251
|
Li L, Xu R, Jiang L, Xu EG, Wang M, Wang J, Li B, Hu M, Zhang L, Wang Y. Effects of Microplastics on Immune Responses of the Yellow Catfish Pelteobagrus fulvidraco Under Hypoxia. Front Physiol 2021; 12:753999. [PMID: 34621192 PMCID: PMC8490880 DOI: 10.3389/fphys.2021.753999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Compared with marine organisms, research on microplastics (MPs) in freshwater organisms is still less although MPs have been widely found in the freshwater ecosystem. Hypoxia is a ubiquitous issue in freshwater aquaculture, and under such scenarios, the toxic effects of MPs on typical aquaculture fish need to be clarified. In this study, we studied the effects of MPs (polystyrene) on specific growth rate (SGR), hypoxia-inducible factor-1α (HIF-1α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interferon (IFN) in the yellow catfish (Pelteobagrus fulvidraco) under hypoxic conditions. After 15 days of exposure, the SGR was not affected by MPs or hypoxia. MPs significantly increased the expressions of HIF-1α and TNF-α but inhibited the expression of IFN at high concentration MPs under normoxia. However, hypoxia significantly inhibited the expression of IL-8 and TNF-α under high MP concentration and low MP concentration, respectively. In addition, MPs had significant concentration-dependent inhibitory effects on IFN under hypoxia. Surprisingly, a positive correction between HIF-1α and TNF-α was found in fish. Although hypoxia might alleviate the effects of MPs with low concentrations, the interaction of hypoxia and MPs aggravated the negative effects of MPs on immune factors at high concentration MPs. This study provided new insight into the complex effects of hypoxia and MPs on aquatic organisms, and future studies should focus on the cellular pathways of immune cells in fish. Given that MPs could induce the immune response in fish, considerations should be paid to the impacts of MPs on freshwater aquaculture, and hypoxia should be taken into consideration when evaluating the effects of MPs.
Collapse
Affiliation(s)
- Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ran Xu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lingfeng Jiang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Man Wang
- Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lei Zhang
- Huai'an Research Centre, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
252
|
Chuah JJM, Hertzog PJ, Campbell NK. Immunoregulation by type I interferons in the peritoneal cavity. J Leukoc Biol 2021; 111:337-353. [PMID: 34612523 DOI: 10.1002/jlb.3mr0821-147r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The peritoneal cavity, a fluid-containing potential space surrounding the abdominal and pelvic organs, is home to a rich network of immune cells that maintain tissue homeostasis and provide protection against infection. However, under pathological conditions such as peritonitis, endometriosis, and peritoneal carcinomatosis, the peritoneal immune system can become dysregulated, resulting in nonresolving inflammation and disease progression. An enhanced understanding of the factors that regulate peritoneal immune cells under both homeostatic conditions and in disease contexts is therefore required to identify new treatment strategies for these often life-limiting peritoneal pathologies. Type I interferons (T1IFNs) are a family of cytokines with broad immunoregulatory functions, which provide defense against viruses, bacteria, and cancer. There have been numerous reports of immunoregulation by T1IFNs within the peritoneal cavity, which can contribute to both the resolution or propagation of peritoneal disease states, depending on the specifics of the disease setting and local environment. In this review, we provide an overview of the major immune cell populations that reside in the peritoneal cavity (or infiltrate it under inflammatory conditions) and highlight their contribution to the initiation, progression, or resolution of peritoneal diseases. Additionally, we will discuss the role of T1IFNs in the regulation of peritoneal immune cells, and summarize the results of laboratory studies and clinical trials which have investigated T1IFNs in peritonitis/sepsis, endometriosis, and peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Jasmine J M Chuah
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicole K Campbell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
253
|
Gao Y, Li C, Shi L, Wang F, Ye J, Lu YA, Liu XQ. Viperin_sv1 promotes RIG-I expression and suppresses SVCV replication through its radical SAM domain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104166. [PMID: 34116117 DOI: 10.1016/j.dci.2021.104166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
SVCV infection is known to activate the host's innate immune responses, including the production of interferon (IFN) and interferon-stimulated genes (ISGs). Viperin_sv1 is a novel splice variant of viperin, which is induced during SVCV infection and proves to positively regulate the IFN activation and production. However, the underlying mechanism remains unsolved. In this study, the P protein of SVCV was identified to be the key to induce the mRNA modification and production of viperin_sv1 during the virus infection. Besides, Viperin_sv1 was able to trigger the RLR signaling cascades to activate type-1 interferon response. Additional analysis revealed that viperin_sv1 promoted the stability and function of RIG-I, which result in the production of IFN and ISGs. Moreover, the central SAM domain of viperin_sv1 was demonstrated to be essential for regulating RIG-I protein expression and inducing IFN production. Furthermore, this study also showed that SVCV replication could be inhibited by the viperin_sv1 SAM domain. In conclusion, our study demonstrates that viperin_sv1 reduces the replication of SVCV by promoting the RIG-I protein expression. Our findings identified the antiviral function played by the SAM domain of viperin_sv1 and suggested an antiviral mechanism that is conserved among different species.
Collapse
Affiliation(s)
- Yan Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuan-An Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Xue-Qin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China.
| |
Collapse
|
254
|
Abstract
Mediators of the initiation, development, and recurrence of periodontitis include the oral microbiome embedded in subgingival plaque and the host immune response to a dysbiosis within this dynamic and complex microbial community. Although mediators have been studied extensively, researchers in the field have been unable to fully ascribe certain clinical presentations of periodontitis to their nature. Emergence of high-throughput sequencing technologies has resulted in better characterization of the microbial oral dysbiosis that extends beyond the extensively studied putative bacterial periodontopathogens to a shift in the oral virome composition during disease conditions. Although the biological dark matter inserted by retroviruses was once believed to be nonfunctional, research has revealed that it encodes historical viral-eukaryotic interactions and influences host development. The objective of this review is to evaluate the proposed association of herpesviruses to the etiology and pathogenesis of periodontal disease and survey the highly abundant prokaryotic viruses to delineate their potential roles in biofilm dynamics, as well as their interactions with putative bacterial periodontopathogens and eukaryotic cells. The findings suggest that potential novel periodontal therapies targeting or utilizing the oral virome can alleviate certain clinical presentations of periodontitis. Perhaps it is time to embrace the viral dark matter within the periodontal environment to fully comprehend the pathogenesis and systemic implications of periodontitis.
Collapse
Affiliation(s)
- April Martínez
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ryutaro Kuraji
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Yvonne L. Kapila
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
255
|
Wang Z, Ren S, Li Q, Royster AD, lin L, Liu S, Ganaie SS, Qiu J, Mir S, Mir MA. Hantaviruses use the endogenous host factor P58IPK to combat the PKR antiviral response. PLoS Pathog 2021; 17:e1010007. [PMID: 34653226 PMCID: PMC8550428 DOI: 10.1371/journal.ppat.1010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/27/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Hantavirus nucleocapsid protein (NP) inhibits protein kinase R (PKR) dimerization by an unknown mechanism to counteract its antiviral responses during virus infection. Here we demonstrate that NP exploits an endogenous PKR inhibitor P58IPK to inhibit PKR. The activity of P58IPK is normally restricted in cells by the formation of an inactive complex with its negative regulator Hsp40. On the other hand, PKR remains associated with the 40S ribosomal subunit, a unique strategic location that facilitates its free access to the downstream target eIF2α. Although both NP and Hsp40 bind to P58IPK, the binding affinity of NP is much stronger compared to Hsp40. P58IPK harbors an NP binding site, spanning to N-terminal TPR subdomains I and II. The Hsp40 binding site on P58IPK was mapped to the TPR subdomain II. The high affinity binding of NP to P58IPK and the overlap between NP and Hsp40 binding sites releases the P58IPK from its negative regulator by competitive inhibition. The NP-P58IPK complex is selectively recruited to the 40S ribosomal subunit by direct interaction between NP and the ribosomal protein S19 (RPS19), a structural component of the 40S ribosomal subunit. NP has distinct binding sites for P58IPK and RPS19, enabling it to serve as bridge between P58IPK and the 40S ribosomal subunit. NP mutants deficient in binding to either P58IPK or RPS19 fail to inhibit PKR, demonstrating that selective engagement of P58IPK to the 40S ribosomal subunit is required for PKR inhibition. Cells deficient in P58IPK mount a rapid PKR antiviral response and establish an antiviral state, observed by global translational shutdown and rapid decline in viral load. These studies reveal a novel viral strategy in which NP releases P58IPK from its negative regulator and selectively engages it on the 40S ribosomal subunit to promptly combat the PKR antiviral responses.
Collapse
Affiliation(s)
- Zekun Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Songyang Ren
- Western University of Health Sciences, Pomona, California, United States of America
| | - Qiming Li
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Austin D. Royster
- Western University of Health Sciences, Pomona, California, United States of America
| | - Lei lin
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Sichen Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Safder S. Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sheema Mir
- Western University of Health Sciences, Pomona, California, United States of America
| | - Mohammad A. Mir
- Western University of Health Sciences, Pomona, California, United States of America
| |
Collapse
|
256
|
Li D, Zhang Y, Qiu Q, Wang J, Zhao X, Jiao B, Zhang X, Yu S, Xu P, Dan Y, Xiao X, Wang P, Liu M, Xia Z, Huang Z, Zhang R, Li J, Xie X, Zhang Y, Liu C, Liu P, Ren R. IRF8 Impacts Self-Renewal of Hematopoietic Stem Cells by Regulating TLR9 Signaling Pathway of Innate Immune Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101031. [PMID: 34365741 PMCID: PMC8498865 DOI: 10.1002/advs.202101031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Indexed: 05/03/2023]
Abstract
IRF8 is a key regulator of innate immunity receptor signaling and plays diverse functions in the development of hematopoietic cells. The effects of IRF8 on hematopoietic stem cells (HSCs) are still unknown. Here, it is demonstrated that IRF8 deficiency results in a decreased number of long-term HSCs (LT-HSCs) in mice. However, the repopulation capacity of individual HSCs is significantly increased. Transcriptomic analysis shows that IFN-γ and IFN-α signaling is downregulated in IRF8-deficient HSCs, while their response to proinflammatory cytokines is unchanged ex vivo. Further tests show that Irf8-/- HSCs can not respond to CpG, an agonist of Toll-like receptor 9 (TLR9) in mice, while long-term CpG stimulation increases wild-type HSC abundance and decreases their bone marrow colony-forming capacity. Mechanistically, as the primary producer of proinflammatory cytokines in response to CpG stimulation, dendritic cells has a blocked TLR9 signaling due to developmental defect in Irf8-/- mice. Macrophages remain functionally intact but severely reduce in Irf8-/- mice. In NK cells, IRF8 directly regulates the expression of Tlr9 and its deficiency leads to no increased IFNγ production upon CpG stimulation. These results indicate that IRF8 regulates HSCs, at least in part, through controlling TLR9 signaling in diverse innate immune cells.
