251
|
Ezashi T, Das P, Gupta R, Walker A, Roberts RM. The Role of Homeobox Protein Distal-Less 3 and Its Interaction with ETS2 in Regulating Bovine Interferon-Tau Gene Expression-Synergistic Transcriptional Activation with ETS21. Biol Reprod 2008; 79:115-24. [DOI: 10.1095/biolreprod.107.066647] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
252
|
Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 2008; 18:1433-45. [PMID: 18562676 DOI: 10.1101/gr.078378.108] [Citation(s) in RCA: 596] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transcriptional networks that regulate embryonic stem (ES) cell pluripotency and lineage specification are the subject of considerable attention. To date such studies have focused almost exclusively on protein-coding transcripts. However, recent transcriptome analyses show that the mammalian genome contains thousands of long noncoding RNAs (ncRNAs), many of which appear to be expressed in a developmentally regulated manner. The functions of these remain untested. To identify ncRNAs involved in ES cell biology, we used a custom-designed microarray to examine the expression profiles of mouse ES cells differentiating as embryoid bodies (EBs) over a 16-d time course. We identified 945 ncRNAs expressed during EB differentiation, of which 174 were differentially expressed, many correlating with pluripotency or specific differentiation events. Candidate ncRNAs were identified for further characterization by an integrated examination of expression profiles, genomic context, chromatin state, and promoter analysis. Many ncRNAs showed coordinated expression with genomically associated developmental genes, such as Dlx1, Dlx4, Gata6, and Ecsit. We examined two novel developmentally regulated ncRNAs, Evx1as and Hoxb5/6as, which are derived from homeotic loci and share similar expression patterns and localization in mouse embryos with their associated protein-coding genes. Using chromatin immunoprecipitation, we provide evidence that both ncRNAs are associated with trimethylated H3K4 histones and histone methyltransferase MLL1, suggesting a role in epigenetic regulation of homeotic loci during ES cell differentiation. Taken together, our data indicate that long ncRNAs are likely to be important in processes directing pluripotency and alternative differentiation programs, in some cases through engagement of the epigenetic machinery.
Collapse
|
253
|
Krishna-K, Nuernberger M, Weth F, Redies C. Layer-specific expression of multiple cadherins in the developing visual cortex (V1) of the ferret. Cereb Cortex 2008; 19:388-401. [PMID: 18534988 DOI: 10.1093/cercor/bhn090] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cadherins are superfamily of Ca2+-dependent transmembrane glycoproteins with more than 100 members. They play a role in a wide variety of developmental mechanisms, including cell proliferation, cell differentiation, cell-cell recognition, neurite outgrowth and synaptogenesis. We cloned 16 novel members of the classic cadherin and delta-protocadherin subgroups from ferret brain. Their expression patterns were investigated by in situ hybridization in the developing primary visual cortex (V1) of the ferret. Fifteen out of the 16 cadherins are expressed in a spatiotemporally restricted fashion throughout development. Each layer of V1 can be characterized by the combinatorial expression of a subset of cadherins at any given developmental stage. A few cadherins are expressed by subsets of neurons in specific layers or by neurons dispersed throughout all cortical layers. Generally, the expression of protocadherins is more widespread, whereas that of classic cadherins is more restricted to specific layers. At the V1/V2 boundary, changes in layer-specific cadherin expression are observed. In conclusion, our results suggest that cadherins provide a code of potentially adhesive cues for layer formation in ferret V1. The persistence of expression in the adult suggests a functional role also in the mature cortex.
