251
|
Cipta S, Patel HH. Molecular bandages: inside-out, outside-in repair of cellular membranes. Focus on "Myoferlin is critical for endocytosis in endothelial cells". Am J Physiol Cell Physiol 2009; 297:C481-3. [PMID: 19587215 DOI: 10.1152/ajpcell.00288.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
252
|
Alves MJM, Mortara RA. A century of research: what have we learned about the interaction of Trypanosoma cruzi with host cells? Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:76-88. [DOI: 10.1590/s0074-02762009000900013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/29/2009] [Indexed: 12/31/2022] Open
|
253
|
Mirnikjoo B, Balasubramanian K, Schroit AJ. Suicidal membrane repair regulates phosphatidylserine externalization during apoptosis. J Biol Chem 2009; 284:22512-6. [PMID: 19561081 DOI: 10.1074/jbc.c109.022913] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
One of the hallmarks of apoptosis is the redistribution of phosphatidylserine (PS) from the inner-to-outer plasma membrane (PM) leaflet, where it functions as a ligand for phagocyte recognition and the suppression of inflammatory responses. The mechanism by which apoptotic cells externalize PS has been assumed to involve "scramblases" that randomize phospholipids across the PM bilayer. These putative activities, however, have not been unequivocally proven to be responsible for the redistribution of lipids. Because elevated cytosolic Ca(2+) is critical to this process and is also required for activation of lysosome-PM fusion during membrane repair, we hypothesized that apoptosis could activate a "pseudo"-membrane repair response that results in the fusion of lysosomes with the PM. Using a membrane-specific probe that labels endosomes and lysosomes and fluorescein-labeled annexin 5 that labels PS, we show that the appearance of PS at the cell surface during apoptosis is dependent on the fusion of lysosomes with the PM, a process that is inhibited with the lysosomotrophe, chloroquine. We demonstrate that apoptotic cells evoke a persistent pseudo-membrane repair response that likely redistributes lysosomal-derived PS to the PM outer leaflet that leads to membrane expansion and the formation of apoptotic blebs. Our data suggest that inhibition of lysosome-PM fusion-dependent redistribution of PS that occurs as a result of chemotherapy- and radiotherapy-induced apoptosis will prevent PS-dependent anti-inflammatory responses that preclude the development of tumor- and patient-specific immune responses.
Collapse
Affiliation(s)
- Banafsheh Mirnikjoo
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
254
|
Gaspar EB, Mortara RA, Andrade LO, da Silva CV. Lysosomal exocytosis: an important event during invasion of lamp deficient cells by extracellular amastigotes of Trypanosoma cruzi. Biochem Biophys Res Commun 2009; 384:265-9. [PMID: 19406103 DOI: 10.1016/j.bbrc.2009.04.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 04/22/2009] [Indexed: 01/02/2023]
Abstract
Trypanosoma cruzi is an obligate intracellular organism in vertebrate hosts. Lysosomes are involved in parasite invasion. LAMP-1 and LAMP-2 are the most abundant glycoproteins of the lysosomal membrane. This study is the first report on the invasion of T. cruzi extracellular amastigotes (EA) in single LAMP-1 or LAMP-2 knockouts, respectively, or in two independent LAMP-1/2 double-knockout cell lines. When compared to their respective wild type clones, the EA show higher infectivity in LAMP-2 knockouts, but no difference was seen in LAMP-1 knockout cells. Similarly, EA invasion rate was higher for one of the double knockout clones but not for the other. Higher lysosomal exocytosis correlated with a higher invasion rate and early lysosomal marker acquisition. These findings suggest that lysosomal exocytosis is important to EA cell invasion. Also, phagolysosome maturation in knockout cell lines differed from previous results revealing that EA enter cells by a mechanism other than receptor-mediated phagocytosis.
Collapse
Affiliation(s)
- Emanuelle Baldo Gaspar
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu 862, 6 Degrees Andar, São Paulo 04023-062 SP, Brazil
| | | | | | | |
Collapse
|
255
|
Gauthier NC, Rossier OM, Mathur A, Hone JC, Sheetz MP. Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol Biol Cell 2009; 20:3261-72. [PMID: 19458190 DOI: 10.1091/mbc.e09-01-0071] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The role of plasma membrane (PM) area as a critical factor during cell motility is poorly understood, mainly due to an inability to precisely follow PM area dynamics. To address this fundamental question, we developed static and dynamic assays to follow exocytosis, endocytosis, and PM area changes during fibroblast spreading. Because the PM area cannot increase by stretch, spreading proceeds by the flattening of membrane folds and/or by the addition of new membrane. Using laser tweezers, we found that PM tension progressively decreases during spreading, suggesting the addition of new membrane. Next, we found that exocytosis increases the PM area by 40-60% during spreading. Reducing PM area reduced spread area, and, in a reciprocal manner, reducing spreadable area reduced PM area, indicating the interconnection between these two parameters. We observed that Golgi, lysosomes, and glycosylphosphatidylinositol-anchored protein vesicles are exocytosed during spreading, but endoplasmic reticulum and transferrin receptor-containing vesicles are not. Microtubule depolymerization blocks lysosome and Golgi exocytosis but not the exocytosis of glycosylphosphatidylinositol-anchored protein vesicles or PM area increase. Therefore, we suggest that fibroblasts are able to regulate about half of their original PM area by the addition of membrane via a glycosylphosphatidylinositol-anchored protein compartment.
Collapse
Affiliation(s)
- Nils C Gauthier
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
256
|
Abstract
The cell-invasive, trypomastigote form of Trypanosoma cruzi exhibits a unique relationship with lysosomes in target host cells. In contrast to many intracellular pathogens that are adept at avoiding contact with lysosomes, T. cruzi requires transient residence within this acidic organelle for productive infection. The low pH environment of lysosomes facilitates parasite egress from the vacuole and delivery into the host cytosol, a critical step in the T. cruzi developmental program. Recent studies also suggest that early lysosome fusion with invading or recently internalized parasites is critical for cellular retention of parasites. To ensure targeting to host cell lysosomes, T. cruzi trypomastigotes exploit two distinct modes of invasion that rapidly converge in the cell. In this chapter, we summarize the recent progress and changing views regarding the role of host cell lysosomes in the T. cruzi infection process where our discussion is limited to invasion of nonprofessional phagocytic cells.
Collapse
Affiliation(s)
- G Adam Mott
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
257
|
Eto DS, Gordon HB, Dhakal BK, Jones TA, Mulvey MA. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol 2008; 10:2553-67. [PMID: 18754852 DOI: 10.1111/j.1462-5822.2008.01229.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The FimH adhesin, localized at the distal tips of type 1 pili, binds mannose-containing glycoprotein receptors like alpha3beta1 integrins and stimulates bacterial entry into target host cells. Strains of uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections, utilize FimH to invade bladder epithelial cells. Here we set out to define the mechanism by which UPEC enters host cells by investigating four of the major entry routes known to be exploited by invasive pathogens: caveolae, clathrin, macropinocytosis and secretory lysosomes. Using pharmacological inhibitors in combination with RNA interference against specific endocytic pathway components, mutant host cell lines and a mouse infection model system, we found that type 1 pili-dependent bacterial invasion of host cells occurs via a cholesterol- and dynamin-dependent phagocytosis-like mechanism. This process did not require caveolae or secretory lysosomes, but was modulated by calcium levels, clathrin, and cooperative input from the primary clathrin adaptor AP-2 and a subset of alternate adaptors comprised of Numb, ARH and Dab2. These alternate clathrin adaptors recognize NPXY motifs, as found within the cytosolic tail of beta1 integrin, suggesting a functional link between the engagement of integrin receptors by FimH and the clathrin-dependent uptake of type 1-piliated bacteria.
Collapse
Affiliation(s)
- Danelle S Eto
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT 84112-0565, USA
| | | | | | | | | |
Collapse
|
258
|
Idone V, Tam C, Andrews NW. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol 2008; 18:552-9. [PMID: 18848451 PMCID: PMC2593466 DOI: 10.1016/j.tcb.2008.09.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/31/2008] [Accepted: 09/01/2008] [Indexed: 12/21/2022]
Abstract
Ca(2+) influx through plasma membrane wounds triggers a rapid-repair response that is essential for cell survival. Earlier studies showed that repair requires the exocytosis of intracellular vesicles. Exocytosis was thought to promote resealing by 'patching' the plasma membrane lesion or by facilitating bilayer restoration through reduction in membrane tension. However, cells also rapidly repair lesions created by pore-forming proteins, a form of injury that cannot be resealed solely by exocytosis. Recent studies indicate that, in cells injured by pores or mechanical abrasions, exocytosis is followed by lesion removal through endocytosis. Describing the relationship between wound-induced exocytosis and endocytosis has implications for the understanding of muscular degenerative diseases that are associated with defects in plasma membrane repair.