Collapse
Affiliation(s)
- Donghe Li
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Yuyin Zhang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Qingsong Qiu
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Jinzeng Wang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Xuemei Zhao
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Bo Jiao
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Xiuli Zhang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Shanhe Yu
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Pengfei Xu
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Yuqing Dan
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Xinhua Xiao
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Peihong Wang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Mingzhu Liu
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Zhizhou Xia
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Zhangsen Huang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Ruihong Zhang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Jiaoyang Li
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Xi Xie
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Yan Zhang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Chenxuan Liu
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Ping Liu
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| | - Ruibao Ren
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200025China
| |
Collapse
|
257
|
Wang S, Chen SN, Sun Z, Pang AN, Wang S, Liu LH, Liu Y, Nie P. Four type I IFNs, IFNa1, IFNa2, IFNb, IFNc, and their receptor usage in an osteoglossomorph fish, the Asian arowana, Scleropages formosus. FISH & SHELLFISH IMMUNOLOGY 2021; 117:70-81. [PMID: 34274423 DOI: 10.1016/j.fsi.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In fish, type I IFNs are classified into three groups, i.e. Group I, Group II and Group III, which are further divided into seven subgroups according to the number of conservative cysteines, phylogenetic relationship, and probably their receptor complexes. In the present study, four type I IFNs and four cytokine receptor family B members (CRFBs) were identified in the Asian arowana, Scleropages formosus, an ancient species in the Osteoglossomorpha with commercial and conservation values. According to multiple sequence alignment and phylogenetic relationship, the four type I IFNs are named as IFNa1, IFNa2, IFNb and IFNc, with the former two belonging to Group I, and the latter two to Group II. The four receptors are named as CRFB1, CRFB2, CRFB5a and CRFB5b. The IFNs and their possible receptor genes are widely expressed in examined organs/tissues, and are induced following the stimulation of polyinosinic polycytidylic acid (polyI:C) in vivo. It was found that IFNa1, IFNa2, IFNb and IFNc use preferentially the receptor complexes, CRFB1 and CRFB5b, CRFB1 and CRFB5b, CRFB2 and CRFB5a, and CRFB2 and CRFB5b, respectively, indicating the evolutionary diversification in the interaction of type I IFNs and their receptors in this ancient fish species, S. formosus.
Collapse
Affiliation(s)
- Shuai Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zheng Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - An Ning Pang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
258
|
Mendes JJ, Paiva JA, Gonzalez F, Mergulhão P, Froes F, Roncon R, Gouveia J. Update of the recommendations of the Sociedade Portuguesa de Cuidados Intensivos and the Infection and Sepsis Group for the approach to COVID-19 in Intensive Care Medicine. Rev Bras Ter Intensiva 2021; 33:487-536. [PMID: 35081236 PMCID: PMC8889599 DOI: 10.5935/0103-507x.0103-507x-rbti-20210080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The Sociedade Portuguesa de Cuidados Intensivos and the Infection and Sepsis Group have previously issued health service and management recommendations for critically ill patients with COVID-19. Due to the evolution of knowledge, the panel of experts was again convened to review the current evidence and issue updated recommendations. METHODS A national panel of experts who declared that they had no conflicts of interest regarding the development of the recommendations was assembled. Operational questions were developed based on the PICO methodology, and a rapid systematic review was conducted by consulting different bibliographic sources. The panel determined the direction and strength of the recommendations using two Delphi rounds, conducted in accordance with the principles of the GRADE system. A strong recommendation received the wording "is recommended", and a weak recommendation was written as "is suggested." RESULTS A total of 48 recommendations and 30 suggestions were issued, covering the following topics: diagnosis of SARS-CoV-2 infection, coinfection and superinfection; criteria for admission, cure and suspension of isolation; organization of services; personal protective equipment; and respiratory support and other specific therapies (antivirals, immunomodulators and anticoagulation). CONCLUSION These recommendations, specifically oriented to the Portuguese reality but that may also apply to Portuguese-speaking African countries and East Timor, aim to support health professionals in the management of critically ill patients with COVID-19. They will be continuously reviewed to reflect the progress of our understanding and the treatment of this pathology.
Collapse
Affiliation(s)
- João João Mendes
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Hospital Prof. Doutor
Fernando da Fonseca EPE - Lisboa, Portugal
| | - José Artur Paiva
- College of Specialties of Intensive Care Medicine, Ordem dos
Médicos- Lisboa, Portugal
- Infection and Sepsis Group - Lisboa, Portugal
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de São João EPE, Faculdade de Medicina da Universidade do Porto -
Porto, Portugal
| | - Filipe Gonzalez
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Hospital Garcia de Orta EPE -
Lisboa, Portugal
| | - Paulo Mergulhão
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Infection and Sepsis Group - Lisboa, Portugal
- Polyvalent Intensive Care Unit, Hospital Lusíadas Porto - Porto,
Portugal
| | - Filipe Froes
- Medical-Surgical Intensive Care Unit, Hospital de Pulido Valente,
Centro Hospitalar Universitário de Lisboa Norte EPE - Lisboa, Portugal
| | - Roberto Roncon
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de São João EPE, Faculdade de Medicina da Universidade do Porto -
Porto, Portugal
| | - João Gouveia
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de Lisboa Norte EPE - Lisboa, Portugal
| |
Collapse
|
259
|
Alavi Darazam I, Hatami F, Mahdi Rabiei M, Amin Pourhoseingholi M, Shabani M, Shokouhi S, Mardani M, Moradi O, Javandoust Gharehbagh F, Mirtalaee N, Negahban H, Amirdosara M, Zangi M, Hajiesmaeili M, Kazempour M, Shafigh N. An investigation into the beneficial effects of high-dose interferon beta 1-a, compared to low-dose interferon beta 1-a in severe COVID-19: The COVIFERON II randomized controlled trial. Int Immunopharmacol 2021; 99:107916. [PMID: 34224994 PMCID: PMC8238656 DOI: 10.1016/j.intimp.2021.107916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has been a serious obstacle in front of public health. Interferon-beta 1a (IFN-β 1a) has been used to treat patients with COVID-19. We aimed to compare the effectiveness of high-dose IFN-β 1a compared to low dose IFN-β 1a in severe COVID-19 cases. METHODS In this randomized, controlled, and clinical trial, eligible patients with confirmed SARS-CoV-2 infections were randomly assigned to receive one of the two following therapeutic regimens: The intervention group was treated with high-dose IFN-β 1a (Recigen) (Subcutaneous injections of 88 μg (24 million IU) on days 1, 3, 6) + lopinavir /ritonavir (Kaletra) (400 mg/100 mg twice a day for 10 days, orally) and the control group was treated with low-dose IFN-β 1a (Recigen) (Subcutaneous injections of 44 μg (12 million IU) on days 1, 3, 6) + lopinavir /ritonavir (Kaletra) (400 mg/100 mg twice a day for 10 days, orally). RESULT A total of 168 COVID- 19 confirmed patients underwent randomization; 83 were assigned to the intervention group and 85 were assigned to the control group. Median Time To Clinical Improvement (TTIC) for cases treated with low-dose IFN-β1a was shorter than that for cases treated with high-dose IFN-β1a (6 vs 10 days; P = 0.018). The mortality rates in intervention and control group were 41% and 36.5%, respectively. CONCLUSION The use of high-dose IFN-β 1a did not improve TTCI in hospitalized patients with moderate to severe COVID-19. Also, it did not have any significant effect on mortality reduction compared with treating with low-dose IFN-β 1a. TRIAL REGISTRATION This trial has been registered as ClinicalTrials.gov, NCT04521400.
Collapse
Affiliation(s)
- Ilad Alavi Darazam
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON.
| | - Firouze Hatami
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Mohammad Mahdi Rabiei
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Mohamad Amin Pourhoseingholi
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Minoosh Shabani
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Shervin Shokouhi
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Masoud Mardani
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Omid Moradi
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Javandoust Gharehbagh
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Nasrinsadat Mirtalaee
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Halimeh Negahban
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Mahdi Amirdosara
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Anesthesiology Research Center Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Zangi
- Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Anesthesiology Research Center Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Muhanna Kazempour
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Navid Shafigh
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Anesthesiology Research Center Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
260
|
Todorović-Raković N, Whitfield JR. Between immunomodulation and immunotolerance: The role of IFNγ in SARS-CoV-2 disease. Cytokine 2021; 146:155637. [PMID: 34242899 PMCID: PMC8253693 DOI: 10.1016/j.cyto.2021.155637] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
Interferons have prominent roles in various pathophysiological conditions, mostly related to inflammation. Interferon-gamma (IFNγ) was, initially discovered as a potent antiviral agent, over 50 years ago, and has recently garnered renewed interest as a promising factor involved in both innate and adaptive immunity. When new disease epidemics appear such as SARS-CoV (severe acute respiratory syndrome coronavirus), MERS-CoV (Middle East respiratory syndrome coronavirus), IAV (Influenza A virus), and in particular the current SARS-CoV-2 pandemic, it is especially timely to review the complexity of immune system responses to viral infections. Here we consider the controversial roles of effectors like IFNγ, discussing its actions in immunomodulation and immunotolerance. We explore the possibility that modulation of IFNγ could be used to influence the course of such infections. Importantly, not only could endogenous expression of IFNγ influence the outcome, there are existing IFNγ therapeutics that can readily be applied in the clinic. However, our understanding of the molecular mechanisms controlled by IFNγ suggests that the exact timing for application of IFNγ-based therapeutics could be crucial: it should be earlier to significantly reduce the viral load and thus decrease the overall severity of the disease.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia.
| | - Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology (VHIO), Carrer Natzaret 115, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
261
|
Wang L, Wang X, Yang F, Liu Y, Meng L, Pang Y, Zhang M, Chen F, Pan C, Lin S, Zhu X, Leong KW, Liu J. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. NANO TODAY 2021; 40:101280. [PMID: 34512795 PMCID: PMC8418322 DOI: 10.1016/j.nantod.2021.101280] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
New vaccine technologies are urgently needed to produce safe and effective vaccines in a more timely manner to prevent future infectious disease pandemics. Here, we describe erythrocyte-mediated systemic antiviral immunization, a versatile vaccination strategy that boosts antiviral immune responses by using erythrocytes decorated with virus-mimetic nanoparticles carrying a viral antigen and a Toll-like receptor (TLR) agonist. As a proof of concept, polydopamine nanoparticles were synthesized via a simple in situ polymerization in which the nanoparticles were conjugated with the SARS-CoV-2 spike protein S1 subunit and the TLR7/8 agonist R848. The resulting SARS-CoV-2 virus-mimetic nanoparticles were attached to erythrocytes via catechol groups on the nanoparticle. Erythrocytes naturally home to the spleen and interact with the immune system. Injection of the nanoparticle-decorated erythrocytes into mice resulted in greater maturation and activation of antigen-presenting cells, humoral and cellular immune responses in the spleen, production of S1-specific immunoglobulin G (IgG) antibodies, and systemic antiviral T cell responses than a control group treated with the nanoparticles alone, with no significant negative side effects. These results show that erythrocyte-mediated systemic antiviral immunization using viral antigen- and TLR agonist-presenting polydopamine nanoparticles-a generalizable method applicable to many viral infections-is effective new approach to developing vaccines against severe infectious diseases.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangjie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Pan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
262
|
Gupta A, Styczynski MP, Galinski MR, Voit EO, Fonseca LL. Dramatic transcriptomic differences in Macaca mulatta and Macaca fascicularis with Plasmodium knowlesi infections. Sci Rep 2021; 11:19519. [PMID: 34593836 PMCID: PMC8484567 DOI: 10.1038/s41598-021-98024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. However, little is known about the host-parasite interactions and molecular mechanisms in play during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, while most immune responses are initially similar during the acute stage of the blood infection, significant differences arise subsequently. The observed differences point to prolonged inflammation and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while initiating the replenishment of key cell populations, helps contain the infection. Overall, this study points to specific genes and pathways that could be investigated as a basis for new drug targets that support recovery from acute malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
263
|
Yuan S, Balaji S, Lomakin IB, Xiong Y. Coronavirus Nsp1: Immune Response Suppression and Protein Expression Inhibition. Front Microbiol 2021; 12:752214. [PMID: 34659188 PMCID: PMC8512706 DOI: 10.3389/fmicb.2021.752214] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/30/2022] Open
Abstract
Coronaviruses have brought severe challenges to public health all over the world in the past 20years. SARS-CoV-2, the causative agent of the COVID-19 pandemic that has led to millions of deaths, belongs to the genus beta-coronavirus. Alpha- and beta-coronaviruses encode a unique protein, nonstructural protein 1 (Nsp1) that both suppresses host immune responses and reduces global gene expression levels in the host cells. As a key pathogenicity factor of coronaviruses, Nsp1 redirects the host translation machinery to increase synthesis of viral proteins. Through multiple mechanisms, coronaviruses impede host protein expression through Nsp1, while escaping inhibition to allow the translation of viral RNA. In this review, we discuss current data about suppression of the immune responses and inhibition of protein synthesis induced by coronavirus Nsp1, as well as the prospect of live-attenuated vaccine development with virulence-attenuated viruses with mutations in Nsp1.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Shravani Balaji
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
264
|
May D, Bellizzi A, Kassa W, Cipriaso JM, Caocci M, Wollebo HS. IFNα and β Mediated JCPyV Suppression through C/EBPβ-LIP Isoform. Viruses 2021; 13:v13101937. [PMID: 34696366 PMCID: PMC8537971 DOI: 10.3390/v13101937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Polyomavirus JC (JCPyV) causes the demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV infection is very common in childhood and, under conditions of severe immunosuppression, JCPyV may reactivate to cause PML. JC viral proteins expression is regulated by the JCPyV non-coding control region (NCCR), which contains binding sites for cellular transcriptional factors which regulate JCPyV transcription. Our earlier studies suggest that JCPyV reactivation occurs within glial cells due to cytokines such as TNF-α which stimulate viral gene expression. In this study, we examined interferon-α (IFNα) or β (IFNβ) which have a negative effect on JCPyV transcriptional regulation. We also showed that these interferons induce the endogenous liver inhibitory protein (LIP), an isoform of CAAT/enhancer binding protein beta (C/EBPβ). Treatment of glial cell line with interferons increases the endogenous level of C/EBPβ-LIP. Furthermore, we showed that the negative regulatory role of the interferons in JCPyV early and late transcription and viral replication is more pronounced in the presence of C/EBPβ-LIP. Knockdown of C/EBPβ-LIP by shRNA reverse the inhibitory effect on JCPyV viral replication. Therefore, IFNα and IFNβ negatively regulate JCPyV through induction of C/EBPβ-LIP, which together with other cellular transcriptional factors may control the balance between JCPyV latency and activation.
Collapse
Affiliation(s)
- Dana May
- Department of Neuroscience, Center for Neurovirology—Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (D.M.); (A.B.); (J.M.C.); (M.C.)
| | - Anna Bellizzi
- Department of Neuroscience, Center for Neurovirology—Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (D.M.); (A.B.); (J.M.C.); (M.C.)
| | - Workineh Kassa
- Mayo Clinic Hospital and Health Care, 200 First St. S.W., Rochester, MN 55905, USA;
| | - John M. Cipriaso
- Department of Neuroscience, Center for Neurovirology—Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (D.M.); (A.B.); (J.M.C.); (M.C.)
| | - Maurizio Caocci
- Department of Neuroscience, Center for Neurovirology—Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (D.M.); (A.B.); (J.M.C.); (M.C.)
| | - Hassen S. Wollebo
- Department of Neuroscience, Center for Neurovirology—Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (D.M.); (A.B.); (J.M.C.); (M.C.)
- Correspondence: ; Tel.: +1-215-707-7137; Fax: +1-215-707-4888
| |
Collapse
|
265
|
Philadelphia-Negative Chronic Myeloproliferative Neoplasms during the COVID-19 Pandemic: Challenges and Future Scenarios. Cancers (Basel) 2021; 13:cancers13194750. [PMID: 34638236 PMCID: PMC8507529 DOI: 10.3390/cancers13194750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) started in December 2019 in China and then become pandemic in February 2020. Several publications investigated the possible increased rate of COVID-19 infection in hematological malignancies. Based on the published data, strategies for the management of chronic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are provided. The risk of severe COVID-19 seems high in MPN, particularly in patients with essential thrombocythemia, but not negligible in myelofibrosis. MPN patients are at high risk of both thrombotic and hemorrhagic complications and this must be accounted in the case of COVID-19 deciding on a case-by-case basis. There are currently no data to suggest that hydroxyurea or interferon may influence the risk or severity of COVID-19 infection. Conversely, while the immunosuppressive activity of ruxolitinib might pose increased risk of infection, its abrupt discontinuation during COVID-19 syndrome is associated with worse outcome. All MPN patients should receive vaccine against COVID-19; reassuring data are available on efficacy of mRNA vaccines in MPNs.
Collapse
|
266
|
The Methanolic Extract of Perilla frutescens Robustly Restricts Ebola Virus Glycoprotein-Mediated Entry. Viruses 2021; 13:v13091793. [PMID: 34578374 PMCID: PMC8473196 DOI: 10.3390/v13091793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV), one of the most infectious human viruses and a leading cause of viral hemorrhagic fever, imposes a potential public health threat with several recent outbreaks. Despite the difficulties associated with working with this pathogen in biosafety level-4 containment, a protective vaccine and antiviral therapeutic were recently approved. However, the high mortality rate of EBOV infection underscores the necessity to continuously identify novel antiviral strategies to help expand the scope of prophylaxis/therapeutic management against future outbreaks. This includes identifying antiviral agents that target EBOV entry, which could improve the management of EBOV infection. Herein, using EBOV glycoprotein (GP)-pseudotyped particles, we screened a panel of natural medicinal extracts, and identified the methanolic extract of Perilla frutescens (PFME) as a robust inhibitor of EBOV entry. We show that PFME dose-dependently impeded EBOV GP-mediated infection at non-cytotoxic concentrations, and exerted the most significant antiviral activity when both the extract and the pseudoparticles are concurrently present on the host cells. Specifically, we demonstrate that PFME could block viral attachment and neutralize the cell-free viral particles. Our results, therefore, identified PFME as a potent inhibitor of EBOV entry, which merits further evaluation for development as a therapeutic strategy against EBOV infection.
Collapse
|
267
|
Liu X, Nguyen TH, Sokulsky L, Li X, Garcia Netto K, Hsu ACY, Liu C, Laurie K, Barr I, Tay H, Eyers F, Foster PS, Yang M. IL-17A is a common and critical driver of impaired lung function and immunopathology induced by influenza virus, rhinovirus and respiratory syncytial virus. Respirology 2021; 26:1049-1059. [PMID: 34472161 DOI: 10.1111/resp.14141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Influenza virus (FLU), rhinovirus (RV) and respiratory syncytial virus (RSV) are the most common acute respiratory infections worldwide. Infection can cause severe health outcomes, while therapeutic options are limited, primarily relieving symptoms without attenuating the development of lesions or impaired lung function. We therefore examined the inflammatory response to these infections with the intent to identify common components that are critical drivers of immunopathogenesis and thus represent potential therapeutic targets. METHODS BALB/c mice were infected with FLU, RV or RSV, and lung function, airway inflammation and immunohistopathology were measured over a 10-day period. Anti-IL-17A mAb was administered to determine the impact of attenuating this cytokine's function on the development and severity of disease. RESULTS All three viruses induced severe airway constriction and inflammation at 2 days post-infection (dpi). However, only FLU induced prolonged inflammation till 10 dpi. Increased IL-17A expression was correlated with the alterations in lung function and its persistence. Neutralization of IL-17A did not affect the viral replication but led to the resolution of airway hyperresponsiveness. Furthermore, anti-IL-17A treatment resulted in reduced infiltration of neutrophils (in RV- and FLU-infected mice at 2 dpi) and lymphocytes (in RSV-infected mice at 2 dpi and FLU-infected mice at 10 dpi), and attenuated the severity of immunopathology. CONCLUSION IL-17A is a common pathogenic molecule regulating disease induced by three prevalent respiratory viruses. Targeting the IL-17A pathway may provide a unified approach to the treatment of these respiratory infections alleviating both inflammation-induced lesions and difficulties in breathing.
Collapse
Affiliation(s)
- Xiaoming Liu
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Thi Hiep Nguyen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Leon Sokulsky
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Keilah Garcia Netto
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Programme in Emerging Infectious Diseases, Duke - National University of Singapore (NUS) Medical School, Singapore
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Karen Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hock Tay
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Fiona Eyers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ming Yang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
268
|
Sodeifian F, Nikfarjam M, Kian N, Mohamed K, Rezaei N. The role of type I interferon in the treatment of COVID-19. J Med Virol 2021; 94:63-81. [PMID: 34468995 PMCID: PMC8662121 DOI: 10.1002/jmv.27317] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Although significant research has been done to find effective drugs against coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), no definite effective drug exists. Thus, research has now shifted towards immunomodulatory agents other than antivirals. In this review, we aim to describe the latest findings on the role of type I interferon (IFN)‐mediated innate antiviral response against SARS‐CoV‐2 and discuss the use of IFNs as a medication for COVID‐19. A growing body of evidence has indicated a promoting active but delayed IFNs response to SARS‐CoV‐2 and Middle East respiratory syndrome coronavirus in infected bronchial epithelial cells. Studies have demonstrated that IFNs' administration before the viral peak and the inflammatory phase of disease could offer a highly protective effect. However, IFNs' treatment during the inflammatory and severe stages of the disease causes immunopathology and long‐lasting harm for patients. Therefore, it is critical to note the best time window for IFNs' administration. Further investigation of the clinical effectiveness of interferon for patients with mild to severe COVID‐19 and its optimal timing and route of administration can be beneficial in finding a safe and effective antiviral therapy for the COVID‐19 disease. 1‐IFNs have many antiviral actions including; the activation of cytotoxic T‐cell responses, the inhibition of the viral mRNA translation, the degradation of the viral RNA, RNA editing and modulating the synthesis of Nitric Oxide. 2‐IFNS are two‐edged immunomodulatory agents; as they can provide a protective effect if administered in the early phases of the disease before the viral peak, whereas a harming effect is observed when administered in the inflammatory phase. 3‐More human trials are needed to find the best time window for administrating type I IFN for patients with various COVID‐19 modalities.