Collapse
Affiliation(s)
- Krishna-K
- Institute of Anatomy I, University of Jena School of Medicine, Teichgraben 7, D-07743 Jena, Germany
| | | | | | | |
Collapse
|
254
|
Pang K, Martindale MQ. Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Dev Genes Evol 2008; 218:307-19. [PMID: 18504608 DOI: 10.1007/s00427-008-0222-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/14/2008] [Indexed: 11/28/2022]
Abstract
Homeobox genes are a large family of genes that encode helix-turn-helix transcription factors that play fundamental roles in such developmental processes including body axis formation and cell specification. They have been found in a wide variety of organisms, from fungi to plants and animals, with some classes being specific to the Metazoa. While it was once thought that organismal complexity was tied to gene complexity, sequencing of genomes from a cnidarian, poriferan, and placozoan have shown no clear correlation. However, little attention has been paid to ctenophores, another early branching taxon. Ctenophores are mostly pelagic marine animals, with complex morphological features, so understanding the gene content and expression of this nonbilaterian phylum is of key interest to evolutionary biology. Expression information from developmental genes in ctenophores is sparse. In this study, we isolated seven homeobox genes from the ctenophore Mnemiopsis leidyi and examined their expression through development. Phylogenetic analyses of these genes placed four in the ANTP class and three in the PRD class. These are the first reported full-length PRD class genes, although our analyses could not place them into specific families. We have found that most of these homeobox genes begin expression at gastrulation, and their expression patterns suggest a possible role in patterning of the tentacle apparati and pharynx.
Collapse
Affiliation(s)
- Kevin Pang
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA
| | | |
Collapse
|
255
|
Kozhevnikova MN, Mikaelyan AS, Starostin VI. Molecular and genetic regulation of osteogenic differentiation of mesenchymal stromal cells. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008030011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
256
|
Marsh ED, Minarcik J, Campbell K, Brooks-Kayal AR, Golden JA. FACS-array gene expression analysis during early development of mouse telencephalic interneurons. Dev Neurobiol 2008; 68:434-45. [PMID: 18172891 DOI: 10.1002/dneu.20602] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cortical interneuron dysfunction has been implicated in multiple human disorders including forms of epilepsy, mental retardation, and autism. Although significant advances have been made, understanding the biologic basis of these disorders will require a level of anatomic, molecular, and genetic detail of interneuron development that currently does not exist. To further delineate the pathways modulating interneuron development we performed fluorescent activated cell sorting (FACs) on genetically engineered mouse embryos that selectively express green fluorescent protein (GFP) in developing interneurons followed by whole genome microarray expression profiling on the isolated cells. Bioinformatics analysis revealed expression of both predicted and unexpected genes in developing cortical interneurons. Two unanticipated pathways discovered to be up regulated prior to interneurons differentiating in the cortex were ion channels/neurotransmitters and synaptic/vesicular related genes. A significant association of neurological disease related genes to the population of developing interneurons was found. These results have defined new and potentially important data on gene expression changes during the development of cortical interneurons. In addition, these data can be mined to uncover numerous novel genes involved in the generation of interneurons and may suggest genes/pathways potentially involved in a number of human neurological disorders.
Collapse
Affiliation(s)
- Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia 19130, USA.
| | | | | | | | | |
Collapse
|
257
|
Kelleher DF, de Carvalho CE, Doty AV, Layton M, Cheng AT, Mathies LD, Pilgrim D, Haag ES. Comparative genetics of sex determination: masculinizing mutations in Caenorhabditis briggsae. Genetics 2008; 178:1415-29. [PMID: 18245372 PMCID: PMC2278099 DOI: 10.1534/genetics.107.073668] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 12/29/2007] [Indexed: 01/09/2023] Open
Abstract
The nematodes Caenorhabditis elegans and C. briggsae independently evolved self-fertile hermaphroditism from gonochoristic ancestors. C. briggsae has variably divergent orthologs of nearly all genes in the C. elegans sex determination pathway. Their functional characterization has generally relied on reverse genetic approaches, such as RNA interference and cross-species transgene rescue and more recently on deletion mutations. We have taken an unbiased forward mutagenesis approach to isolating zygotic mutations that masculinize all tissues of C. briggsae hermaphrodites. The screens identified loss-of-function mutations in the C. briggsae orthologs of tra-1, tra-2, and tra-3. The somatic and germline phenotypes of these mutations are largely identical to those of their C. elegans homologs, including the poorly understood germline feminization of tra-1(lf) males. This overall conservation of Cb-tra phenotypes is in contrast to the fem genes, with which they directly interact and which are significantly divergent in germline function. In addition, we show that in both C. briggsae and C. elegans large C-terminal truncations of TRA-1 that retain the DNA-binding domain affect sex determination more strongly than somatic gonad development. Beyond these immediate results, this collection of mutations provides an essential foundation for further comparative genetic analysis of the Caenorhabditis sex determination pathway.
