paraffin-embedded central nervous system sections from days 20 to 120 after active immunization. Shh-IR was present within the lesions of MOG-EAE during all stages of lesion evolution. The highest staining intensity for Shh was found in remyelinating lesions. In actively demyelinating, inactive demyelinated lesions, and in remyelinating lesions, Shh-IR was detected in macrophages, endothelium, and astrocytes. Shh-IR in axons was exclusively present in remyelinating lesions. Although the exact molecular mechanisms of the Shh-signaling pathway in experimental autoimmune encephalomyelitis are yet to be determined, our findings may imply a role of Shh signaling in facilitating remyelination.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Animals
- Animals, Newborn
- Brain/metabolism
- Brain/pathology
- Cell Count/methods
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Female
- Gene Expression Regulation, Developmental/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Hedgehog Proteins
- Microscopy, Confocal/methods
- Myelin Proteins
- Myelin Proteolipid Protein/metabolism
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Myelin-Associated Glycoprotein
- Myelin-Oligodendrocyte Glycoprotein
- Neuritis, Autoimmune, Experimental/chemically induced
- Neuritis, Autoimmune, Experimental/metabolism
- Neuritis, Autoimmune, Experimental/pathology
- Neurofilament Proteins/metabolism
- Neuroglia/metabolism
- Neuroglia/pathology
- Rats
- Time Factors
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Thomas Seifert
- Department of Neurology, Medical University Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
285
|
Kawakami Y, Sumimoto H, Fujita T, Matsuzaki Y. Immunological detection of altered signaling molecules involved in melanoma development. Cancer Metastasis Rev 2005; 24:357-66. [PMID: 15986143 DOI: 10.1007/s10555-005-1583-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To understand immune responses to human cancer and develop more effective immunotherapy, human tumor antigens has been isolated using various immunological methods with tumor reactive T cells or antibodies obtained from patients with melanoma. During the process of tumor antigen isolation, various molecules with genetic alterations or over-expression in tumor cells, which may be involved in proliferation, differentiation, or survival of various cancer cells, were identified. In melanoma, abnormal molecules with mutations including beta -catenin, CDK4, and BRAF, and molecules with increased expression including Survivin, were immunologically detected. Therefore, immunological isolation of human tumor antigens contributes to the identification of important molecules including altered signaling molecules involved in melanoma formation.
Collapse
Affiliation(s)
- Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
286
|
Tilli CMLJ, Van Steensel MAM, Krekels GAM, Neumann HAM, Ramaekers FCS. Molecular aetiology and pathogenesis of basal cell carcinoma. Br J Dermatol 2005; 152:1108-24. [PMID: 15948971 DOI: 10.1111/j.1365-2133.2005.06587.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent insights into the cell biology of the epidermis and its appendages are transforming our understanding of the pathogenesis of basal cell carcinoma (BCC). The significant progress that has been made warrants a comprehensive review of the molecular and cellular pathology of BCC. The items addressed include environmental and genetic risk factors, the biology of the putative precursor cell(s), and the contribution of aberrations in processes such as apoptosis, cell proliferation, differentiation and signalling to carcinogenesis. Furthermore, established and novel treatment modalities are discussed with particular attention to future biological approaches.
Collapse
Affiliation(s)
- C M L J Tilli
- Research Institute of Growth & Development, Department of Dermatology, University of Masstricht, The Netherlands
| | | | | | | | | |
Collapse
|
287
|
Abstract
The Hedgehog (Hh)-signaling pathway is essential for numerous developmental processes in Drosophila and vertebrate embryos. Hh signal transduction encompasses a complex series of regulatory events, including the generation of the mature Hh ligand, propagation of the ligand from source of production as well as the reception and interpretation of the signal in Hh-receiving cells. Many congenital malformations in humans are known to involve mutations in various components of the Hh-signaling pathway. This mini review summarizes some recent findings about the regulation of Hh signal transduction and describes the spectrum of human congenital malformations that are associated with aberrant Hh signaling. Based on a comparison of mouse-mutant phenotypes and human syndromes, we discuss how Hh-dependent Gli activator and repressor functions contribute to some of the congenital malformations.