Collapse
Affiliation(s)
- Fatemeh Sodeifian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,USERN SBMU Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Manama, Bahrain
| | - Mahsa Nikfarjam
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,USERN SBMU Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Naghmeh Kian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,USERN SBMU Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Kawthar Mohamed
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Manama, Bahrain.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
269
|
Dos Santos ACM, Dos Santos BRC, Dos Santos BB, de Moura EL, Ferreira JM, Dos Santos LKC, Oliveira SP, Dias RBF, Pereira E Silva AC, de Farias KF, de Souza Figueiredo EVM. Genetic polymorphisms as multi-biomarkers in severe acute respiratory syndrome (SARS) by coronavirus infection: A systematic review of candidate gene association studies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104846. [PMID: 33933633 PMCID: PMC8084602 DOI: 10.1016/j.meegid.2021.104846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The Severe acute respiratory syndrome may be caused by coronavirus disease which has resulted in a global pandemic. Polymorphisms in the population play a role in susceptibility to severity. We aimed to perform a systematic review related to the effect of single nucleotide polymorphisms in the development of severe acute respiratory syndrome (SARS). Twenty-eight eligible articles published were identified in PubMed, ScienceDirect, Web of Science, PMC Central and Portal BVS and additional records, with 20 studies performed in China. Information on study characteristics, genetic polymorphisms, and comorbidities was extracted. Study quality was assessed by the STrengthening the REporting of Genetic Association (STREGA) guideline. Few studies investigated the presence of polymorphisms in HLA, ACE1, OAS-1, MxA, PKR, MBL, E-CR1, FcγRIIA, MBL2, L-SIGN (CLEC4M), IFNG, CD14, ICAM3, RANTES, IL-12 RB1, TNFA, CXCL10/IP-10, CD209 (DC-SIGN), AHSG, CYP4F3 and CCL2 with the susceptibility or protection to SARS-Cov. This review provides comprehensive evidence of the association between genetic polymorphisms and susceptibility or protection to severity SARS-CoV. The literature about coronavirus infection, susceptibility to severe acute respiratory syndrome (SARS) and genetic variations is scarce. Further studies are necessary to provide more concrete evidence, mainly related to Covid-19.
Collapse
Affiliation(s)
- Ana Caroline Melo Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Bárbara Rayssa Correia Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Bruna Brandão Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Edilson Leite de Moura
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Jean Moisés Ferreira
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Luana Karen Correia Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Susana Paiva Oliveira
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Renise Bastos Farias Dias
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Aline Cristine Pereira E Silva
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Karol Fireman de Farias
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Elaine Virgínia Martins de Souza Figueiredo
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil..
| |
Collapse
|
270
|
Szeto MD, Maghfour J, Sivesind TE, Anderson J, Olayinka JT, Mamo A, Runion TM, Dellavalle RP. Interferon and Toll-Like Receptor 7 Response in COVID-19: Implications of Topical Imiquimod for Prophylaxis and Treatment. Dermatology 2021; 237:847-856. [PMID: 34511591 PMCID: PMC8450856 DOI: 10.1159/000518471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The innate immune system is recognized as an essential aspect of COVID-19 pathogenesis. Toll-like receptors (TLRs) are important in inducing antiviral response, triggering downstream production of interferons (IFNs). Certain loss-of-function variants in TLR7 are associated with increased COVID-19 disease severity, and imiquimod (ImiQ) is known to have immunomodulating effects as an agonist of TLR7. Given that topical imiquimod (topImiQ) is indicated for various dermatologic conditions, it is necessary for dermatologists to understand the interplay between innate immunity mechanisms and the potential role of ImiQ in COVID-19, with a particular focus on TLR7. SUMMARY Our objective was to survey recent peer-reviewed scientific literature in the PubMed database, examine relevant evidence, and elucidate the relationships between IFNs, TLR7, the innate immune system, and topImiQ in the context of COVID-19. Despite limited studies on this topic, current evidence supports the critical role of TLRs in mounting a strong immune response against COVID-19. Of particular interest to dermatologists, topImiQ can result in systemic upregulation of the immune system via activation of TLR7. Key Message: Given the role of TLR7 in the systemic activation of the immune system, ImiQ, as a ligand of the TLR7 receptor, may have potential therapeutic benefit as a topical immunomodulatory treatment for COVID-19.
Collapse
Affiliation(s)
- Mindy D Szeto
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jalal Maghfour
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA,
| | - Torunn E Sivesind
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jarett Anderson
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | - Jadesola T Olayinka
- College of Medicine, SUNY Downstate Health Sciences Center, New York, New York, USA
| | - Andrina Mamo
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Taylor M Runion
- College of Osteopathic Medicine, Rocky Vista University, Parker, Colorado, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
271
|
Garg SS, Sharma A, Gupta J. Immunomodulation and immunotherapeutics of COVID-19. Clin Immunol 2021; 231:108842. [PMID: 34461289 PMCID: PMC8393504 DOI: 10.1016/j.clim.2021.108842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 causes coronavirus disease 2019, a pandemic which was originated from Wuhan city of China. The pandemic has affected millions of people worldwide. The pathogenesis of SARS-CoV-2 is characterized by a cytokine storm in the blood (cytokinemia) and tissues, especially the lungs. One of the major repercussions of this inflammatory process is the endothelial injury-causing intestinal bleeding, coagulopathy, and thromboembolism which result in various sudden and unexpected post-COVID complications including kidney failure, myocardial infarction, or multiorgan failure. In this review, we have summarized the immune responses, biochemical changes, and inflammatory responses in the human body after infection with the SARS-CoV-2 virus. The increased amount of inflammatory cytokines, chemokines, and involvement of complement proteins in inflammatory reaction increase the risk of occurrence of disease.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Atulika Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
272
|
Monsalve-Escudero LM, Loaiza-Cano V, Pájaro-González Y, Oliveros-Díaz AF, Diaz-Castillo F, Quiñones W, Robledo S, Martinez-Gutierrez M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement Med Ther 2021; 21:216. [PMID: 34454481 PMCID: PMC8397866 DOI: 10.1186/s12906-021-03386-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In recent years, an increase in the occurrence of illnesses caused by two clinically- important arboviruses has been reported: Zika virus (ZIKV) and Chikungunya virus (CHIKV). There is no licensed antiviral treatment for either of the two abovementioned viruses. Bearing in mind that the antiviral effect of indole alkaloids has been reported for other arboviral models, the present study proposed to evaluate the antiviral in vitro and in silico effects of four indole alkaloids on infections by these two viruses in different cell lines. METHODS The antiviral effects of voacangine (VOAC), voacangine-7-hydroxyindolenine (VOAC-OH), rupicoline and 3-oxo voacangine (OXO-VOAC) were evaluated in Vero, U937 and A549 cells using different experimental strategies (Pre, Trans, Post and combined treatment). Viral infection was quantified by different methodologies, including infectious viral particles by plating, viral genome by RT-qPCR, and viral protein by cell ELISA. Moreover, molecular docking was used to evaluate the possible interactions between structural and nonstructural viral proteins and the compounds. The results obtained from the antiviral strategies for each experimental condition were compared in all cases with the untreated controls. Statistically significant differences were identified using a parametric Student's t-test. In all cases, p values below 0.05 (p < 0.05) were considered statistically significant. RESULTS In the pre-treatment strategy in Vero cells, VOAC and VOAC-OH inhibited both viral models and OXO-VOAC inhibited only ZIKV; in U937 cells infected with CHIKV/Col, only VOAC-OH inhibited infection, but none of the compounds had activity in A549 cells; in U937 cells and A549 cells infected with ZIKV/Col, the three compounds that were effective in Vero cells also had antiviral activity. In the trans-treatment strategy, only VOAC-OH was virucidal against ZIKV/Col. In the post-treatment strategy, only rupicoline was effective in the CHIKV/Col model in Vero and A549 cells, whereas VOAC and VOAC-OH inhibited ZIKV infection in all three cell lines. In the combined strategy, VOAC, VOAC-OH and rupicoline inhibited CHIKV/Col and ZIKV/Col, but only rupicoline improved the antiviral effect of ZIKV/Col-infected cultures with respect to the individual strategies. Molecular docking showed that all the compounds had favorable binding energies with the structural proteins E2 and NSP2 (CHIKV) and E and NS5 (ZIKV). CONCLUSIONS The present study demonstrates that indole alkaloids are promising antiviral drugs in the process of ZIKV and CHIKV infection; however, the mechanisms of action evaluated in this study would indicate that the effect is different in each viral model and, in turn, dependent on the cell line.
Collapse
Affiliation(s)
- Laura Milena Monsalve-Escudero
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Yina Pájaro-González
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia.,Grupo de Investigación en Farmacia Asistencial y Farmacología, Universidad del Atlántico, Barranquilla, Colombia
| | - Andrés Felipe Oliveros-Díaz
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Fredyc Diaz-Castillo
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales. Universidad de Antioquia, Medellín, Colombia
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.
| |
Collapse
|
273
|
Kawali A, Snehith R, Singh V, Sanjay S, Mahendradas P, Shetty R. Topical interferon - A novel treatment for pseudophakic macular edema. Indian J Ophthalmol 2021; 69:2355-2360. [PMID: 34427221 PMCID: PMC8544081 DOI: 10.4103/ijo.ijo_2704_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose: The aim of this study was to evaluate the efficacy of topical interferon (IFN) therapy in pseudophakic cystoid macular edema (P-CME). Methods: This is a prospective, interventional case series of patients with P-CME. Patients presenting with P-CME were given the option of topical IFN therapy against conventional treatment with oral, topical, intravitreal, and periocular steroid therapy and antivascular growth factors. Patients who consented for the same were advised to use the IFN drops four times/day. Commercially available injection IFN alfa-2b was reconstituted to prepare the eye drops (1 MIU/ml). Optical coherence tomography (OCT) was done at the baseline and on each review visit until complete resolution of P-CME. Results: Eight eyes of eight patients diagnosed with P-CME were studied. Mean central macular thickness (CMT) on OCT at the presentation (n = 8) and at 4 weeks post topical IFN therapy (n = 6) was 560.1 μm (range: 349–702 μm) and 344.33 μm (range: 250–390 μm), respectively. All eyes except one had posterior capsular rent (PCR). Five patients had regular follow-up until resolution. The mean duration of complete first resolution of P-CME was 5 weeks (range: 4–7.1 weeks) in those patients. Relapse was seen in three patients who responded after resuming or continuing the therapy. Case 1 had 9 months follow-up after completion of IFN therapy, and no recurrence was noted. No ocular or systemic side effects related to the topical IFN therapy were noted clinically, except papillary conjunctivitis in one patient. Conclusion: Topical IFN therapy can be a noninvasive, economical, and effective choice of treatment for P-CME, especially in the case of PCR, and where steroids are contraindicated.