Collapse
Affiliation(s)
- Danielle F Kelleher
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Zega G, Biggiogero M, Groppelli S, Candiani S, Oliveri D, Parodi M, Pestarino M, De Bernardi F, Pennati R. Developmental expression of glutamic acid decarboxylase and of gamma-aminobutyric acid type B receptors in the ascidian Ciona intestinalis. J Comp Neurol 2008; 506:489-505. [PMID: 18041772 DOI: 10.1002/cne.21565] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe Ciona intestinalis gamma-aminobutyric acid (GABA)-ergic neurons during development, studying the expression pattern of Ci-GAD (glutamic acid decarboxylase: GABA synthesizing enzyme) by in situ hybridization. Moreover, we cloned two GABA(B) receptor subunits (Ci-GABA(B)Rs), and a phylogenetic analysis (neighbor-joining method) suggested that they clustered with their vertebrate counterparts. We compared Ci-GAD and Ci-GABA(B)Rs expression patterns in C. intestinalis embryos and larvae. At the tailbud stage, Ci-GAD expression was widely detected in central and peripheral nervous system (CNS/PNS) precursors, whereas Ci-GABA(B)Rs expression was evident at the level of the precursors of the visceral ganglion. GABA was localized by immunohistochemistry at the same developmental stage. In the larva, Ci-GAD transcripts and GABA immunofluorescence were also detected throughout the CNS and in some neurons of the PNS, whereas transcripts of both GABA(B) receptor subunits were found mainly in the CNS. The expression pattern of Ci-GABA(B)Rs appeared restricted to Ci-GAD-positive territories in the sensory vesicle, whereas, in the visceral ganglion, Ci-GABA(B)Rs transcripts were found in ventral motoneurons that did not express Ci-GAD. Insofar as GABAergic neurons are widely distributed also in the CNS and PNS of vertebrates and other invertebrate chordates, it seems likely that GABA signaling was extensively present in the protochordate nervous system. Results from this work show that GABA is the most widespread inhibitory neurotransmitter in C. intestinalis nervous system and that it can signal through GABA(B) receptors both pre- and postsynaptically to modulate different sensory inputs and subsequent swimming activity.
Collapse
Affiliation(s)
- Giuliana Zega
- Dipartimento di Biologia, University of Milan, 20133, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Kwakowsky A, Schwirtlich M, Zhang Q, Eisenstat DD, Erdélyi F, Baranyi M, Katarova ZD, Szabó G. GAD isoforms exhibit distinct spatiotemporal expression patterns in the developing mouse lens: correlation with Dlx2 and Dlx5. Dev Dyn 2008; 236:3532-44. [PMID: 17969168 DOI: 10.1002/dvdy.21361] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter of the adult nervous system and its biosynthetic enzyme glutamic acid decarboxylase (GAD) are abundantly expressed in the embryonic nervous system and are involved in the modulation of cell proliferation, migration, and differentiation. Here we describe for the first time the expression of GABA and embryonic and adult GAD isoforms in the developing mouse lens. We show that the GAD isoforms are sequentially induced with specific spatiotemporal profiles: GAD65 and embryonic GAD isoforms prevail in primary fibers, while GAD67 is the predominant GAD expressed in the postnatal secondary fibers. This pattern correlates well with the expression of Dlx2 and Dlx5, known as upstream regulators of GAD. GABA and GAD are most abundant at the tips of elongating fibers and are absent from organelle-free cells, suggesting their involvement is primarily in shaping of the cytoskeleton during fiber elongation stages.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Department of Gene Technology and Developmental Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are key regulators of developmental processes such as regional specification, patterning, migration and differentiation. In both mouse and humans, the developing forebrain is marked by distinct boundaries of homeobox gene expression at different developmental time points. These genes regulate the patterning of the forebrain along the dorsal/ventral and rostral/caudal axes and are also essential for the differentiation of specific neuronal subtypes. Inhibitory interneurons that arise from the ganglionic eminences and migrate tangentially to the neocortex and hippocampus are dramatically affected by mutations in several homeobox genes. In this review, we discuss the identification, expression patterns, loss- and/or gain-of-function models, and confirmed transcriptional targets for a set of homeobox genes required for the correct development of the forebrain in the mouse. In humans, mutations of homeobox genes expressed in the forebrain have been shown to result in mental retardation, epilepsy or movement disorders. The number of homeobox genes currently linked to human nervous system disease is surprisingly low, perhaps reflecting the essential functions of these genes throughout embryogenesis or the degree of functional redundancy during central nervous system development.