Collapse
Affiliation(s)
- Vincent Idone
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Street, New Haven, CT 06511, USA
| | | | | |
Collapse
|
259
|
Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol 2008; 602:124-31. [PMID: 19000670 DOI: 10.1016/j.ejphar.2008.10.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/23/2008] [Accepted: 10/15/2008] [Indexed: 11/20/2022]
Abstract
Bisphosphonates, which are extensively used in bone-related disorders, have been reported to inhibit atherosclerosis and neointimal hyperplasia. In the present study, we investigated the effects of a bisphosphonate, zoledronate, on the proliferation, adhesion, migration and microstructure of vascular smooth muscle cells (VSMCs) from Sprague-Dawley rats. It was shown that zoledronate suppressed VSMCs proliferation after 48 h cultivation in a dose depend manner, most obviously at concentrations above 10 microM. Cell cycle analysis indicated that zoledronate inhibited the proliferation of VSMCs via cell cycle arrest at S/G2/M phase. This inhibition was not associated with cell death. In a modified Boyden chamber model, it was shown that zoledronate dose-dependently inhibited VSMCs adhesion to collagen and migration stimulated by platelet-derived growth factor-BB. Western blot analysis suggested that zoledronate significantly inhibited the phosphorylation of focal adhesion kinase. Furthermore, we observed that more and more VSMCs changed from a bipolar appearance to a globular shape under inverted light microscope as zoledronate concentration increased from 0.1 to 100 microM. Images under transmission electron microscope confirmed this morphological change, and many electron density bodies were observed in zoledronate-treated VSMCs. These findings indicated that bisphosphonates' effects of suppressing atherosclerosis and neointimal hyperplasia might be due to inhibition of VSMCs, at least for zoledronate.
Collapse
|
260
|
Kaufmann AM, Krise JP. Niemann-Pick C1 functions in regulating lysosomal amine content. J Biol Chem 2008; 283:24584-93. [PMID: 18591242 PMCID: PMC2528997 DOI: 10.1074/jbc.m803715200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Indexed: 01/24/2023] Open
Abstract
Mutations in the late endosomal/lysosomal membrane protein Niemann-Pick C1 (NPC1) are known to cause a generalized block in retrograde vesicle-mediated transport, resulting in the hyper-accumulation of multiple lysosomal cargos. An important, yet often overlooked, category of lysosomal cargo includes the vast array of small molecular weight amine-containing molecules that are substrates for ion trapping in the highly acidic organelle lumen. We show here that the introduction of amine-containing molecules in lysosomes can significantly stimulate NPC1-mediated late endosome/lysosome fusion, and subsequently the secretion of lysosomal cargo. To illustrate the physiological importance of this NPC1-mediated transport pathway, we show that NPC1-deficient cells are more susceptible to the toxic effects of a lysosomotropic polyamine metabolite 3-aminopropanal. Moreover, NPC fibroblasts are shown to have higher levels of polyamine oxidase, an enzyme involved in the formation of 3-aminopropanal. Collectively, these findings provide strong support for a novel functional role for NPC1 and may also provide clues toward understanding NPC disease progression.
Collapse
Affiliation(s)
| | - Jeffrey P. Krise
- Department of Pharmaceutical Chemistry, School of Pharmacy, The
University of Kansas, Lawrence, Kansas 66047
| |
Collapse
|
261
|
Pryor PR, Jackson L, Gray SR, Edeling MA, Thompson A, Sanderson CM, Evans PR, Owen DJ, Luzio JP. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 2008; 134:817-27. [PMID: 18775314 PMCID: PMC2648964 DOI: 10.1016/j.cell.2008.07.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 06/06/2008] [Accepted: 07/15/2008] [Indexed: 11/18/2022]
Abstract
SNAREs provide the specificity and energy for the fusion of vesicles with their target membrane, but how they are sorted into the appropriate vesicles on post-Golgi trafficking pathways is largely unknown. We demonstrate that the clathrin-mediated endocytosis of the SNARE VAMP7 is directly mediated by Hrb, a clathrin adaptor and ArfGAP. Hrb wraps 20 residues of its unstructured C-terminal tail around the folded VAMP7 longin domain, demonstrating that unstructured regions of clathrin adaptors can select cargo. Disrupting this interaction by mutation of the VAMP7 longin domain or depletion of Hrb causes VAMP7 to accumulate on the cell's surface. However, the SNARE helix of VAMP7 binds back onto its longin domain, outcompeting Hrb for binding to the same groove and suggesting that Hrb-mediated endocytosis of VAMP7 occurs only when VAMP7 is incorporated into a cis-SNARE complex. These results elucidate the mechanism of retrieval of a postfusion SNARE complex in clathrin-coated vesicles.
Collapse
Affiliation(s)
- Paul R. Pryor
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Lauren Jackson
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Sally R. Gray
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Melissa A. Edeling
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Amanda Thompson
- Medical Research Council Rosalind Franklin Centre for Genomics Research, Hinxton, Cambridge CB10 1SB, UK
| | - Christopher M. Sanderson
- Medical Research Council Rosalind Franklin Centre for Genomics Research, Hinxton, Cambridge CB10 1SB, UK
| | - Philip R. Evans
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - David J. Owen
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - J. Paul Luzio
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
262
|
Chan WT, Sherer NM, Uchil PD, Novak EK, Swank RT, Mothes W. Murine leukemia virus spreading in mice impaired in the biogenesis of secretory lysosomes and Ca2+-regulated exocytosis. PLoS One 2008; 3:e2713. [PMID: 18629000 PMCID: PMC2443282 DOI: 10.1371/journal.pone.0002713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 06/24/2008] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Retroviruses have been observed to bud intracellularly into multivesicular bodies (MVB), in addition to the plasma membrane. Release from MVB is thought to occur by Ca(2+)-regulated fusion with the plasma membrane. PRINCIPAL FINDINGS To address the role of the MVB pathway in replication of the murine leukemia virus (MLV) we took advantage of mouse models for the Hermansky-Pudlak syndrome (HPS) and Griscelli syndrome. In humans, these disorders are characterized by hypopigmentation and immunological alterations that are caused by defects in the biogenesis and trafficking of MVBs and other lysosome related organelles. Neonatal mice for these disease models lacking functional AP-3, Rab27A and BLOC factors were infected with Moloney MLV and the spread of virus into bone marrow, spleen and thymus was monitored. We found a moderate reduction in MLV infection levels in most mutant mice, which differed by less than two-fold compared to wild-type mice. In vitro, MLV release form bone-marrow derived macrophages was slightly enhanced. Finally, we found no evidence for a Ca(2+)-regulated release pathway in vitro. Furthermore, MLV replication was only moderately affected in mice lacking Synaptotagmin VII, a Ca(2+)-sensor regulating lysosome fusion with the plasma membrane. CONCLUSIONS Given that MLV spreading in mice depends on multiple rounds of replication even moderate reduction of virus release at the cellular level would accumulate and lead to a significant effect over time. Thus our in vivo and in vitro data collectively argue against an essential role for a MVB- and secretory lysosome-mediated pathway in the egress of MLV.
Collapse
Affiliation(s)
- Wai-Tsing Chan
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Nathan M. Sherer
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pradeep D. Uchil
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Edward K. Novak
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Richard T. Swank
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Walther Mothes
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
263
|
Villalta F, Madison MN, Kleshchenko YY, Nde PN, Lima MF. Molecular analysis of early host cell infection by Trypanosoma cruzi. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:3714-34. [PMID: 18508467 PMCID: PMC2728773 DOI: 10.2741/2961] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas heart disease, infects heart and other cells leading to cardiac arrest frequently followed by death. The disease affects millions of individuals in the Americas and is posing health problems because of blood transmission in the US due to large Latin American immigration. Since the current drugs present serious side effects and do not cure the chronic infection, it is critically important to understand the early process of cellular infection at the molecular and structural levels to design novel inhibitors to block T. cruzi infection. In this review, the authors critically analyze the molecular and cellular basis of early T. cruzi infection and discuss the future directions in this area. The candidate T. cruzi invasive genes and host genes involved in the process of early infection are just beginning to be understood. The trypanosome invasive proteins are excellent targets for intervention. The progress made in the cell biology of T. cruzi infection will also facilitate the development of novel cell-based therapies to ameliorate the disease.
