251
|
Geng G, Liu B, Chen C, Wu K, Liu J, Zhang Y, Pan T, Li J, Yin Y, Zhang J, Huang F, Yu F, Chen J, Ma X, Zhou J, Kuang E, Liu C, Cai W, Zhang H. Development of an Attenuated Tat Protein as a Highly-effective Agent to Specifically Activate HIV-1 Latency. Mol Ther 2016; 24:1528-37. [PMID: 27434587 PMCID: PMC5113098 DOI: 10.1038/mt.2016.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
Although combined antiretroviral therapy (cART) successfully decreases plasma viremia to undetectable levels, the complete eradication of human immunodeficiency virus type 1 (HIV-1) remains impractical because of the existence of a viral reservoir, mainly in resting memory CD4(+) T cells. Various cytokines, protein kinase C activators, and histone deacetylase inhibitors (HDACi) have been used as latency-reversing agents (LRAs), but their unacceptable side effects or low efficiencies limit their clinical use. Here, by a mutation accumulation strategy, we generated an attenuated HIV-1 Tat protein named Tat-R5M4, which has significantly reduced cytotoxicity and immunogenicity, yet retaining potent transactivation and membrane-penetration activity. Combined with HDACi, Tat-R5M4 activates highly genetically diverse and replication-competent viruses from resting CD4(+) T lymphocytes isolated from HIV-1-infected individuals receiving suppressive cART. Thus, Tat-R5M4 has promising potential as a safe, efficient, and specific LRA in HIV-1 treatment.
Collapse
Affiliation(s)
- Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yue Yin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fei Yu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jingliang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou 8th People's Hospital, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
252
|
White CH, Moesker B, Ciuffi A, Beliakova-Bethell N. Systems biology applications to study mechanisms of human immunodeficiency virus latency and reactivation. World J Clin Infect Dis 2016; 6:6-21. [DOI: 10.5495/wjcid.v6.i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Eradication of human immunodeficiency virus (HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents (LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliable identification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.
Collapse
|
253
|
Dampier W, Nonnemacher MR, Mell J, Earl J, Ehrlich GD, Pirrone V, Aiamkitsumrit B, Zhong W, Kercher K, Passic S, Williams JW, Jacobson JM, Wigdahl B. HIV-1 Genetic Variation Resulting in the Development of New Quasispecies Continues to Be Encountered in the Peripheral Blood of Well-Suppressed Patients. PLoS One 2016; 11:e0155382. [PMID: 27195985 PMCID: PMC4873138 DOI: 10.1371/journal.pone.0155382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
As a result of antiretroviral therapeutic strategies, human immunodeficiency virus type 1 (HIV-1) infection has become a long-term clinically manageable chronic disease for many infected individuals. However, despite this progress in therapeutic control, including undetectable viral loads and CD4+ T-cell counts in the normal range, viral mutations continue to accumulate in the peripheral blood compartment over time, indicating either low level reactivation and/or replication. Using patients from the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort, whom have been sampled longitudinally for more than 7 years, genetic change was modeled against to the dominant integrated proviral quasispecies with respect to selection pressures such as therapeutic interventions, AIDS defining illnesses, and other factors. Phylogenetic methods based on the sequences of the LTR and tat exon 1 of the HIV-1 proviral DNA quasispecies were used to obtain an estimate of an average mutation rate of 5.3 nucleotides (nt)/kilobasepair (kb)/year (yr) prior to initiation of antiretroviral therapy (ART). Following ART the baseline mutation rate was reduced to an average of 1.02 nt/kb/yr. The post-ART baseline rate of genetic change, however, appears to be unique for each patient. These studies represent our initial steps in quantifying rates of genetic change among HIV-1 quasispecies using longitudinally sampled sequences from patients at different stages of disease both before and after initiation of combination ART. Notably, while long-term ART reduced the estimated mutation rates in the vast majority of patients studied, there was still measurable HIV-1 mutation even in patients with no detectable virus by standard quantitative assays. Determining the factors that affect HIV-1 mutation rates in the peripheral blood may lead to elucidation of the mechanisms associated with changes in HIV-1 disease severity.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jean W. Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey M. Jacobson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
254
|
Vranckx LS, Demeulemeester J, Saleh S, Boll A, Vansant G, Schrijvers R, Weydert C, Battivelli E, Verdin E, Cereseto A, Christ F, Gijsbers R, Debyser Z. LEDGIN-mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine 2016; 8:248-264. [PMID: 27428435 PMCID: PMC4919729 DOI: 10.1016/j.ebiom.2016.04.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Persistence of latent, replication-competent Human Immunodeficiency Virus type 1 (HIV-1) provirus is the main impediment towards a cure for HIV/AIDS (Acquired Immune Deficiency Syndrome). Therefore, different therapeutic strategies to eliminate the viral reservoirs are currently being explored. We here propose a novel strategy to reduce the replicating HIV reservoir during primary HIV infection by means of drug-induced retargeting of HIV integration. A novel class of integration inhibitors, referred to as LEDGINs, inhibit the interaction between HIV integrase and the LEDGF/p75 host cofactor, the main determinant of lentiviral integration site selection. We show for the first time that LEDGF/p75 depletion hampers HIV-1 reactivation in cell culture. Next we demonstrate that LEDGINs relocate and retarget HIV integration resulting in a HIV reservoir that is refractory to reactivation by different latency-reversing agents. Taken together, these results support the potential of integrase inhibitors that modulate integration site targeting to reduce the likeliness of viral rebound. LEDGF/p75 depletion hampers HIV reactivation in cell culture. LEDGINs relocate and retarget authentic HIV integration. LEDGIN treatment results in quiescent residual HIV provirus which is less susceptible to reactivation. LEDGIN treatment during primary HIV infection may lead to an HIV remission.
Different strategies to cure HIV infection are being explored. Although complete eradication of the HIV provirus is the ultimate goal, disease remission allowing treatment interruption without viral rebound would constitute a significant leap forward. HIV integration site selection is orchestrated by LEDGF/p75. The advent of LEDGINs, that block the interaction between integrase and LEDGF/p75, allowed us to examine the hypothesis that interference with HIV integration site selection would yield integration sites that are less optimal for productive infection. Here we provide evidence in cell culture that LEDGIN treatment during acute HIV infection yields an HIV reservoir refractory to reactivation.
Collapse
Affiliation(s)
- Lenard S Vranckx
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Jonas Demeulemeester
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Suha Saleh
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Annegret Boll
- Laboratory of Molecular Virology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| | - Gerlinde Vansant
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Rik Schrijvers
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium; Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000 Leuven, Flanders, Belgium.
| | - Caroline Weydert
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Emilie Battivelli
- Gladstone Institute of Virology and Immunology, University of California, 1650 Owens St., 94158 San Francisco, CA, USA.
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, 1650 Owens St., 94158 San Francisco, CA, USA.
| | - Anna Cereseto
- Laboratory of Molecular Virology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| | - Frauke Christ
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Rik Gijsbers
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Zeger Debyser
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| |
Collapse
|
255
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
256
|
Nejati A, Shahmahmoodi S, Arefian E, Shoja Z, Marashi SM, Tabatabaie H, Mollaei-Kandelous Y, Soleimani M, Nategh R. Efficient inhibition of human immunodeficiency virus replication using novel modified microRNA-30a targeting 3'-untranslated region transcripts. Exp Ther Med 2016; 11:1833-1838. [PMID: 27168813 PMCID: PMC4840495 DOI: 10.3892/etm.2016.3121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi)-based gene therapy is currently considered to be a combinatorial anti-human immunodeficiency virus-1 (HIV-1) therapy. Although artificial polycistronic microRNAs (miRs) can reduce HIV-1 escape mutant variants, this approach may increase the risk of side effects. The present study aimed to optimize the efficiency of anti-HIV RNAi gene therapy in order to reduce the cell toxicity induced by multi-short hairpin RNA expression. An artificial miR-30a-3'-untranslated region (miR-3-UTR) obtained from a single RNA polymerase II was used to simultaneously target all viral transcripts. The results of the present study demonstrated that HIV-1 replication was significantly inhibited in the cells with the miR-3-UTR construct, suggesting that miR-3'-UTR may serve as a promising tool for RNAi-based gene therapy in the treatment of HIV-1.
Collapse
Affiliation(s)
- Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| | - Shohreh Shahmahmoodi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| | - Ehsan Arefian
- Biotechnology Center, College of Science, University of Tehran, Tehran 14176-14411, Iran; Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran 19977-75555, Iran
| | - Zabihollah Shoja
- Virology Department, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Sayed-Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| | - Hamideh Tabatabaie
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| | | | - Masoud Soleimani
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran 19977-75555, Iran; Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Rakhshandeh Nategh
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| |
Collapse
|
257
|
Spanevello F, Calistri A, Del Vecchio C, Mantelli B, Frasson C, Basso G, Palù G, Cavazzana M, Parolin C. Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e312. [PMID: 27093170 PMCID: PMC5014525 DOI: 10.1038/mtna.2016.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023]
Abstract
Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi)-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs) targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1) were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA) was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4(+) T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application.