Collapse
Affiliation(s)
- J T Wigle
- Department of Biochemistry & Medical Genetics; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
261
|
Mueller T, Wullimann MF, Guo S. Early teleostean basal ganglia development visualized by ZebrafishDlx2a,Lhx6,Lhx7,Tbr2 (eomesa), andGAD67 gene expression. J Comp Neurol 2008; 507:1245-57. [DOI: 10.1002/cne.21604] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
262
|
Stock DW. Zebrafish dentition in comparative context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:523-49. [PMID: 17607704 DOI: 10.1002/jez.b.21187] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of the zebrafish (Danio rerio) promise to contribute much to an understanding of the developmental genetic mechanisms underlying diversification of the vertebrate dentition. Tooth development, structure, and replacement in the zebrafish largely reflect the primitive condition of jawed vertebrates, providing a basis for comparison with features of the more extensively studied mammalian dentition. A distinctive derived feature of the zebrafish dentition is restriction of teeth to a single pair of pharyngeal bones. Such reduction of the dentition, characteristic of the order Cypriniformes, has never been reversed, despite subsequent and extensive diversification of the group in numbers of species and variety of feeding modes. Studies of the developmental genetic mechanism of dentition reduction in the zebrafish suggest a potential explanation for irreversibility in that tooth loss seems to be associated with loss of developmental activators rather than gain of repressors. The zebrafish and other members of the family Cyprinidae exhibit species-specific numbers and arrangements of pharyngeal teeth, and extensive variation in tooth shape also occurs within the family. Mutant screens and experimental alteration of gene expression in the zebrafish are likely to yield variant tooth number and shape phenotypes that can be compared with those occurring naturally within the Cyprinidae. Such studies may reveal the relative contribution to trends in dental evolution of biases in the generation of variation and sorting of this variation by selection or drift.
Collapse
Affiliation(s)
- David W Stock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.
| |
Collapse
|
263
|
de Melo J, Zhou QP, Zhang Q, Zhang S, Fonseca M, Wigle JT, Eisenstat DD. Dlx2 homeobox gene transcriptional regulation of Trkb neurotrophin receptor expression during mouse retinal development. Nucleic Acids Res 2007; 36:872-84. [PMID: 18086710 PMCID: PMC2241891 DOI: 10.1093/nar/gkm1099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dlx homeobox genes are first expressed in embryonic retina at E11.5. The Dlx1/Dlx2 null retina has a reduced ganglion cell layer (GCL), with loss of late-born differentiated retinal ganglion cells (RGCs) due to increased apoptosis. TrkB signaling is proposed to regulate the dynamics of RGC apoptosis throughout development. DLX2 expression markedly precedes the onset of TrkB expression in the GCL; TrkB co-expression with Dlx2 and RGC markers is well-established by E13.5. In the Dlx1/Dlx2 null retina, TrkB expression is significantly reduced by E16.5. We demonstrated that DLX2 binds to a specific region of the TrkB promoter in retinal neuroepithelium during embryogenesis. In vitro confirmation and the functional consequences of DLX2 binding to this TrkB regulatory region support TrkB as a Dlx2 transcriptional target. Furthermore, ectopic Dlx2 expression in retinal explants activates TrkB expression and Dlx2 knockdown in primary retinal cultures results in reduced TrkB expression. RGC differentiation and survival require the coordinated expression of transcription factors. This study establishes a direct transcriptional relationship between a homeodomain protein involved in RGC differentiation and a neurotrophin receptor implicated in RGC survival. Signaling mediated by TrkB may contribute to survival of late-born RGCs whose terminal differentiation is regulated by Dlx gene function.