Collapse
Affiliation(s)
- E Nieuwenhuis
- Program in Developmental Biology, The Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario MG5 1X8, Canada
| | | |
Collapse
|
288
|
Nagase T, Nagase M, Yoshimura K, Fujita T, Koshima I. Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons. Genes Cells 2005; 10:595-604. [PMID: 15938717 DOI: 10.1111/j.1365-2443.2005.00861.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Embryonic morphogenesis of vascular and nervous systems is tightly coordinated, and recent studies revealed that some neurogenetic factors such as Sonic hedgehog (Shh) also exhibit angiogenetic potential. Vascularization within the developing mouse neural tube depends on vessel sprouting from the surrounding vascular plexus. Previous studies implicated possible roles of VEGF/Flk-1 and Angiopoietin-1(Ang-1)/Tie-2 signaling as candidate molecules functioning in this process. Examining gene expressions of these factors at embryonic day (E) 9.5 and 10.5, we unexpectedly found that both VEGF and Ang-1 were expressed in the motor neurons in the ventral neural tube. The motor neurons were indeed located in the close vicinity of the infiltrating vessels, suggesting involvement of motor neurons in the sprouting. To substantiate this possibility, we inhibited induction of the motor neurons in the cultured mouse embryos by cyclopamine, a Shh signaling blocker. The vessel sprouting was dramatically impaired by inhibition of Shh signaling, together with nearly complete loss of the motor neurons. Expression of Ang-1, but not VEGF, within the neural tube was remarkably reduced in the cyclopamine treated embryos. These results suggest that the neural tube angiogenesis is dependent on Shh signaling, and mediated, at least in part, by the Ang-1 positive motor neurons.
Collapse
Affiliation(s)
- Takashi Nagase
- Department of Plastic and Reconstructive Surgery, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | |
Collapse
|
289
|
Palmqvist L, Glover CH, Hsu L, Lu M, Bossen B, Piret JM, Humphries RK, Helgason CD. Correlation of Murine Embryonic Stem Cell Gene Expression Profiles with Functional Measures of Pluripotency. Stem Cells 2005; 23:663-80. [PMID: 15849174 DOI: 10.1634/stemcells.2004-0157] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global gene expression profiling was performed on murine embryonic stem cells (ESCs) induced to differentiate by removal of leukemia inhibitory factor (LIF) to identify genes whose change in expression correlates with loss of pluripotency. To identify appropriate time points for the gene expression analysis, the dynamics of loss of pluripotency were investigated using three functional assays: chimeric mouse formation, embryoid body generation, and colony-forming ability. A rapid loss of pluripotency was detected within 24 hours, with very low residual activity in all assays by 72 hours. Gene expression profiles of undifferentiated ESCs and ESCs cultured for 18 and 72 hours in the absence of LIF were determined using the Affymetrix GeneChip U74v2. In total, 473 genes were identified as significantly differentially expressed, with approximately one third having unknown biological function. Among the 275 genes whose expression decreased with ESC differentiation were several factors previously identified as important for, or markers of, ESC pluripotency, including Stat3, Rex1, Sox2, Gbx2, and Bmp4. A significant number of the decreased genes also overlap with previously published mouse and human ESC data. Furthermore, several membrane proteins were among the 48 decreased genes correlating most closely with the functional assays, including the stem cell factor receptor c-Kit. Through identification of genes whose expression closely follows functional properties of ESCs during early differentiation, this study lays the foundation for further elucidating the molecular mechanisms regulating the maintenance of ESC pluripotency and facilitates the identification of more reliable molecular markers of the undifferentiated state.
Collapse
Affiliation(s)
- Lars Palmqvist
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Reifenberger J, Wolter M, Knobbe CB, Köhler B, Schönicke A, Scharwächter C, Kumar K, Blaschke B, Ruzicka T, Reifenberger G. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005; 152:43-51. [PMID: 15656799 DOI: 10.1111/j.1365-2133.2005.06353.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Basal cell carcinoma (BCC) of the skin is the most common human cancer. The genetic alterations underlying BCC development are only partly understood. OBJECTIVES To investigate further the molecular genetics of sporadic BCCs, we performed mutation analyses of 10 skin cancer-associated genes in 42 tumours. METHODS Single-strand conformational polymorphism analysis followed by DNA sequencing was used to screen for mutations in the sonic hedgehog pathway genes PTCH, SMOH, SUFUH and GLI1, in the TP53 tumour suppressor gene, and in the proto-oncogenes NRAS, KRAS, HRAS, BRAF and CTNNB1. Microsatellite markers flanking the PTCH, SUFUH and TP53 loci at 9q22, 10q24 and 17p13, respectively, were studied for loss of heterozygosity (LOH). RESULTS PTCH mutations were found in 28 of 42 tumours (67%). Microsatellite analysis revealed LOH on 9q22 in 20 of 38 tumours investigated (53%), including 14 tumours with and six tumours without PTCH mutations. SMOH mutations were identified in four of the 42 BCCs (10%) while two tumours demonstrated mutations in SUFUH, including one missense mutation and one silent mutation. None of the BCCs showed LOH at markers flanking the SUFUH locus. Seventeen BCCs (40%) carried TP53 mutations, with only three tumours showing evidence of biallelic TP53 inactivation. TP53 mutations were present in BCCs with and without mutations in PTCH, SMOH or SUFUH. Interestingly, 72% of the TP53 alterations were presumably ultraviolet (UV)-induced transition mutations. In contrast, only 40% of the PTCH and SMOH alterations corresponded to UV signature mutations. No mutations were identified in GLI1, NRAS, KRAS, HRAS, BRAF or CTNNB1. CONCLUSIONS Our data confirm the importance of PTCH, SMOH and TP53 mutations in the pathogenesis of sporadic BCCs. SUFUH alterations are restricted to individual cases while the other investigated genes do not appear to be important targets for mutations in BCCs.
