251
|
Abstract
The complex nature of spinal cord injury appears to demand a multifactorial repair strategy. One of the components that will likely be included is an implant that will fill the area of lost nervous tissue and provide a growth substrate for injured axons. Here we will discuss the role of Schwann cells (SCs) in cell-based, surgical repair strategies of the injured adult spinal cord. We will review key studies that showed that intraspinal SC grafts limit injury-induced tissue loss and promote axonal regeneration and myelination, and that this response can be improved by adding neurotrophic factors or anti-inflammatory agents. These results will be compared with several other approaches to the repair of the spinal cord. A general concern with repair strategies is the limited functional recovery, which is in large part due to the failure of axons to grow across the scar tissue at the distal graft-spinal cord interface. Consequently, new synaptic connections with spinal neurons involved in motor function are not formed. We will highlight repair approaches that did result in growth across the scar and discuss the necessity for more studies involving larger, clinically relevant types of injuries, addressing this specific issue. Finally, this review will reflect on the prospect of SCs for repair strategies in the clinic.
Collapse
Affiliation(s)
- M Oudega
- The Miami Project to Cure Paralysis, School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | |
Collapse
|
252
|
Stavridis SI, Dehghani F, Korf HW, Hailer NP. Characterisation of transverse slice culture preparations of postnatal rat spinal cord: preservation of defined neuronal populations. Histochem Cell Biol 2005; 123:377-92. [PMID: 15889271 DOI: 10.1007/s00418-004-0743-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2004] [Indexed: 10/25/2022]
Abstract
Spinal cord injury induces degenerative and regenerative processes and complex interactions of neurons with non-neuronal cells. In order to develop an in vitro tool for the investigation of such processes, we prepared and characterised spinal cord slice cultures (SCSC) from Wistar rats (p0-12). SCSC were sustained in vitro up to 12 days and characterised by immunohistochemistry. Calbindin+ neurons, distributed across the entire gray matter, were visible also after longer culture periods. NeuN+ neurons were best preserved in the dorsal horn whereas large NeuN+ and choline acetyltransferase+ motoneurons in the ventral horn vanished after 3 days in vitro. Nestin immunoreactivity was found in animals of all age groups, either in cells interspersed in the ependymal lining around the central canal or in cells resembling protoplasmic astrocytes. Glial fibrillary acidic protein+ astrocytes, initially restricted to the white matter, invaded the gray matter of SCSC early during the culture period. Microglial cells, stained by Griffonia simplicifolia isolectin B4, were rapidly activated in the dorsal tract and in the gray matter but declined in number with time. SCSC derived from p0 or p3 animals showed a better preservation of the cytoarchitecture than cultures derived from older animals. In summary, SCSC undergo degenerative changes, but they contain defined neuronal populations, the cytoarchitecture is partially preserved and the glial reaction is limited.
Collapse
Affiliation(s)
- Stavros I Stavridis
- University Hospital for Orthopaedic Surgery Friedrichsheim, Johann Wolfgang Goethe-University, Frankfurt am Main, 60528 Federal Republic of Germany
| | | | | | | |
Collapse
|
253
|
Felts PA, Woolston AM, Fernando HB, Asquith S, Gregson NA, Mizzi OJ, Smith KJ. Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. ACTA ACUST UNITED AC 2005; 128:1649-66. [PMID: 15872019 PMCID: PMC7109778 DOI: 10.1093/brain/awh516] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inflammation is a prominent feature of several disorders characterized by primary demyelination, but it is not clear whether a relationship exists between inflammation and myelin damage. We have found that substantial demyelination results from the focal inflammatory lesion caused by the injection of lipopolysaccharide (LPS; 200 ng) directly into the rat dorsal funiculus. Within 24 h, such injections caused a focal inflammatory response consisting of a substantial number of polymorphonuclear cells and ED1-positive and inducible nitric oxide synthase (iNOS)-positive macrophages/microglia. The number of inflammatory cells was substantially reduced by day 7. OX-52-positive T-cells were less frequently observed but were present in the meninges at 8 h, reached a maximum in the dorsal funiculus at 7 days, and were rare at 14 days. The inflammation was followed by the appearance of a large lesion of primary demyelination that encompassed up to ∼75% of the cross-sectional area of the dorsal funiculus. Treatment with dexamethasone significantly reduced the number of cells expressing iNOS, but did not prevent the demyelination. By 28 days the lesions were largely remyelinated, usually by Schwann cells. These changes were not observed in control, saline-injected animals. We conclude that the intraspinal injection of LPS results in inflammation and subsequently in prominent demyelination. The mechanisms underlying the demyelination are not clear, but it is notable that it typically begins with disruption of the adaxonal myelin. Indeed, there is an early loss of myelin-associated glycoprotein within the lesion, despite the persistence of proteolipid protein. This combination is a feature of the pattern III lesion recently described in multiple sclerosis (Lucchinetti et al., 2000), and we therefore suggest that LPS-induced demyelination may serve as the first experimental model available for the study of this type of multiple sclerosis lesion.
Collapse
Affiliation(s)
- Paul A Felts
- Department of Neuroimmunology and Neuroinflammation Research Group, Guy's, King's and St Thomas' School of Medicine, King's College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
254
|
Conrad S, Schluesener HJ, Adibzahdeh M, Schwab JM. Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells. J Neurosurg Spine 2005; 2:319-26. [PMID: 15796357 DOI: 10.3171/spi.2005.2.3.0319] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The glial scar composed of astrogliosis and extracellular matrix deposition represents a major impediment to axonal regeneration. The authors investigated the role of a novel profibrotic and angiogenic peptide connective tissue growth factor (CTGF [Hcs24/IGFBP-r2P]) in glial scar formation following spinal cord injury (SCI) in rats. METHODS The effects of SCI on CTGF expression during glial scar maturation 1 day to 1 month post-SCI were investigated using fluorescein-activated cell sorter (FACS) immunohistochemical analysis; these findings were compared with those obtained in sham-operated (control) spinal cords. The CTGF-positive cells accumulated at the spinal cord lesion site (p < 0.0001) corresponding to areas of glial scar formation. In the perilesional rim, CTGF expression was confined to invading vimentin-positive, glial fibrillary acidic protein (GFAP)-negative fibroblastoid cells, endothelial and smooth-muscle cells of laminin-positive vessels, and GFAP-positive reactive astrocytes. The CTGF-positive astrocytes coexpressed the activation-associated intermediate filaments nestin, vimentin (> 80%), and mesenchymal scar component fibronectin (50%). CONCLUSIONS The restricted accumulation of CTGF-reactive astrocytes and CTGF-positive fibroblastoid cells lining the laminin-positive basal neolamina suggests participation of these cells in scar formation. In addition, perilesional upregulation of endothelial and smooth-muscle CTGF expression points to a role in blood-brain barrier function modulating edema-induced secondary damage.