Collapse
Affiliation(s)
- Jimmy de Melo
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
264
|
Zebrafish dlx2a contributes to hindbrain neural crest survival, is necessary for differentiation of sensory ganglia and functions with dlx1a in maturation of the arch cartilage elements. Dev Biol 2007; 314:59-70. [PMID: 18158147 DOI: 10.1016/j.ydbio.2007.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/03/2007] [Accepted: 11/05/2007] [Indexed: 11/22/2022]
Abstract
The Dlx genes are expressed in a coordinate manner, establishing proximal-distal polarity within the pharyngeal arches. In zebrafish, dlx2a is expressed in the migrating cranial neural crest that contributes to the pharyngeal arches. Expression of dlx2a in the arches is subsequently followed by overlapping expression of the physically linked dlx1a gene, and of other paralogues that include dlx5a/dlx6a and dlx3b/dlx4b. To investigate the patterning and establishment of arch proximodistal polarity in zebrafish, we characterized the function of dlx2a and dlx1a, using antisense morpholino oligonucleotides (MOs). We show that embryos injected with dlx1a and dlx2a MOs exhibit reduced and dysmorphic arch cartilage elements. The combined loss of dlx1a and dlx2a causes severe arch cartilage dysmorphology, revealing a role for these genes in maturation and patterning of arch chondrogenesis. Knockdown of dlx2a affects migrating neural crest cells as evidenced by reduced expression of crestin, and sox9a transcripts, in addition to increased levels of apoptosis. During pharyngogenesis, loss of dlx2a results in aberrant barx1 expression and the absence of goosecoid transcripts in the dorsal region of the ceratohyal arch. Defects in the differentiation of ectomesenchymal derivatives, including sensory ganglia and cartilage elements, indicate a role for dlx2a in specification and maintenance of cranial neural crest.
Collapse
|
265
|
Petryniak MA, Potter GB, Rowitch DH, Rubenstein JLR. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 2007; 55:417-33. [PMID: 17678855 PMCID: PMC2039927 DOI: 10.1016/j.neuron.2007.06.036] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/21/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Progenitors within the ventral telencephalon can generate GABAergic neurons and oligodendrocytes, but regulation of the neuron-glial switch is poorly understood. We investigated the combinatorial expression and function of Dlx1&2, Olig2, and Mash1 transcription factors in the ventral telencephalon. We show that Dlx homeobox transcription factors, required for GABAergic interneuron production, repress oligodendrocyte precursor cell (OPC) formation by acting on a common progenitor to determine neuronal versus oligodendroglial cell fate acquisition. We demonstrate that Dlx1&2 negatively regulate Olig2-dependant OPC formation and that Mash1 promotes OPC formation by restricting the number of Dlx+ progenitors. Progenitors transplanted from Dlx1&2 mutant ventral telencephalon into newborn wild-type mice do not produce neurons but differentiate into myelinating oligodendrocytes that survive into adulthood. Our results identify another role for Dlx genes as modulators of neuron versus oligodendrocyte development in the ventral embryonic forebrain.