Collapse
Affiliation(s)
- J Reifenberger
- Department of Dermatology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Masai I, Yamaguchi M, Tonou-Fujimori N, Komori A, Okamoto H. The hedgehog-PKA pathway regulates two distinct steps of the differentiation of retinal ganglion cells: the cell-cycle exit of retinoblasts and their neuronal maturation. Development 2005; 132:1539-53. [PMID: 15728672 DOI: 10.1242/dev.01714] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the developing zebrafish retina, neurogenesis is initiated in cells adjacent to the optic stalk and progresses to the entire neural retina. It has been reported that hedgehog (Hh) signalling mediates the progression of the differentiation of retinal ganglion cells (RGCs) in zebrafish. However, the progression of neurogenesis seems to be only mildly delayed by genetic or chemical blockade of the Hh signalling pathway. Here, we show that cAMP-dependent protein kinase (PKA) effectively inhibits the progression of retinal neurogenesis in zebrafish. Almost all retinal cells continue to proliferate when PKA is activated, suggesting that PKA inhibits the cell-cycle exit of retinoblasts. A cyclin-dependent kinase (cdk) inhibitor p27 inhibits the PKA-induced proliferation, suggesting that PKA functions upstream of cyclins and cdk inhibitors. Activation of the Wnt signalling pathway induces the hyperproliferation of retinal cells in zebrafish. The blockade of Wnt signalling inhibits the PKA-induced proliferation, but the activation of Wnt signalling promotes proliferation even in the absence of PKA activity. These observations suggest that PKA inhibits exit from the Wnt-mediated cell cycle rather than stimulates Wnt-mediated cell-cycle progression. PKA is an inhibitor of Hh signalling, and Hh signalling molecule morphants show severe defects in cell-cycle exit of retinoblasts. Together, these data suggest that Hh acts as a short-range signal to induce the cell-cycle exit of retinoblasts. The pulse inhibition of Hh signalling revealed that Hh signalling regulates at least two distinct steps of RGC differentiation: the cell-cycle exit of retinoblasts and RGC maturation. This dual requirement of Hh signalling in RGC differentiation implies that the regulation of a neurogenic wave is more complex in the zebrafish retina than in the Drosophila eye.
Collapse
Affiliation(s)
- Ichiro Masai
- Masai Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research, Hirosawa, Saitama, Japan.
| | | | | | | | | |
Collapse
|
292
|
Abstract
The mammary gland epithelial components are thought to arise from stem cells that undergo both self-renewal and differentiation. Self-renewal has been shown to be regulated by the Hedgehog, Notch, and Wnt pathways and the transcription factor B lymphoma Mo-MLV insertion region 1 (Bmi-1). We review data about the existence of stem cells in the mammary gland and the pathways regulating the self-renewal of these cells. We present evidence that deregulation of the self-renewal in stem cells/progenitors might be a key event in mammary carcinogenesis. If 'tumor stem cells' are inherently resistant to current therapies, targeting stem cell self-renewal pathways might provide a novel approach for breast cancer treatment.