Collapse
Affiliation(s)
- Sabine Conrad
- Institute of Brain Research, University of Tübingen, Medical School, Tübingen, Germany
| | | | | | | |
Collapse
|
255
|
Hashimoto M, Koda M, Ino H, Yoshinaga K, Murata A, Yamazaki M, Kojima K, Chiba K, Mori C, Moriya H. Gene expression profiling of cathepsin D, metallothioneins-1 and -2, osteopontin, and tenascin-C in a mouse spinal cord injury model by cDNA microarray analysis. Acta Neuropathol 2005; 109:165-80. [PMID: 15592854 DOI: 10.1007/s00401-004-0926-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/27/2004] [Accepted: 08/03/2004] [Indexed: 01/11/2023]
Abstract
The purpose of this study was to use a cDNA microarray to identify new genes involved in healing of spinal cord injury. C57BL/6 mice (7-8 weeks, male) were subjected to spinal cord compression injury (SCI) at the T7/8 level (20 g, 5 min; SCI group). For the control group, mice underwent only laminectomy. Mice were killed at 1, 3 and 7 days. cDNA transcribed from mRNA was hybridized to NIA mice 15K microarrays at each time point. We found 84 genes showing significant expressional changes, including higher and lower expression levels in the SCI groups than in the control [more than 1.0 or less than -1.0 using log ratio (base 2)]. Five genes were selected for further quantitative gene expression analysis by real-time reverse transcription (RT)-PCR. For histological examination, we applied in situ hybridization and fluorescence immunohistochemistry. Cathepsin D, metallothionein-1 (MT-1), metallothionein-2 (MT-2), osteopontin (OPN), and tenascin-C were selected for quantitative and histological analysis. Microarray analysis revealed that SCI led to the up-regulation of OPN and cathepsin D expression at 7 days and also of MT-1, MT-2, and tenascin-C expression at 1 day. Tenascin-C was re-up-regulated at 7 days. These values agreed with those of real-time RT-PCR analysis. By double labeling with in situ hybridization and fluorescence immunohistochemistry, MT-1, MT-2 and tenascin-C expression was observed in neurons and glial cells at 1 day, whereas at 7 days the main MT-2 and tenascin-C expression was found in fibronectin-positive fibroblasts. The main cathepsin D and OPN expression was observed in activated macrophages/microglia at 3 and 7 days. The five genes picked up by microarray gene expression profiling were shown to exhibit temporal and spatial changes of expression after SCI. This system is potentially useful for identifying genes that are involved in the response to SCI.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Cruz O, Kuffler DP. Neuroprotection of adult rat dorsal root ganglion neurons by combined hypothermia and alkalinization against prolonged ischemia. Neuroscience 2005; 132:115-22. [PMID: 15780471 DOI: 10.1016/j.neuroscience.2005.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Ischemia and ischemia-induced secondary events, such as acidosis and excessive activation of receptors by amino acids, trigger neuron death. The isolation and dissociation of dorsal root ganglion (DRG) involves time during which the neurons are ischemic due to being densely packed within the intact DRG and surrounded by a connective tissue coat. Thus, the longer the time between killing the host animal and when the DRG are dissociated, the longer the neurons are ischemic and exposed to ischemia-induced secondary causes of neuron death. It is well established that hypothermia and alkalinization each separately protect neurons from ischemia and ischemia-induced secondary causes of neuron death, but there are no data on the neuroprotection provided by simultaneous hypothermia and alkalinization. The present experiments were designed to determine the combination of hypothermic and alkaline conditions that yield the largest number of viable neurons dissociated from intact DRG maintained ischemic for up to 4 h. Hypothermia (20 degrees C>15 degrees C>37 degrees C) and alkalinization (pH 9.3>pH 8.3>pH 7.4) increased the yield of viable neurons compared with the yield from DRG maintained under physiological conditions. Hypothermia and alkalinization combined (20 degrees C/pH 9.3) provided the greatest neuroprotection with a yield of viable neurons after 1 h of ischemia 2.5-fold larger than that from DRG maintained under physiological conditions (37 degrees C/pH 7.6). Over 4 h of ischemia, the yield of viable neurons from DRG maintained under both hypothermic/alkaline and physiological conditions decreased in a linear manner, but those at 20 degrees C/pH 9.3 had a 4.5-fold greater yield of viable neurons than those at 37 degrees C/pH 7.6. Thus, combined hypothermia and alkalinization provide significantly greater protection against ischemia and ischemia-induced secondary causes of neuron death than either alone.
Collapse
Affiliation(s)
- O Cruz
- Institute of Neurobiology, University of Puerto Rico, 201 Blvd. del Valle, San Juan, Puerto Rico 00901
| | | |
Collapse
|
257
|
Fang C, Bernardes-Silva M, Coleman MP, Perry VH. The cellular distribution of the Wlds chimeric protein and its constituent proteins in the CNS. Neuroscience 2005; 135:1107-18. [PMID: 16154290 DOI: 10.1016/j.neuroscience.2005.06.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/16/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
The C57BL/Wld s mouse is a mutant strain of mouse that shows greatly slowed Wallerian degeneration both in the central and peripheral nervous system. Using immunohistochemistry, immunofluorescence and Western blotting, we have investigated the distribution of the chimeric Wld s protein and its different components in neurons of the CNS of Wld s mice and wild-type C57BL/6J mice. The expression of the Wld s protein is restricted to the nucleus in Wld s mice. Wld s was not detected in axons. The Wld s mice express both the normal and chimeric forms of ubiquitination factor E4 (Ube 4b) and nicotinamide mononucleotide adenylyltransferase-1 (Nmnat-1). The normal forms were expressed both in the cytoplasm and the nuclei of neurons in Wld s mice and wild-type mice, and were also present in the axon. The normal form of Ube4b, mono- and poly-ubiquitin and IkappaBalpha, a substrate of Ube4b, were not differentially expressed in Wld s mice compared with wild-type mice. However, the expression of both the normal and mutant forms of Nmnat-1 was higher in the nuclei of Wld s mice compared with wild-type mice. Therefore, axon protection in Wld s mice does not appear to be controlled by expression of Wld s protein in the axons per se and also is unlikely to be related to the different activity of Ube4b either in general ubiquitination or toward this particular substrate. The increased Nmnat-1 activity in the nucleus of Wld s mice compared with wild-type mice seems to be a significant factor in the axon protection. It is not known whether the expression of the Nmnat-1 in the axon is significant.
Collapse
Affiliation(s)
- C Fang
- CNS Inflammation Group, Southampton Neuroscience Group, School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Southampton SO16 7PX, UK.
| | | | | | | |
Collapse
|
258
|
Yamauchi T, Lin Y, Sharp FR, Noble-Haeusslein LJ. Hemin induces heme oxygenase-1 in spinal cord vasculature and attenuates barrier disruption and neutrophil infiltration in the injured murine spinal cord. J Neurotrauma 2004; 21:1017-30. [PMID: 15319001 DOI: 10.1089/0897715041651042] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been shown to alter vascular function in part by attenuating inflammation. We induced HO-1 in blood vessels in the spinal cord by systemic administration of hemin. Twenty-four hours later, immediately prior to euthanasia, fluorescence conjugated Lycopersicon esculentum (tomato) lectin was given intravenously to label the vasculature. HO-1 was induced in blood vessels, particularly in the white matter, as evidenced by the immunolocalization of HO-1 in lectin positive vessels. Western blots confirmed the hemin-mediated induction of HO-1 in the uninjured spinal cord. We next examined the extent to which treatment with hemin or vehicle, 24 h prior to a moderate contusion injury, influenced early vascular dysfunction in the injured cord. All animals were euthanized 24 h after injury. Luciferase, a marker of barrier integrity, was given intravenously 30 min prior to euthanasia. The spinal cord was either prepared for quantification of luciferase activity or fixed by vascular perfusion and prepared for the immunolocalization of neutrophils. There was a significant attenuation of barrier permeability to luciferase and a significant reduction in the number of neutrophils in hemin treated animals as compared to the vehicle treated group. Together, these findings demonstrate that vascular induction of HO-1 modulates barrier function and neutrophil infiltration and suggest that this protein may be useful for limiting the early vascular dysfunction and inflammation that occurs in the acutely injured spinal cord.
Collapse
Affiliation(s)
- Toshihiro Yamauchi
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California, USA
| | | | | | | |
Collapse
|
259
|
Gomes-Leal W, Corkill DJ, Freire MA, Picanço-Diniz CW, Perry VH. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp Neurol 2004; 190:456-67. [PMID: 15530884 DOI: 10.1016/j.expneurol.2004.06.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/17/2004] [Accepted: 06/13/2004] [Indexed: 11/26/2022]
Abstract
Glial activation and degeneration are important outcomes in the pathophysiology of acute brain and spinal cord injury (SCI). Our main goal was to investigate the pattern of glial activation and degeneration during secondary degeneration in both gray matter (GM) and white matter (WM) following SCI. Adult rats were deeply anesthetized and injected with 20 nmol of N-methyl-D-aspartate (NMDA) into the ventral horn of rat spinal cord (SC) on T7. Animals were perfused after survival times of 1, 3, and 7 days. Ten-micrometer sections were submitted to immunocytochemistry for activated macrophages/microglia, astrocytes, oligodendrocytes, and myelin. Astrocyte activation was more intense in the vacuolated white matter than in gray matter and was first noticed in this former region. Microglial activation was more intense in the gray matter and was clear by 24 h following NMDA injection. Both astrocytosis and microglial activation were more intense in the later survival times. Conspicuous WM vacuolation was present mainly at the 3-day survival time and decreased by 7 days after the primary damage. Quantitative analysis revealed an increase in the number of pyknotic bodies mainly at the 7-day survival time in both ventral and lateral white matter. These pyknotic bodies were frequently found inside white matter vacuoles like for degenerating oligodendrocytes. These results suggest a differential pattern of astrocytosis and microglia activation for white and gray matter following SCI. This phenomenon can be related to the different pathological outcomes for this two SC regions following acute injury.