Collapse
Affiliation(s)
- Magdalena A. Petryniak
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
| | - Gregory B. Potter
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Corresponding authors: , Ph: 415-476-7872, Fax: 415-476-7884; , Ph: 415-476-7862, Fax: 415-502-7618
| | - David H. Rowitch
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
- Institute for Regeneration Medicine, Department of Neurological Surgery, UCSF
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Corresponding authors: , Ph: 415-476-7872, Fax: 415-476-7884; , Ph: 415-476-7862, Fax: 415-502-7618
| |
Collapse
|
266
|
Schüle B, Li HH, Fisch-Kohl C, Purmann C, Francke U. DLX5 and DLX6 expression is biallelic and not modulated by MeCP2 deficiency. Am J Hum Genet 2007; 81:492-506. [PMID: 17701895 PMCID: PMC1950824 DOI: 10.1086/520063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 05/21/2007] [Indexed: 11/03/2022] Open
Abstract
Mutations in MECP2 and Mecp2 (encoding methyl-CpG binding protein 2 [MeCP2]) cause distinct neurological phenotypes in humans and mice, respectively, but the molecular pathology is unclear. Recent literature claimed that the developmental homeobox gene DLX5 is imprinted and that its imprinting status is modulated by MeCP2, leading to biallelic expression in Rett syndrome and twofold overexpression of Dlx5 and Dlx6 in Mecp2-null mice. The conclusion that DLX5 is a direct target of MeCP2 has implications for research on the molecular bases of Rett syndrome, autism, and genomic imprinting. Attempting to replicate the reported data, we evaluated allele-specific expression of DLX5 and DLX6 in mouse x human somatic cell hybrids, lymphoblastoid cell lines, and frontal cortex from controls and individuals with MECP2 mutations. We identified novel single-nucleotide polymorphisms in DLX5 and DLX6, enabling the first imprinting studies of DLX6. We found that DLX5 and DLX6 are biallelically expressed in somatic cell hybrids and in human cell lines and brain, with no differences between affected and control samples. We also determined expression levels of Dlx5 and Dlx6 in forebrain from seven male Mecp2-mutant mice and eight wild-type littermates by real-time quantitative reverse-transcriptase polymerase chain reaction assays. Expression of Dlx5 and Dlx6, as well as of the imprinted gene Peg3, in mouse forebrain was highly variable, with no consistent differences between Mecp2-null mutants and controls. We conclude that DLX5 and DLX6 are not imprinted in humans and are not likely to be direct targets of MeCP2 modulation. In contrast, the imprinting status of PEG3 and PEG10 is maintained in MeCP2-deficient tissues. Our results confirm that MeCP2 plays no role in the maintenance of genomic imprinting and add PEG3 and PEG10 to the list of studied imprinted genes.
Collapse
Affiliation(s)
- Birgitt Schüle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
267
|
Irvine SQ, Cangiano MC, Millette BJ, Gutter ES. Non-overlapping expression patterns of the clustered Dll-A/B genes in the ascidian Ciona intestinalis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:428-41. [PMID: 17559091 DOI: 10.1002/jez.b.21169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Ci-Dll-A and Ci-Dll-B genes of Ciona intestinalis are arranged in a convergently transcribed gene cluster. This genomic arrangement is similar to that of the multiple bigene clusters of the Dlx homologs in vertebrates. Analysis of whole genome sequences showed that linkage to the Hox cluster is conserved with the vertebrate clusters. Phylogenetic analysis supports gene trees consistent with homology of the ascidian and vertebrate Dlx clusters, and in combination with the apparent conservation of genomic arrangement, it is concluded that the ascidian cluster is most likely homologous with the vertebrate clusters. Using whole-mount in situ hybridization, Ci-Dll-B transcripts were detected in all ectodermal lineages through gastrulation. Expression is radically downregulated in the neurula with detectable expression disappearing around the time that Ci-Dll-A expression appears in the anterior ectoderm. By the late tailbud stage Ci-Dll-Atranscripts were detected in the bilateral atrial primordia and persisted in the atrial rudiments to the larval stage, suggesting a role in development of these neural placode-like structures. This non-overlapping expression contradicts a common pattern seen in clustered genes, where as adjacent paralogs have largely overlapping expression domains. Enhancer sharing is often proposed as an explanation for the overlapping expression of gene cluster members. For this case of non-overlapping expression a model is proposed in which repressors acting at different stages override one or more shared enhancers. The enhancer sharing prevents breakup of the cluster while the independent temporal suppressors hide the presence of the shared enhancers.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02840, USA.