Collapse
Affiliation(s)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Barbara Mantelli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Chiara Frasson
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Giuseppe Basso
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique–Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
258
|
Forlani G, Turrini F, Ghezzi S, Tedeschi A, Poli G, Accolla RS, Tosi G. The MHC-II transactivator CIITA inhibits Tat function and HIV-1 replication in human myeloid cells. J Transl Med 2016; 14:94. [PMID: 27089879 PMCID: PMC4835826 DOI: 10.1186/s12967-016-0853-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/06/2016] [Indexed: 12/24/2022] Open
Abstract
Background We previously demonstrated that the HLA class II transactivator CIITA inhibits HIV-1 replication in T cells by competing with the viral transactivator Tat for the binding to Cyclin T1 subunit of the P-TEFb complex. Here, we analyzed the anti-viral function of CIITA in myeloid cells, another relevant HIV-1 target cell type. We sinvestigated clones of the U937 promonocytic cell line, either permissive (Plus) or non-permissive (Minus) to HIV-1 replication. This different phenotype has been associated with the expression of TRIM22 in U937 Minus but not in Plus cells. Methods U937 Plus cells stably expressing CIITA were generated and HLA-II positive clones were selected by cell sorting and cloning. HLA and CIITA proteins were analyzed by cytofluorometry and western blotting, respectively. HLA-II DR and CIITA mRNAs were quantified by qRT-PCR. Tat-dependent transactivation was assessed by performing the HIV-1 LTR luciferase gene reporter assay. Cells were infected with HIV-1 and viral replication was evaluated by measuring the RT activity in culture supernatants. Results CIITA was expressed only in HLA-II-positive U937 Minus cells, and this was strictly correlated with inhibition of Tat-dependent HIV-1 LTR transactivation in Minus but not in Plus cells. Overexpression of CIITA in Plus cells restored the suppression of Tat transactivation, confirming the inhibitory role of CIITA. Importantly, HIV-1 replication was significantly reduced in Plus-CIITA cells with respect to Plus parental cells. This effect was independent of TRIM22 as CIITA did not induce TRIM22 expression in Plus-CIITA cells. Conclusions U937 Plus and Minus cells represent an interesting model to study the role of CIITA in HIV-1 restriction in the monocytic/macrophage cell lineage. The differential expression of CIITA in CIITA-negative Plus and CIITA-positive Minus cells correlated with their capacity to support or not HIV-1 replication, respectively. In Minus cells CIITA targeted the viral transactivator Tat to inhibit HIV-1 replication. The generation of Plus-CIITA cells was instrumental to demonstrate the specific contribution of CIITA in terms of inhibition of Tat activity and HIV-1 restriction, independently from other cellular factors, including TRIM22. Thus, CIITA acts as a general restriction factor against HIV-1 not only in T cells but also in myeloid cells.
Collapse
Affiliation(s)
- Greta Forlani
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Filippo Turrini
- Viral Pathogens and Biosafety Unit San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogens and Biosafety Unit San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Tedeschi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto S Accolla
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy.
| | - Giovanna Tosi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy.
| |
Collapse
|
259
|
Autran B. Toward a cure for HIV--Seeking effective therapeutic vaccine strategies. Eur J Immunol 2016; 45:3215-21. [PMID: 26542079 DOI: 10.1002/eji.201545513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/13/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
This review article focuses on the rationale and evaluation of therapeutic vaccines against HIV. This strategy has been developed in order to restore or restimulate HIV-specific immunity in patients treated with antiretroviral therapies. Despite the lack of good candidate vaccines against HIV, two objectives have been targeted during the past 15 years. Therapeutic immunization was first proposed to help control virus relapses during treatment interruptions. More recently, the concept of therapeutic immunization has been boosted by efforts to reach HIV remission or cure, in combination to HIV reactivating agents, to help purge HIV reservoirs in a "shock and kill" strategy. This review analyses the rationales for these strategies and the results of the most widely therapeutic vaccines designed to generate T-cell immunity, i.e. recombinant viral vectors and dendritic cell-based strategies, while extremely few strategies targeted HIV-specific Abs. Only marginal control of HIV was obtained with cellular-based strategies, suggesting that approaches targeting or using broadly neutralizing Abs, should be of benefit for future efforts of therapeutic immunization against HIV in the quest toward a cure for HIV.
Collapse
Affiliation(s)
- Brigitte Autran
- CIMI-Paris, Centre de recherches en Immunologie et Maladies Infectieuses, UMR-S 1135 Inserm/UPMC, Université Pierre et Marie Curie, Sorbonne-Université, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| |
Collapse
|
260
|
The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016; 6:24100. [PMID: 27067814 PMCID: PMC4828723 DOI: 10.1038/srep24100] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95-4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4(+) T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies.
Collapse
|
261
|
Hu ZF, Qin LL, Ding WJ, Liu Y, Ma ZJ. New analogues of brefeldin A from sediment-derived fungus Penicillium sp. DT-F29. Nat Prod Res 2016; 30:2311-5. [DOI: 10.1080/14786419.2016.1169414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhi-Fei Hu
- Institute of Marine Biology & Natural Products, Ocean College, Zhejiang Univesity, Hangzhou, China
| | - Le-Le Qin
- Institute of Marine Biology & Natural Products, Ocean College, Zhejiang Univesity, Hangzhou, China
| | - Wan-Jing Ding
- Institute of Marine Biology & Natural Products, Ocean College, Zhejiang Univesity, Hangzhou, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhong-Jun Ma
- Institute of Marine Biology & Natural Products, Ocean College, Zhejiang Univesity, Hangzhou, China
| |
Collapse
|
262
|
Moyes DL, Islam A, Kohli A, Naglik JR. Oral epithelial cells and their interactions with HIV-1. Oral Dis 2016; 22 Suppl 1:66-72. [PMID: 26879550 DOI: 10.1111/odi.12410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As the AIDS pandemic has continued, our understanding of the events that occur during the entry and infection of conventional, susceptible cells has increased dramatically, leading to the development of control therapies for HIV-infected individuals. However, an ongoing hole in our understanding is how HIV crosses the mucosal barriers to gain access to permissive cells, despite how important this information would be in developing successful vaccines and other preventative measures such as topical anti-HIV microbicides. In particular, our knowledge of the role that epithelial cells of the mucosal surfaces play in infection - both during early phases and throughout the life of an infected individual, is currently hazy at best. However, several studies in recent years suggest that HIV can bind to and traverse these mucosal epithelial cells, providing a reservoir of infection that can subsequently infect underlying permissive cells. Despite this interaction with epithelial cells, evidence suggests HIV-1 does not productively infect these cells, although they are capable of transferring surface-bound and transcytosed virus to other, permissive cells. Further, there appear to be key differences between adult and infant epithelial cells in the degree to which HIV can transcytose and infect the epithelium. Thus, it is clear that, whilst not primary targets for infection and virus replication, epithelial cells play an important role in the infection cycle and improving our understanding of their interactions with HIV could potentially provide key insights necessary to develop effective preventative therapies.
Collapse
Affiliation(s)
- D L Moyes
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| | - A Islam
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| | - A Kohli
- Public Health England, London, UK
| | - J R Naglik
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| |
Collapse
|
263
|
Replication of Human Herpesviruses Is Associated with Higher HIV DNA Levels during Antiretroviral Therapy Started at Early Phases of HIV Infection. J Virol 2016; 90:3944-3952. [PMID: 26842469 DOI: 10.1128/jvi.02638-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/25/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Asymptomatic replication of human herpesviruses (HHV) is frequent in HIV-infected men and is associated with increased T-cell activation and HIV disease progression. We hypothesized that the presence of replication of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) (the most frequently detected HHV) might influence HIV DNA decay during antiretroviral therapy (ART). We investigated 607 peripheral blood mononuclear cell (PBMC) samples from 107 CMV-seropositive, HIV-infected men who have sex with men, who started ART within a median of 3 months from their estimated date of infection (EDI) and were monitored for a median of 19 months thereafter. Levels of HIV, CMV, and EBV DNA and cellular HIV RNA were measured by droplet digital PCR (ddPCR) for each time point. Using a general linear mixed-effect regression model, we evaluated associations between the presence of detectable CMV DNA and EBV DNA levels and HIV DNA decay and cellular HIV RNA levels, while adjusting for peak HIV RNA, nadir CD4(+)count, CD4/CD8 ratio, CMV IgG levels, time from EDI to ART initiation, time from ART initiation to virologic suppression, detectable CMV DNA pre-ART, and age. The presence of intermittent CMV DNA in PBMC during ART was significantly associated with slower decay of HIV DNA (P= 0.011) but not with increased cellular HIV RNA transcription or more detectable 2-long terminal repeat circles. Higher levels of EBV DNA were also associated with higher levels of HIV DNA (P< 0.001) and increased unspliced cellular HIV RNA transcription (P= 0.010). These observations suggest that replication of HHV may help maintain a larger HIV DNA reservoir, but the underlying mechanisms remain unclear. IMPORTANCE Over three-fourths of HIV-infected men have at least one actively replicating human herpesvirus (HHV) in their mucosal secretions at any one time. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are the most common, and although it is often asymptomatic, such CMV and EBV replication is associated with higher levels of immune activation and HIV disease progression. We hypothesized that HHV-associated activation of HIV-infected CD4(+)T cells might lead to increased HIV DNA. This study found that detectable CMV in blood cells of HIV-infected men was associated with slower decay of HIV DNA even during antiretroviral therapy (ART) that was started during early HIV infection. Similarly, levels of EBV DNA were associated with higher levels of HIV DNA during ART. If this observation points to a causal pathway, interventions that control CMV and EBV replication may be able to reduce the HIV reservoir, which might be relevant to current HIV cure efforts.