Collapse
Affiliation(s)
- W Gomes-Leal
- Laboratory of Functional Neuroanatomy, Department of Morphology, Federal University of Pará, Brazil.
| | | | | | | | | |
Collapse
|
260
|
Hillard VH, Peng H, Zhang Y, Das K, Murali R, Etlinger JD, Zeman RJ. Tempol, a Nitroxide Antioxidant, Improves Locomotor and Histological Outcomes after Spinal Cord Contusion in Rats. J Neurotrauma 2004; 21:1405-14. [PMID: 15672631 DOI: 10.1089/neu.2004.21.1405] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have determined whether the nitroxide antioxidant, tempol, can oppose tissue loss and improve recovery of locomotor function following contusion injury of the spinal cord. Contusion injury was produced in rats at the level of T10 with a weight-drop device and locomotor recovery was determined with the 21-point Basso, Beattie and Bresnahan (BBB) scale. Locomotor function recovered progressively during the 6-week postinjury observation period and was significantly greater in tempol-treated (275 mg/kg i.p., 20 min postinjury) compared to vehicle-treated rats (final BBB scores: 9.1 versus 6.4). Similarly enhanced locomotor recovery was observed with doses of tempol in the range of 138-550, but not 69 mg/kg, and with injection at 48 h postinjury indicating a therapeutic time-window of at least several days. The extent of recovery correlated with measurements of sparing of spinal cord white matter in a region several millimeters in length extending rostrally from the contusion epicenter. In contrast, loss of gray matter was unaffected by tempol treatment. Since tempol acts by scavenging reactive oxygen species (ROS) such as superoxide and hydroxyl radicals, the improved locomotor recovery and spared spinal cord tissue following contusion injury provides evidence of a direct role of ROS-mediated neurodegeneration in spinal cord injury.
Collapse
Affiliation(s)
- Virany H Hillard
- Department of Neurosurgery, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | |
Collapse
|
261
|
Abstract
Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences.
Collapse
Affiliation(s)
- Paul J Reier
- College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
262
|
Cellular transplantation strategies for spinal cord injury and translational neurobiology. Neurotherapeutics 2004. [DOI: 10.1007/bf03206629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
263
|
Mutlu LK, Woiciechowsky C, Bechmann I. Inflammatory response after neurosurgery. Best Pract Res Clin Anaesthesiol 2004; 18:407-24. [PMID: 15212336 DOI: 10.1016/j.bpa.2003.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Investigation into the inflammatory response in the central nervous system (CNS) is a rapidly growing field, and a vast amount of information on this topic has accumulated over the past two decades. Inflammation is a particularly interesting issue in the (traditionally non-regenerating) CNS, owing to its dual role in worsening or improving regeneration and functional outcome in certain circumstances. This paper reviews the current literature on the interactions between the immune system and the CNS in physiological and pathological states. The first part will provide an overview of the cellular and molecular components of CNS inflammation, this being followed by a discussion of the concept of systemic immunodepression after neurotrauma and neurosurgery. Finally, the delicate balance of immune responses in the CNS, with an emphasis on the beneficial effects of inflammation and possible therapeutic options, will be discussed.
Collapse
Affiliation(s)
- Leman K Mutlu
- Department of Cell and Neurobiology, Institute of Anatomy, Humboldt University Medical School-Charité, Berlin, Germany
| | | | | |
Collapse
|
264
|
Kerr BJ, Patterson PH. Potent pro-inflammatory actions of leukemia inhibitory factor in the spinal cord of the adult mouse. Exp Neurol 2004; 188:391-407. [PMID: 15246839 DOI: 10.1016/j.expneurol.2004.04.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 03/16/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Abstract
Injury in the peripheral or central nervous systems causes a significant rise in the levels of the pleiotropic cytokine leukemia inhibitory factor (LIF). This increase influences cell survival, reactive gliosis and inflammatory responses. Since prior work has focused primarily on peripheral nerve and brain, little is known about the role of LIF in the spinal cord injury response. We address this issue by examining the effects of injury in the LIF knockout (KO) mouse, as well as using an adenoviral vector to over-express LIF in the spinal cord of adult mice. We find that LIF over-expression results in a dramatic rise in cell proliferation, primarily in microglia/macrophages. Astrocytes are not stimulated to proliferate but are activated by the elevated LIF. LIF over-expression also causes the development of severe hindlimb motor dysfunction, an effect mediated by the enhanced activation of microglia/macrophages, as inhibiting microglial activation with minocycline attenuates these motor deficits. Conversely, proliferation is significantly diminished and the microglial/macrophage response to spinal cord injury is much less in the LIF KO compared to wild type (WT). Thus, LIF is a potent pro-inflammatory factor in the adult spinal cord and represents a potential target for the manipulation of inflammatory reactions after spinal cord injury.
Collapse
Affiliation(s)
- Bradley J Kerr
- Biology Division, California Institute of Technology, Pasadena 91125, USA.
| | | |
Collapse
|
265
|
Omura K, Ohbayashi M, Sano M, Omura T, Hasegawa T, Nagano A. The recovery of blood-nerve barrier in crush nerve injury--a quantitative analysis utilizing immunohistochemistry. Brain Res 2004; 1001:13-21. [PMID: 14972650 DOI: 10.1016/j.brainres.2003.10.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2003] [Indexed: 11/18/2022]
Abstract
The purpose of this study is to reveal whether the application of immunohistochemical examinations to the peripheral nervous system (PNS) can be a reliable method for the quantitative analysis of the blood-nerve barrier (BNB) and the relationship between restoration of BNB and nerve regeneration. Sciatic nerves in rats were examined after nerve crush. Immunohistochemical staining with anti-rat endothelial cell antigen-1 (anti-RECA-1) that recognizes endothelial cells and anti-endothelial barrier antigen (anti-EBA) for the detection of barrier-type endothelial cells were used. Neurofilament for staining axons was also performed. A quantitative analysis of the BNB was assessed using the ratio of EBA positive cells and RECA-1 positive cells. The ratio of EBA/RECA-1 decreased significantly 3 days postoperatively and reached its lowest level at day 7 in the segment 5 mm proximal and the entire distal stump. The ratio gradually recovered from the proximal and the regeneration of axons started a week earlier than BNB. The ratio of EBA/RECA-1 applied to the PNS can be a reliable method for the quantitative analysis of BNB. In crush injuries, the breakdown of BNB occurred simultaneously in the segment 5 mm proximal and the entire distal stump; restoration began from the proximal to distal and followed a week later to nerve regeneration.
Collapse
Affiliation(s)
- Kumiko Omura
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | | | | | | | |
Collapse
|
266
|
Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 2004; 15:415-36. [PMID: 15056450 DOI: 10.1016/j.nbd.2003.11.015] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 11/03/2003] [Accepted: 11/14/2003] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a major cause of disability, and at present, there is no universally accepted treatment. The functional decline following SCI is contributed to both direct mechanical injury and secondary pathophysiological mechanisms that are induced by the initial trauma. These mechanisms initially involve widespread haemorrhage at the site of injury and necrosis of central nervous system (CNS) cellular components. At later stages of injury, the cord is observed to display reactive gliosis. The actions of astrocytes as well as numerous other cells in this response create an environment that is highly nonpermissive to axonal regrowth. Also manifesting important effects is the immune system. The early recruitment of neutrophils and at later stages, macrophages to the site of insult cause exacerbation of injury. However, at more chronic stages, macrophages and recruited T helper cells may potentially be helpful by providing trophic support for neuronal and non-neuronal components of the injured CNS. Within this sea of injurious mechanisms, the oligodendrocytes appear to be highly vulnerable. At chronic stages of SCI, a large number of oligodendrocytes undergo apoptosis at sites that are distant to the vicinity of primary injury. This leads to denudement of axons and deterioration of their conductive abilities, which adds significantly to functional decline. By indulging into the molecular mechanisms that cause oligodendrocyte apoptosis and identifying potential targets for therapeutic intervention, the prevention of this apoptotic wave will be of tremendous value to individuals living with SCI.
Collapse
Affiliation(s)
- Christos Profyris
- Motor Neuron Disease and Paralysis Laboratory, Neural Injury and Repair Group, The Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
267
|
Joosten EAJ, Houweling DA. Local acute application of BDNF in the lesioned spinal cord anti-inflammatory and anti-oxidant effects. Neuroreport 2004; 15:1163-6. [PMID: 15129166 DOI: 10.1097/00001756-200405190-00016] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We studied the early anti-inflammatory and anti-oxidant effects of local application of BDNF after dorsal spinal cord transection in the adult rat. Both the distribution and accumulation of neutrophils and microglial cells in and around the lesion site (inflammatory response) and the accumulation of lipid peroxidation product 4-hydroxynonenal (HNE; oxidative damage) around the lesion was examined using immunohistochemical techniques. We demonstrate that BDNF application affects the microglial response in and around the lesion and results in a reduced lipid peroxidation as shown by HNE-immunoreactive staining around the lesion 48 h post-injury. The early anti-inflammatory and anti-oxidant effects of local BDNF-application into the lesioned spinal cord may contribute to the observed decreased loss of locomotor function of the hindlimbs 2 days after injury.