| | | | | | | |
Collapse
|
268
|
Weisblat DA. Asymmetric cell divisions in the early embryo of the leech Helobdella robusta. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:79-95. [PMID: 17585497 DOI: 10.1007/978-3-540-69161-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The small glossiphoniid leech Helobdella robusta is among the best-studied representatives of the super-phylum Lophotrochozoa in terms of early development. The Helobdella embryo undergoes a modified version of spiral cleavage, characterized by stereotyped cell lineages comprising multiple examples of equal and unequal divisions, many of which are well-conserved with respect to those of other clitellate annelids, such as the oligochaete Tubifex. Here, we review the early development of Helobdella, focusing on the variety of unequal cell divisions. We then summarize an experimental analysis of the mechanisms underlying the unequal first cleavage in Helobdella, concluding that the unequal first cleavages in Helobdella and Tubifex proceed by different mechanisms. This result demonstrates the evolvability of the basic cell biological mechanisms underlying well-conserved developmental processes. Finally, we propose a model in which the unequal second cleavage in Helobdella may be regulated by the polarized distribution of PAR protein homologs, convergent with the unequal first cleavage of the nematode Caenorhabditis elegans (super-phylum Ecdysozoa).
Collapse
Affiliation(s)
- David A Weisblat
- University of California, Dept. of Molecular and Cell Biology, 385 LSA, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
269
|
Cobos I, Borello U, Rubenstein JLR. Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 2007; 54:873-88. [PMID: 17582329 PMCID: PMC4921237 DOI: 10.1016/j.neuron.2007.05.024] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/08/2007] [Accepted: 05/14/2007] [Indexed: 01/16/2023]
Abstract
In the mouse telencephalon, Dlx homeobox transcription factors are essential for the tangential migration of subpallial-derived GABAergic interneurons to neocortex. However, the mechanisms underlying this process are poorly understood. Here, we demonstrate that Dlx1/2 has a central role in restraining neurite growth of subpallial-derived immature interneurons at a stage when they migrate tangentially to cortex. In Dlx1-/-;Dlx2-/- mutants, neurite length is increased and cells fail to migrate. In Dlx1-/-;Dlx2+/- mutants, while the tangential migration of immature interneurons appears normal, they develop dendritic and axonal processes with increased length and decreased branching, and have deficits in their neocortical laminar positions. Thus, Dlx1/2 is required for coordinating programs of neurite maturation and migration. In this regard, we provide genetic evidence that in immature interneurons Dlx1/2 repression of the p21-activated serine/threonine kinase PAK3, a downstream effector of the Rho family of GTPases, is critical in restraining neurite growth and promoting tangential migration.
Collapse
Affiliation(s)
- Inma Cobos
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
270
|
Sargent TD. Transcriptional Regulation at the Neural Plate Border. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:32-44. [PMID: 17076274 DOI: 10.1007/978-0-387-46954-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas D Sargent
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
271
|
Hara F, Samuel S, Liu J, Rosen D, Langley RR, Naora H. A homeobox gene related to Drosophila distal-less promotes ovarian tumorigenicity by inducing expression of vascular endothelial growth factor and fibroblast growth factor-2. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1594-606. [PMID: 17456765 PMCID: PMC1854954 DOI: 10.2353/ajpath.2007.061025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeobox genes control developmental patterning and are increasingly being found to be deregulated in tumors. The DLX4 homeobox gene maps to the 17q21.3-q22 region that is amplified in some epithelial ovarian cancers. Because amplification of this region correlates with poor prognosis, we investigated whether DLX4 overexpression contributes to aggressive behavior of this disease. DLX4 was not detected in normal ovary and cystadenomas, whereas its expression in ovarian carcinomas was strongly associated with high tumor grade and advanced disease stage. Overexpression of DLX4 in ovarian cancer cells promoted growth in low serum and colony formation. Imaging of mice bearing intraperitoneal tumors revealed that DLX4 overexpression substantially increased tumor burden. Tumors that overexpressed DLX4 were more vascularized than vector-control tumors. Conditioned medium of DLX4-overexpressing tumor cells was more effective than medium conditioned by vector-control cells in stimulating endothelial cell growth. These observations were associated with the ability of DLX4 to induce expression of vascular endothelial growth factor as well as intracellular and secreted isoforms of fibroblast growth factor-2. Moreover, increased levels of these fibroblast growth factor-2 isoforms induced vascular endothelial growth factor expression in tumor cells. This study reveals a novel role for a homeobox gene in ovarian tumorigenicity by its induction of a proangiogenic, growth-stimulatory molecular program.