Collapse
Affiliation(s)
- Fernando Villalta
- Department of Microbial Pathogenesis and Immune Response, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208-3599, USA.
| | | | | | | | | |
Collapse
|
264
|
Erdmann S, Ricken A, Hummitzsch K, Merkwitz C, Schliebe N, Gaunitz F, Strotmann R, Spanel-Borowski K. Inflammatory cytokines increase extracellular procathepsin D in permanent and primary endothelial cell cultures. Eur J Cell Biol 2008; 87:311-23. [DOI: 10.1016/j.ejcb.2008.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 11/16/2022] Open
|
265
|
Angus AA, Lee AA, Augustin DK, Lee EJ, Evans DJ, Fleiszig SMJ. Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility. Infect Immun 2008; 76:1992-2001. [PMID: 18316391 PMCID: PMC2346716 DOI: 10.1128/iai.01221-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/10/2007] [Accepted: 02/14/2008] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is known to invade epithelial cells during infection and in vitro. However, little is known of bacterial or epithelial factors modulating P. aeruginosa intracellular survival or replication after invasion, except that it requires a complete lipopolysaccharide core. In this study, real-time video microscopy revealed that invasive P. aeruginosa isolates induced the formation of membrane blebs in multiple epithelial cell types and that these were then exploited for intracellular replication and rapid real-time motility. Further studies revealed that the type three secretion system (T3SS) of P. aeruginosa was required for blebbing. Mutants lacking either the entire T3SS or specific T3SS components were instead localized to intracellular perinuclear vacuoles. Most T3SS mutants that trafficked to perinuclear vacuoles gradually lost intracellular viability, and vacuoles containing those bacteria were labeled by the late endosomal marker lysosome-associated marker protein 3 (LAMP-3). Interestingly, mutants deficient only in the T3SS translocon structure survived and replicated within the vacuoles that did not label with LAMP-3. Taken together, these data suggest two novel roles of the P. aeruginosa T3SS in enabling bacterial intracellular survival: translocon-dependent formation of membrane blebs, which form a host cell niche for bacterial growth and motility, and effector-dependent bacterial survival and replication within intracellular perinuclear vacuoles.
Collapse
Affiliation(s)
- Annette A Angus
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
266
|
Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW. Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. ACTA ACUST UNITED AC 2008; 180:905-14. [PMID: 18316410 PMCID: PMC2265401 DOI: 10.1083/jcb.200708010] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ca2+ influx through plasma membrane lesions triggers a rapid repair process that was previously shown to require the exocytosis of lysosomal organelles (Reddy, A., E. Caler, and N. Andrews. 2001. Cell. 106:157–169). However, how exocytosis leads to membrane resealing has remained obscure, particularly for stable lesions caused by pore-forming proteins. In this study, we show that Ca2+-dependent resealing after permeabilization with the bacterial toxin streptolysin O (SLO) requires endocytosis via a novel pathway that removes SLO-containing pores from the plasma membrane. We also find that endocytosis is similarly required to repair lesions formed in mechanically wounded cells. Inhibition of lesion endocytosis (by sterol depletion) inhibits repair, whereas enhancement of endocytosis through disruption of the actin cytoskeleton facilitates resealing. Thus, endocytosis promotes wound resealing by removing lesions from the plasma membrane. These findings provide an important new insight into how cells protect themselves not only from mechanical injury but also from microbial toxins and pore-forming proteins produced by the immune system.
Collapse
Affiliation(s)
- Vincent Idone
- Section of Microbial Pathogenesis and 2Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
267
|
Victor BC, Sloane BF. Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function. Biol Chem 2008; 388:1131-40. [PMID: 17976005 DOI: 10.1515/bc.2007.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cysteine cathepsins play a fundamental role in tumor growth, invasion and migration, angiogenesis, and the metastatic cascade. Evidence of their overexpression in a wide array of human tumors has been well documented. Cysteine cathepsins seem to have a characteristic location-function relationship that leads to non-traditional roles such as those in development and pathology. For example, during tumor development, some cysteine cathepsins are found not just within lysosomes, but are also redistributed into presumptive exocytic vesicles at the cell periphery, resulting in their secretion. This altered localization contributes to non-lysosomal functions that have been linked to malignant progression. Mechanisms for altered localization are not well understood, but do include the interaction of cysteine cathepsins with binding partners that modulate intracellular trafficking and association with specific regions on the cell surface.
Collapse
Affiliation(s)
- Bernadette C Victor
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | |
Collapse
|
268
|
Ruettger A, Schueler S, Mollenhauer JA, Wiederanders B. Cathepsins B, K, and L are regulated by a defined collagen type II peptide via activation of classical protein kinase C and p38 MAP kinase in articular chondrocytes. J Biol Chem 2007; 283:1043-51. [PMID: 17991740 DOI: 10.1074/jbc.m704915200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Degradation of the extracellular matrix (ECM) is a prominent feature in osteoarthritis (OA), which is mainly because of the imbalance between anabolic and catabolic processes in chondrocytes resulting in cartilage and bone destruction. Various proteases act in concert to degrade matrix components, e.g. type II collagen, MMPs, ADAMTS, and cathepsins. Protease-generated collagen fragments may foster the destructive process. However, the signaling pathways associated with the action of collagen fragments on chondrocytes have not been clearly defined. The present data demonstrate that the N-terminal telopeptide of collagen type II enhances expression of cathepsins B, K, and L in articular chondrocytes at mRNA, protein, and activity levels, mediated at least in part through extracellular calcium. We also demonstrate that the induction is associated with the activation of protein kinase C and p38 MAP kinase.
Collapse
Affiliation(s)
- Anke Ruettger
- Institute of Biochemistry I, Universitätsklinikum, University of Jena, 07743 Jena, Germany
| | | | | | | |
Collapse
|
269
|
Qureshi OS, Paramasivam A, Yu JCH, Murrell-Lagnado RD. Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci 2007; 120:3838-49. [DOI: 10.1242/jcs.010348] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P2X4 receptor has a widespread distribution in the central nervous system and the periphery, and plays an important role in the function of immune cells and the vascular system. Its upregulation in microglia contributes to neuropathic pain following nerve injury. The mechanisms involved in its regulation are not well understood, although we have previously shown that it is constitutively retrieved from the plasma membrane and resides predominantly within intracellular compartments. Here, we show that the endogenous P2X4 receptors in cultured rat microglia, vascular endothelial cells and freshly isolated peritoneal macrophages are localized predominantly to lysosomes. Lysosomal targeting was mediated through a dileucine-type motif within the N-terminus, together with a previously characterized tyrosine-based endocytic motif within the C-terminus. P2X4 receptors remained stable within the proteolytic environment of the lysosome and resisted degradation by virtue of their N-linked glycans. Stimulation of phagocytosis triggered the accumulation of P2X4 receptors at the phagosome membrane. Stimulating lysosome exocytosis, either by incubating with the Ca2+ ionophore ionomycin, for normal rat kidney (NRK) cells and cultured rat microglia, or the weak base methylamine, for peritoneal macrophages, caused an upregulation of both P2X4 receptors and the lysosomal protein LAMP-1 at the cell surface. Lysosome exocytosis in macrophages potentiated ATP-evoked P2X4 receptor currents across the plasma membrane. Taken together, our data suggest that the P2X4 receptor retains its function within the degradative environment of the lysosome and can subsequently traffic out of lysosomes to upregulate its exposure at the cell surface and phagosome.
Collapse
Affiliation(s)
- Omar S. Qureshi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Anbalakan Paramasivam
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Jowie C. H. Yu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Ruth D. Murrell-Lagnado
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
270
|
Abstract
OBJECTIVE To test the hypothesis that disruption of acinar cell membranes is the earliest event that takes place after the onset of acute pancreatitis. METHODS Cerulein and taurocholate pancreatitis were induced in rats. Furthermore, stimulation with different doses of bombesin, pilocarpine, and cerulein was performed. Five to 180 minutes after initiation of treatment, animals were killed. Disruption of cell membranes was detected by the penetration of the experimental animal's own albumin or immunoglobulin G (IgG) into acinar cells by immunocytological localization. Tissue was further analyzed by electron microscopy and electron microscopic immunostaining. RESULTS Animals with pancreatitis displayed significantly greater antialbumin and anti-IgG immunostaining in the cytoplasm of acinar cells and in vacuoles in comparison with controls, confirming membrane disruption. This was not detectable after stimulation with bombesin, pilocarpine, and nonsupramaximal doses of cerulein. The first changes were seen after 5 minutes of induction of pancreatitis. Results were verified by electron microscopy and electron microscopic immunohistochemistry. CONCLUSIONS The penetration of albumin and IgG into acinar cells indicates that wounding of their plasma membrane occurs at the onset of acute pancreatitis. Disruption of the membranes could be expected to allow the influx of calcium ions, causing massive intracellular alterations, and exit of molecules, such as enzymes from acinar cells.