Collapse
Affiliation(s)
- E A J Joosten
- Division of Cellular Neuroscience, Room 1.112, European Graduate School for Neuroscience, Faculty of Medicine, UNS 50, University of Maastricht, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
268
|
Zhang YP, Iannotti C, Shields LBE, Han Y, Burke DA, Xu XM, Shields CB. Dural closure, cord approximation, and clot removal: enhancement of tissue sparing in a novel laceration spinal cord injury model. J Neurosurg 2004; 100:343-52. [PMID: 15070142 DOI: 10.3171/spi.2004.100.4.0343] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Laceration-induced spinal cord injury (SCI) results in the invasion of a connective tissue scar, progressive damage to the spinal cord due to complex secondary injury mechanisms, and axonal dieback of descending motor pathways. The authors propose that preparation of the spinal cord for repair strategies should include hematoma removal and dural closure, resulting in apposition of the severed ends of the spinal cord. Such procedures may reduce the size of the postinjury spinal cord cyst as well as limit scar formation. METHODS Using a novel device, the Vibraknife, the authors created a dorsal hemisection of the spinal cord at C-6 in the adult rat. In Group 1 (eight rats), the dura mater was repaired with apposition of the two stumps of the spinal cord to reduce the lesion gap. In Group 2 (10 rats), the dura was not closed and the two cord stumps were not approximated. All rats were killed at 4 weeks postinjury, and the spinal cords from each group were removed and examined using histological, stereological, and immunohistochemical methods. In Group 1 rats a significant reduction of the total lesion volume and connective tissue scar was observed compared with those in Group 2 (Student t-test, p < 0.05). Approximation of the stumps did not promote the regeneration of corticospinal tract fibers or sensory axons through the lesion site. CONCLUSIONS Apposition of the severed ends of the spinal cord by dural closure reduces the lesion gap, cystic cavitation, and connective tissue scar formation. These outcomes may collectively reduce secondary tissue damage at the injury site and shorten the length of the lesion gap, which will facilitate transplantation-mediated axonal regeneration after laceration-induced SCI.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
269
|
Ondrejcák T, Vanický I, Gálik J. Ischemic preconditioning does not improve neurological recovery after spinal cord compression injury in the rat. Brain Res 2004; 995:267-73. [PMID: 14672817 DOI: 10.1016/j.brainres.2003.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ischemic preconditioning (IPC) has been defined as the endogenous cellular protective mechanism evoked by brief ischemic periods. IPC renders the tissue of the central nervous system more resistant to subsequent lethal ischemic insults, and similar protective effect of IPC has been observed after experimental traumatic brain injury. Spinal cord trauma differs from cerebral trauma in that the secondary processes are damaging mostly the white matter. In the present study, we have tested the hypothesis that a transient non-lethal ischemic insult would improve outcomes after subsequent traumatic spinal cord injury (SCI). In the IPC group, 5-min spinal cord ischemia has been induced by aortic occlusion combined with hypotension. Forty-eight hours after IPC, moderate spinal cord injury has been induced by epidural balloon inflation at T8 level. Control group underwent identical surgical procedures without ischemia followed by SCI after 48 h. During the 4-week survival, locomotor performance of all rats was repeatedly tested and evaluated according to BBB scale. After 4 weeks, the animals were perfusion-fixed for histopathology, and morphometric analyses were performed in order to quantify the extent of the spinal cord lesion. All animals were completely paraplegic after SCI, and showed partial neurological recovery during their survival period. No significant differences were detected either in neurological scores or in morphometric measurements after 4 weeks' survival. These results indicate that in contrary to cerebral trauma, IPC does not improve the outcome after SCI.
Collapse
Affiliation(s)
- Tomás Ondrejcák
- Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01 Kosice, Slovak Republic.
| | | | | |
Collapse
|
270
|
Sweitzer SM, DeLeo JA. The active metabolite of leflunomide, an immunosuppressive agent, reduces mechanical sensitivity in a rat mononeuropathy model. THE JOURNAL OF PAIN 2003; 3:360-8. [PMID: 14622739 DOI: 10.1054/jpai.2002.125181] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent work has supported a key role for spinal cytokines and glial activation in the development and maintenance of persistent neuropathic pain after peripheral nerve injury. This study was undertaken to determine whether the active metabolite of leflunomide (A77 1726), an anti-inflammatory and immunosuppressive agent, could attenuate persistent mechanical allodynia in a rodent L5 spinal nerve transection model. A77 1726 was administered daily intraperitoneally (0.01 to 10 mg/kg) beginning 1 day before nerve transection. In a separate experiment, A77 1726 was administered daily intrathecally (0.001 to 10 microg in 40 microL) beginning 1 hour before nerve transection. Both systemic and centrally administered A77 1726 significantly reduced mechanical allodynia across the time course of the study (P < .05). A77 1726 attenuated glial activation on day 10 after transection at doses that reduced mechanical sensitivity. In addition, central A77 1726 administration decreased spinal expression of major histocompatibility complex class II. Spinal interleukin-6 levels were unaffected by A77 1726 treatment. This study provides further evidence implicating a contribution of spinal glial activation in the development and maintenance of persistent neuropathic pain. Furthermore, this study reports that systemic and central administration of the active metabolite of leflunomide, an immunosuppressive agent used for the treatment of rheumatoid arthritis, produces an antiallodynic action in a rodent mononeuropathy model.
Collapse
Affiliation(s)
- Sarah M Sweitzer
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
271
|
Bareyre FM, Schwab ME. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 2003; 26:555-63. [PMID: 14522149 DOI: 10.1016/j.tins.2003.08.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GeneChip microarrays have recently been introduced to the field of neurobiology to identify and monitor the expression levels of thousands of genes simultaneously. This powerful technique is now used for studying the pathophysiology of CNS injuries including spinal cord lesions. Early stages after injury are characterized by the strong upregulation of genes involved in transcription and inflammation and a general downregulation of structural proteins and proteins involved in neurotransmission. Later, an increase in the expression of growth factors, axonal guidance factors, extracellular matrix molecules and angiogenic factors reflects the attempts for repair, while upregulation of stress genes and proteases and downregulation of cytoskeletal and synaptic mRNA reflect the struggle of the tissue to survive. DNA microarrays have the potential to aid discovery of new targets for neuroprotective or restorative therapeutic approaches
Collapse
Affiliation(s)
- Florence M Bareyre
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|
272
|
Gonzalez R, Glaser J, Liu MT, Lane TE, Keirstead HS. Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Exp Neurol 2003; 184:456-63. [PMID: 14637115 DOI: 10.1016/s0014-4886(03)00257-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injury to the spinal cord is followed by degeneration, which leads to progressive tissue loss and usually cystic cavitation. Cellular and humoral immune responses have been implicated as mediators of secondary degeneration, and the expression of leukocyte chemoattractants has been shown to precede immune cell influx. However, the relationship between the increased expression of chemoattractants, the invasion of lymphocytes, and overall lesion evolution is poorly understood. Here, we show that the T-lymphocyte chemoattractant CXCL10 is upregulated after dorsal hemisection injury to the adult mammalian spinal cord of C57/BL6 mice, and that antibody neutralization of CXCL10 beginning 1 day prior to injury dramatically reduces the T-lymphocyte invasion that normally occurs after trauma. Notably, this treatment resulted in a significant reduction of secondary tissue loss and functional deficit. We conclude that CXCL10 plays a critical role in recruitment of T lymphocytes to sites of spinal cord injury, and that a reduction of T-lymphocyte recruitment significantly enhances tissue preservation and functional outcome.
Collapse
Affiliation(s)
- Rafael Gonzalez
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, University of California at Irvine,2111 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4292, USA
| | | | | | | | | |
Collapse
|
273
|
Bomstein Y, Marder JB, Vitner K, Smirnov I, Lisaey G, Butovsky O, Fulga V, Yoles E. Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J Neuroimmunol 2003; 142:10-6. [PMID: 14512160 DOI: 10.1016/s0165-5728(03)00260-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Uncontrolled inflammation is considered to exacerbate the neuronal loss that follows spinal cord trauma. However, controlled inflammation response appears to be beneficial. Skin-coincubated macrophages injected into contused spinal cord of rats resulted in improved motor recovery and reduced spinal cyst formation. The macrophages express elevated levels of cell-surface molecules CD80, CD86, CD54 and MHC-II, markers characteristic of antigen presenting cells (APCs). Additionally, skin-coincubation elevates secretion of interleukin-1 beta (IL-1 beta) and Brain-Derived Neurotrophic Factor (BDNF), and reduces secretion of tumor necrosis factor alpha (TNF-alpha). We propose that macrophages activated by skin-coincubation bolster neuroprotective immune activity in the spinal cord, making the environment less cytotoxic and less hostile to axonal regeneration.
Collapse
Affiliation(s)
- Yonit Bomstein
- Proneuron Biotechnologies, P.O. Box 277, Ness Ziona 74101, Israel
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Abstract
Following injury to the CNS, severed axons undergo a phase of abortive sprouting in the vicinity of the wound, but do not spontaneously re-grow or regenerate. From a long history of attempts to stimulate regeneraion, a major strategy that has been developed clinically is the implantation of tissue into denervated target regions. Unfortunately trials have so far not borne out the promise that this would prove a useful therapy for disorders such as Parkinson's disease. Many strategies have also been developed to stimulate the regeneration of axons across sites of injury, particularly in the spinal cord. Animal data have demonstrated that some of these approaches hold promise and that the spinal cord has a remarkable degree of intrinsic plasticity. Attempts are now being made to utilize experimental techniques in spinal patients.