Collapse
Affiliation(s)
- Ankush Kawali
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Ram Snehith
- Department of Vitreo-Retina, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Vivek Singh
- Department of Vitreo-Retina, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Srinivasan Sanjay
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Padmamalini Mahendradas
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Refractive Surgeries, Narayana Nethralaya, Bangalore, Karnataka, India
| |
Collapse
|
274
|
Deep survey for designing a vaccine against SARS-CoV-2 and its new mutations. Biologia (Bratisl) 2021; 76:3465-3476. [PMID: 34421121 PMCID: PMC8369332 DOI: 10.1007/s11756-021-00866-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
The ongoing global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has prompted worldwide vaccine development. Several vaccines have been authorized by WHO, FDA, or MOH of different countries. However, issues such as need for cold chain, price, and most importantly access problems have limited vaccine usage in some nations especially developing countries. Moreover, the vast global demand justifies further attempts for vaccine development. Multi-epitope polypeptide vaccines enjoy several key features including safety and lower production and transfer costs and could be designed by in silico tools. Spike protein (S), membrane protein (M), and nucleocapsid protein (N), the three major structural proteins of SARS-CoV-2, are ideal candidates for epitope selection. ORF3a (open reading frame3a), a transmembrane protein with pro-apoptotic functions, could be another proper target. Thus, a novel multi-epitope vaccine against SARS-CoV-2 was designed using these four proteins and LL37, a TLR3 agonist adjuvant, through different immunoinformatics and bioinformatics tools. The proposed multi-epitope vaccine is expected to induce robust humoral and cellular immune responses against SARS-CoV-2 with a population coverage of 76.92 % due to containing different immunodominant epitopes and LL37 adjuvant. Selecting epitopes derived from one functional and three structural proteins suggests the protective ability of the vaccine irrespective of probable virus mutations. The computationally observed proper interaction of LL37 with TLR3 implies its ability to induce immune responses effectively. Besides, it showed acceptable structural and physicochemical properties. The in-silico cloning results predicted its high efficiency production in Escherichia coli. Future experimental studies could further confirm its immunological efficacy.
Collapse
|
275
|
Molina P, Torres Arias M. Herramientas biotecnológicas en el diagnóstico, prevención y tratamiento frente a pandemias. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Las pandemias son consideradas como un problema emergente de salud pública a nivel mundial, las cuales además de caracterizarse por tasas altas de morbilidad y mortalidad, ocasionan conflictos en los aspectos sociales, económicos y políticos. Las herramientas biotecnológicas, por su parte, han ido evolucionando conforme al avance tecnológico-científico, lo que ha permitido optimizar métodos de diagnóstico con alta sensibilidad y especificidad, además de mejorar el desarrollo de productos biológicos para la prevención y terapia de enfermedades. El objetivo de esta revisión es identificar la actualización de las herramientas biotecnológicas en el diagnóstico, tratamiento terapéutico y profiláctico frente a los patógenos causantes de las enfermedades pandémicas a lo largo de la historia, mediante la recopilación de información científica. Con este estudio se logró establecer que las herramientas y productos de origen biotecnológico han constituido un papel fundamental en el control de pandemias a través de la innovación constante que ha permitido alcanzar resultados eficientes tanto en diagnóstico como en el tratamiento.
Collapse
Affiliation(s)
- Pamela Molina
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas ESPE] Av. General Rumiñahui S/N y Ambato, PO BOX 171-5-231B, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
276
|
Identification of COVID-19 prognostic markers and therapeutic targets through meta-analysis and validation of Omics data from nasopharyngeal samples. EBioMedicine 2021; 70:103525. [PMID: 34392148 PMCID: PMC8358265 DOI: 10.1016/j.ebiom.2021.103525] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been generated from patient samples in various studies. Translation of these data into clinical interventions against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory tract can unveil prognostic markers and therapeutic targets. Methods We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug targets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian hamster challenge model. Findings The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8, S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2 replication in vitro. Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs. Interpretation Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model. Funding This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Wellcome Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.
Collapse
|
277
|
Kharaeva Z, Hokonova T, Elmurzaeva J, Dzamihova I, Mayer W, De Luca C, Trakhtman I, Korkina L. Effects of Heavy Isotopes ( 2H 1 and 18O 16) Depleted Water Con-Sumption on Physical Recovery and Metabolic and Immunological Parameters of Healthy Volunteers under Regular Fitness Load. Sports (Basel) 2021; 9:sports9080110. [PMID: 34437371 PMCID: PMC8402423 DOI: 10.3390/sports9080110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Water depleted of heavy isotopes, such as 2H1 and 18O16 (HIDW), has shown numerous biological/health effects in vitro, in vivo, and in epidemiological studies. Major observations were related to cell growth/differentiation, immune/nervous system responses, endurance/adaptation, mitochondrial electron transfer, energy production, glucose metabolism, etc. No human studies to confirm physiological, metabolic, and immune responses to the consumption of HIDW have been performed. A placebo-controlled study on healthy volunteers (n = 50) under fitness load who consumed 1.5 L HIDW (58 ppm 2H and 1780 ppm 18O) or normal water for 60 days was carried out. Plasma content of 2H1 and 18O16, markers of energy, lipid, and glucose metabolism, anthropometric, cardio-vascular, oxidant/antioxidant, and immunological parameters were determined. Significant decrease in plasma heavy isotopes in the group consuming HIDW was observed in concomitance with an increase in ATP, insulin, and LDH, and diminished plasma lactate. Several anthropometric and cardio-vascular parameters were improved as compared to placebo group. Lipid markers demonstrated antiatherogenic effects, while oxidant/antioxidant parameters revealed HIDW-induced hormesis. Antibacterial/antiviral immunity was remarkably higher in HIDW versus placebo group. Conclusions: HIDW consumption by humans under fitness load could be a valid approach to improve their adaptation/recovery through several mechanisms.
Collapse
Affiliation(s)
- Zaira Kharaeva
- Department of Microbiology, Virology, and Immunology, Kabardino-Balkar Berbekov’s State University, 176 Chernishevskogo St., 360000 Nal’chik, Russia; (Z.K.); (T.H.); (J.E.)
| | - Tamara Hokonova
- Department of Microbiology, Virology, and Immunology, Kabardino-Balkar Berbekov’s State University, 176 Chernishevskogo St., 360000 Nal’chik, Russia; (Z.K.); (T.H.); (J.E.)
| | - Jannet Elmurzaeva
- Department of Microbiology, Virology, and Immunology, Kabardino-Balkar Berbekov’s State University, 176 Chernishevskogo St., 360000 Nal’chik, Russia; (Z.K.); (T.H.); (J.E.)
| | - Irlana Dzamihova
- Fitness Centre “S-Club”, 36 Kuliev Pr., 360030 Nal’chik, Russia;
| | - Wolfgang Mayer
- R&D Department, MEDENA AG, 16 Industriestrasse, CH-8910 Affoltern-am-Albis, Switzerland; (W.M.); (C.D.L.)
| | - Chiara De Luca
- R&D Department, MEDENA AG, 16 Industriestrasse, CH-8910 Affoltern-am-Albis, Switzerland; (W.M.); (C.D.L.)
| | - Ilya Trakhtman
- R&D Department, Swiss DEKOTRA GmbH, 549 Badenerstrasse, CH-8048 Zurich, Switzerland;
| | - Liudmila Korkina
- Centre of Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), 197 Vernadskiy Pr., 119571 Moscow, Russia
- Correspondence: ; Tel.: +7-926-6184086
| |
Collapse
|
278
|
Specificity and Mechanism of Coronavirus, Rotavirus, and Mammalian Two-Histidine Phosphoesterases That Antagonize Antiviral Innate Immunity. mBio 2021; 12:e0178121. [PMID: 34372695 PMCID: PMC8406329 DOI: 10.1128/mbio.01781-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 2′,5′-oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, is a principal mediator of the interferon (IFN) antiviral response. Therefore, the regulation of cellular levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels are determined by IFN-inducible 2′,5′-oligoadenylate synthetases (OASs) and by enzymes that degrade 2-5A. Importantly, many coronaviruses (CoVs) and rotaviruses encode 2-5A-degrading enzymes, thereby antagonizing RNase L and its antiviral effects. A-kinase-anchoring protein 7 (AKAP7), a mammalian counterpart, could possibly limit tissue damage from excessive or prolonged RNase L activation during viral infections or from self-double-stranded RNAs that activate OAS. We show that these enzymes, members of the two-histidine phosphoesterase (2H-PE) superfamily, constitute a subfamily referred here as 2′,5′-PEs. 2′,5′-PEs from the mouse CoV mouse hepatitis virus (MHV) (NS2), Middle East respiratory syndrome coronavirus (MERS-CoV) (NS4b), group A rotavirus (VP3), and mouse (AKAP7) were investigated for their evolutionary relationships and activities. While there was no activity against 3′,5′-oligoribonucleotides, they all cleaved 2′,5′-oligoadenylates efficiently but with variable activity against other 2′,5′-oligonucleotides. The 2′,5′-PEs are shown to be metal ion-independent enzymes that cleave trimer 2-5A (2′,5′-p3A3) producing mono- or diadenylates with 2′,3′-cyclic phosphate termini. Our results suggest that the elimination of 2-5A might be the sole function of viral 2′,5′-PEs, thereby promoting viral escape from innate immunity by preventing or limiting the activation of RNase L.
Collapse
|
279
|
Chen F, Shi Q, Pei F, Vogt A, Porritt RA, Garcia G, Gomez AC, Cheng MH, Schurdak ME, Liu B, Chan SY, Arumugaswami V, Stern AM, Taylor DL, Arditi M, Bahar I. A systems-level study reveals host-targeted repurposable drugs against SARS-CoV-2 infection. Mol Syst Biol 2021; 17:e10239. [PMID: 34339582 PMCID: PMC8328275 DOI: 10.15252/msb.202110239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- School of MedicineTsinghua UniversityBeijingChina
| | - Qingya Shi
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- School of MedicineTsinghua UniversityBeijingChina
| | - Fen Pei
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Andreas Vogt
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Rebecca A Porritt
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
- Biomedical Sciences, Infectious and Immunologic Diseases Research CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Gustavo Garcia
- Department of Molecular and Medical PharmacologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | - Angela C Gomez
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Mary Hongying Cheng
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Mark E Schurdak
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Bing Liu
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of CardiologyDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical PharmacologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | - Andrew M Stern
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - D Lansing Taylor
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Moshe Arditi
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
- Biomedical Sciences, Infectious and Immunologic Diseases Research CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Ivet Bahar
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| |
Collapse
|
280
|
Ntouros PA, Vlachogiannis NI, Pappa M, Nezos A, Mavragani CP, Tektonidou MG, Souliotis VL, Sfikakis PP. Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol 2021; 229:108765. [PMID: 34089859 PMCID: PMC8171000 DOI: 10.1016/j.clim.2021.108765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Whether and how an acute immune challenge may affect DNA Damage Response (DDR) is unknown. By studying vaccinations against Influenza and SARS-CoV-2 (mRNA-based) we found acute increases of type-I interferon-inducible gene expression, oxidative stress and DNA damage accumulation in blood mononuclear cells of 9 healthy controls, coupled with effective anti-SARS-CoV-2 neutralizing antibody production in all. Increased DNA damage after SARS-CoV-2 vaccine, partly due to increased oxidative stress, was transient, whereas the inherent DNA repair capacity was found intact. In contrast, in 26 patients with Systemic Lupus Erythematosus, who served as controls in the context of chronic immune activation, we validated increased DNA damage accumulation, increased type-I interferon-inducible gene expression and induction of oxidative stress, however aberrant DDR was associated with deficiencies in nucleotide excision repair pathways. These results indicate that acute immune challenge can indeed activate DDR pathways, whereas, contrary to chronic immune challenge, successful repair of DNA lesions occurs.