Collapse
|
271
|
McCollister BD, Myers JT, Jones-Carson J, Voelker DR, Vázquez-Torres A. Constitutive acid sphingomyelinase enhances early and late macrophage killing of Salmonella enterica serovar Typhimurium. Infect Immun 2007; 75:5346-52. [PMID: 17698574 PMCID: PMC2168317 DOI: 10.1128/iai.00689-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 06/26/2007] [Accepted: 07/28/2007] [Indexed: 12/28/2022] Open
Abstract
We have identified acid sphingomyelinase (ASM) as an important player in the early and late anti-Salmonella activity of macrophages. A functional ASM participated in the killing activity of macrophages against wild-type Salmonella enterica serovar Typhimurium. The role of ASM in early macrophage killing of Salmonella appears to be linked to an active NADPH phagocyte oxidase enzymatic complex, since the flavoprotein inhibitor diphenyleneiodonium not only blocked a productive respiratory burst but also abrogated the survival advantage of Salmonella in macrophages lacking ASM. Lack of ASM activity also increased the intracellular survival of an isogenic DeltaspiC::FRT Salmonella strain deficient in a translocator and effector of the Salmonella pathogenicity island 2 (SPI2) type III secretion system, suggesting that the antimicrobial activity associated with ASM is manifested regardless of the SPI2 status of the bacteria. Constitutively expressed ASM is responsible for the role that this lipid-metabolizing hydrolase plays in the innate host defense of macrophages against Salmonella. Accordingly, the ASM activity and intracellular concentration and composition of ceramide, gangliosides, and neutral sphingolipids did not increase upon Salmonella infection. Salmonella triggered, nonetheless, a significant increase in the secreted fraction of ASM. Collectively, these findings have elucidated a novel role for constitutive ASM in the anti-Salmonella activity of murine macrophages.
Collapse
Affiliation(s)
- Bruce D McCollister
- Department of Microbiology, Mail Box 8333, UCHSC School of Medicine at Fitzsimons, P.O. Box 6511, Room P18-9120, Aurora, CO 80010, USA
| | | | | | | | | |
Collapse
|
272
|
Mambula SS, Stevenson MA, Ogawa K, Calderwood SK. Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 2007; 43:168-75. [PMID: 17920512 PMCID: PMC2745244 DOI: 10.1016/j.ymeth.2007.06.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/25/2007] [Indexed: 02/02/2023] Open
Abstract
Heat shock protein 70 (Hsp70) is released from cells of many types and plays a significant signaling role, particularly in the inflammatory and immune responses. However, Hsp70 does not contain a consensus secretory signal and thus cannot traverse the plasma membrane by conventional mechanisms. However, Hsp70 can be released from cells by active mechanism that are independent of de novo Hsp70 synthesis or cell death. This pathway is similar to one utilized by the leaderless protein interleukin 1beta. Hsp70 release involves transit through an endolysosomal compartment and is inhibited by lysosomotropic compounds. In addition, the rate of Hsp70 secretion correlates well with the appearance of the lysosomal marker LAMP1 on the cell surface, further suggesting the role for endolysosomes. The entry of Hsp70 into this secretory compartment appears to involve the ABC-family transporter proteins. While the cell signals involved in triggering Hsp70 release through this lysosomal pathway are largely unknown, recent data suggest a regulatory role for extracellular ATP. These mechanisms are also shared by interleukin 1beta secretion. Following release it has been shown that Hsp70 binds to adjacent cells, suggesting that the secreted protein participates in paracrine or autocrine interactions with adjacent cell surfaces. Thus an outline is beginning to of the mechanisms of Hsp70 secretion. Much further study will be required to fully elucidate mechanisms involved in targeting Hsp70 towards the non-canonical secretion pathways and its regulation.
Collapse
Affiliation(s)
- Salamatu S. Mambula
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02215
| | - Mary Ann Stevenson
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02215
| | - Kishiko Ogawa
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02215
| | - Stuart K. Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02215
| |
Collapse
|
273
|
Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:1913-25. [PMID: 17641058 DOI: 10.4049/jimmunol.179.3.1913] [Citation(s) in RCA: 454] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several mechanistically distinct models of nonclassical secretion, including exocytosis of secretory lysosomes, shedding of plasma membrane microvesicles, and direct efflux through plasma membrane transporters, have been proposed to explain the rapid export of caspase-1-processed IL-1 beta from monocytes/macrophages in response to activation of P2X7 receptors (P2X7R) by extracellular ATP. We compared the contribution of these mechanisms to P2X7R-stimulated IL-1 beta secretion in primary bone marrow-derived macrophages isolated from wild-type, P2X7R knockout, or apoptosis-associated speck-like protein containing a C-terminal CARD knockout mice. Our experiments revealed the following: 1) a novel correlation between IL-1 beta secretion and the release of the MHC-II membrane protein, which is a marker of plasma membranes, recycling endosomes, multivesicular bodies, and released exosomes; 2) a common and absolute requirement for inflammasome assembly and active caspase-1 in triggering the cotemporal export of IL-1 beta and MHC-II; and 3) mechanistic dissociation of IL-1 beta export from either secretory lysosome exocytosis or plasma membrane microvesicle shedding on the basis of different requirements for extracellular Ca(2+) and differential sensitivity to pharmacological agents that block activation of caspase-1 inflammasomes. Thus, neither secretory lysosome exocytosis nor microvesicle shedding models constitute the major pathways for nonclassical IL-1 beta secretion from ATP-stimulated murine macrophages. Our findings suggest an alternative model of IL-1 beta release that may involve the P2X7R-induced formation of multivesicular bodies that contain exosomes with entrapped IL-1 beta, caspase-1, and other inflammasome components.
Collapse
Affiliation(s)
- Yan Qu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44120, USA
| | | | | | | |
Collapse
|
274
|
Zhukovsky MA, Markovic I, Bailey AL. Influence of calcium on lipid mixing mediated by influenza hemagglutinin. Arch Biochem Biophys 2007; 465:101-8. [PMID: 17585869 PMCID: PMC2025700 DOI: 10.1016/j.abb.2007.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/30/2007] [Accepted: 05/01/2007] [Indexed: 11/22/2022]
Abstract
We studied the influence of calcium on lipid mixing mediated by influenza hemagglutinin (HA). Lipid mixing between HA-expressing cells and liposomes containing disialoganglioside, influenza virus receptor, was studied at 37 degrees C and neutral pH after a low-pH pulse at 4 degrees C. With DSPC/cholesterol liposomes, calcium present after raising the temperature significantly promoted lipid mixing only when it was triggered by a short low-pH application. In case of DOPC/cholesterol liposomes, calcium promotion was observed regardless of the duration of the low-pH pulse. Calcium present during a short, but not long, low-pH application to HA-expressing cells with bound DSPC/cholesterol liposomes at 4 degrees C inhibited subsequent lipid mixing. We hypothesize that calcium influences lipid mixing because it binds to a vestigial esterase domain of hemagglutinin or causes expulsion of the fusion peptide from an electronegative cavity. We suggest that calcium promotes the transition from early and reversible conformation(s) of low pH-activated HA towards an irreversible conformation that underlies both HA-mediated lipid mixing and HA inactivation.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
275
|
Abstract
Lysosomes are dynamic organelles that receive and degrade macromolecules from the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Live-cell imaging has shown that fusion with lysosomes occurs by both transient and full fusion events, and yeast genetics and mammalian cell-free systems have identified much of the protein machinery that coordinates these fusion events. Many pathogens that hijack the endocytic pathways to enter cells have evolved mechanisms to avoid being degraded by the lysosome. However, the function of lysosomes is not restricted to protein degradation: they also fuse with the plasma membrane during cell injury, as well as having more specialized secretory functions in some cell types.