Collapse
Affiliation(s)
- Peter E Batchelor
- Departments of Medicine and Neurology, University of Melbourne, Austin and Repatriation Medical Centre, Vic. 3084, Heidelberg, Australia
| | | |
Collapse
|
275
|
Inman DM, Steward O. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice. J Comp Neurol 2003; 462:431-49. [PMID: 12811811 DOI: 10.1002/cne.10768] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mice exhibit a unique wound healing response following spinal cord injury in which the lesion site fills in with a connective tissue matrix. Previous studies have revealed that axons grow into this matrix, but the source of the axons remained unknown. The present study assesses whether any of these axons were the result of long tract regeneration. C57Bl/6 mice received crush injuries and were allowed to survive for 6 weeks to 7 months. Biotinylated dextran amine (BDA) was injected into the somato-motor cortex to trace descending corticospinal tract (CST) axons, into the midbrain to label descending brainstem pathways including the rubrospinal and reticulospinal tracts, or into the L5 dorsal root ganglion to trace ascending projections of first-order sensory neurons. Spinal cords from other mice were prepared for immunocytochemistry using antibodies against neurofilament protein (NF), 5-HT to reveal descending serotonergic axons, calcitonin gene-related protein (CGRP) to reveal ascending sensory axons, and chondroitin sulfate proteoglycan (CSPG) to assess the distribution of molecules that are inhibitory to axon growth. NF immunostaining revealed axons in the connective tissue matrix at the lesion site, confirming previous studies that used protargol staining. CST axons did not enter the connective tissue matrix, but did sprout extensively in segments adjacent to the injury site. Rubrospinal and reticulospinal tract axons also did not grow into the lesion site. 5-HT-positive axons extended to the edge of the lesion, and a few axons followed astrocyte processes into the margins of the lesion site. In contrast to the other pathways, BDA-labeled ascending sensory axons did extend into and arborized extensively within the connective tissue matrix, although the subgroup of ascending axons that are positive for CGRP did not. These results indicate that the connective tissue matrix is permissive for regeneration of some classes of ascending sensory axons but not for other axonal systems.
Collapse
Affiliation(s)
- Denise M Inman
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
276
|
Jones LL, Margolis RU, Tuszynski MH. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 2003; 182:399-411. [PMID: 12895450 DOI: 10.1016/s0014-4886(03)00087-6] [Citation(s) in RCA: 423] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix (ECM) molecules that are widely expressed throughout the developing and adult CNS. In vitro studies demonstrate their potential to restrict neurite outgrowth, and it is believed that CSPGs also inhibit axonal regeneration after CNS injury in vivo. Previous studies demonstrated that CSPGs are generally upregulated after spinal cord injury, and more recent reports have begun to identify individual proteoglycans that may play dominant roles in limiting axonal regeneration. The current study systematically examined the extended deposition patterns after CNS injury of four putatively inhibitory CSPGs that have not been extensively investigated previously in vivo: neurocan, brevican, phosphacan, and versican. After spinal cord injury, neurocan, brevican, and versican immunolabeling increased within days in injured spinal cord parenchyma surrounding the lesion site and peaked at 2 weeks. Neurocan and versican were persistently elevated for 4 weeks postinjury, and brevican expression persisted for at least 2 months. On the other hand, phosphacan immunolabeling decreased in the same region immediately following injury but later recovered and then peaked after 2 months. Combined glial fibrillary acidic protein (GFAP) immunohistochemistry and in situ hybridization demonstrated that GFAP astrocytes constituted a source of neurocan production after spinal cord injury. Thus, the production of several CSPG family members is differentially affected by spinal cord injury, overall establishing a CSPG-rich matrix that persists for up to 2 months following injury. Optimization of strategies to reduce CSPG expression to enhance regeneration may need to target several different family members over an extended period following injury.
Collapse
Affiliation(s)
- Leonard L Jones
- Department of Neurosciences-0626, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
277
|
Logan A, Berry M. Cellular and molecular determinants of glial scar formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:115-58. [PMID: 12575819 DOI: 10.1007/978-1-4615-0123-7_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann Logan
- Molecular Neuroscience, Department of Medicine, Wolfson Research Laboratories, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | | |
Collapse
|
278
|
Abstract
Inflammatory reaction following a spinal cord injury (SCI) contributes substantially to secondary effects, with both beneficial and devastating effects. This review summarizes the current knowledge concerning the structural features (vascular, cellular, and biochemical events) of SCI and gives an overview of the regulation of post-traumatic inflammation.
Collapse
Affiliation(s)
- O N Hausmann
- Neurosurgical Department, University Clinics Basel, Switzerland
| |
Collapse
|
279
|
Ahmed Z, Baker D, Cuzner ML. Interleukin-12 induces mild experimental allergic encephalomyelitis following local central nervous system injury in the Lewis rat. J Neuroimmunol 2003; 140:109-17. [PMID: 12864978 DOI: 10.1016/s0165-5728(03)00180-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major pathological feature in the central nervous system (CNS) following traumatic brain injury is activation of microglia both around and distant from the injury site. Intraperitoneal administration of interleukin-12 (IL-12) after brain injury resulted in a 7% weight loss, clinical signs of mild EAE and significant myelin basic protein (MBP)-specific splenic cell proliferation. The extent of pathology, in terms of the number of inflammatory perivascular cuffs and activation of microglia was greatest if IL-12 was administered immediately compared to a week following brain injury, whether at one or two sites. Specifically immunostaining for MHC class II and iNOS on macrophages and microglia, ICAM-1 on endothelial cells and macrophages was observed around the site of injury. A degree of myelin processing was apparent from immunostaining of MBP in inflammatory cells distant from the lesion. Inflammatory cuffs comprising macrophages, activated microglia, CD4(+) T cells and iNOS(+) cells were also detected distant to the injury site in the medulla and spinal cord of animals treated with IL-12. These results suggest that immune-mediated events in which IL-12 production is stimulated as for example viral infection, superimposed on a brain injury, could provide a trigger for a MS-like pathology.
Collapse
Affiliation(s)
- Zubair Ahmed
- Department of Neuroinflammation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | | | | |
Collapse
|
280
|
Abstract
Traumatized axons possess an extremely limited ability to regenerate within the adult mammalian CNS. The myelin-derived axon outgrowth inhibitors Nogo, oligodendrocyte-myelin glycoprotein, and myelin-associated glycoprotein, all bind to an axonal Nogo-66 receptor (NgR) and at least partially account for this lack of CNS repair. Although the intrathecal application of an NgR competitive antagonist at the time of spinal cord hemisection induces significant regeneration of corticospinal axons, such immediate local therapy may not be as clinically feasible for cases of spinal cord injury. Here, we consider whether this approach can be adapted to systemic therapy in a postinjury therapeutic time window. Subcutaneous treatment with the NgR antagonist peptide NEP1-40 (Nogo extracellular peptide, residues 1-40) results in extensive growth of corticospinal axons, sprouting of serotonergic fibers, upregulation of axonal growth protein SPRR1A (small proline-rich repeat protein 1A), and synapse re-formation. Locomotor recovery after thoracic spinal cord injury is enhanced. Furthermore, delaying the initiation of systemic NEP1-40 administration for up to 1 week after cord lesions does not limit the degree of axon sprouting and functional recovery. This indicates that the regenerative capacity of transected corticospinal tract axons persists for weeks after injury. Systemic Nogo-66 receptor antagonists have therapeutic potential for subacute CNS axonal injuries such as spinal cord trauma.
Collapse
|
281
|
Verdú E, García-Alías G, Forés J, Vela JM, Cuadras J, López-Vales R, Navarro X. Morphological characterization of photochemical graded spinal cord injury in the rat. J Neurotrauma 2003; 20:483-99. [PMID: 12803980 DOI: 10.1089/089771503765355559] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study characterizes the histological and immunohistochemical changes in the adult rat spinal cord following photochemically induced spinal cord lesions. The spinal cord was exposed by laminectomy (T12-L1 vertebrae) and bathed with 1.5% rose bengal solution for 10 min. The excess dye was removed by saline rinse and the spinal cord was irradiated with "cold" light for 0, 1, 2.5, 5, and 10 min in different groups of rats. After 15 days a graded loss of spinal tissue was observed according to photoinduction times. Animals irradiated for 1 min showed spinal cavities involving the dorsal funiculi. The cavity became progressively larger, involving dorsal horns in animals irradiated for 2.5 min, together with the dorsolateral funiculi in animals irradiated for 5 min and the ventrolateral funiculi in those irradiated for 10 min, with loss of gray matter in these three groups. Changes in GFAP-, CGRP-, proteoglycan- and calbindin-immunoreactivity were observed in all lesioned groups when compared with control spinal cords. Hypertrophied and heavily GFAP- and proteoglycan-stained astrocytes were seen in irradiated spinal cords. Reactive microglial cells were also found. Both astroglial and microglial reactions paralleled the severity of the spinal cord lesion. A significant loss of CGRP-immunoreactive somas was seen in animals irradiated for 10 min, whereas the wider distribution of calbindin-positive neurons was found in lesioned rats. In spinal cord sections from animals illuminated for 5 min and perfused 60 min postillumination, light and electron microscopy showed cytotoxic edema with astrocytic swelling, red blood cell extravasation, and myelin degradation.