Collapse
|
264
|
Gunst JD, Tolstrup M, Rasmussen TA, Søgaard OS. The potential role for romidepsin as a component in early HIV-1 curative efforts. Expert Rev Anti Infect Ther 2016; 14:447-50. [PMID: 26953620 DOI: 10.1586/14787210.2016.1164031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jesper Damsgaard Gunst
- a Department of Infectious Diseases , Aarhus University Hospital , Aarhus N , Denmark.,b Institute of Clinical Medicine , Aarhus University , Aarhus N , Denmark
| | - Martin Tolstrup
- a Department of Infectious Diseases , Aarhus University Hospital , Aarhus N , Denmark
| | | | - Ole Schmeltz Søgaard
- a Department of Infectious Diseases , Aarhus University Hospital , Aarhus N , Denmark.,b Institute of Clinical Medicine , Aarhus University , Aarhus N , Denmark
| |
Collapse
|
265
|
Ogunwuyi O, Kumari N, Smith KA, Bolshakov O, Adesina S, Gugssa A, Anderson WA, Nekhai S, Akala EO. Antiretroviral Drugs-Loaded Nanoparticles Fabricated by Dispersion Polymerization with Potential for HIV/AIDS Treatment. Infect Dis (Lond) 2016; 9:21-32. [PMID: 27013886 PMCID: PMC4803317 DOI: 10.4137/idrt.s38108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 01/11/2023] Open
Abstract
Highly active antiretroviral (ARV) therapy (HAART) for chronic suppression of HIV replication has revolutionized the treatment of HIV/AIDS. HAART is no panacea; treatments must be maintained for life. Although great progress has been made in ARV therapy, HIV continues to replicate in anatomical and intracellular sites where ARV drugs have restricted access. Nanotechnology has been considered a platform to circumvent some of the challenges in HIV/AIDS treatment. Dispersion polymerization was used to fabricate two types (PMM and ECA) of polymeric nanoparticles, and each was successfully loaded with four ARV drugs (zidovudine, lamivudine, nevirapine, and raltegravir), followed by physicochemical characterization: scanning electron microscope, particle size, zeta potential, drug loading, and in vitro availability. These nanoparticles efficiently inhibited HIV-1 infection in CEM T cells and peripheral blood mononuclear cells; they hold promise for the treatment of HIV/AIDS. The ARV-loaded nanoparticles with polyethylene glycol on the corona may facilitate tethering ligands for targeting specific receptors expressed on the cells of HIV reservoirs.
Collapse
Affiliation(s)
- Oluwaseun Ogunwuyi
- Department of Pharmaceutical Sciences, Center for Drug Research and Development (CDRD), College of Pharmacy, Howard University, Washington, DC, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Kahli A Smith
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA.; Department of Pharmacology, College of Medicine, Howard University, Washington, DC, USA
| | - Oleg Bolshakov
- Department of Pharmaceutical Sciences, Center for Drug Research and Development (CDRD), College of Pharmacy, Howard University, Washington, DC, USA
| | - Simeon Adesina
- Department of Pharmaceutical Sciences, Center for Drug Research and Development (CDRD), College of Pharmacy, Howard University, Washington, DC, USA
| | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, USA
| | | | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA.; Department of Pharmacology, College of Medicine, Howard University, Washington, DC, USA.; Department of Medicine, College of Medicine, Howard University, Washington, DC, USA.; Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Emmanuel O Akala
- Department of Pharmaceutical Sciences, Center for Drug Research and Development (CDRD), College of Pharmacy, Howard University, Washington, DC, USA
| |
Collapse
|
266
|
HIV-1 transcriptional activity during frequent longitudinal sampling in aviremic patients on antiretroviral therapy. AIDS 2016; 30:713-21. [PMID: 26595541 DOI: 10.1097/qad.0000000000000974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND HIV-1 transcription during suppressive antiretroviral therapy (ART) is not well understood. This is problematic as latency-reactivating agent-based HIV-1 eradication trials utilize changes in viral transcription as an efficacy biomarker. METHODS We conducted an observational cohort study enrolling aviremic, HIV-1-infected adults on long-term ART. Cell-associated unspliced (CA-US) HIV-1 RNA and total HIV-1 DNA were quantified in unfractionated CD4 T cells monthly for a total of six consecutive visits. Random-effects models were used to determine the following: (i) proportion of variation attributable to intra-individual versus inter-individual changes; (ii) range estimate for random samples from any participant or cohort-matched individual (95% prediction interval); and (iii) range estimate for random samples from the same person (95% variation intervals expressed as fold change). RESULTS Among our cohort of 26 HIV-1 patients, 10.4% of variation in CA-US HIV-1 RNA was attributable to intra-individual fluctuations. Similarly, intra-individual changes also accounted for minor proportions of the variation in total HIV-1 DNA (5.1%) and RNA/DNA (28.3%). The 95% prediction interval (per 10 CD4 T cells) for CA-US HIV-1 RNA and HIV-1 DNA were each approximately 2 log10. Finally, model-derived 95% variation intervals indicate that spontaneous changes above 2.11-fold in CA-US HIV-1 RNA would occur in less than 5% of repeated measurements in an individual on long-term ART. CONCLUSION The individual CA-US HIV-1 RNA levels are remarkably stable during ART. Importantly, the observed variations were less than the reported changes for latency-reactivating agent trials. These data will serve as a foundation for planning and interpreting future eradication trials.
Collapse
|
267
|
Perdigão P, Gaj T, Santa-Marta M, Barbas CF, Goncalves J. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors. PLoS One 2016; 11:e0150037. [PMID: 26933881 PMCID: PMC4774903 DOI: 10.1371/journal.pone.0150037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022] Open
Abstract
The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.
Collapse
Affiliation(s)
- Pedro Perdigão
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mariana Santa-Marta
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos F. Barbas
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joao Goncalves
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
268
|
Ji H, Jiang Z, Lu P, Ma L, Li C, Pan H, Fu Z, Qu X, Wang P, Deng J, Yang X, Wang J, Zhu H. Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 Promoter. Mol Ther 2016; 24:508-21. [PMID: 26775808 PMCID: PMC4786936 DOI: 10.1038/mt.2016.7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
HIV-1 escapes antiretroviral agents by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. Transcriptional activation is prerequisite for reactivation and the eradication of latent HIV-1 proviruses. dCas9-SunTag-VP64 transcriptional system has been reported that it can robustly activate the expression of an endogenous gene using a single guide RNA (sgRNA). Here, we systematically investigated the potential of dCas9-SunTag-VP64 with the designed sgRNAs for reactivating latent HIV-1. We found dCas9-SunTag-VP64 with sgRNA 4 or sgRNA 5 targeted from -164 to -146 or -124 to -106 bp upstream of the transcription start sites of HIV-1 could induce high expression of luciferase reporter gene after screening of sgRNAs targeting different regions of the HIV-1 promoter. Further, we confirmed that dCas9-SunTag-VP64 with sgRNA 4 or sgRNA 5 can effectively reactivate latent HIV-1 transcription in several latently infected human T-cell lines. Moreover, we confirmed that the reactivation of latent HIV-1 by dCas9-SunTag-VP64 with the designed sgRNA occurred through specific binding to the HIV-1 LTR promoter without genotoxicity and global T-cell activation. Taken together, our data demonstrated dCas9-SunTag-VP64 system can effectively and specifically reactivate latent HIV-1 transcription, suggesting that this strategy could offer a novel approach to anti-HIV-1 latency.
Collapse
Affiliation(s)
- Haiyan Ji
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Ma
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheng Fu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiying Qu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengfei Wang
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Junxiao Deng
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
269
|
Prado S, Beltrán M, Coiras M, Bedoya LM, Alcamí J, Gallego J. Bioavailable inhibitors of HIV-1 RNA biogenesis identified through a Rev-based screen. Biochem Pharmacol 2016; 107:14-28. [PMID: 26896646 DOI: 10.1016/j.bcp.2016.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 12/23/2022]
Abstract
New antiretroviral agents with alternative mechanisms are needed to complement the combination therapies used to treat HIV-1 infections. Here we report the identification of bioavailable molecules that interfere with the gene expression processes of HIV-1. The compounds were detected by screening a small library of FDA-approved drugs with an assay based on measuring the displacement of Rev, and essential virus-encoded protein, from its high-affinity RNA binding site. The antiretroviral activity of two hits was based on interference with post-integration steps of the HIV-1 cycle. Both hits inhibited RRE-Rev complex formation in vitro, and blocked LTR-dependent gene expression and viral transcription in cellular assays. The best compound altered the splicing pattern of HIV-1 transcripts in a manner consistent with Rev inhibition. This mechanism of action is different from those used by current antiretroviral agents. The screening hits recognized the Rev binding site in the viral RNA, and the best compound did so with substantial selectivity, allowing the identification of a new RNA-binding scaffold. These results may be used for developing novel antiretroviral drugs.