Collapse
Affiliation(s)
- J Paul Luzio
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK.
| | | | | |
Collapse
|
276
|
Nehrt A, Rodgers R, Shapiro S, Borgens R, Shi R. The critical role of voltage-dependent calcium channel in axonal repair following mechanical trauma. Neuroscience 2007; 146:1504-12. [PMID: 17448606 PMCID: PMC2701192 DOI: 10.1016/j.neuroscience.2007.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 11/30/2022]
Abstract
Membrane disruption following mechanical injury likely plays a critical role in the pathology of spinal cord trauma. It is known that intracellular calcium is a key factor that is essential to membrane resealing. However, the differential role of calcium influx through the injury site and through voltage dependent calcium channels (VDCC) has not been examined in detail. Using a well-established ex vivo guinea-pig spinal cord white matter preparation, we have found that axonal membrane resealing was significantly inhibited following transection or compression in the presence of cadmium, a non-specific calcium channel blocker, or nimodipine, a specific L-type calcium channel blocker. Membrane resealing was assessed by the changes of membrane potential and compound action potential (CAP), and exclusion of horseradish peroxidase 60 min following trauma. Furthermore, 1 microM BayK 8644, a VDCC agonist, significantly enhanced membrane resealing. Interestingly, this effect was completely abolished when the concentration of BayK 8644 was increased to 30 microM. These data suggest that VDCC play a critical role in membrane resealing. Further, there is likely an appropriate range of calcium influx through VDCC which ensures effective axonal membrane resealing. Since elevated intracellular calcium has also been linked to axonal deterioration, blockage of VDCC is proposed to be a clinical treatment for various injuries. The knowledge gained in this study will likely help us better understand the role of calcium in various CNS trauma, which is critical for designing new approaches or perhaps optimizing the effectiveness of existing methods in the treatment of CNS trauma.
Collapse
Affiliation(s)
- Ashley Nehrt
- Center for Paralysis Research, Department of Basic Medical Sciences, Weldon School of Biomedical Engineering, Purdue University
| | - Richard Rodgers
- Department of Neurosurgery, School of Medicine, Indiana University
| | - Scott Shapiro
- Department of Neurosurgery, School of Medicine, Indiana University
| | - Richard Borgens
- Center for Paralysis Research, Department of Basic Medical Sciences, Weldon School of Biomedical Engineering, Purdue University
| | - Riyi Shi
- Center for Paralysis Research, Department of Basic Medical Sciences, Weldon School of Biomedical Engineering, Purdue University
| |
Collapse
|
277
|
Fellows E, Gil-Parrado S, Jenne DE, Kurschus FC. Natural killer cell-derived human granzyme H induces an alternative, caspase-independent cell-death program. Blood 2007; 110:544-52. [PMID: 17409270 DOI: 10.1182/blood-2006-10-051649] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granzyme H (GzmH) belongs to a family of 5 human serine proteases that are expressed by cytotoxic immune effector cells. Although GzmH is most closely related to the caspase-activating granzyme B (GzmB), neither a natural substrate nor a role in immune defense reactions has been demonstrated for this orphan granzyme. In rodents, multiple related genes exist, but none of these can be regarded as functional homologs. Here we show that host cells are efficiently killed by GzmH after perforin and streptolysin O-mediated delivery into the cytosol. Dying cells show typical hallmarks of programmed cell death, such as mitochondrial depolarization, reactive oxygen species (ROS) generation, DNA degradation, and chromatin condensation. Contrary to GzmB, cell death by GzmH does not involve the activation of executioner caspases, the cleavage of Bid or inhibitor of caspase-activated DNase (ICAD), or the release of cytochrome c. The high expression levels of GzmH in naive natural killer (NK) cells and its potent killing ability strongly support the role of the protease in triggering an alternative cell-death pathway in innate immunity.
Collapse
Affiliation(s)
- Edward Fellows
- Department of Neuroimmunology, Max-Planck-Institut of Neurobiology, Martinsried, Germany
| | | | | | | |
Collapse
|
278
|
Hoffman-Sommer M, Rytka J. The yeast protein sorting pathway as an experimental model for lysosomal trafficking. Expert Rev Clin Immunol 2007; 3:225-39. [PMID: 20477111 DOI: 10.1586/1744666x.3.2.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are conserved organelles that are present in all eukaryotic cells. They are part of a complicated network of intracellular trafficking routes - the lysosomal transport system. Lysosomes are necessary for the maintenance of cellular homeostasis and for many specialized functions, including the activity of many components of the mammalian immune system. Dysfunctions of the lysosomal system are associated with numerous diseases, such as storage disorders, neuro- and myopathies, cancer and some types of albinism and immunological deficiencies. High conservation of the processes of lysosomal biogenesis and transport enables the use of yeast as a model for studying the mechanisms that underlie these diseases. In this review, we discuss several examples of such models in an attempt to present an overview of the most important experimental methods available in yeast research.
Collapse
Affiliation(s)
- Marta Hoffman-Sommer
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | | |
Collapse
|
279
|
Fowler KT, Andrews NW, Huleatt JW. Expression and function of synaptotagmin VII in CTLs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:1498-504. [PMID: 17237398 PMCID: PMC2203615 DOI: 10.4049/jimmunol.178.3.1498] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ca(2+) sensor synaptotagmin (Syt) VII regulates the exocytosis of conventional lysosomes in several cell types. In CTLs, the Ca(2+)-regulated exocytosis of lytic granules/secretory lysosomes is responsible for the perforin/granzyme-mediated lysis of target cells. To investigate the role of Syt VII in CTL effector function, the expression and function of Syt VII were examined in wild-type and Syt VII-deficient mice. In comparison with Syt VII(+/+) controls, Syt VII(-/-) animals were impaired in their ability to clear an infection with the intracellular pathogen Listeria monocytogenes. When isolated CTLs were examined, we found that Syt VII is expressed upon CTL activation and localizes to granzyme A-containing lytic granules. Syt VII-deficient CTLs have no defects in proliferation and cytokine production, and their lytic granules contain normal amounts of perforin and granzyme A and polarize normally at the immunological synapse. However, despite normal conjugate formation with target cells, CTLs from Syt VII(-/-) mice exhibit reduced effector activity, when compared with controls. Treatment of Syt VII(+/+) or Syt VII(-/-) CTLs with an inhibitor of the perforin-mediated lytic pathway resulted in comparable levels of cytotoxic activity, suggesting that Syt VII regulates perforin-mediated cytolytic CTL responses.
Collapse
Affiliation(s)
- Kimberly T. Fowler
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510
| | - Norma W. Andrews
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510
| | - James W. Huleatt
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510 and
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
280
|
Bement WM, Yu HYE, Burkel BM, Vaughan EM, Clark AG. Rehabilitation and the single cell. Curr Opin Cell Biol 2007; 19:95-100. [PMID: 17174083 PMCID: PMC4364133 DOI: 10.1016/j.ceb.2006.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 12/05/2006] [Indexed: 11/15/2022]
Abstract
Cellular damage triggers rapid resealing of the plasma membrane and repair of the cortical cytoskeleton. Plasma membrane resealing results from calcium-dependent fusion of membranous organelles and the plasma membrane at the site of the damage. Cortical cytoskeletal repair results from local assembly of actin filaments (F-actin), myosin-2 and microtubules into an array that closes around the original wound site. Control of the cytoskeletal response is exerted by local activation of the small GTPases, Rho and Cdc42. Recent work has given insight into both the membrane fusion and cytoskeletal responses to plasma membrane damage and we propose that Rho GTPase activation results at least in part from the events that drive membrane repair.
Collapse
Affiliation(s)
- William M Bement
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
281
|
Mambula SS, Calderwood SK. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. THE JOURNAL OF IMMUNOLOGY 2007; 177:7849-57. [PMID: 17114456 DOI: 10.4049/jimmunol.177.11.7849] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heat shock protein (HSP)70 can be released from tumor cells and stimulate a potent antitumor immune response. However, HSP70 does not contain a consensus secretory signal and thus cannot traverse the plasma membrane by conventional mechanisms. We have observed HSP70 release from intact human prostate carcinoma cell lines (PC-3 and LNCaP) by a mechanism independent of de novo HSP70 synthesis or cell death. This pathway is similar to one used by the leaderless protein IL-1beta. Our studies show that HSP70 release involves transit though an endolysosomal compartment and is inhibited by lysosomotropic compounds. In addition, the rate of HSP70 secretion correlates well with the appearance of the lysosomal marker LAMP1 on the cell surface, further suggesting the role for endolysosomes. The entry of HSP70 into this secretory compartment appears to involve the ABC family transporter proteins and ABC transporter inhibitor glibenclamide antagonizes secretion. Although the cell signals involved in triggering stress induced HSP70 release though this lysosomal pathway are largely unknown, our experiments suggest a regulatory role for extracellular ATP. These mechanisms appear to be shared by IL-1beta secretion. Following release, we observed the binding of extracellular HSP70 to the cell surface of the prostate carcinoma cells. These findings suggest that secreted HSP70 can take part in paracrine or autocrine interactions with adjacent cell surfaces. Our experiments therefore suggest a mechanism for HSP70 secretion and binding to the surface of other cells that may be involved in recognition of the tumor cells by the immune system.