Collapse
Affiliation(s)
- Enrique Verdú
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | | | | | | | |
Collapse
|
282
|
Klassen H, Imfeld KL, Ray J, Young MJ, Gage FH, Berman MA. The immunological properties of adult hippocampal progenitor cells. Vision Res 2003; 43:947-56. [PMID: 12668064 DOI: 10.1016/s0042-6989(03)00094-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adult hippocampal progenitor cells (AHPCs) derived from mature rats were studied in mixed co-cultures and shown not to elicit a proliferative response from human peripheral blood mononuclear cells (PBMCs) or allogeneic spleen cells. FACS analysis revealed low class I and no detectable class II (Ia) MHC expression by these cells. RT-PCR showed that AHPCs express the anti-inflammatory cytokine TGF-beta1. AHPCs did not, however, significantly impede the proliferation of OKT3- or PHA-stimulated PBMCs. Taken together, these results indicate that AHPCs are non-immunogenic in vitro. This is consistent with their pattern of MHC expression and does not require an active immunosuppressive mechanism.
Collapse
Affiliation(s)
- Henry Klassen
- Stem Cell Research, Children's Hospital of Orange County, 455 South Main Street, Orange, CA 92868, USA.
| | | | | | | | | | | |
Collapse
|
283
|
Setkowicz Z, Janeczko K. Long-term changes in susceptibility to pilocarpine-induced status epilepticus following neocortical injuries in the rat at different developmental stages. Epilepsy Res 2003; 53:216-24. [PMID: 12694930 DOI: 10.1016/s0920-1211(03)00029-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the brain, injury-induced gliosis and axonal sprouting have been regarded as age-dependent repairing processes with, unfortunately, epileptogenic effects. The present study examines whether brains injured at different developmental stages become more or less susceptible to experimentally-induced status epilepticus. In 6- and 30-day-old Wistar rats (P6s and P30s, respectively), a mechanical injury was performed in the cortex of the left cerebral hemisphere. On postnatal day 60, all the animals and naïve controls received single intraperitoneally pilocarpine injections to evoke status epilepticus. During a 6-h period following the injection, the animals were observed continuously and motor manifestations of seizure activity were recorded and rated. Seven days after pilocarpine injection, the animals were perfused and their body and brain weights recorded. When compared to controls, P6s showed neither significant variations in their epileptic behavior nor in brain and body weights. In relation to controls and to P6s, P30s presented an extremely high mortality, a significant loss of body weight and much longer-lasting seizures of much higher intensity. The data provide evidence that the long-term variations in susceptibility to experimentally-induced status epilepticus are determined by differences in the brain response to injury at different stages of postnatal development.
Collapse
Affiliation(s)
- Zuzanna Setkowicz
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Ingardena 6, 30 060 Kraków, Poland
| | | |
Collapse
|
284
|
Hashimoto M, Koda M, Ino H, Murakami M, Yamazaki M, Moriya H. Upregulation of osteopontin expression in rat spinal cord microglia after traumatic injury. J Neurotrauma 2003; 20:287-96. [PMID: 12820683 DOI: 10.1089/089771503321532879] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Osteopontin is a noncollagenous extracellular matrix protein that is expressed in various tissues. Recent studies have shown the upregulation of osteopontin expression in the ischemic cortex after cerebral infarction. We demonstrate here the upregulation of osteopontin expression in the spinal cord after compression injury. Laboratory rats were used in a compression model of spinal cord injury (30-g load for 5 min). Northern blot analysis showed that osteopontin mRNA expression levels reached a peak 3 days after injury (sevenfold; p < 0.05). In situ hybridization demonstrated osteopontin mRNA expression in necrotic areas from 24 h, peaking 3 days after injury. Immunohistochemistry detected osteopontin protein immunoreactivity from 12 h, peaking at 3 days. The peak time and distribution of osteopontin protein expression were coincident with those of osteopontin mRNA expression. Osteopontin expression in our model preceded that shown in the previously reported cerebral infarction models. Osteopontin protein was found in the cytoplasm at 3 days and secreted into the extracellular matrix at 7 days. Triple immunolabeling showed that osteopontin was localized in activated microglia surrounded by astrocytes.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- The Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
285
|
Polazzi E, Contestabile A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev Neurosci 2003; 13:221-42. [PMID: 12405226 DOI: 10.1515/revneuro.2002.13.3.221] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microglia represent a major cellular component of the brain, where they constitute a widely distributed network of immunoprotective cells. During the last decades, it has become clear that the functions traditionally ascribed to microglia, i.e. to dispose of dead cells and debris and to mediate brain inflammatory states, are only a fraction of a much wider repertoire of functions spanning from brain development to aging and neuropathology. The aim of the present survey is to critically discuss some of these functions, focusing in particular on the reciprocal microglia-neuron interactions and on the complex signaling systems subserving them. We consider first some of the functional interactions dealing with invasion, proliferation and migration of microglia as well as with the establishment of the initial blueprint of neural circuits in the developing brain. The signals related to the suppression of immunological properties of microglia by neurons in the healthy brain, and the derangement from this physiological equilibrium in aging and diseases, are then examined. Finally, we make a closer examination of the reciprocal signaling between damaged neurons and microglia and, on these bases, we propose that microglial activation, consequent to neuronal injury, is primarily aimed at neuroprotection. The loss of specific communication between damaged neurons and microglia is viewed as responsible for the turning of microglia to a hyperactivated state, which allows them to escape neuronal control and to give rise to persistent inflammation, resulting in exacerbation of neuropathology. The data surveyed here point at microglial-neuron interactions as the basis of a complex network of signals conveying messages with high information content and regulating the most important aspects of brain function. This network shares similar features with some fundamental principles governing the activity of brain circuits: it is provided with memory and it continuously evolves in relation to the flow of time and information.
Collapse
|
286
|
Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 2003; 53:174-80. [PMID: 12557283 DOI: 10.1002/ana.10443] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Axonal degeneration can be an important cause of permanent disability in neurological disorders in which inflammation is prominent, including multiple sclerosis and Guillain-Barré syndrome. The mechanisms responsible for the degeneration remain unclear, but it is likely that axons succumb to factors produced at the site of inflammation, such as nitric oxide (NO). We previously have shown that axons exposed to NO in vivo can undergo degeneration, especially if the axons are electrically active during NO exposure. The axons may degenerate because NO can inhibit mitochondrial respiration, leading to intraaxonal accumulation of Na(+) and Ca(2+) ions. Here, we show that axons can be protected from NO-mediated damage using low concentrations of Na(+) channel blockers, or an inhibitor of Na(+)/Ca(2+) exchange. Our findings suggest a new strategy for axonal protection in an inflammatory environment, which may be effective in preventing the accumulation of permanent disability in patients with neuroinflammatory disorders.
Collapse
Affiliation(s)
- Raju Kapoor
- The Neuroinflammation Research Group, Guy's, King's St. Thomas' School of Medicine, London, United Kingdom
| | | | | | | | | |
Collapse
|
287
|
Popovich PG, Jones TB. Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci 2003; 24:13-7. [PMID: 12498725 DOI: 10.1016/s0165-6147(02)00006-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recruitment of inflammatory leukocytes to the injured spinal cord is a physiological response that is associated with the production of cytokines and proteinases that are involved in host defense and wound repair. Cells in the spinal cord are mainly post-mitotic and tissue regeneration is poor; thus, these inflammatory mediators can exacerbate the damage to spared tissue and thereby impair spontaneous functional recovery. Although several aspects of immune function might benefit the CNS, experimental studies indicate that acute neuroinflammation aggravates tissue injury. Until the timing and nature of the molecular signals that govern leukocyte recruitment and activation after spinal injury are defined, clinical therapies designed to boost immune cell function should be avoided.