Collapse
Affiliation(s)
- Silvia Prado
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - Manuela Beltrán
- Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo km 2, 28220 Majadahonda, Spain
| | - Mayte Coiras
- Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo km 2, 28220 Majadahonda, Spain
| | - Luis M Bedoya
- Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo km 2, 28220 Majadahonda, Spain; Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - José Alcamí
- Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo km 2, 28220 Majadahonda, Spain.
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain.
| |
Collapse
|
270
|
Mitsuki YY, Yamamoto T, Mizukoshi F, Momota M, Terahara K, Yoshimura K, Harada S, Tsunetsugu-Yokota Y. A novel dual luciferase assay for the simultaneous monitoring of HIV infection and cell viability. J Virol Methods 2016; 231:25-33. [PMID: 26898957 DOI: 10.1016/j.jviromet.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) reporter cell lines are critical tools for drug development. However, one disadvantage of HIV-1 reporter cell lines is that reductions in reporter gene activity need to be normalized to cytotoxicity, i.e., live cell numbers. Here, we developed a dual luciferase assay based on a R. reniformis luciferase (hRLuc)-expressing R5-type HIV-1 (NLAD8-hRLuc) and a CEM cell line expressing CCR5 and firefly luciferase (R5CEM-FiLuc). The NLAD8-hRLuc reporter virus was replication competent in peripheral blood mononuclear cells. The level of hRLuc was correlated with p24 antigen levels (p<0.001, R=0.862). The target cell line, R5CEM-FiLuc, stably expressed the firefly luciferase (FiLuc) reporter gene and allowed the simultaneous monitoring of compound cytotoxicity. The dual reporter assay combining a NLAD8-hRLuc virus with R5CEM-FiLuc cells permitted the accurate determination of drug susceptibility for entry, reverse transcriptase, integrase, and protease inhibitors at different multiplicities of infection. This dual reporter assay provides a rapid and direct method for the simultaneous monitoring of HIV infection and cell viability.
Collapse
Affiliation(s)
- Yu-Ya Mitsuki
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mt. Sinai, One Gustave Levy Place, Box 1090, New York, NY 10029, USA
| | - Takuya Yamamoto
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (IFReC), Osaka University, 6F IFReC Research Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo, Kumamoto 860-0811, Japan
| | - Fuminori Mizukoshi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (IFReC), Osaka University, 6F IFReC Research Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan.
| |
Collapse
|
271
|
Siliciano JD, Siliciano RF. Recent developments in the effort to cure HIV infection: going beyond N = 1. J Clin Invest 2016; 126:409-14. [PMID: 26829622 DOI: 10.1172/jci86047] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Combination antiretroviral therapy (ART) can suppress plasma HIV to undetectable levels, allowing HIV-infected individuals who are treated early a nearly normal life span. Despite the clear ability of ART to prevent morbidity and mortality, it is not curative. Even in individuals who have full suppression of viral replication on ART, there are resting memory CD4+ T cells that harbor stably integrated HIV genomes, which are capable of producing infectious virus upon T cell activation. This latent viral reservoir is considered the primary obstacle to the development of an HIV cure, and recent efforts in multiple areas of HIV research have been brought to bear on the development of strategies to eradicate or develop a functional cure for HIV. Reviews in this series detail progress in our understanding of the molecular and cellular mechanisms of viral latency, efforts to accurately assess the size and composition of the latent reservoir, the characterization and development of HIV-targeted broadly neutralizing antibodies and cytolytic T lymphocytes, and animal models for the study HIV latency and therapeutic strategies.
Collapse
|
272
|
|
273
|
Reddy DN, Ballante F, Chuang T, Pirolli A, Marrocco B, Marshall GR. Design and Synthesis of Simplified Largazole Analogues as Isoform-Selective Human Lysine Deacetylase Inhibitors. J Med Chem 2016; 59:1613-33. [PMID: 26681404 DOI: 10.1021/acs.jmedchem.5b01632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective inhibition of KDAC isoforms while maintaining potency remains a challenge. Using the largazole macrocyclic depsipeptide structure as a starting point for developing new KDACIs with increased selectivity, a combination of four different simplified largazole analogue (SLA) scaffolds with diverse zinc-binding groups (for a total of 60 compounds) were designed, synthesized, and evaluated against class I KDACs 1, 3, and 8, and class II KDAC6. Experimental evidence as well as molecular docking poses converged to establish the cyclic tetrapeptides (CTPs) as the primary determinant of both potency and selectivity by influencing the correct alignment of the zinc-binding group in the KDAC active site, providing a further basis for developing new KDACIs of higher isoform selectivity and potency.
Collapse
Affiliation(s)
- Damodara N Reddy
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Timothy Chuang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Adele Pirolli
- Rome Center for Molecular Design, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P. le A. Moro 5, 00185 Roma, Italy
| | - Biagina Marrocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P. le A. Moro 5, 00185 Roma, Italy
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
274
|
Conway JM, Perelson AS. Residual Viremia in Treated HIV+ Individuals. PLoS Comput Biol 2016; 12:e1004677. [PMID: 26735135 PMCID: PMC4703306 DOI: 10.1371/journal.pcbi.1004677] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. The source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. However, phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived from activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy. In HIV+ individuals, antiretroviral therapy (ART) effectively controls HIV viral loads to below levels detectable by routine tests. However, more sensitive tests can detect some residual viremia. The source of this virus is a matter of debate: does it derive from ongoing viral replication, or from viral production following activation of latently infected cells? Experimental observations support both sides of the argument: in patients on therapy, HIV shows no long-term evolution, and emergence of drug-resistant mutants is rare, implying no ongoing viral replication, but there remains short-term evolution, implying the opposite. To reconcile these observations, we propose a mathematical model of latently and productively infected cells and virus. Using our models we predict that, in patients on suppressive ART, the contribution of viral replication to residual virus, while small, yields short term-evolution. But even if the contribution is large, for example if adherence to therapy is poor, long-term evolution can still be limited, and de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia.
Collapse
Affiliation(s)
- Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics (CIDD), The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
275
|
Laird GM, Rosenbloom DIS, Lai J, Siliciano RF, Siliciano JD. Measuring the Frequency of Latent HIV-1 in Resting CD4⁺ T Cells Using a Limiting Dilution Coculture Assay. Methods Mol Biol 2016; 1354:239-253. [PMID: 26714716 DOI: 10.1007/978-1-4939-3046-3_16] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Combination antiretroviral therapy (cART) can reduce HIV-1 viremia to clinically undetectable levels. However, replication competent virus persists in a long-lived latent reservoir in resting, memory CD4(+) T cells. The latent reservoir in resting CD4(+) T cells is the major barrier to curing HIV-1 infection. The recent case of the Berlin patient has suggested that it may be possible to cure HIV-1 infection in certain situations. As efforts to cure HIV-1 infection progress, it will become critical to measure the latent reservoir in patients participating in clinical trials of eradication strategies. Our laboratory has developed a limiting dilution virus outgrowth assay that can be used to demonstrate the presence and persistence of latent HIV-1 in patients. Here we describe both the original and a simplified version of the quantitative virus outgrowth assay (QVOA) to measure the frequency of latently infected resting CD4(+) T cells with replication competent provirus in patients on suppressive cART.
Collapse
Affiliation(s)
- Gregory M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD, 21205, USA
| | - Daniel I S Rosenbloom
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD, 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
276
|
Treatment intensification followed by interleukin-7 reactivates HIV without reducing total HIV DNA: a randomized trial. AIDS 2016; 30:221-30. [PMID: 26684819 DOI: 10.1097/qad.0000000000000894] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND As a first step towards HIV cure, we assessed a strategy of antiretroviral therapy (ART) intensification followed by interleukin-7 (IL-7) used as an HIV-reactivating agent. METHODS A multicentre, randomized clinical trial included patients on suppressive ART with CD4 cell counts at least 350/μl and HIV-DNA between 10 and 1000 copies/10 peripheral blood mononuclear cells (PBMCs). After an 8-week raltegravir and maraviroc intensification, patients were randomized to intensification alone or with 3 weekly IL-7 injections at weeks 8, 9 and 10. The primary endpoint was at least 0.5 log10 decrease in HIV-DNA in PBMC at W56. Secondary endpoints included ultrasensitive plasma viremia, immunologic changes and safety. RESULTS Twenty-nine patients were enrolled with median baseline 558 CD4 cell counts/μl, 360 HIV-DNA copies/10 PBMCs and 12 years on ART. No patient in either arm achieved the primary endpoint. Addition of IL-7 induced a significant expansion of CD4 T cells, primarily central-memory cells (+5%, P = 0.001) at week 12, together with an increase in levels of HIV-DNA/10 PBMC (+0.28 log10 copies/P = 0.001), and the proportion of patients with detectable ultrasensitive plasma HIV-RNA increased compared with week 8 (P = 0.07). At weeks 56 and 80, total and memory CD4 cell counts and total HIV-DNA/ml of blood remained elevated. In contrast, HIV-DNA/million PBMC and plasma viremia returned to baseline levels whereas activated HLA-DRCD4 T cells significantly decreased. CONCLUSION IL-7 administration and dual ART intensification induced, despite a mild HIV reactivation, an amplification of the HIV reservoir, as a result of central-memory CD4 T-cell expansion, thus limiting this IL-7 based strategy. CLINICAL TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov, number NCT01019551.