Collapse
Affiliation(s)
- Salamatu S Mambula
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 21-27 Burlington Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
282
|
LaPlante JM, Sun M, Falardeau J, Dai D, Brown EM, Slaugenhaupt SA, Vassilev PM. Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol Genet Metab 2006; 89:339-48. [PMID: 16914343 DOI: 10.1016/j.ymgme.2006.05.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/21/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive disease characterized by severe neurological impairment, ophthalmologic defects, and gastric dysfunction. MLIV cells have a deficiency in the late endosomal/lysosomal (LEL) pathway that results in the buildup of lysosomal inclusions. Using a Xenopus oocyte expression system, we previously showed that mucolipin-1 (MLN1), the protein encoded by the MCOLN1 gene is a Ca2+ -permeable non-selective cation channel that is transiently modulated by elevations in intracellular Ca2+. We further showed that MLN1 is translocated to the plasma membrane during lysosomal exocytosis. In this study we show that lysosomal exocytosis is impaired in fibroblasts from MLIV patients, indicating that MLN1 plays an active role in this process. Further, we show that transfection with wild type MLN1 cDNA rescues exocytosis, suggesting the possibility of treatments based on the restoration of this crucial cellular function.
Collapse
Affiliation(s)
- Janice M LaPlante
- Division of Endocrinology, Diabetes and Hypertension and Membrane Biology Program, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
283
|
Piwnica D, Fernandez I, Binart N, Touraine P, Kelly PA, Goffin V. A new mechanism for prolactin processing into 16K PRL by secreted cathepsin D. Mol Endocrinol 2006; 20:3263-78. [PMID: 16959874 DOI: 10.1210/me.2006-0044] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cathepsins are lysosomal enzymes that were shown to release the antiangiogenic fragments 16K prolactin (PRL), endostatin, and angiostatin by processing precursors at acidic pH in vitro. However, the physiological relevance of these findings is questionable because the neutral pH of physiological fluids is not compatible with the acidic conditions required for the proteolytic activity of these enzymes. Here we show that cathepsin D secreted from various tissues is able to process PRL into 16K PRL outside the cell. To specifically target extracellular proteolysis, we used tissues from PRL receptor-deficient mice, which are unable to internalize PRL. As assessed by the use of specific inhibitors of proton extruders, we show that the proteolytic activity of cathepsin D requires local acid secretion driven by Na(+)/H(+) exchangers and H(+)/ATPase. Although it is usually assumed that cathepsin-mediated generation of antiangiogenic peptides occurs in the moderately acidic pericellular milieu found in malignant tumors, we propose a new mechanism explaining the extracellular activity of this acidic protease under physiological pH. Our data support the concept that secreted lysosomal enzymes could be involved in the maintenance of angiogenesis dormancy via the generation of active antiangiogenic peptides in nonpathological contexts.
Collapse
Affiliation(s)
- David Piwnica
- Institut National de la Santé et de la Recherche Médicale, (INSERM), Unité (U) 808, F-75730 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
284
|
Senanayake PD, Calabro A, Hu JG, Bonilha VL, Darr A, Bok D, Hollyfield JG. Glucose utilization by the retinal pigment epithelium: Evidence for rapid uptake and storage in glycogen, followed by glycogen utilization. Exp Eye Res 2006; 83:235-46. [PMID: 16690055 DOI: 10.1016/j.exer.2005.10.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/05/2005] [Accepted: 10/28/2005] [Indexed: 10/24/2022]
Abstract
Glucose utilization and glycogen metabolism by human retinal pigment epithelium (RPE) cultures with high transepithelial resistance maintained on porous Millicell polycarbonate filters, were quantified by fluorophore-assisted carbohydrate electrophoresis (FACE). Glucose uptake was more efficient at the apical surface of the RPE. The utilization of glucose when restricted to either the apical or basal medium was also evaluated. Under both conditions, glucose was quickly transported to the opposite compartment and rapidly utilized. However, glucose from the apical compartment was depleted to a greater extent than from the basal compartment. The de novo synthesis and accumulation of glycogen accompanied glucose utilization. This was paralleled by a concomitant increase in lysosomal glycogen degradation measured as an increase in cell-associated maltodextrins. The highest levels of glucose in glycogen and maltodextrins occurred at 24 h, declining to basal levels at 72 h. Glucose transporter expression in the RPE cultures was evaluated with the reverse transcriptase-polymerase chain reaction. Glucose transporter-1 (GLUT 1) was the isoform expressed in these cells. GLUT 1 localization was determined by immunocytochemistry. GLUT 1 localizes to the apical and basolateral border of the RPE. The intensity of fluorescence was higher on the apical border. The rapid depletion of medium glucose suggests that RPE culture studies should replenish medium glucose more frequently than every 72 h to maintain physiologically relevant glucose concentrations. These studies are the first to demonstrate glucose, glycogen and maltodextrin metabolism by RPE cells, and their detection and quantitation by FACE.
Collapse
Affiliation(s)
- Preenie deS Senanayake
- Department of Ophthalmic Research, The Cole Eye Institute, The Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
285
|
Abstract
Retroviral Gag proteins are membrane-bound polyproteins that are necessary and sufficient for virus-like particle (VLP) formation. It is not known how Gag traffics through the cell or how the site of particle production is determined. Here we use two techniques, biarsenical/tetracysteine (TC) labeling and release from a cycloheximide block, to follow the trafficking of newly synthesized HIV-1 Gag. Gag first appears diffusely distributed in the cytosol, accumulates in perinuclear clusters, passes transiently through a multivesicular body (MVB)-like compartment, and then travels to the plasma membrane (PM). Sequential passage of Gag through these temporal intermediates was confirmed by live cell imaging. Induction of a transient rise in cytoplasmic calcium increased the amounts of Gag, Gag assembly intermediates and VLPs in MVBs, and resulted in a dramatic increase in VLP release. These results define an intracellular trafficking pathway for HIV-1 Gag that uses perinuclear compartments and the MVB as trafficking intermediates. We propose that the regulation of Gag association with MVB-like compartments regulates the site of HIV-1 budding and particle formation.
Collapse
Affiliation(s)
- Mira Perlman
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
286
|
Shafat I, Vlodavsky I, Ilan N. Characterization of mechanisms involved in secretion of active heparanase. J Biol Chem 2006; 281:23804-11. [PMID: 16790442 DOI: 10.1074/jbc.m602762200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Heparanase is an endo-beta-D-glucuronidase involved in extracellular matrix remodeling and degradation and implicated in tumor metastasis, angiogenesis, inflammation, and autoimmunity. The enzyme is synthesized as a latent 65-kDa protein and is processed in the lysosomal compartment to an active 58-kDa heterodimer, where it is stored in a stable form. In contrast, its heparan sulfate substrate is localized extracellularly, suggesting the existence of mechanisms that trigger heparanase secretion. Here we show that secretion of the active enzyme is mediated by the protein kinase A and C pathways. Moreover, secretion of active heparanase was observed upon cell stimulation with physiological concentrations of adenosine, ADP, and ATP, as well as by the noncleavable ATP analogue adenosine 5'-O-(thiotriphosphate). Indeed, heparanase secretion was noted upon cell stimulation with a specific P2Y1 receptor agonist and was inhibited by P2Y receptor antagonists. The kinetics of heparanase secretion resembled the secretion of cathepsin D, a lysosomal enzyme, indicating that the secreted heparanase is of lysosomal origin. We suggest that secretion of active heparanase is initiated by extracellular cues activating the protein kinase A and C signaling pathways. The secreted enzyme(s) then facilitate cell invasion associated with cancer metastasis, angiogenesis, and inflammation.
Collapse
Affiliation(s)
- Itay Shafat
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | |
Collapse
|
287
|
Arantes RME, Andrews NW. A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J Neurosci 2006; 26:4630-7. [PMID: 16641243 PMCID: PMC6674075 DOI: 10.1523/jneurosci.0009-06.2006] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurite outgrowth is mediated by the exocytosis of intracellular vesicles at the tips of elongating neuronal processes. The lysosomal vesicle-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP)/VAMP7 was previously implicated in membrane fusion events mediating neurite outgrowth, but the participation of lysosomes in this exocytic process has remained unclear. Here, we show that VAMP7 and the lysosomal glycoprotein Lamp1 extensively colocalize in vesicles present throughout the soma and neurite outgrowths of primary sympathetic neurons. Synaptotagmin VII (Syt VII), a Ca(2+)-sensing synaptotagmin isoform previously shown to interact with VAMP7 during lysosomal exocytosis in fibroblasts, was detected on a subset of these lysosomal glycoprotein 1 (Lamp1)/VAMP7-positive neuronal vesicles. Ionophore-stimulated exocytosis triggered exposure of the luminal domains of both Lamp1 and Syt VII at overlapping sites on the neuronal surface, indicating that the Syt VII-containing lysosomal compartments fuse with the plasma membrane in response to [Ca2+]i elevation. To determine whether Syt VII was required for the exocytic events mediating neurite extension, we followed the development of superior cervical ganglion neurons explanted from Syt VII-deficient mice. The results revealed a marked defect in neurite outgrowth and arborization, suggesting that Ca(2+)-dependent, Syt VII-regulated exocytosis of late endosomes/lysosomes plays a role in the addition of new membrane to developing neurite extensions.