Collapse
Affiliation(s)
- Phillip G Popovich
- Department of Molecular Virology, Immunology and Medical Genetics, 2078 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
288
|
Kálmán M. Glial reaction and reactive glia. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
289
|
Sweitzer SM, Hickey WF, Rutkowski MD, Pahl JL, DeLeo JA. Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potential relationship to neuropathic pain. Pain 2002; 100:163-70. [PMID: 12435469 DOI: 10.1016/s0304-3959(02)00257-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study was undertaken to determine whether leukocytes are recruited into the spinal cord following a peripheral L5 spinal nerve transection that results in mechanical allodynia (increased tactile sensitivity behavior correlates with neuropathic pain). In rats subjected to bone marrow irradiation, donor-specific major histocompatibility complex (MHC) class I (I1-69) positive peripheral immune cells trafficked to the L5 spinal cord in response to an L5 spinal nerve injury. The number of I1-69 positive cell profiles increased over time and correlated with increased mechanical allodynia. At early time points following injury, I1-69 positive immune cells co-regionalized with the expression of the macrophage marker ED2. At later time points following injury, some of the infiltrating immune cells did not co-regionalize with the macrophage marker ED2. At no time did the infiltrating cells co-regionalize with the neuronal marker (NeuN). Both macrophage-like morphology and T cell-like morphology were observed in the I1-69 positive cellular infiltrate. Conversely, animals that underwent sham surgery demonstrated little mechanical allodynia and a minimal number of infiltrating peripheral immune cells. In a separate group of rats, infiltration of CD3+ T-lymphocytes was confirmed at 14 days post-nerve transection. This study demonstrates trafficking of leukocytes into the lumbar spinal cord at time points that correlate with mechanical allodynia suggesting a role of central neuroinflammation in persistent neuropathic pain.
Collapse
Affiliation(s)
- Sarah M Sweitzer
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH 03756, USA
| | | | | | | | | |
Collapse
|
290
|
Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC. Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem 2002; 83:432-41. [PMID: 12423253 DOI: 10.1046/j.1471-4159.2002.01166.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pattern of neutrophil recruitment that accompanies inflammation in the CNS depends on the site of injury and the stage of development. The adult brain parenchyma is refractory to neutrophil recruitment and associated damage as compared to the spinal cord or juvenile brain. Using quantitative Taqman RT-PCR and enzyme-liked immunosorbent assay (ELISA), we compared mRNA and protein expression of the rat neutrophil chemoattractant chemokines (CINC) in spinal cord and brain of adult and juvenile rats to identify possible association with the observed differences in neutrophil recruitment. Interleukin-1beta (IL-1beta) injection resulted in up-regulated chemokine expression in both brain and spinal cord. CINC-3 mRNA was elevated above CINC-1 and CINC-2alpha, with expression levels for each higher in spinal cord than in brain. By ELISA, IL-1beta induced greater CINC-1 and CINC-2alpha expression compared to CINC-3, with higher protein levels in spinal cord than in brain. In the juvenile brain, significantly higher levels of CINC-2alpha protein were observed in response to IL-1beta injection than in the adult brain following an equivalent challenge. Correspondingly, neutrophil recruitment was observed in the juvenile brain and adult spinal cord, but not in the adult brain. No expression of CINC-2beta mRNA was detected. Thus differential chemokine induction may contribute to variations in neutrophil recruitment in during development and between the different CNS compartments.
Collapse
Affiliation(s)
- Sandra J Campbell
- Molecular Neuropathology Laboratory and CNS Inflammation Group, School of Biological Sciences, University of Southampton, Southampton, UK.
| | | | | | | | | |
Collapse
|
291
|
Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 2002; 61:623-33. [PMID: 12125741 DOI: 10.1093/jnen/61.7.623] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activated microglia and macrophages (CNS macrophages) have been implicated in the secondary or "bystander" pathology (e.g. axon injury, demyelination) that accompanies traumatic or autoimmune injury to the brain and spinal cord. These cells also can provide neurotrophic support and promote axonal regeneration. Studying the divergent functional potential of CNS macrophages in trauma models is especially difficult due to the various degradative mechanisms that are initiated prior to or concomitant with microglial/macrophage activation (e.g. hemorrhage, edema, excitotoxicity, lipid peroxidation). To study the potential impact of activated CNS macrophages on the spinal cord parenchyma, we have characterized an in vivo model of non-traumatic spinal cord neuroinflammation. Specifically, focal activation of CNS macrophages was achieved using stereotaxic microinjections of zymosan. Although microinjection does not cause direct mechanical trauma, localized activation of macrophages with zymosan acts as an "inflammatory scalpel" causing tissue injury at and nearby the injection site. The present data reveal that activation of CNS macrophages in vivo can result in permanent axonal injury and demyelination. Moreover, the pathology can be graded and localized to specific white matter tracts to produce quantifiable behavioral deficits. Further development of this model will help to clarify the biological potential of microglia and macrophages and the molecular signals that control their function within the spinal cord.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Avian Proteins
- Axons/drug effects
- Axons/metabolism
- Axons/pathology
- Basigin
- Blood Proteins
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Denervation/methods
- Disease Models, Animal
- Female
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/pathology
- Gait Disorders, Neurologic/physiopathology
- Gliosis/chemically induced
- Gliosis/pathology
- Gliosis/physiopathology
- Immunohistochemistry
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Membrane Glycoproteins/metabolism
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Microinjections
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Myelitis/chemically induced
- Myelitis/pathology
- Myelitis/physiopathology
- Nerve Degeneration/chemically induced
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/pathology
- Rats
- Rats, Sprague-Dawley
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Spinal Cord Injuries/pathology
- Spinal Cord Injuries/physiopathology
- Zymosan/pharmacology
Collapse
Affiliation(s)
- P G Popovich
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine & Public Health and School of Allied Medical Professions, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
292
|
Sayer FT, Oudega M, Hagg T. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Exp Neurol 2002; 175:282-96. [PMID: 12009779 DOI: 10.1006/exnr.2002.7901] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spinal cord regeneration in adult mammals is limited by neurite outgrowth inhibitors and insufficient availability of outgrowth-promoting agents. Formation of degenerative swellings at the proximal ends of severed axons (terminal clubs), which starts early after injury, also may hinder recovery and their rupture may contribute to secondary spinal cord damage. We investigated whether neurotrophins would reduce these degenerative processes. Adult rats received a transection of the dorsal column sensory and corticospinal motor tracts at T9 and anterograde tracing of the axons from the sciatic nerve and motor cortex, respectively. The highest number of terminal clubs was found at 1 day and approximately half remained present until at least 28 days. A single injection immediately after injury of a mixture of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 into the lesion site, reduced the number of terminal clubs in the sensory system by approximately half at 1 and 7 days (but not 14) after the lesion. Individual or combinations of two neurotrophins were as effective, suggesting that the neurotrophins protected similar axonal populations. The injected neurotrophins did not affect degeneration of corticospinal motor axons. A 7-day continuous intrathecal infusion of neurotrophin-3 was more effective and also reduced terminal club formation of corticospinal axons by approximately 60%. Spinal tissue loss was not affected by the neurotrophin treatments, suggesting that terminal clubs are not major contributors to the pathogenesis of secondary spinal degeneration during the first two weeks. Thus, neurotrophins can reduce axonal degeneration in the spinal cord after traumatic axonal injury.
Collapse
Affiliation(s)
- Faisal T Sayer
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
293
|
Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 2002. [PMID: 11923434 DOI: 10.1523/jneurosci.22-07-02690.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lymphocytes respond to myelin proteins after spinal cord injury (SCI) and may contribute to post-traumatic secondary degeneration. However, there is increasing evidence that autoreactive T-lymphocytes may also convey neuroprotection and promote functional recovery after CNS injury. To clarify the role of myelin autoreactive lymphocytes after SCI, we performed contusion injuries in the thoracic spinal cord of transgenic (Tg) mice in which >95% of all CD4+ T-lymphocytes are reactive with myelin basic protein (MBP). We observed significantly impaired recovery of locomotor and reflex function in Tg mice compared with non-Tg (nTg) littermates. Measures of functional impairment in Tg mice correlated with significantly less white matter at the injury site, and morphometric comparisons of injured Tg and nTg spinal cords revealed increased rostrocaudal lesion expansion (i.e., secondary degeneration) in Tg mice. Rostrocaudal to the impact site in SCI-nTg mice, demyelination was restricted to the dorsal funiculus, i.e., axons undergoing Wallerian degeneration. The remaining white matter appeared normal. In contrast, lymphocytes were colocalized with regions of demyelination and axon loss throughout the white matter of SCI-Tg mice. Impaired neurological function and exacerbated neuropathology in SCI-Tg mice were associated with increased intraspinal production of proinflammatory cytokine mRNA; neurotrophin mRNA was not elevated. These data suggest that endogenous MBP-reactive lymphocytes, activated by traumatic SCI, can contribute to tissue injury and impair functional recovery. Any neuroprotection afforded by myelin-reactive T-cells is likely to be an indirect effect mediated by other non-CNS-reactive lymphocytes. Similar to the Tg mice in this study, a subset of humans that are genetically predisposed to autoimmune diseases of the CNS may be adversely affected by vaccine therapies designed to boost autoreactive lymphocyte responses after CNS trauma. Consequently, the safe implementation of such therapies requires that future studies define the mechanisms that control T-cell function within the injured CNS.