Collapse
Affiliation(s)
- Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
281
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Key Considerations for the Development of Safe and Effective SARS-CoV-2 Subunit Vaccine: A Peptide-Based Vaccine Alternative. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100985. [PMID: 34176237 PMCID: PMC8373118 DOI: 10.1002/advs.202100985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/18/2021] [Indexed: 05/14/2023]
Abstract
COVID-19 is disastrous to global health and the economy. SARS-CoV-2 infection exhibits similar clinical symptoms and immunopathological sequelae to SARS-CoV infection. Therefore, much of the developmental progress on SARS-CoV vaccines can be utilized for the development of SARS-CoV-2 vaccines. Careful antigen selection during development is always of utmost importance for the production of effective vaccines that do not compromise recipient safety. This holds especially true for SARS-CoV vaccines, as several immunopathological disorders are associated with the activity of structural and nonstructural proteins encoded in the virus's genetic material. Whole viral protein and RNA-encoding full-length proteins contain both protective and "dangerous" sequences, unless pathological fragments are deleted. In light of recent advances, peptide vaccines may present a very safe and effective alternative. Peptide vaccines can avoid immunopathological pro-inflammatory sequences, focus immune responses on neutralizing immunogenic epitopes, avoid off-target antigen loss, combine antigens with different protective roles or mechanisms, even from different viral proteins, and avoid mutant escape by employing highly conserved cryptic epitopes. In this review, an attempt is made to exploit the similarities between SARS-CoV and SARS-CoV-2 in vaccine antigen screening, with particular attention to the pathological and immunogenic properties of SARS proteins.
Collapse
Affiliation(s)
- Ahmed O. Shalash
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Istvan Toth
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
- School of PharmacyThe University of QueenslandWoolloongabbaQLD4102Australia
| |
Collapse
|
282
|
Filgueiras IS, Torrentes de Carvalho A, Cunha DP, Mathias da Fonseca DL, El Khawanky N, Freire PP, Cabral-Miranda G, Schimke LF, Camara NOS, Ochs HD, Peron JPS, Cabral-Marques O, de Vasconcelos ZFM. The clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. PLoS Negl Trop Dis 2021; 15:e0009575. [PMID: 34351896 PMCID: PMC8341629 DOI: 10.1371/journal.pntd.0009575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Since the 2015 to 2016 outbreak in America, Zika virus (ZIKV) infected almost 900,000 patients. This international public health emergency was mainly associated with a significant increase in the number of newborns with congenital microcephaly and abnormal neurologic development, known as congenital Zika syndrome (CZS). Furthermore, Guillain-Barré syndrome (GBS), a neuroimmune disorder of adults, has also been associated with ZIKV infection. Currently, the number of ZIKV-infected patients has decreased, and most of the cases recently reported present as a mild and self-limiting febrile illness. However, based on its natural history of a typical example of reemerging pathogen and the lack of specific therapeutic options against ZIKV infection, new outbreaks can occur worldwide, demanding the attention of researchers and government authorities. Here, we discuss the clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. Several studies have confirmed the tropism of ZIKV for neural progenitor stem cells by demonstrating the presence of ZIKV in the central nervous system (CNS) during fetal development, eliciting a deleterious inflammatory response that compromises neurogenesis and brain formation. Of note, while the neuropathology of CZS can be due to a direct viral neuropathic effect, adults may develop neuroimmune manifestations such as GBS due to poorly understood mechanisms. Antiganglioside autoantibodies have been detected in multiple patients with ZIKV infection-associated GBS, suggesting a molecular mimicry. However, further additional immunopathological mechanisms remain to be uncovered, paving the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Amanda Torrentes de Carvalho
- Department of Immunobiology, Institute of Biology of Federal University of Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Daniela Prado Cunha
- Department of Clinical Research, Instituto Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | | | - Nadia El Khawanky
- Department of Hematology and Oncology, Faculty of Medicine, the University of Freiburg, Freiburg, Germany
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Lena F. Schimke
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | | | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
- Department of Clinical Analyses and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
| | | |
Collapse
|
283
|
Hasselbalch HC, Skov V, Kjær L, Ellervik C, Poulsen A, Poulsen TD, Nielsen CH. COVID-19 as a mediator of interferon deficiency and hyperinflammation: Rationale for the use of JAK1/2 inhibitors in combination with interferon. Cytokine Growth Factor Rev 2021; 60:28-45. [PMID: 33992887 PMCID: PMC8045432 DOI: 10.1016/j.cytogfr.2021.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicits an interferon (IFN) deficiency state, which aggravates the type I interferon deficiency and slow IFN responses, which associate with e.g. aging and obesity. Additionally, SARS-CoV-2 may also elicit a cytokine storm, which accounts for disease progression and ultimately the urgent need of ventilator support. Based upon several reports, it has been argued that early treatment with IFN-alpha2 or IFN-beta, preferentially in the early disease stage, may prohibit disease progression. Similarly, preliminary studies have shown that JAK1/2 inhibitor treatment with ruxolitinib or baricitinib may decrease mortality by dampening the deadly cytokine storm, which - in addition to the virus itself - also contributes to multi-organ thrombosis and multi-organ failure. Herein, we describe the rationale for treatment with IFNs (alpha2 or beta) and ruxolitinib emphasizing the urgent need to explore these agents in the treatment of SARS-CoV-2 - both as monotherapies and in combination. In this context, we take advantage of several safety and efficacy studies in patients with the chronic myeloproliferative blood cancers (essential thrombocythemia, polycythemia vera and myelofibrosis) (MPNs), in whom IFN-alpha2 and ruxolitinib have been used successfully for the last 10 (ruxolitinib) to 30 years (IFN) as monotherapies and most recently in combination as well. In the context of these agents being highly immunomodulating (IFN boosting immune cells and JAK1/2 inhibitors being highly immunosuppressive and anti-inflammatory), we also discuss if statins and hydroxyurea, both agents possessing anti-inflammatory, antithrombotic and antiviral potentials, might be inexpensive agents to be repurposed in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- H C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.
| | - V Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - L Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - C Ellervik
- Department of Research, Production, Innovation, Region Zealand, Denmark; Department of Pathology, Harvard Medical School, Boston, MA, United States; Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, United States
| | - A Poulsen
- Department of Anestesiology and Intensive Care Unit, Zealand University Hospital, Roskilde, Denmark
| | - T D Poulsen
- Department of Anestesiology and Intensive Care Unit, Zealand University Hospital, Roskilde, Denmark
| | - C H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
284
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
285
|
The Impact of Hydrated Aluminosilicates Supplemented in Litter and Feed on Chicken Growth, Muscle Traits and Gene Expression in the Intestinal Mucosa. Animals (Basel) 2021; 11:ani11082224. [PMID: 34438682 PMCID: PMC8388497 DOI: 10.3390/ani11082224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Poultry meat production has many challenges; one of them is the optimized use of natural feed and litter additives. Aluminosilicates have many properties, stimulating both the health and growth of birds and influencing the hygienic status of production. The objectives of the study were to compare growth, meat quality traits and gene expression in the intestinal mucosa of chickens, where halloysite and zeolite were added to the feed and litter simultaneously. There was a similar growth performance in all tested groups. There was no negative impact on most of the meat characteristics, and a positive effect on the water-holding capacity of the breast muscles was observed. The immunostimulatory and immunoregulatory properties of natural minerals have been demonstrated. Therefore, their use in the production of broiler chickens can be recommended. Abstract The aim of the study was to compare the production, muscle traits and gene expression in the intestinal mucosa of chickens supplemented with aluminosilicates in feed and litter simultaneously. A total of 300 Ross 308 were maintained for 42 days. Group 1 was the control group. In group 2, 0.650 kg/m2 of halloysite was added to the litter and 0.5–2% to the feed (halloysite and zeolite in a 1:1 ratio); in group 3, we added zeolite (0.650 kg/m2) to the litter and 0.5–2% to the feed. The production parameters, the slaughter yield and analyses of muscle quality were analyzed. There was a higher body weight, body weight gain and feed conversion ratio on day 18 and 33 in group 3, and a higher feed intake on day 19–33 in groups 2 and 3 than in 1. A lower water-holding capacity was found in the breasts of group 2 and in the legs of group 3 compared to group 1. The expression of genes related to the immune response, host defense and intestinal barrier and nutrient sensing in the intestinal tissue was analyzed. The results show a beneficial effect on the immune status of the host without an adverse effect on the expression of genes related to intestinal tightness or nutritional processes. Due to the growth, meat characteristics and the positive impact of immunostimulant and regulating properties, aluminosilicates can be suggested as a litter and feed additive in the rearing of chickens.
Collapse
|
286
|
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Interleukin 27 as an inducer of antiviral response against chikungunya virus infection in human macrophages. Cell Immunol 2021; 367:104411. [PMID: 34325085 DOI: 10.1016/j.cellimm.2021.104411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 01/31/2023]
Abstract
Chikungunya virus (CHIKV) is known to have a wide range of tropism in human cell types throughout infection, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. We reported that human monocytes-derived macrophages (MDMs) are permissive to CHIKV infection in vitro. We found that the peak of CHIKV replication was at 24 hpi; however, at 48 hpi, a significant reduction in viral titer was observed that correlated with high expression levels of genes encoding antiviral proteins (AVPs) in an IFN-independent manner. To explore the molecular mechanisms involved in the induction of antiviral response in CHIKV-infected MDMs, we performed transcriptomic analysis by RNA-sequencing. Differential expression of genes at 24 hpi showed that CHIKV infection abrogated the expression of all types of IFNs in MDMs. However, we observed that CHIKV-infected MDMs activated the JAK-STAT signaling and induced a robust antiviral response associated with control of CHIKV replication. We identified that the IL27 pathway is activated in CHIKV-infected MDMs and that kinetics of IL27p28 mRNA expression and IL27 protein production correlated with the expression of AVPs in CHIKV-infected MDMs. Furthermore, we showed that stimulation of THP-1-derived macrophages with recombinant-human IL27 induced the activation of the JAK-STAT signaling and induced a robust pro-inflammatory and antiviral response, comparable to CHIKV-infected MDMs. Furthermore, pre-treatment of MDMs with recombinant-human IL27 inhibits CHIKV replication in a dose-dependently manner (IC50 = 1.83 ng/mL). Altogether, results show that IL27 is highly expressed in CHIKV-infected MDMs, leading to activation of JAK-STAT signaling and stimulation of pro-inflammatory and antiviral response to control CHIKV replication in an IFN-independent manner.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Geysson J Fernandez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
287
|
Zhang R, Chen S, Zhang Y, Wang M, Qin C, Yu C, Zhang Y, Li Y, Chen L, Zhang X, Yuan X, Tang J. Pseudorabies Virus DNA Polymerase Processivity Factor UL42 Inhibits Type I IFN Response by Preventing ISGF3-ISRE Interaction. THE JOURNAL OF IMMUNOLOGY 2021; 207:613-625. [PMID: 34272232 DOI: 10.4049/jimmunol.2001306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Alphaherpesviruses are large dsDNA viruses with an ability to establish persistent infection in hosts, which rely partly on their ability to evade host innate immune responses, notably the type I IFN response. However, the relevant molecular mechanisms are not well understood. In this study, we report the UL42 proteins of alphaherpesvirus pseudorabies virus (PRV) and HSV type 1 (HSV1) as a potent antagonist of the IFN-I-induced JAK-STAT signaling pathway. We found that ectopic expression of UL42 in porcine macrophage CRL and human HeLa cells significantly suppresses IFN-α-mediated activation of the IFN-stimulated response element (ISRE), leading to a decreased transcription and expression of IFN-stimulated genes (ISGs). Mechanistically, UL42 directly interacts with ISRE and interferes with ISG factor 3 (ISGF3) from binding to ISRE for efficient gene transcription, and four conserved DNA-binding sites of UL42 are required for this interaction. The substitution of these DNA-binding sites with alanines results in reduced ISRE-binding ability of UL42 and impairs for PRV to evade the IFN response. Knockdown of UL42 in PRV remarkably attenuates the antagonism of virus to IFN in porcine kidney PK15 cells. Our results indicate that the UL42 protein of alphaherpesviruses possesses the ability to suppress IFN-I signaling by preventing the association of ISGF3 and ISRE, thereby contributing to immune evasion. This finding reveals UL42 as a potential antiviral target.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shifan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Ying Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Mengdong Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Chao Qin
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Cuilian Yu
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Yunfan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Yue Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Liankai Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xinrui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|
288
|
Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Zahoor MA, Papenberg BW, Ring TJ, Lee CH, Andreakos E, Arons E, Barsh G, Biesecker LG, Boyle DL, Burnett-Hartman A, Carrington M, Chang E, Choe PG, Chrisholm RL, Dalgard C, Edberg J, Erdmann N, Feigelson HS, Firestein GS, Gehring AJ, Ho M, Holland S, Hutchinson AA, Im H, Ison MG, Kim HB, Kreitman RJ, Korf BR, Mirabello L, Pacheco JA, Peluso MJ, Rader DJ, Redden DT, Ritchie MD, Rosenbloom B, Sant Anna HP, Savage S, Siouti E, Triantafyllia V, Vargas JM, Verma A, Vij V, Wesemann DR, Yeager M, Yu X, Zhang Y, Boulant S, Chanock SJ, Feld JJ, Prokunina-Olsson L. Genetic regulation of OAS1 nonsense-mediated decay underlies association with risk of severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.07.09.21260221. [PMID: 34282422 PMCID: PMC8288155 DOI: 10.1101/2021.07.09.21260221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-λ1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1 . We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.