Collapse
|
288
|
Klose A, Wilbrand-Hennes A, Zigrino P, Weber E, Krieg T, Mauch C, Hunzelmann N. Contact of high-invasive, but not low-invasive, melanoma cells to native collagen I induces the release of mature cathepsin B. Int J Cancer 2006; 118:2735-43. [PMID: 16381007 DOI: 10.1002/ijc.21700] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metastasis of malignant tumor cells involves cell-cell and cell-matrix interactions, which regulate the expression and localization of proteolytic enzymes. In the present study, we investigated the expression and localization of the lysosomal cysteine proteinase cathepsin B and its natural inhibitors cystatin A, B and C in high- (MV3), intermediate- (SKmel28) and low-invasive (SKmel23, WM164) human melanoma cell lines grown on plastic or in contact with monomeric or fibrillar collagen type I. Neither the transcript levels of cathepsin B nor those of the natural inhibitors, cystatin B and C, were altered by the interaction of melanoma cells with collagen type I. However, protein expression and cellular localization of cathepsin B and its inhibitors were markedly affected. In contrast to low-invasive cells, high-invasive cells constitutively released procathepsin B when cultured on plastic. In addition, contact of invasive cells with fibrillar collagen type I resulted in the release of both mature forms of the protease. Perturbation studies using inhibitory antibodies against the beta1 subunit of the integrin receptor indicated a role for the beta1 integrin receptor family in the regulation of cathepsin B release. Cystatin B protein expression was much lower in high-invasive cells in both culture conditions, when compared to low-invasive cells. Cystatin C expression was comparable in all cells, but cell contact to fibrillar collagen type I induced its expression. These results strongly implicate a pivotal role of cell-matrix interactions for the regulation of cathepsin B localization and activity in melanoma cells.
Collapse
Affiliation(s)
- Anke Klose
- Department of Dermatology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
289
|
Huynh C, Andrews NW. The small chemical vacuolin-1 alters the morphology of lysosomes without inhibiting Ca2+-regulated exocytosis. EMBO Rep 2006; 6:843-7. [PMID: 16113649 PMCID: PMC1369166 DOI: 10.1038/sj.embor.7400495] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/29/2005] [Accepted: 06/29/2005] [Indexed: 11/08/2022] Open
Abstract
Ca2+-regulated exocytosis of lysosomes was previously shown to be required for the repair of plasma membrane wounds. The small chemical vacuolin-1 alters the morphology of lysosomes without affecting the ability of cells to reseal their plasma membrane after injury. On the basis of a failure to detect Ca2+-triggered lysosomal exocytosis in vacuolin-1-treated cells, a recent study proposed that lysosomes are dispensable for resealing. Here, we show that vacuolin-1, despite altering lysosome morphology, does not inhibit the exocytosis of lysosomes induced by exposure to a Ca2+ ionophore, or by plasma membrane wounding. Thus, lysosomes cannot be excluded as agents of membrane repair in vacuolin-1-treated cells.
Collapse
Affiliation(s)
- Chau Huynh
- Section of Microbial Pathogenesis and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA
| | - Norma W Andrews
- Section of Microbial Pathogenesis and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA
- Tel: +1 203 737 2410; Fax: +1 203 737 2630; E-mail:
| |
Collapse
|
290
|
Abstract
Antigens are able to elicit productive immune responses only when second signals are provided by adjuvant molecules. It is well established that exogenously acquired, pathogen-associated molecular patterns fulfil this adjuvant role when recognized by specific receptors on antigen-presenting cells. Recent evidence points to the existence of another class of adjuvant, which is apparently released from injured cells. Such endogenous adjuvants, referred to as 'danger' signals, could alert the immune system to situations that cause cell damage, but not necessarily those that involve infections. Endogenous adjuvants provide a good explanation for immune responses generated against tumours and autologous tissues, but it has been difficult to explain how a constant activation of the immune system is avoided, considering the frequency at which cells are injured in vivo. Here, we suggest that the efficiency with which cells reseal wounds in their plasma membrane might be an important factor in the balance between tolerance and autoimmunity. Recent observations in synaptotagmin-VII-deficient mice suggest that defective membrane repair could lead to autoimmunity in tissues that are more susceptible to mechanical injury.
Collapse
Affiliation(s)
- Norma W Andrews
- Section of Microbial Pathogenesis, Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA.
| |
Collapse
|
291
|
Abstract
Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT) and mammalian tissue culture trypomastigotes (TCT). During MT or TCT internalization, signal transduction pathways are activated both in the parasite and the target cell, leading to Ca2+ mobilization. For cell adhesion, MT engage surface glycoproteins, such as gp82 and gp35/50, which are Ca2+ signal-inducing molecules. In T. cruzi isolates that enter host cells in gp82-mediated manner, parasite protein tyrosine kinase as well as phospholipase C are activated, and Ca2+ is released from I P3-sensitive stores, whereas in T. cruzi isolates that attach to target cells mainly through gp35/50, the signaling pathway involving adenylate cyclase appears to be stimulated, with Ca2+ release from acidocalciosomes. In addition, T. cruzi isolate-dependent inhibitory signals, mediated by MT-specific gp90, may be triggered both in the host cell and the parasite. The repertoire of TCT molecules implicated in cell invasion includes surface glycoproteins of gp85 family, with members containing binding sites for laminin and cytokeratin 18, enzymes such as cruzipain, trans-sialidase, and an oligopeptidase B that generates a Ca2+-agonist from a precursor molecule.
Collapse
Affiliation(s)
- Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062 São Paulo, SP, Brazil.
| |
Collapse
|
292
|
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86:369-408. [PMID: 16371601 DOI: 10.1152/physrev.00004.2005] [Citation(s) in RCA: 897] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calcium ions are ubiquitous and versatile signaling molecules, capable of decoding a variety of extracellular stimuli (hormones, neurotransmitters, growth factors, etc.) into markedly different intracellular actions, ranging from contraction to secretion, from proliferation to cell death. The key to this pleiotropic role is the complex spatiotemporal organization of the [Ca(2+)] rise evoked by extracellular agonists, which allows selected effectors to be recruited and specific actions to be initiated. In this review, we discuss the structural and functional bases that generate the subcellular heterogeneity in cellular Ca(2+) levels at rest and under stimulation. This complex choreography requires the concerted action of many different players; the central role is, of course, that of the calcium ion, with the main supporting characters being all the entities responsible for moving Ca(2+) between different compartments, while the cellular architecture provides a determining framework within which all the players have their exits and their entrances. In particular, we concentrate on the molecular mechanisms that lead to the generation of cytoplasmic Ca(2+) microdomains, focusing on their different subcellular location, mechanism of generation, and functional role.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
293
|
Andrews NW, Chakrabarti S. There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol 2005; 15:626-31. [PMID: 16168654 DOI: 10.1016/j.tcb.2005.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/02/2005] [Accepted: 09/02/2005] [Indexed: 11/27/2022]
Abstract
Among the 16 known vertebrate synaptotagmins, only Syt I, IV and VII are also present in C. elegans and Drosophila, suggesting that these isoforms play especially important roles in vivo. Extensive evidence indicates that Syt I is a synaptic vesicle Ca(2+) sensor essential for rapid neurotransmitter release. It has been suggested that the ubiquitously expressed Syt VII also regulates synaptic vesicle exocytosis, despite its presence in several tissues in addition to the brain. Here, we discuss recent genetic and biochemical evidence that does not support this view. Syt VII null mutants do not have a neurological phenotype, and the protein is found on the membrane of lysosomes and some non-synaptic secretory granules, where it regulates Ca(2+)-triggered exocytosis and plasma membrane repair.