Collapse
Affiliation(s)
- Suling Liu
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
293
|
Nagase T, Nagase M, Osumi N, Fukuda S, Nakamura S, Ohsaki K, Harii K, Asato H, Yoshimura K. Craniofacial anomalies of the cultured mouse embryo induced by inhibition of sonic hedgehog signaling: an animal model of holoprosencephaly. J Craniofac Surg 2005; 16:80-8. [PMID: 15699650 DOI: 10.1097/00001665-200501000-00016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The pathogenesis of holoprosencephaly is multifactorial, and blockage of Sonic hedgehog signaling is one of the most important causative factors in animal models and human cases. In this study, the authors analyzed facial anomalies of mouse embryos, which were cultured in vitro and exposed to cyclopamine, an alkaloid blocker of Sonic hedgehog signaling. When cultured with cyclopamine for embryonic day 8.5 to 10.5, the whole body size was smaller than normal, and the distance and angle between the nasal placodes were remarkably reduced. Extension of the cranial surface vessels also was noted. No cyclopia was observed. Migration of the cranial neural crest cells seemed to be intact. Expressions of Patched-1 and Gli-1, downstream genes of Sonic hedgehog signaling, also were down-regulated in in situ hybridization and real-time reverse transcriptase-polymerase chain reaction analyses. The authors consider that these facial anomalies represent milder phenotypes of holoprosencephaly.
Collapse
Affiliation(s)
- Takashi Nagase
- Department of Plastic and Reconstructive Surgery, University Hospital, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Abstract
PURPOSE OF REVIEW Basal cell nevus syndrome (BCNS), is a hereditary condition transmitted as an autosomal dominant trait exhibiting high penetrance and variable expressivity. Inherited or spontaneous mutations in the human homologue of the Drosophila patched gene underlie the disorder and in addition to tumor predisposition, are associated with a range of 'patterning' defects. Recent advances, with glimpses of possible therapies are emerging, but because of the wide-ranging nature of phenotypic expression and overlap with other syndromes, there is difficulty. Finally, because of the importance of PTCH and paralogous genes in many species other than humans, reports appear in a correspondingly wide range of journals, which makes 'keeping abreast' difficult. RECENT FINDINGS Progress has been achieved in understanding the role of Gli-1, 2, & 3 in development of 'sporadic' BCCs and BCNS. Expression of PTCH1 is now known to be regulated by alternative promoters and a single functional Gli-binding site. Expression of FOXE1 as a new transcriptional target of Gli2 has been demonstrated in human epidermis and BCCs. Finally, the discovery of Shh pathway inhibitors such as cyclopamine, a naturally occurring alkaloid and ornithine decarboxylase inhibition suggest possible interventional therapies. SUMMARY In BCNS, phenotype does not correlate with position of mutations within Patched, suggesting genetic makeup and environment modulate effects of premature protein truncation induced by PTCH mutation. These developmental abnormalities occur as a result of haplo-insufficiency in heterozygotes for the mutated gene, whereas neoplastic complications arise from a classical two-hit tumor suppressor gene model. Attention is therefore turning toward TP53 and PTCH associations.
Collapse
Affiliation(s)
- Alec High
- Department Level 6, Medical & Dental School University of Leeds, UK.
| | | |
Collapse
|
295
|
Shimokawa T, Rahnama F, Zaphiropoulos PG. A novel first exon of the Patched1 gene is upregulated by Hedgehog signaling resulting in a protein with pathway inhibitory functions. FEBS Lett 2005; 578:157-62. [PMID: 15581634 DOI: 10.1016/j.febslet.2004.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 11/01/2004] [Indexed: 11/19/2022]
Abstract
Patched homolog 1 (PTCH1) is a key component of the Hedgehog (HH) signaling pathway with three alternative first exons, but only exon 1B transcription depending on HH activation. Here, we show that in both human and mouse a novel PTCH1 first exon (1C) is expressed. Exon 1C transcription is upregulated by HH signaling, but the resulting PTCH1-1C protein has a lower capacity for pathway inhibition than PTCH1-1B.
Collapse
Affiliation(s)
- Takashi Shimokawa
- Department of Biosciences at Novum, Karolinska Institute, Huddinge 141 57, Sweden
| | | | | |
Collapse
|
296
|
Affiliation(s)
- Robert J Gorlin
- Oral Sciences-Oral Pathology, University of Minnesota School of Dentistry, Minneapolis, Minnesota, USA
| |
Collapse
|
297
|
Chen W, Ren XR, Nelson CD, Barak LS, Chen JK, Beachy PA, de Sauvage F, Lefkowitz RJ. Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 2005; 306:2257-60. [PMID: 15618519 DOI: 10.1126/science.1104135] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Binding of Sonic Hedgehog (Shh) to Patched (Ptc) relieves the latter's tonic inhibition of Smoothened (Smo), a receptor that spans the cell membrane seven times. This initiates signaling which, by unknown mechanisms, regulates vertebrate developmental processes. We find that two molecules interact with mammalian Smo in an activation-dependent manner: G protein-coupled receptor kinase 2 (GRK2) leads to phosphorylation of Smo, and beta-arrestin 2 fused to green fluorescent protein interacts with Smo. These two processes promote endocytosis of Smo in clathrin-coated pits. Ptc inhibits association of beta-arrestin 2 with Smo, and this inhibition is relieved in cells treated with Shh. A Smo agonist stimulated and a Smo antagonist (cyclopamine) inhibited both phosphorylation of Smo by GRK2 and interaction of beta-arrestin 2 with Smo. beta-Arrestin 2 and GRK2 are thus potential mediators of signaling by activated Smo.