Collapse
|
277
|
Wu D, Ensinas A, Verrier B, Primard C, Cuvillier A, Champier G, Paul S, Delair T. Zinc-stabilized colloidal polyelectrolyte complexes of chitosan/hyaluronan: a tool for the inhibition of HIV-1 infection. J Mater Chem B 2016; 4:5455-5463. [DOI: 10.1039/c6tb00898d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc(ii) stabilized polyelectrolyte nano-complexes (PECs) of chitosan and hyaluronan (HYA) were designed as safe and efficient drug delivery systems.
Collapse
Affiliation(s)
- Danjun Wu
- Ingénierie des Matériaux Polymères
- UMR CNRS 5223
- 69622 Villeurbanne Cedex
- France
| | - Agathe Ensinas
- Institut de Biologie et Chimie des Protéines UMR 5305
- CNRS/Université de Lyon
- France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines UMR 5305
- CNRS/Université de Lyon
- France
| | | | | | | | - Stephane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes
- INSERM Centre d'Investigation Clinique en Vaccinologie 1408
- Université de Lyon
- 42023 Saint-Etienne Cedex 2
- France
| | - Thierry Delair
- Ingénierie des Matériaux Polymères
- UMR CNRS 5223
- 69622 Villeurbanne Cedex
- France
| |
Collapse
|
278
|
Abstract
Persistence of latent virus represents a major barrier to eradicating HIV even in the current antiretroviral therapy era. A critical limitation to eliminating these viral reservoirs is the lack of reliable methods to detect, quantify, and characterize cells harboring low levels of virus. However, recent work of several laboratories indicates that PCR and viral amplification based technologies underestimate or overestimate the size of the reservoirs. Thus, new technologies and methodologies to detect, quantify, and characterize these viral reservoirs are necessary to monitor and eradicate HIV. Recent developments in imaging technologies have enabled the development or improvement of detection protocols and have facilitated the identification and quantification of several markers with exquisite resolution. In the context of HIV, we developed new protocols for the detection of low amounts of viral proteins. In this chapter, we describe several antibody-based technologies for signal amplification to improve and detect low amounts of HIV proteins in cells, tissues, and other biological samples. The improvement in these techniques is essential to detect viral reservoirs and to design strategies to eliminate them.
Collapse
|
279
|
Del Prete GQ, Oswald K, Lara A, Shoemaker R, Smedley J, Macallister R, Coalter V, Wiles A, Wiles R, Li Y, Fast R, Kiser R, Lu B, Zheng J, Alvord WG, Trubey CM, Piatak M, Deleage C, Keele BF, Estes JD, Hesselgesser J, Geleziunas R, Lifson JD. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy. Antimicrob Agents Chemother 2015; 60:1560-72. [PMID: 26711758 PMCID: PMC4776002 DOI: 10.1128/aac.02625-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/13/2015] [Indexed: 11/20/2022] Open
Abstract
Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rhonda Macallister
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vicky Coalter
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rodney Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Randy Fast
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Kiser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bing Lu
- Gilead Sciences, Foster City, California, USA
| | - Jim Zheng
- Gilead Sciences, Foster City, California, USA
| | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
280
|
Spivak AM, Planelles V. HIV-1 Eradication: Early Trials (and Tribulations). Trends Mol Med 2015; 22:10-27. [PMID: 26691297 DOI: 10.1016/j.molmed.2015.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) has rendered HIV-1 infection a manageable illness for those with access to treatment. However, ART does not lead to viral eradication owing to the persistence of replication-competent, unexpressed proviruses in long-lived cellular reservoirs. The potential for long-term drug toxicities and the lack of access to ART for most people living with HIV-1 infection have fueled scientific interest in understanding the nature of this latent reservoir. Exploration of HIV-1 persistence at the cellular and molecular level in resting memory CD4(+) T cells, the predominant viral reservoir in patients on ART, has uncovered potential strategies to reverse latency. We review recent advances in pharmacologically based 'shock and kill' HIV-1 eradication strategies, including comparative analysis of early clinical trials.
Collapse
Affiliation(s)
- Adam M Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
281
|
|
282
|
Hardy GAD, Cocker ATH, Imami N. A stepwise advance out of the shadows: leading HIV to its clearance. Future Virol 2015. [DOI: 10.2217/fvl.15.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Gareth AD Hardy
- Center for Immunology and Vaccinology, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Alex TH Cocker
- Center for Immunology and Vaccinology, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Nesrina Imami
- Center for Immunology and Vaccinology, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
283
|
Wang C, Yang S, Lu H, You H, Ni M, Shan W, Lin T, Gao X, Chen H, Zhou Q, Xue Y. A Natural Product from Polygonum cuspidatum Sieb. Et Zucc. Promotes Tat-Dependent HIV Latency Reversal through Triggering P-TEFb's Release from 7SK snRNP. PLoS One 2015; 10:e0142739. [PMID: 26569506 PMCID: PMC4646521 DOI: 10.1371/journal.pone.0142739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023] Open
Abstract
The latent reservoirs of HIV represent a major impediment to eradication of HIV/AIDS. To overcome this problem, agents that can activate latent HIV proviruses have been actively sought after, as they can potentially be used in combination with the highly active antiretroviral therapy (HAART) to eliminate the latent reservoirs. Although several chemical compounds have been shown to activate latency, they are of limited use due to high toxicity and poor clinical outcomes. In an attempt to identify natural products as effective latency activators from traditional Chinese medicinal herbs that have long been widely used in human population, we have isolated procyanidin C-13,3',3"-tri-O-gallate (named as REJ-C1G3) from Polygonum cuspidatum Sieb. et Zucc., that can activate HIV in latently infected Jurkat T cells. REJ-C1G3 preferentially stimulates HIV transcription in a process that depends on the viral encoded Tat protein and acts synergistically with prostratin (an activator of the NF-κB pathway) or JQ1 (an inhibitor of Brd4) to activate HIV latency. Our mechanistic analyses further show that REJ-C1G3 accomplishes these tasks by inducing the release of P-TEFb, a host cofactor essential for Tat-activation of HIV transcription, from the cellular P-TEFb reservoir 7SK snRNP.
Collapse
Affiliation(s)
- Cong Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shuiyuan Yang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huasong Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Hongchao You
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Man Ni
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenjun Shan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ting Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Haifeng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiang Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
284
|
Sloan DD, Lam CYK, Irrinki A, Liu L, Tsai A, Pace CS, Kaur J, Murry JP, Balakrishnan M, Moore PA, Johnson S, Nordstrom JL, Cihlar T, Koenig S. Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells. PLoS Pathog 2015; 11:e1005233. [PMID: 26539983 PMCID: PMC4634948 DOI: 10.1371/journal.ppat.1005233] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/25/2015] [Indexed: 11/24/2022] Open
Abstract
HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs. Current HIV therapies prevent AIDS by dramatically reducing, but not eliminating, HIV infection. A reservoir of HIV-infected cells persists during long-term antiviral therapy, and individuals are at increased risk to develop non-AIDS illnesses, e.g., accelerated heart, bone, or kidney disease. Novel strategies are thus needed to safely kill HIV-infected cells and reduce or eliminate the HIV reservoir. An emerging strategy to kill HIV-infected cells involves antibodies (Abs) that bind the HIV envelope protein (Env). Env can distinguish HIV-infected cells from uninfected cells, and some Env-specific Abs can kill HIV-infected cells by recruiting immune cells, e.g., NK cells and macrophages. Here, we developed a strategy to kill HIV-infected cells that is complementary to Env-specific Abs. We designed and evaluated Dual-Affinity Re-Targeting (DART) molecules that incorporate Env-binding specificities with a CD3-binding specificity to recruit and activate cytotoxic T cells. We report that HIVxCD3 DARTs potently and selectively kill HIV-infected cells. Furthermore, HIV DARTs perturb resting and activated viral reservoirs in cells isolated from individuals on antiviral therapy. This novel strategy may be an important element of future antiviral therapies that target the HIV reservoir.
Collapse
Affiliation(s)
- Derek D. Sloan
- Gilead Sciences, Foster City, California, United States of America
- * E-mail: (DDS); (SK)
| | | | - Alivelu Irrinki
- Gilead Sciences, Foster City, California, United States of America
| | - Liqin Liu
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | - Angela Tsai
- Gilead Sciences, Foster City, California, United States of America
| | - Craig S. Pace
- Gilead Sciences, Foster City, California, United States of America
| | - Jasmine Kaur
- Gilead Sciences, Foster City, California, United States of America
| | - Jeffrey P. Murry
- Gilead Sciences, Foster City, California, United States of America
| | | | - Paul A. Moore
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | - Syd Johnson
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | | | - Tomas Cihlar
- Gilead Sciences, Foster City, California, United States of America
| | - Scott Koenig
- MacroGenics, Inc., Rockville, Maryland, United States of America
- * E-mail: (DDS); (SK)
| |
Collapse
|
285
|
White CH, Johnston HE, Moesker B, Manousopoulou A, Margolis DM, Richman DD, Spina CA, Garbis SD, Woelk CH, Beliakova-Bethell N. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency. Antiviral Res 2015; 123:78-85. [PMID: 26343910 PMCID: PMC5606336 DOI: 10.1016/j.antiviral.2015.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/22/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and prioritization of latency reversing agents of other classes to be used in combination with SAHA to achieve more potent induction of HIV expression.