Collapse
Affiliation(s)
- A Rouf Banday
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Muhammad A Zahoor
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Timothy J Ring
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evgeny Arons
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Greg Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Leslie G Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - David L Boyle
- Altman Clinical & Translational Research Institute, University of California San Diego Health Sciences, San Diego, CA, USA
| | | | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rex L Chrisholm
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clifton Dalgard
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeff Edberg
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Gary S Firestein
- Altman Clinical & Translational Research Institute, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michelle Ho
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Amy A Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hogune Im
- Genome Opinion Inc, Seoul, Republic of Korea
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Robert J Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David T Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brooke Rosenbloom
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hanaisa P Sant Anna
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sharon Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eleni Siouti
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens
| | - Joselin M Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vibha Vij
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xu Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Steeve Boulant
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
289
|
Chen B, Gurung C, Guo J, Kwon C, Guo YL. Pluripotent stem cells are insensitive to the cytotoxicity of TNFα and IFNγ. Reproduction 2021; 160:547-560. [PMID: 32698161 DOI: 10.1530/rep-20-0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/17/2020] [Indexed: 01/12/2023]
Abstract
Recent studies have demonstrated that embryonic stem cells (ESCs) have an underdeveloped innate immune system, but the biological implications of this finding are poorly understood. In this study, we compared the responses of mouse ESCs (mESCs) and mESC differentiated fibroblasts (mESC-FBs) to tumor necrosis factor α (TNFα) and interferons (IFNs). Our data revealed that TNFα, IFNα, IFNβ, or IFNγ alone do not cause apparent effects on mESCs and mESC-FBs, but the combination of TNFα and IFNγ (TNFα/IFNγ) showed toxicity to mESC-FBs as indicated by cell cycle inhibition and reduced cell viability, correlating with the expression of inducible nitric oxide synthase (iNOS). However, none of these effects were observed in mESCs that were treated with TNFα/IFNγ. Furthermore, mESC-FBs, but not mESCs, are vulnerable to cytotoxicity resulting from lipopolysaccharide (LPS)-activated macrophages. The insensitivity of mESCs to cytotoxicity in all cases is correlated with their lack of responses to TNFα and IFNγ. Similar to mESCs, human ESCs (hESCs) and iPSCs (hiPSCs) do not respond to TNFα and are not susceptible to the cytotoxicity of TNFα, IFNβ, or IFNγ alone or in combination that significantly affects human foreskin fibroblast (hFBs) and Hela cells. However, unlike mESCs, hESCs and hiPSCs can respond to IFNγ, but this does not cause significant cytotoxicity in hESCs and hiPSCs. Our findings in both mouse and human PSCs together support the hypothesis that attenuated innate immune responses could be a protective mechanism that limits immunologic cytotoxicity resulting from inflammatory and immune responses.
Collapse
Affiliation(s)
- Bohan Chen
- Department of Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Chandan Gurung
- Department of Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Jason Guo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yan-Lin Guo
- Department of Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
290
|
Antimicrobial immunotherapeutics: past, present and future. Emerg Top Life Sci 2021; 5:609-628. [PMID: 34196722 DOI: 10.1042/etls20200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
In this age of antimicrobial resistance (AMR) there is an urgent need for novel antimicrobials. One area of recent interest is in developing antimicrobial effector molecules, and even cell-based therapies, based on those of the immune system. In this review, some of the more interesting approaches will be discussed, including immune checkpoint inhibitors, Interferons (IFNs), Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Chimeric Antigen Receptor (CAR) T cells, Antibodies, Vaccines and the potential role of trained immunity in protection from and/or treatment of infection.
Collapse
|
291
|
Pham TL, He J, Kakazu AH, Calandria J, Do KV, Nshimiyimana R, Lam TF, Petasis NA, Bazan HEP, Bazan NG. ELV-N32 and RvD6 isomer decrease pro-inflammatory cytokines, senescence programming, ACE2 and SARS-CoV-2-spike protein RBD binding in injured cornea. Sci Rep 2021; 11:12787. [PMID: 34140611 PMCID: PMC8211643 DOI: 10.1038/s41598-021-92293-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting the most vulnerable in society, triggering a public health crisis and economic collapse around the world. Effective treatments to mitigate this viral infection are needed. Since the eye is a route of virus entrance, we use an in vivo rat model of corneal inflammation as well as human corneal epithelial cells (HCEC) in culture challenged with IFNγ as models of the eye surface to study this issue. We explore ways to block the receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein to angiotensin-converting enzyme 2 (ACE2). We found that the lipid mediators, elovanoid (ELV)-N32 or Resolvin D6-isomer (RvD6i) decreased the expression of the ACE2 receptor, furin, and integrins in damaged corneas or IFNγ-stimulated HCEC. There was also a concomitant decrease in the binding of Spike RBD with the lipid treatments. Using RNA-seq analysis, we uncovered that the lipid mediators also attenuated the expression of pro-inflammatoy cytokines participating in hyper-inflammation and senescence programming. Thus, the bioactivity of these lipid mediators will contribute to open therapeutic avenues to counteract virus attachment and entrance to the body.
Collapse
Affiliation(s)
- Thang L Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., Ste. D, New Orleans, LA, 70112-2223, USA
| | - Jiucheng He
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., Ste. D, New Orleans, LA, 70112-2223, USA
| | - Azucena H Kakazu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., Ste. D, New Orleans, LA, 70112-2223, USA
| | - Jorgelina Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., Ste. D, New Orleans, LA, 70112-2223, USA
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., Ste. D, New Orleans, LA, 70112-2223, USA
| | - Robert Nshimiyimana
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, USA
| | - Ting F Lam
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, USA
| | - Nicos A Petasis
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, USA
| | - Haydee E P Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., Ste. D, New Orleans, LA, 70112-2223, USA.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., Ste. D, New Orleans, LA, 70112-2223, USA.
| |
Collapse
|
292
|
Aslam MS, Zaidi SZJ, Toor RH, Gull I, Iqbal MM, Abbas Z, Tipu I, Ahmed A, Athar MA, Harito C, Hassan SU. Interferon α2-Thymosin α1 Fusion Protein (IFNα2-Tα1): A Genetically Engineered Fusion Protein with Enhanced Anticancer and Antiviral Effect. MATERIALS 2021; 14:ma14123318. [PMID: 34203928 PMCID: PMC8232609 DOI: 10.3390/ma14123318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 12/30/2022]
Abstract
Human interferon α2 (IFNα2) and thymosin α1 (Tα1) are therapeutic proteins used for the treatment of viral infections and different types of cancer. Both IFNα2 and Tα1 show a synergic effect in their activities when used in combination. Furthermore, the therapeutic fusion proteins produced through the genetic fusion of two genes can exhibit several therapeutic functions in one molecule. In this study, we determined the anticancer and antiviral effect of human interferon α2-thymosin α1 fusion protein (IFNα2-Tα1) produced in our laboratory for the first time. The cytotoxic and genotoxic effect of IFNα2-Tα1 was evaluated in HepG2 and MDA-MB-231 cells. The in vitro assays confirmed that IFNα2-Tα1 inhibited the growth of cells more effectively than IFNα2 alone and showed an elevated genotoxic effect. The expression of proapoptotic genes was also significantly enhanced in IFNα2-Tα1-treated cells compared to IFNα2-treated cells. Furthermore, the HCV RNA level was significantly reduced in IFNα2-Tα1-treated HCV-infected Huh7 cells compared to IFNα2-treated cells. The quantitative PCR analysis showed that the expression of various genes, the products of which inhibit HCV replication, was significantly enhanced in IFNα2-Tα1-treated cells compared to IFNα2-treated cells. Our findings demonstrate that IFNα2-Tα1 is more effective than single IFNα2 as an anticancer and antiviral agent.
Collapse
Affiliation(s)
- Muhammad Shahbaz Aslam
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.G.); (M.M.I.); (M.A.A.)