Collapse
Affiliation(s)
- Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Vestergaard J, Bak M, Larsen LA. The hedgehog signaling pathway in cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 40:1-28. [PMID: 17153478 DOI: 10.1007/3-540-27671-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Janni Vestergaard
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | | |
Collapse
|
299
|
Hogarth C, Itman C, Jans DA, Loveland KL. Regulated nucleocytoplasmic transport in spermatogenesis: a driver of cellular differentiation? Bioessays 2005; 27:1011-25. [PMID: 16163727 DOI: 10.1002/bies.20289] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review explores the hypothesis that regulation of nucleocytoplasmic shuttling is a means of driving differentiation, using spermatogenesis as a model. The transition from undifferentiated spermatogonial stem cell to terminally differentiated spermatozoon is, at its most basic, a change in the repertoire of expressed genes. To effect this, the complement of nuclear proteins, such as transcription factors and chromatin remodelling components must change. Current knowledge of the nuclear proteins and nucleocytoplasmic transport machinery relevant to spermatogenesis is consolidated in this review, and their functional linkages are highlighted not only as a means of regulating nuclear protein composition, but also as a key mechanism regulating gene transcription and hence cell fate. Through this, we hypothesize that male germ cell differentiation is mediated through regulation of nuclear transport machinery components, and thereby of the access of critical factors to the nucleus. The importance of nucleocytoplasmic trafficking to male germ cell differentiation is discussed, using the sex-determining factors Sry and SOX9, cell cycle regulators, CREM and cofactors and the Smads as specific examples, together with the roles in gametogenesis for particular nuclear transport factors in Caenorhabditis elegans and Drosophila.
Collapse
Affiliation(s)
- Cathryn Hogarth
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | |
Collapse
|
300
|
Thievessen I, Wolter M, Prior A, Seifert HH, Schulz WA. Hedgehog signaling in normal urothelial cells and in urothelial carcinoma cell lines. J Cell Physiol 2005; 203:372-7. [PMID: 15521068 DOI: 10.1002/jcp.20248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Constitutive activation of hedgehog signaling, often caused by PTCH1 inactivation and leading to inappropriate activation of GLI target genes, is crucial for the development of several human tumors including basal cell carcinoma of the skin and medulloblastoma. The PTCH1 gene at 9q22 is also considered as a candidate tumor suppressor in transitional cell carcinoma (TCC), of which >50% show LOH in this region. However, only rare mutations have been found in PTCH1. We have therefore investigated GLI-dependent promoter activity and expression of hedgehog pathway components in TCC cell lines and proliferating normal urothelial cells. Normal urothelial cells cultured in serum-free medium, but not TCC lines exhibited low, but significant promoter activity under standard growth conditions. Accordingly, GLI1-3 and PTCH1 mRNAs were expressed at moderate levels, and sonic hedgehog (SHH) mRNA expression was low to undetectable. In co-transfection experiments GLI1 increased promoter activity significantly in one TCC line and further in normal urothelial cells, but less strongly in other TCC lines. Expression patterns of GLI factor mRNAs did not correlate with inducibility. No significant effects of SHH or cyclopamine on proliferation were observed, ruling out autocrine effects. However, SHH induced GLI-dependent promoter activity in normal urothelial cells. Taken together, our data suggest that the hedgehog pathway is weakly active in normal adult urothelial cells and of limited importance in TCC.
Collapse
MESH Headings
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/physiopathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Genes, Tumor Suppressor
- Hedgehog Proteins
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Patched Receptors
- Patched-1 Receptor
- Promoter Regions, Genetic/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/physiopathology
- Urothelium/drug effects
- Urothelium/metabolism
- Urothelium/physiopathology
- Veratrum Alkaloids/pharmacology
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Ingo Thievessen
- Urologische Klinik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|