Collapse
Affiliation(s)
- Cory H White
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA; San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Harvey E Johnston
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Bastiaan Moesker
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - Antigoni Manousopoulou
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - David M Margolis
- Departments of Medicine, Microbiology and Immunology, Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Douglas D Richman
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Celsa A Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Spiros D Garbis
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | | |
Collapse
|
286
|
Wang P, Qu X, Zhou X, Shen Y, Ji H, Fu Z, Deng J, Lu P, Yu W, Lu H, Zhu H. Two cellular microRNAs, miR-196b and miR-1290, contribute to HIV-1 latency. Virology 2015; 486:228-38. [PMID: 26469550 DOI: 10.1016/j.virol.2015.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022]
Abstract
Understanding the mechanism of HIV-1 latency is crucial to the viral reservoir eradication. Human cellular miRNAs can modulate HIV-1 expression by targeting of viral RNAs or host gene transcripts. To identify miRNAs modulating HIV-1 latency, we determined the miRNA expression profiles of HIV-1 latently infected and productively infected cells by microarray and qRT-PCR. Among the differentially expressed miRNAs, miR-196b and miR-1290 targeted the 3' untranslated region of HIV-1 and affected its expression. Ectopic expression of these two miRNAs efficiently suppressed HIV-1 production and infectivity. Specific inhibitors of these miRNAs substantially counteracted their effects on HIV-1, as measured either as viral production and infectivity in HEK-293T cells or as HIV-1 RNA expression or viral production in cells isolated from HIV-1-infected individuals. Our study emphasizes the role of cellular miRNAs in HIV-1 latency regulation, and it suggests that inhibitors of miR-196b and miR-1290 could be used to activate latent HIV-1.
Collapse
Affiliation(s)
- Pengfei Wang
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiying Qu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haiyan Ji
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheng Fu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Junxiao Deng
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
287
|
Guo R, Wang H, Cui J, Wang G, Li W, Hu JF. Inhibition of HIV-1 Viral Infection by an Engineered CRISPR Csy4 RNA Endoribonuclease. PLoS One 2015; 10:e0141335. [PMID: 26495836 PMCID: PMC4619743 DOI: 10.1371/journal.pone.0141335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/06/2015] [Indexed: 01/13/2023] Open
Abstract
The bacterial defense system CRISPR (clustered regularly interspaced short palindromic repeats) has been explored as a powerful tool to edit genomic elements. In this study, we test the potential of CRISPR Csy4 RNA endoribonuclease for targeting HIV-1. We fused human codon-optimized Csy4 endoribonuclease with VPR, a HIV-1 viral preintegration complex protein. An HIV-1 cell model was modified to allow quantitative detection of active virus production. We found that the trans-expressing VPR-Csy4 almost completely blocked viral infection in two target cell lines (SupT1, Ghost). In the MAGI cell assay, where the HIV-1 LTR β-galactosidase is expressed under the control of the tat gene from an integrated provirus, VPR-Csy4 significantly blocked the activity of the provirus-activated HIV-1 reporter. This proof-of-concept study demonstrates that Csy4 endoribonuclease is a promising tool that could be tailored further to target HIV-1.
Collapse
Affiliation(s)
- Rui Guo
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, China
- Stanford University Medical School, Palo Alto, California, 94304, United States of America
| | - Hong Wang
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, China
- Stanford University Medical School, Palo Alto, California, 94304, United States of America
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, China
| | - Guanjun Wang
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, China
- * E-mail: (J-FH); (WL)
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, China
- Stanford University Medical School, Palo Alto, California, 94304, United States of America
- * E-mail: (J-FH); (WL)
| |
Collapse
|
288
|
Modeling the Effects of Vorinostat In Vivo Reveals both Transient and Delayed HIV Transcriptional Activation and Minimal Killing of Latently Infected Cells. PLoS Pathog 2015; 11:e1005237. [PMID: 26496627 PMCID: PMC4619772 DOI: 10.1371/journal.ppat.1005237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recent clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Furthermore, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo. Combination antiretroviral therapy (cART) for HIV infection must be taken for life due to the existence of long lived latently infected cells. Recent efforts have focused on developing latency reversing agents to eliminate latently infected cells by activating HIV production. In this work, we assess the impact of a latency reversing agent, vorinostat, by fitting dynamic models to data from a clinical trial. Results show that vorinostat treatment induces HIV transcription transiently and that the sustained induction of HIV transcription may depend on the temporal impact of vorinostat on host gene expression. Our results also suggest that vorinostat treatment is not sufficient to induce killing of latently infected cells in a majority of HIV-infected individuals on cART.
Collapse
|
289
|
Mates JM, de Silva S, Lustberg M, Van Deusen K, Baiocchi RA, Wu L, Kwiek JJ. A Novel Histone Deacetylase Inhibitor, AR-42, Reactivates HIV-1 from Chronically and Latently Infected CD4 + T-cells. ACTA ACUST UNITED AC 2015; 7:1-5. [PMID: 26855567 PMCID: PMC4739806 DOI: 10.4137/rrt.s31632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) latency is a major barrier to a cure of AIDS. Latently infected cells harbor an integrated HIV-1 genome but are not actively producing HIV-1. Histone deacetylase (HDAC) inhibitors, such as vorinostat (SAHA), have been shown to reactivate latent HIV-1. AR-42, a modified HDAC inhibitor, has demonstrated efficacy against malignant melanoma, meningioma, and acute myeloid leukemia and is currently used in clinical trials for non-Hodgkin's lymphoma and multiple myeloma. In this study, we evaluated the ability of AR-42 to reactivate HIV-1 in the two established CD4+ T-cell line models of HIV-1 latency. In HIV-1 chronically infected ACH-2 cells, AR-42-induced histone acetylation was more potent and robust than that of vorinostat. Although AR-42 and vorinostat were equipotent in their ability to reactivate HIV-1, AR-42-induced maximal HIV-1 reactivation was twofold greater than vorinostat in ACH-2 and J-Lat (clone 9.2) cells. These data provide rationale for assessing the efficacy of AR-42-mediated HIV-1 reactivation within primary CD4+ T-cells.
Collapse
Affiliation(s)
- Jessica M Mates
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Suresh de Silva
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Mark Lustberg
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey Van Deusen
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Robert A Baiocchi
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Li Wu
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA; Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus, OH, USA; Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jesse J Kwiek
- Department of Microbiology, The Ohio State University, Columbus, OH, USA; Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus, OH, USA; Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
290
|
Olesen R, Vigano S, Rasmussen TA, Søgaard OS, Ouyang Z, Buzon M, Bashirova A, Carrington M, Palmer S, Brinkmann CR, Yu XG, Østergaard L, Tolstrup M, Lichterfeld M. Innate Immune Activity Correlates with CD4 T Cell-Associated HIV-1 DNA Decline during Latency-Reversing Treatment with Panobinostat. J Virol 2015; 89:10176-89. [PMID: 26223643 PMCID: PMC4580197 DOI: 10.1128/jvi.01484-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/21/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The pharmaceutical reactivation of dormant HIV-1 proviruses by histone deacetylase inhibitors (HDACi) represents a possible strategy to reduce the reservoir of HIV-1-infected cells in individuals treated with suppressive combination antiretroviral therapy (cART). However, the effects of such latency-reversing agents on the viral reservoir size are likely to be influenced by host immune responses. Here, we analyzed the immune factors associated with changes in proviral HIV-1 DNA levels during treatment with the potent HDACi panobinostat in a human clinical trial involving 15 cART-treated HIV-1-infected patients. We observed that the magnitude, breadth, and cytokine secretion profile of HIV-1-specific CD8 T cell responses were unrelated to changes in HIV-1 DNA levels in CD4 T cells during panobinostat treatment. In contrast, the proportions of CD3(-) CD56(+) total NK cells and CD16(+) CD56(dim) NK cells were inversely correlated with HIV-1 DNA levels throughout the study, and changes in HIV-1 DNA levels during panobinostat treatment were negatively associated with the corresponding changes in CD69(+) NK cells. Decreasing levels of HIV-1 DNA during latency-reversing treatment were also related to the proportions of plasmacytoid dendritic cells, to distinct expression patterns of interferon-stimulated genes, and to the expression of the IL28B CC genotype. Together, these data suggest that innate immune activity can critically modulate the effects of latency-reversing agents on the viral reservoir and may represent a target for future immunotherapeutic interventions in HIV-1 eradication studies. IMPORTANCE Currently available antiretroviral drugs are highly effective in suppressing HIV-1 replication, but the virus persists, despite treatment, in a latent form that does not actively express HIV-1 gene products. One approach to eliminate these cells, colloquially termed the "shock-and-kill" strategy, focuses on the use of latency-reversing agents that induce active viral gene expression in latently infected cells, followed by immune-mediated killing. Panobinostat, a histone deacetylase inhibitor, demonstrated potent activities in reversing HIV-1 latency in a recent pilot clinical trial and reduced HIV-1 DNA levels in a subset of patients. Interestingly, we found that innate immune factors, such as natural killer cells, plasmacytoid dendritic cells, and the expression patterns of interferon-stimulated genes, were most closely linked to a decline in the HIV-1 DNA level during treatment with panobinostat. These data suggest that innate immune activity may play an important role in reducing the residual reservoir of HIV-1-infected cells.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antiretroviral Therapy, Highly Active