Collapse
Affiliation(s)
- Norma W Andrews
- Section of Microbial Pathogenesis and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
294
|
Mencarelli S, Cavalieri C, Magini A, Tancini B, Basso L, Lemansky P, Hasilik A, Li YT, Chigorno V, Orlacchio A, Emiliani C, Sonnino S. Identification of plasma membrane associated mature β-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 2005; 579:5501-6. [PMID: 16212960 DOI: 10.1016/j.febslet.2005.08.081] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/31/2005] [Accepted: 08/31/2005] [Indexed: 11/24/2022]
Abstract
Mature beta-hexosaminidase A has been found associated to the external leaflet of plasma membrane of cultured fibroblasts. The plasma membrane association of beta-hexosaminidase A has been directly determined by cell surface biotinylation followed by affinity chromatography purification of the biotinylated proteins, and by immunocytochemistry. The immunological and biochemical characterization of biotinylated beta-hexosaminidase A revealed that the plasma membrane associated enzyme is fully processed, suggesting its lysosomal origin.
Collapse
Affiliation(s)
- Simona Mencarelli
- Department of Medicina Sperimentale e Scienze Biochimiche, University of Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, Paroli M, Mondelli MU, Doria M, Torrisi MR, Barnaba V. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. ACTA ACUST UNITED AC 2005; 202:817-28. [PMID: 16157687 PMCID: PMC2212941 DOI: 10.1084/jem.20051106] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presentation of exogenous protein antigens in a major histocompatibility complex class I–restricted fashion to CD8+ T cells is called cross-presentation. We demonstrate that cross-presentation of soluble viral antigens (derived from hepatitis C virus [HCV], hepatitis B virus [HBV], or human immunodeficiency virus) to specific CD8+ T cell clones is dramatically improved when antigen-presenting dendritic cells (DCs) are pulsed with the antigen in the presence of chloroquine or ammonium chloride, which reduce acidification of the endocytic system. The export of soluble antigen into the cytosol is considerably higher in chloroquine-treated than in untreated DCs, as detected by confocal microscopy of cultured cells and Western blot analysis comparing endocytic and cytosolic fractions. To pursue our findings in an in vivo setting, we boosted groups of HBV vaccine responder individuals with a further dose of hepatitis B envelope protein vaccine with or without a single dose of chloroquine. Although all individuals showed a boost in antibody titers to HBV, six of nine individuals who were administered chloroquine showed a substantial CD8+ T cell response to HBV antigen, whereas zero of eight without chloroquine lacked a CD8 response. Our results suggest that chloroquine treatment improves CD8 immunity during vaccination.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Fondazione Andrea Cesalpino, Dipartimento di Medicina Interna, Università degli Studi di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 2005; 23:249-62. [PMID: 16169498 DOI: 10.1016/j.immuni.2005.08.001] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/08/2005] [Accepted: 07/19/2005] [Indexed: 11/26/2022]
Abstract
Perforin delivers granzymes to induce target-cell apoptosis. At high concentrations, perforin multimerizes in the plasma membrane to form pores. However, whether granzymes enter target cells via membrane pores is uncertain. Here we find that perforin at physiologically relevant concentrations and during cell-mediated lysis creates pores in the target-cell membrane, transiently allowing Ca(2+) and small dyes into the cell. The Ca(2+) flux triggers a wounded membrane-repair response in which internal vesicles, including lysosomes and endosomes, donate their membranes to reseal the damaged membrane. Perforin also triggers the rapid endocytosis of granzymes into large EEA-1-staining vesicles. The restoration of target-cell membrane integrity by triggering the repair response is necessary for target cells subjected to cytotoxic T lymphocyte attack to avoid necrosis and undergo the slower process of programmed cell death. Thus, the target cell actively participates in determining its own fate during cell-mediated death.
Collapse
Affiliation(s)
- Dennis Keefe
- The CBR Institute for Biomedical Research, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
297
|
Bhalla A, Tucker WC, Chapman ER. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol Biol Cell 2005; 16:4755-64. [PMID: 16093350 PMCID: PMC1237081 DOI: 10.1091/mbc.e05-04-0277] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ca2+-triggered exocytosis of synaptic vesicles is controlled by the Ca2+-binding protein synaptotagmin (syt) I. Fifteen additional isoforms of syt have been identified. Here, we compared the abilities of three syt isoforms (I, VII, and IX) to regulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in vitro in response to divalent cations. We found that different isoforms of syt couple distinct ranges of Ca2+, Ba2+, and Sr2+ to membrane fusion; syt VII was approximately 400-fold more sensitive to Ca2+ than was syt I. Omission of phosphatidylserine (PS) from both populations of liposomes completely abrogated the ability of all three isoforms of syt to stimulate fusion. Mutations that selectively inhibit syt.target-SNARE (t-SNARE) interactions reduced syt stimulation of fusion. Using Sr2+ and Ba2+, we found that binding of syt to PS and t-SNAREs can be dissociated from activation of fusion, uncovering posteffector-binding functions for syt. Our data demonstrate that different syt isoforms are specialized to sense different ranges of divalent cations and that PS is an essential effector of Ca2+.syt action.
Collapse
Affiliation(s)
- Akhil Bhalla
- Department of Physiology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
298
|
Cougoule C, Carréno S, Castandet J, Labrousse A, Astarie-Dequeker C, Poincloux R, Le Cabec V, Maridonneau-Parini I. Activation of the Lysosome-Associated p61Hck Isoform Triggers the Biogenesis of Podosomes. Traffic 2005; 6:682-94. [PMID: 15998323 DOI: 10.1111/j.1600-0854.2005.00307.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Haematopoietic cell kinase (Hck) is a protein tyrosine kinase of the Src family specifically expressed in phagocytes as two isoforms, p59Hck and p61Hck, present at the plasma membrane and lysosomes, respectively. We report that ectopic expression of a constitutively active mutant of p61Hck (p61Hck(ca)) triggered the de novo formation of actin-rich rings at the ventral face of the cells that we characterized as bona fide podosome rosettes, structures involved in cell migration. Their formation required the adaptor domains and the kinase activity of p61Hck, the integrity of microfilament and microtubule networks and concerted action of Cdc42, Rac and Rho. Podosome rosette formation was either abolished when p61Hck(ca) was readdressed from lysosomes to the cytosol or triggered when p59Hck(ca) was relocalized to lysosomes. Lysosomal markers were present at podosome rosettes. By stimulating exocytosis of p61Hck(ca) lysosomes with a calcium ionophore, the formation of podosome rosettes was enhanced. Interestingly, we confirm that, in human macrophages, Hck and lysosomal markers were present at podosomes which were spatially reorganized as clusters, a foregoing step to form rosettes, upon expression of p61Hck(ca). We propose that lysosomes, under the control of p61Hck, are involved in the biogenesis of podosomes, a key phenomenon in the migration of phagocytes.
Collapse
Affiliation(s)
- Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale - Centre National de la Recherche Scientifique UMR 5089, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, 31077 Toulouse cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Abstract
Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease in humans, is capable of invading and replicating within a wide variety of nucleated mammalian cell types. Host cell invasion by infective T. cruzi trypomastigotes is governed by parasite-triggered activation of host cell signaling pathways. Recent studies highlighting a role for host cell phosphatidylinositol 3-kinases (PI3Ks) in the T. cruzi invasion process have revealed surprising new insights into the mechanism of host cell invasion by this pathogen. In this Perspective, we discuss these findings and propose alternative models of T. cruzi invasion that incorporate this new information.
Collapse
Affiliation(s)
- Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Building I, Room 817, Boston, MA 02115, USA.
| |
Collapse
|
300
|
Vlahakis NE, Hubmayr RD. Cellular stress failure in ventilator-injured lungs. Am J Respir Crit Care Med 2005; 171:1328-42. [PMID: 15695492 PMCID: PMC2718477 DOI: 10.1164/rccm.200408-1036so] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 01/21/2005] [Indexed: 01/10/2023] Open
Abstract
The clinical and experimental literature has unequivocally established that mechanical ventilation with large tidal volumes is injurious to the lung. However, uncertainty about the micromechanics of injured lungs and the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. In this review we focus on experimental evidence for lung cells as injury targets and the relevance of these studies for human ventilator-associated lung injury. In vitro, the stress-induced mechanical interactions between matrix and adherent cells are important for cellular remodeling as a means for preventing compromise of cell structure and ultimately cell injury or death. In vivo, these same principles apply. Large tidal volume mechanical ventilation results in physical breaks in alveolar epithelial and endothelial plasma membrane integrity and subsequent triggering of proinflammatory signaling cascades resulting in the cytokine milieu and pathologic and physiologic findings of ventilator-associated lung injury. Importantly, though, alveolar cells possess cellular repair and remodeling mechanisms that in addition to protecting the stressed cell provide potential molecular targets for the prevention and treatment of ventilator-associated lung injury in the future.
Collapse
Affiliation(s)
- Nicholas E Vlahakis
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|