- Correspondence: (M.S.A.); (S.Z.J.Z.); (S.-u.H.)
| | - Syed Zohaib Javaid Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan
- Correspondence: (M.S.A.); (S.Z.J.Z.); (S.-u.H.)
| | - Rabail Hassan Toor
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (R.H.T.); (A.A.)
| | - Iram Gull
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.G.); (M.M.I.); (M.A.A.)
| | - Muhammad Mudassir Iqbal
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.G.); (M.M.I.); (M.A.A.)
| | - Zaigham Abbas
- Department of Microbiology & Molecular Genetics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan;
| | - Imran Tipu
- Department of Life Sciences, University of Management & Technology, Lahore 54770, Pakistan;
| | - Aftab Ahmed
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (R.H.T.); (A.A.)
| | - Muhammad Amin Athar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.G.); (M.M.I.); (M.A.A.)
| | - Christian Harito
- Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia;
| | - Sammer-ul Hassan
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Correspondence: (M.S.A.); (S.Z.J.Z.); (S.-u.H.)
| |
Collapse
|
293
|
Geng H, Subramanian S, Wu L, Bu HF, Wang X, Du C, De Plaen IG, Tan XD. SARS-CoV-2 ORF8 Forms Intracellular Aggregates and Inhibits IFNγ-Induced Antiviral Gene Expression in Human Lung Epithelial Cells. Front Immunol 2021; 12:679482. [PMID: 34177923 PMCID: PMC8221109 DOI: 10.3389/fimmu.2021.679482] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a disease that involves significant lung tissue damage. How SARS-CoV-2 infection leads to lung injury remains elusive. The open reading frame 8 (ORF8) protein of SARS-CoV-2 (ORF8SARS-CoV-2) is a unique accessory protein, yet little is known about its cellular function. We examined the cellular distribution of ORF8SARS-CoV-2 and its role in the regulation of human lung epithelial cell proliferation and antiviral immunity. Using live imaging and immunofluorescent staining analyses, we found that ectopically expressed ORF8SARS-CoV-2 forms aggregates in the cytosol and nuclear compartments of lung epithelial cells. Using in silico bioinformatic analysis, we found that ORF8SARS-CoV-2 possesses an intrinsic aggregation characteristic at its N-terminal residues 1-18. Cell culture did not reveal any effects of ORF8SARS-CoV-2 expression on lung epithelial cell proliferation and cell cycle progression, suggesting that ORF8SARS-CoV-2 aggregates do not affect these cellular processes. Interestingly, ectopic expression of ORF8SARS-CoV-2 in lung epithelial cells suppressed basal expression of several antiviral molecules, including DHX58, ZBP1, MX1, and MX2. In addition, expression of ORF8SARS-CoV-2 attenuated the induction of antiviral molecules by IFNγ but not by IFNβ in lung epithelial cells. Taken together, ORF8SARS-CoV-2 is a unique viral accessory protein that forms aggregates when expressing in lung epithelial cells. It potently inhibits the expression of lung cellular anti-viral proteins at baseline and in response to IFNγ in lung epithelial cells, which may facilitate SARS-CoV-2 escape from the host antiviral innate immune response during early viral infection. In addition, it seems that formation of ORF8SARS-CoV-2 aggregate is independent from the viral infection. Thus, it would be interesting to examine whether any COVID-19 patients exhibit persistent ORF8 SARS-CoV-2 expression after recovering from SARS-CoV-2 infection. If so, the pathogenic effect of prolonged ORF8SARS-CoV-2 expression and its association with post-COVID symptoms warrant investigation in the future.
Collapse
Affiliation(s)
- Hua Geng
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Saravanan Subramanian
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Longtao Wu
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Heng-Fu Bu
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xiao Wang
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chao Du
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Isabelle G. De Plaen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
294
|
Stancill JS, Kasmani MY, Khatun A, Cui W, Corbett JA. Single-cell RNA sequencing of mouse islets exposed to proinflammatory cytokines. Life Sci Alliance 2021; 4:e202000949. [PMID: 33883217 PMCID: PMC8091599 DOI: 10.26508/lsa.202000949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to proinflammatory cytokines is believed to contribute to pancreatic β-cell damage during diabetes development. Although some cytokine-mediated changes in islet gene expression are known, the heterogeneity of the response is not well-understood. After 6-h treatment with IL-1β and IFN-γ alone or together, mouse islets were subjected to single-cell RNA sequencing. Treatment with both cytokines together led to expression of inducible nitric oxide synthase mRNA (Nos2) and antiviral and immune-associated genes in a subset of β-cells. Interestingly, IL-1β alone activated antiviral genes. Subsets of δ- and α-cells expressed Nos2 and exhibited similar gene expression changes as β-cells, including increased expression of antiviral genes and repression of identity genes. Finally, cytokine responsiveness was inversely correlated with expression of genes encoding heat shock proteins. Our findings show that all islet endocrine cell types respond to cytokines, IL-1β induces the expression of protective genes, and cellular stress gene expression is associated with inhibition of cytokine signaling.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
295
|
Arif A, Rashid N, Akhtar M. Removal of N-terminal methionine of human interferon α-2b by co‐producing with Pyrococcus furiosus methionine aminopeptidase in Escherichia coli. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
296
|
The Different Effects of Nucleotide and Nucleoside Analogues on the Prognosis of HBV-Related HCC After Curative Resection. J Gastrointest Surg 2021; 25:1419-1429. [PMID: 32410175 DOI: 10.1007/s11605-020-04633-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/25/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postoperative oral antiviral treatment with nucleoside or nucleotide analogues can suppress viral replication and reduce tumour recurrence for patients with hepatitis b virus-related hepatocellular carcinoma (HBV-related HCC) after curative resection. However, the superior antiviral treatment is still unclear. We conducted this study to investigate the different effects of nucleotide and nucleoside analogues on the prognosis of HBV-related HCC after curative resection. METHODS From February 2007 to February 2016, 487 consecutive patients with newly diagnosed HCC according to the Milan criteria who underwent R0 resection were enrolled according to the inclusion and exclusion criteria. According to their postoperative antiviral treatment, they were divided into the nucleotide group (NtA, n = 111) and the nucleoside group (NsA, n = 376). RESULTS The baseline characteristics, serologic parameters, tumour characteristics, and operative data of the 2 groups were comparable. Nucleotide analogue use significantly decreased HCC recurrence (P = 0.028) and HCC-related death (P = 0.004), with hazard ratios (HRs) of 0.685 (95% CI, 0.484 to 0.971, P = 0.033) and 0.507 (95% CI, 0.310 to 0.830, P = 0.004), respectively, in multivariate Cox analyses. After the study patients were stratified according to three variables, we found that nucleotide analogue use was significantly associated with increased disease-free and overall survival among patients with cirrhosis, HBeAg-negative patients, and patients with positive HBV-DNA. CONCLUSIONS In patients with HBV-related HCC, nucleotide analogues but not nucleoside analogues significantly reduced HCC recurrence and improved overall survival after R0 hepatic resection.
Collapse
|
297
|
Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Awasthi A, Surjit M. Comparative Immunomodulatory Evaluation of the Receptor Binding Domain of the SARS-CoV-2 Spike Protein; a Potential Vaccine Candidate Which Imparts Potent Humoral and Th1 Type Immune Response in a Mouse Model. Front Immunol 2021; 12:641447. [PMID: 34108961 PMCID: PMC8182375 DOI: 10.3389/fimmu.2021.641447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Friedrich SK, Schmitz R, Bergerhausen M, Lang J, Duhan V, Hardt C, Tenbusch M, Prinz M, Asano K, Bhat H, Hamdan TA, Lang PA, Lang KS. Replication of Influenza A Virus in Secondary Lymphatic Tissue Contributes to Innate Immune Activation. Pathogens 2021; 10:pathogens10050622. [PMID: 34069514 PMCID: PMC8160763 DOI: 10.3390/pathogens10050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
The replication of viruses in secondary lymphoid organs guarantees sufficient amounts of pattern-recognition receptor ligands and antigens to activate the innate and adaptive immune system. Viruses with broad cell tropism usually replicate in lymphoid organs; however, whether a virus with a narrow tropism relies on replication in the secondary lymphoid organs to activate the immune system remains not well studied. In this study, we used the artificial intravenous route of infection to determine whether Influenza A virus (IAV) replication can occur in secondary lymphatic organs (SLO) and whether such replication correlates with innate immune activation. Indeed, we found that IAV replicates in secondary lymphatic tissue. IAV replication was dependent on the expression of Sialic acid residues in antigen-presenting cells and on the expression of the interferon-inhibitor UBP43 (Usp18). The replication of IAV correlated with innate immune activation, resulting in IAV eradication. The genetic deletion of Usp18 curbed IAV replication and limited innate immune activation. In conclusion, we found that IAV replicates in SLO, a mechanism which allows innate immune activation.
Collapse
Affiliation(s)
- Sarah-Kim Friedrich
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Rosa Schmitz
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Michael Bergerhausen
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Judith Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Vikas Duhan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Cornelia Hardt
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79106 Freiburg, Germany
- Centre for NeuroModulation (NeuroModBasics), University of Freiburg, 79106 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106 Freiburg, Germany
| | - Kenichi Asano
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Hilal Bhat
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Robert Koch-Strasse 21, 50931 Köln, Germany
| | - Thamer A. Hamdan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Amman 11821, Jordan
- Correspondence: (T.A.H.); (K.S.L.)
| | - Philipp Alexander Lang
- Institute of Molecular Medicine II, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany;
| | - Karl Sebastian Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Correspondence: (T.A.H.); (K.S.L.)
| |
Collapse
|
299
|
Khan A, Jahejo AR, Qiao ML, Han XY, Cheng QQ, Mangi RA, Qadir MF, Zhang D, Bi YH, Wang Y, Gao GF, Tian WX. NF-кB pathway genes expression in chicken erythrocytes infected with avian influenza virus subtype H9N2. Br Poult Sci 2021; 62:666-671. [PMID: 33843365 DOI: 10.1080/00071668.2021.1902478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Chicken erythrocytes in blood vessels are the most abundant circulating cells, which participate in the host's immune responses. The transcription factor nuclear factor-kappa B (NF-κB) plays a vital role in the inflammatory response following viral infections. However, the expression of the NF-κB pathway, and other immune-related genes in chicken erythrocytes infected with low pathogenic avian influenza virus (LPAIV H9N2), has not been extensively studied.2. The following study determined the interaction of LPAIV H9N2 with chicken erythrocytes using indirect immunofluorescence microscopy. This was followed by investigating myeloid differentiation primary response 88 (MyD88), C-C motif chemokine ligand 5 (CCL5), melanoma differentiation-associated protein 5 (MDA5), the inhibitor of nuclear factor-kappa B kinase subunit epsilon (IKBKE), NF-κB inhibitor alpha (NFKBIA), NF-κB inhibitor epsilon (NFKBIE), interferon-alpha (IFN-α), colony-stimulating factor 3 (CSF3) and tumour necrosis factor receptor-associated factor 6 (TRAF6) by mRNA expression using quantitative real-time PCR (qRT-PCR) at four different time intervals (0, 2, 6 and 10 h).3. There was a significant interaction between erythrocytes and LPAIV H9N2 virus. Furthermore, the mRNA expression of the NF-κB pathway and other immune-related genes were significantly up-regulated at 2 h post-infection in infected chicken erythrocytes, except for TRAF6, which were significantly downregulated. While at 0 h post-infection, IFN-α and CSF3 were significantly upregulated, whereas NFKBIA was significantly downregulated. Further expression of MDA5, CCL5 and NFKBIA was upregulated, while TRAF6 was downregulated at 6 h post-infection. In infected erythrocytes, expression of MyD88, CCL5 and IKBKE was upregulated. However, IFN-α and TRAF6 were downregulated at 10 h post-infection.4. These results give initial evidence that the NF-κB pathway, and other genes related to immunity, in chicken erythrocytes may contribute to LPAIV subtype H9N2 and induce host immune responses.
Collapse
Affiliation(s)
- A Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - A R Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - M L Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - X Y Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Q Q Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - R A Mangi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - M F Qadir
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - D Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Y H Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center of Infectious Diseases, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, China
| | - Y Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - G F Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - W X Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
300
|
Hendaus MA, Jomha FA. Can virus-virus interactions impact the dynamics of the covid-19 pandemic? J Biomol Struct Dyn 2021; 40:9571-9575. [PMID: 33998968 DOI: 10.1080/07391102.2021.1926327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viral respiratory infections can occur in pandemics and can spread rapidly within communities resulting in health concerns globally. Several respiratory viruses co-circulate at one specific time. However, interface between different viruses has not been clearly established. This interaction is crucial to delineate, especially during pandemics, including the one relate to covid-19. This commentary will provide a brief description of how respiratory viruses interact and the outcome of this interaction on a pandemic.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Sidra Medicine, Doha, Qatar.,Weill Cornell Medicine, Ar-Rayyan, Qatar
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Beirut, Lebanon
| |
Collapse
|