Collapse
|
294
|
David S, Ousman SS. Recruiting the immune response to promote axon regeneration in the injured spinal cord. Neuroscientist 2002; 8:33-41. [PMID: 11843097 DOI: 10.1177/107385840200800108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myelin contains molecules that can inhibit the growth and regeneration of axons. Neutralizing the activity of these inhibitors can enhance axon regeneration in the adult mammalian central nervous system (CNS). The complexity of the CNS-immune system interactions after CNS trauma is now beginning to be better understood. Recent studies indicate that both cell-mediated and antibody-mediated immune responses can help in promoting axon regeneration after CNS injury. It is hoped that such advances will lead to the development of safe and effective vaccine and cytokine treatments for spinal cord injuries.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute, McGill University, Quebec, Canada.
| | | |
Collapse
|
295
|
Abstract
The innate and adaptive arms of the immune system, represented principally by macrophages and by T and B cells, respectively, provide body tissues with mechanisms of defence, protection and repair. In the central nervous system (CNS), probably because of its status of 'immune privilege', any immune activity has long been viewed as detrimental. Recent studies have provided evidence, however, that immune activity after traumatic CNS injury may have a beneficial effect, manifested by promotion of regeneration and reduction in the secondary degeneration of neurons that escaped direct injury. Rigorous regulation of immune system activity allows the individual to derive the benefit of such neuroprotection without the risk of detrimental side effects. Recently, our research group found a way to boost the T-cell-mediated autoimmune protection while avoiding the risk of autoimmune disease.
Collapse
Affiliation(s)
- M Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
296
|
Liesi P, Kauppila T. Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar. Exp Neurol 2002; 173:31-45. [PMID: 11771937 DOI: 10.1006/exnr.2001.7800] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the spatial and temporal expression of basement-membrane-forming and neurite-outgrowth-supporting matrix proteins after a unilateral dorsal root injury combined with a collagen I/laminin-1 graft and a stab wound lesion to the dorsal horn of the adult rat spinal cord. Ten days after injury, the gamma1 laminin was induced in the reactive glia. At this early stage, the glial cells failed to express type IV collagen and the alpha1 laminin. One month after injury, reactive astrocytes in the dorsal horn of the lesioned side expressed gamma1 laminin, type IV collagen, and the alpha1 laminin whereas astrocytes of the normal spinal cord or the uninjured contralateral dorsal horn were negative. Both astrocytes and neurons of the ipsilateral ventral horn were induced to express laminin-1 and gamma1 laminin. Astrocytes of the ipsilateral ventral horn also expressed type IV collagen. Simultaneously with the changes in expression of the extracellular matrix proteins, the expression pattern of basic fibroblast growth factor (FGF-2) was markedly altered after spinal cord injury. In normal and contralateral spinal cord, FGF-2 was expressed in nerve fibers, but its expression changed from neuronal into glial in the ipsilateral spinal cord within 1 month after injury. Four months after injury, expression of both type IV collagen and the alpha1 laminin had declined, but the astrocytes at the injury site continued expressing the gamma1 laminin. Cultured astrocytes were negative for type IV collagen, but several cytokines, including IL-1beta and TGFbeta1, induced expression of type IV collagen in the astrocytes. These factors also increased deposition of type IV collagen matrix in the glial cultures. These results indicate that type IV collagen and the alpha1 laminin are induced in reactive astrocytes after spinal cord injury in vivo. Induction of type IV collagen in astrocytes in vitro by cytokines indicates that blood-borne or local factors at the injury site may induce the spinal cord glial expression of type IV collagen in vivo. Simultaneous expression of laminin-1 and alpha1 laminin with type IV collagen is known to lead to production of basement membranes. This may hamper the neurite-outgrowth-promoting potential of the gamma1 laminin by initiating formation of the glial scar.
Collapse
Affiliation(s)
- Päivi Liesi
- The Brain Laboratory, Biomedicum Helsinki, Institute of Biomedicine (Anatomy), University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland.
| | | |
Collapse
|
297
|
Kernie SG, Erwin TM, Parada LF. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res 2001; 66:317-26. [PMID: 11746349 DOI: 10.1002/jnr.10013] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The persistence of neural stem cells into adulthood has been an area of intense investigation in recent years. There is limited knowledge about how an acquired brain injury might affect the ability of neural precursor cells to proliferate and repopulate injured areas. In the present study we utilize a controlled cortical impact model of traumatic brain injury in adult mice and subsequent BrdU labeling to demonstrate that there is significant proliferation of neural precursors in response to traumatic brain injury in areas both proximal and distal to the injury site. The fate of the proximal proliferation is almost exclusively astrocytic at 60-days post injury and demonstrates that newly generated cells make up much of the astrogliotic scar. Moreover, in areas more distal from the injury site, neurogenesis occurs within the granular layer of the dentate gyrus at a level more than five-fold greater than in controls. These data demonstrate that neural proliferation plays key roles in the remodeling that occurs after traumatic brain injury and suggests a mechanism as to how functional recovery after traumatic brain injuries continues to occur long after the injury itself.
Collapse
Affiliation(s)
- S G Kernie
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA.
| | | | | |
Collapse
|
298
|
Hermanns S, Reiprich P, Müller HW. A reliable method to reduce collagen scar formation in the lesioned rat spinal cord. J Neurosci Methods 2001; 110:141-6. [PMID: 11564534 DOI: 10.1016/s0165-0270(01)00427-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Following traumatic injury, the formation of a glial scar and deposition of extracellular matrix (ECM) contributes to the regeneration failure in the adult mammalian central nervous system (CNS). Using a postcommissural fornix transection as a brain lesion model in rat, we have previously shown that the collagenous basement membrane (BM) at the lesion site is a major impediment for axon regeneration. Deposition of BM in this lesion model can be delayed by administration of the iron chelator 2,2'-bipyridine (BPY), an inhibitor of prolyl 4-hydroxylase (PH), a key enzyme of collagen biosynthesis. To examine whether this potential therapeutic approach is transferable to other CNS regions, we have chosen the mechanically lesioned rat spinal cord to investigate the effects of BPY administration on BM formation. Due to the close proximity of the lesion zone to meningeal fibroblasts, a cell-type secreting large amounts of collagen IV, BM deposition was much more extensive in the spinal cord than in the brain lesion. Neither immediate injections nor continuous application of BPY resulted in a detectable reduction of BM formation in the spinal cord. Only a combination of anti-scarring treatments including (i) injection of the more potent PH inhibitor [2,2'-bipyridine]-5,5'-dicarboxylic acid (BPY-DCA), (ii) selective inhibition of fibroblast proliferation and ECM production by 8-Br-cAMP, and (iii) continuous application of BPY-DCA, reduced the lesion-induced BM significantly. The present results clearly demonstrate, that the exclusive application of BPY according to a protocol designed for treatment of brain lesions is not sufficient to reduce BM formation in the lesioned adult rat spinal cord.
Collapse
Affiliation(s)
- S Hermanns
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, D-40225 Dusseldorf, Germany
| | | | | |
Collapse
|
299
|
Anthony DC, Blond D, Dempster R, Perry VH. Chemokine targets in acute brain injury and disease. PROGRESS IN BRAIN RESEARCH 2001; 132:507-24. [PMID: 11545015 DOI: 10.1016/s0079-6123(01)32099-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- D C Anthony
- CNS Inflammation Group, Centre for Neuroscience at Southampton, University of Southampton, Biomedical Sciences Building, Southampton SO16 7PX, UK.
| | | | | | | |
Collapse
|
300
|
MIP-1alpha, MCP-1, GM-CSF, and TNF-alpha control the immune cell response that mediates rapid phagocytosis of myelin from the adult mouse spinal cord. J Neurosci 2001. [PMID: 11425892 DOI: 10.1523/jneurosci.21-13-04649.2001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The slow immune response in the adult mammalian CNS results in slow myelin phagocytosis along degenerating white matter after injury. This has important consequences for axon regeneration because of the presence of axon growth inhibitors in myelin. In addition, abnormal immune cell responses in the CNS lead to demyelinating disease. Lysophosphatidylcholine (LPC) can induce an inflammatory response in the CNS, producing rapid demyelination without much damage to adjacent cells. In this study, we searched for the molecular switches that turn on this immune cell response. Using reverse transcription PCR analysis, we show that mRNA expression of macrophage inflammatory protein-1alpha (MIP-1alpha), macrophage chemotactic protein-1 (MCP-1), granulocyte macrophage-colony stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha) in the spinal cord is rapidly and transiently upregulated after intraspinal injection of LPC. Neutralizing these signaling molecules with function-blocking antibodies suppresses recruitment of T-cells, neutrophils, and monocytes into the spinal cord, as well as significantly reduces the number of phagocytic macrophages and the demyelination induced by LPC. These findings will have important implications for CNS regeneration and demyelinating disease.
Collapse
|