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cell Count
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/genetics
- DNA, Viral/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/enzymology
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Drug Administration Schedule
- Gene Expression
- Genotype
- HIV Infections/drug therapy
- HIV Infections/enzymology
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/drug effects
- HIV-1/growth & development
- HIV-1/immunology
- Histone Deacetylase Inhibitors/therapeutic use
- Histone Deacetylases/genetics
- Histone Deacetylases/immunology
- Humans
- Hydroxamic Acids/therapeutic use
- Immunity, Innate/drug effects
- Indoles/therapeutic use
- Interferons
- Interleukins/genetics
- Interleukins/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Panobinostat
- Virus Latency/drug effects
Collapse
Affiliation(s)
- Rikke Olesen
- Infectious Disease Division, Aarhus University Hospital, Aarhus, Denmark
| | - Selena Vigano
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas A Rasmussen
- Infectious Disease Division, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S Søgaard
- Infectious Disease Division, Aarhus University Hospital, Aarhus, Denmark
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Maria Buzon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA
| | - Arman Bashirova
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sarah Palmer
- Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | | | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA
| | - Lars Østergaard
- Infectious Disease Division, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Infectious Disease Division, Aarhus University Hospital, Aarhus, Denmark
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
291
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
292
|
Ostrowski M, Benko E, Yue FY, Kim CJ, Huibner S, Lee T, Singer J, Pankovich J, Laeyendecker O, Kaul R, Kandel G, Kovacs C. Intensifying Antiretroviral Therapy With Raltegravir and Maraviroc During Early Human Immunodeficiency Virus (HIV) Infection Does Not Accelerate HIV Reservoir Reduction. Open Forum Infect Dis 2015; 2:ofv138. [PMID: 26512359 PMCID: PMC4621663 DOI: 10.1093/ofid/ofv138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/16/2015] [Indexed: 12/04/2022] Open
Abstract
Background. Persistent human immunodeficiency virus (HIV) within the CD4+ T-cell reservoir is an obstacle to eradication. We hypothesized that adding raltegravir and maraviroc to standard combination antiretroviral therapy (cART) during early HIV infection could substantially reduce viral reservoirs as a step towards eradication. Methods. A prospective, randomized, double-blinded, placebo-controlled pilot trial enrolled 32 participants with documented early (<6 months) HIV infection to either standard cART (emtricitabine/tenofovir/lopinavir/ritonavir) or intensive cART (standard regimen + raltegravir/maraviroc). Human immunodeficiency virus reservoirs were assessed at baseline and at 48 weeks by (1) proviral DNA, (2) cell-associated RNA, and (3) replication-competent virus, all from purified blood CD4+ T cells, and (4) gut proviral DNA. A multiassay algorithm (MAA) on baseline sera estimated timing of infection. Results. Thirty individuals completed the study to the 48-week endpoint. The reduction in blood proviral burden was −1.03 log DNA copies/106 CD4+ T cells versus −.84 log in the standard and intensive groups, respectively (P = .056). Overall, there was no significant difference in the rate of decline of HIV-associated RNA, replication-competent virus in blood CD4+ T cells, nor proviral gut HIV DNA to 48 weeks. Individuals who presented with more recent HIV infection had significantly lower virus reservoirs, and cART tended to reduce their reservoirs to a greater extent. Conclusions. Intensive cART led to no additional reduction in the blood virus reservoir at 48 weeks compared with standard cART. Human immunodeficiency virus reservoir size is smaller earlier in HIV infection. Other novel treatment strategies in combination with early cART will be needed to eliminate the HIV latent reservoir.
Collapse
Affiliation(s)
- Mario Ostrowski
- Departments of Immunology ; Medicine , University of Toronto ; Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Ontario , Canada
| | | | | | | | | | - Terry Lee
- University of British Columbia ; CIHR Canadian HIV Trials Network , Vancouver, British Columbia , Canada
| | - Joel Singer
- University of British Columbia ; CIHR Canadian HIV Trials Network , Vancouver, British Columbia , Canada
| | - Jim Pankovich
- University of British Columbia ; CIHR Canadian HIV Trials Network , Vancouver, British Columbia , Canada
| | - Oliver Laeyendecker
- Laboratory of Immunoregulation , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda ; Johns Hopkins University , Baltimore, Maryland
| | - Rupert Kaul
- Departments of Immunology ; Medicine , University of Toronto
| | - Gabor Kandel
- Medicine , University of Toronto ; Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Ontario , Canada
| | - Colin Kovacs
- Medicine , University of Toronto ; Maple Leaf Clinic
| |
Collapse
|
293
|
Søgaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR, Nissen SK, Kjaer AS, Schleimann MH, Denton PW, Hey-Cunningham WJ, Koelsch KK, Pantaleo G, Krogsgaard K, Sommerfelt M, Fromentin R, Chomont N, Rasmussen TA, Østergaard L, Tolstrup M. The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo. PLoS Pathog 2015; 11:e1005142. [PMID: 26379282 PMCID: PMC4575032 DOI: 10.1371/journal.ppat.1005142] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. One proposed way of curing HIV is to activate virus transcription and kill latently infected cells while the presence of antiretroviral therapy prevents spreading the infection. Induction of global T cell activation by mitogenic or other potent activators effectively reverses HIV-1 from latency ex vivo, but such compounds are generally too toxic for clinical use. Therefore, investigating the capacity of small molecule latency reversing agents to induce production of virus without causing global T cell activation has been a top research priority for scientists in recent years. In the present clinical trial, we demonstrate that significant viral reactivation can be safely induced using the depsipeptide romidepsin (HDAC inhibitor) in long-term suppressed HIV-1 individuals on antiretroviral therapy. Following each romidepsin infusion, we observed clear increases in lymphocyte H3 acetylation, HIV-1 transcription, and plasma HIV-1 RNA. Importantly, this reversal of HIV-1 latency could be measured using standard clinical assays for detection of plasma HIV-1 RNA. Furthermore, romidepsin did not alter the proportion of HIV-specific T cells or inhibit T cell cytokine production which is critically important for future trials combining HDAC inhibitors with interventions (e.g. therapeutic HIV-1 vaccination) designed to enhance killing of latently infected cells.
Collapse
Affiliation(s)
- Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | - Mette E. Graversen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Leth
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sara K. Nissen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Sofie Kjaer
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariane H. Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Paul W. Denton
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute for Advanced Studies, Aarhus University, Denmark
| | - William J. Hey-Cunningham
- Kirby Institute, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
| | - Kersten K. Koelsch
- Kirby Institute, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | - Nicolas Chomont
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
294
|
Physician perceptions of HIV cure in China: A mixed methods review and implications for HIV cure research. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015; 5:687-690. [PMID: 26877974 DOI: 10.1016/s2222-1808(15)60913-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There are over 100 clinical trials worldwide focused on developing an HIV cure. Research participants will assume substantial individual risks while receiving little or no individual benefit. Physicians will have important dual roles of leading HIV cure research studies and guiding patient expectations. Many low and middle-income nations have started HIV cure trials, including China. The goal of this study was to better understand physician attitudes, behaviors, and perceptions of HIV cure research within the context of China. We conducted a quantitative and qualitative evidence review of published literature on physician perceptions of HIV cure in China. Quantitative survey data revealed that physicians rarely believed HIV was curable, but this perception may be more common compared to other countries. Qualitative data showed that inconsistent terminology used among physicians may contribute to the perception of HIV as curable. The belief that HIV is curable among some physicians in China may be related to the influence of traditional Chinese medicine beliefs. Rather than seeking elimination of pathogens, traditional Chinese medicine aims to achieve harmony between organs and a vital life force. In this context, HIV infection can be seen as a temporary state of imbalance rather than an irreversible change. There is a wide range of physician perceptions about HIV cure in China. Conflicting information about HIV cure from physicians and other sources could thwart the progress of HIV cure research. Enhancing patient-physician communication about ongoing HIV cure research trials will be important for developing an HIV cure.
Collapse
|
295
|
Synergistic Reactivation of Latent HIV Expression by Ingenol-3-Angelate, PEP005, Targeted NF-kB Signaling in Combination with JQ1 Induced p-TEFb Activation. PLoS Pathog 2015. [PMID: 26225771 PMCID: PMC4520526 DOI: 10.1371/journal.ppat.1005066] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although anti-retroviral therapy (ART) is highly effective in suppressing HIV replication, it fails to eradicate the virus from HIV-infected individuals. Stable latent HIV reservoirs are rapidly established early after HIV infection. Therefore, effective strategies for eradication of the HIV reservoirs are urgently needed. We report that ingenol-3-angelate (PEP005), the only active component in a previously FDA approved drug (PICATO) for the topical treatment of precancerous actinic keratosis, can effectively reactivate latent HIV in vitro and ex vivo with relatively low cellular toxicity. Biochemical analysis showed that PEP005 reactivated latent HIV through the induction of the pS643/S676-PKCδ/θ-IκBα/ε-NF-κB signaling pathway. Importantly, PEP005 alone was sufficient to induce expression of fully elongated and processed HIV RNAs in primary CD4+ T cells from HIV infected individuals receiving suppressive ART. Furthermore, PEP005 and the P-TEFb agonist, JQ1, exhibited synergism in reactivation of latent HIV with a combined effect that is 7.5-fold higher than the effect of PEP005 alone. Conversely, PEP005 suppressed HIV infection of primary CD4+ T cells through down-modulation of cell surface expression of HIV co-receptors. This anti-cancer compound is a potential candidate for advancing HIV eradication strategies. Stable latent viral reservoirs in HIV infected individuals are rapidly reactivated following the interruption of anti-retroviral therapy (ART). Despite an early initiation of ART, viral reservoirs are established and persist as demonstrated in the case of the Mississippi baby and from recent studies of the SIV model of AIDS. Therefore, new strategies are needed for the eradication of the latent HIV reservoirs. We found that ingenol-3-angelate (PEP005), a member of the new class of anti-cancer ingenol compounds, effectively reactivated HIV from latency in primary CD4+ T cells from HIV infected individuals receiving ART. Importantly, a combination of PEP005 and JQ1, a p-TEFb agonist, reactivated HIV from latency at level on average 7.5-fold higher compared to PEP005 alone. The potency of synergistic effects of PEP005 and JQ1 provide novel opportunities for advancing HIV eradication strategies in the future. In summary, ingenols represent a new group of lead compounds for combating HIV latency.
Collapse
|
296
|
Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone. J Virol 2015. [PMID: 26223636 DOI: 10.1128/jvi.01692-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection.
Collapse
|
297
|
Tyagi M, Iordanskiy S, Ammosova T, Kumari N, Smith K, Breuer D, Ilatovskiy AV, Kont YS, Ivanov A, Üren A, Kovalskyy D, Petukhov M, Kashanchi F, Nekhai S. Reactivation of latent HIV-1 provirus via targeting protein phosphatase-1. Retrovirology 2015; 12:63. [PMID: 26178009 PMCID: PMC4504130 DOI: 10.1186/s12977-015-0190-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 07/09/2015] [Indexed: 11/23/2022] Open
Abstract
Background HIV-1 escapes antiretroviral drugs by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. This provirus presents the major hurdle in HIV-1 eradication and cure. Transcriptional activation, which is prerequisite for reactivation and the eradication of latent proviruses, is impaired in latently infected T cells due to the lack of host transcription factors, primarily NF-κB and P-TEFb (CDK9/cyclin T1). We and others previously showed that protein phosphatase-1 (PP1) regulates HIV-1 transcription by modulating CDK9 phosphorylation. Recently we have developed a panel of small molecular compounds targeting a non-catalytic site of PP1. Results Here we generated a new class of sulfonamide-containing compounds that activated HIV-1 in acute and latently infected cells. Among the tested molecules, a small molecule activator of PP1 (SMAPP1) induced both HIV-1 replication and reactivation of latent HIV-1 in chronically infected cultured and primary cells. In vitro, SMAPP1 interacted with PP1 and increased PP1 activity toward a recombinant substrate. Treatment with SMAPP1 increased phosphorylation of CDK9’s Ser90 and Thr186 residues, but not Ser175. Proteomic analysis showed upregulation of P-TEFb and PP1 related proteins, including PP1 regulatory subunit Sds22 in SMAPP1-treated T cells. Docking analysis identified a PP1 binding site for SMAPP1 located within the C-terminal binding pocket of PP1. Conclusion We identified a novel class of PP1-targeting compounds that reactivate latent HIV-1 provirus by targeting PP1, increasing CDK9 phosphorylation and enhancing HIV transcription. This compound represents a novel candidate for anti-HIV-1 therapeutics aiming at eradication of latent HIV-1 reservoirs.
Collapse
Affiliation(s)
- Mudit Tyagi
- Department of Medicine, The George Washington University, Washington, DC, 2003, USA.
| | - Sergey Iordanskiy
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA. .,Department of Medicine, Howard University, Washington, DC, 20059, USA. .,Yakut Science Center for Complex Medical Problems, Yakutsk, 677019, Russia.
| | - Namita Kumari
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Kahli Smith
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Denitra Breuer
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina, Russia. .,Instiute of Nanobiotechnologies, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
| | | | - Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA.
| | - Aykut Üren
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
| | - Dmytro Kovalskyy
- Department of Biochemistry and Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Michael Petukhov
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina, Russia. .,Instiute of Nanobiotechnologies, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, 1840 7th Street, N.W. HURB1, Suite 202, Washington, DC, 20059, USA. .,Department of Medicine, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
298
|
Iordanskiy S, Van Duyne R, Sampey GC, Woodson CM, Fry K, Saifuddin M, Guo J, Wu Y, Romerio F, Kashanchi F. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells. Virology 2015; 485:1-15. [PMID: 26184775 DOI: 10.1016/j.virol.2015.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/13/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Rachel Van Duyne
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Gavin C Sampey
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Caitlin M Woodson
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Kelsi Fry
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Mohammed Saifuddin
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Jia Guo
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Yuntao Wu
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Fabio Romerio
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
299
|
Pantazis N, Psichogiou M, Paparizos V, Gargalianos P, Chini M, Protopapas K, Sipsas NV, Panos G, Chrysos G, Sambatakou H, Katsarou O, Touloumi G. Treatment Modifications and Treatment-Limiting Toxicities or Side Effects: Risk Factors and Temporal Trends. AIDS Res Hum Retroviruses 2015; 31:707-17. [PMID: 25950848 DOI: 10.1089/aid.2015.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Combined antiretroviral treatment (cART) modifications are often required due to treatment failure or side effects. We investigate cART regimens' durability, frequency of treatment-limiting adverse events, and potential risk factors and temporal trends. Data were derived from the Athens Multicenter AIDS Cohort Study (AMACS). Statistical analyses were based on survival techniques, allowing for multiple contributions per individual. Overall, 2,756 individuals, aged >15 years, initiated cART. cART regimens were grouped by their initiation date into four calendar periods (1995-1998, 1999-2002, 2003-2006, and 2007+). Median [95% confidence interval (CI)] time to first treatment modification was 2.11 (1.95-2.33) years; cumulative probabilities at 1 year were 31.6%, 29.0%, 33.1%, and 29.6% for the four periods, respectively. cART modifications were less frequent in more recent years (adjusted HR=0.96 per year; p<0.001). Longer treatment duration was associated with lower HIV-RNA, higher CD4 counts, and being previously ART naive. cART modifications due to treatment failure became less frequent in recent years (adjusted HR=0.91 per year; p<0.001). Estimated (95% CI) 1 year cumulative probabilities of treatment-limiting side effects were 16.4% (12.0-21.3%), 19.3% (15.6-23.3%), 24.9% (20.3-29.7%), and 21.1% (13.4-29.9%) for the four periods, respectively, with no significant temporal trends. Risk of side effects was lower in nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens or triple nucleoside reverse transcriptase inhibitor (NRTI)-based cART regimens. Treatment modifications have become less frequent in more recent years. This could be partly attributed to the lower risk for side effects of NNRTI-based cART regimens and mainly to the improved efficacy of newer drugs. However, the rate of drugs substitutions due to adverse events remains substantially high.
Collapse
Affiliation(s)
- Nikos Pantazis
- Department of Hygiene, Epidemiology and Medical Statistics, Athens University Medical School, Athens, Greece
| | - Mina Psichogiou
- First Department of Propaedeutic Medicine, University of Athens, Athens, Greece
| | - Vassilios Paparizos
- AIDS Unit, Clinic of Venereologic and Dermatologic Diseases, Athens Medical School, “Syngros” Hospital, Athens, Greece
| | - Panagiotis Gargalianos
- First Department of Internal Medicine and Infectious Diseases Unit, General Hospital of Athens “G. Gennimatas,” Athens, Greece
| | - Maria Chini
- Third Department of Internal Medicine–Infectious Diseases Unit, Red Cross General Hospital, Athens, Greece
| | - Konstantinos Protopapas
- Fourth Department of Internal Medicine, Athens Medical School, “Attikon” University General Hospital, Athens, Greece
| | - Nikolaos V. Sipsas
- Infectious Diseases Unit, Department of Pathophysiology, “Laikon” Athens General Hospital and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Panos
- Department of Internal Medicine and Infectious Diseases, Patras University General Hospital, Patras, Greece
| | - George Chrysos
- Infectious Diseases Unit, “Tzaneion” General Hospital of Piraeus, Athens, Greece
| | - Helen Sambatakou
- HIV Unit, Second Department of Internal Medicine, Athens Medical School, “Hippokration” University General Hospital, Athens, Greece
| | - Olga Katsarou
- Blood Centre, National Reference Centre for Congenital Bleeding Disorders, “Laikon” Athens General Hospital, Athens, Greece
| | - Giota Touloumi
- Department of Hygiene, Epidemiology and Medical Statistics, Athens University Medical School, Athens, Greece
| | | |
Collapse
|
300
|
Immunological and pharmacological strategies to reactivate HIV-1 from latently infected cells: a possibility for HIV-1 paediatric patients? J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30508-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|