Collapse
Affiliation(s)
- Fumikata Hara
- Department of Molecular Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | | | | | | | | | | |
Collapse
|
272
|
Douville JM, Wigle JT. Regulation and function of homeodomain proteins in the embryonic and adult vascular systems. Can J Physiol Pharmacol 2007; 85:55-65. [PMID: 17487245 DOI: 10.1139/y06-091] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During embryonic development, the cardiovascular system first forms and then gives rise to the lymphatic vascular system. Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. These genes all encode proteins that are transcription factors that contain a well conserved DNA binding motif, the homeodomain. It is through the homeodomain that these transcription factors bind to the promoters of target genes and regulate their expression. Although many homeodomain proteins have been found to be expressed within the vascular systems, little is known about their downstream target genes. This review highlights recent advances made in the identification of novel genes downstream of the homeodomain proteins that are necessary for regulating vascular cellular processes such as proliferation, migration, and endothelial tube formation. Factors known to regulate the functions of vascular cells via modulating the expression of homeobox genes will be discussed. We will also review current methods used to identify and characterize downstream target genes of homeodomain proteins.
Collapse
Affiliation(s)
- Josette M Douville
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | | |
Collapse
|
273
|
Merlo GR, Mantero S, Zaghetto AA, Peretto P, Paina S, Gozzo M. The role of Dlx homeogenes in early development of the olfactory pathway. J Mol Histol 2007; 38:347-58. [PMID: 17588208 DOI: 10.1007/s10735-007-9109-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 05/29/2007] [Indexed: 01/19/2023]
Abstract
Development of the olfactory pathway requires interaction between cells and signals of different origin. Olfactory receptor neurons (ORN) in the olfactory placodes (OP) extend axons towards the forebrain (FB); with innervation taking place at a later time following degradation of the basement membrane. Cells from the OP migrate along ORN axons and differentiate into various elements, including ensheathing and Gonadotropin Releasing Hormone (GnRH)+ cells. The importance of the olfactory connection and migration is highlighted by the severe endocrine phenotype in Kallmann's patients who lack this migratory pathway. Little is known about the genetic control of intrinsic ORN properties. Inactivation of the distalless-related Dlx5 prevents connections between ORNs and FB. Using a grafting approach we show that misguidance and lack of connectivity is due to intrinsic defects in ORN neurites and migratory cells (MgC), and not to environmental factors. These data point to a cell-autonomous function of Dlx5 in providing ORN axons with their connectivity properties. Dlx5 also marks a population of early MgC that partly overlaps with the GnRH+ population. In the absence of Dlx5 MgCs of the Dlx5+ lineage migrate, associated with PSA-NCAM+ axons, but fail to reach the FB as a consequence of the lack of axonal connection and not an inability to migrate. These data suggests that Dlx5 is not required to initiate migration and differentiation of MgCs.
Collapse
Affiliation(s)
- Giorgio R Merlo
- Dulbecco Telethon Institute, CNR-ITB Milano, Via F.lli Cervi 93, 20090 Segrate, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
274
|
Zembrzycki A, Griesel G, Stoykova A, Mansouri A. Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain. Neural Dev 2007; 2:8. [PMID: 17470284 PMCID: PMC1868949 DOI: 10.1186/1749-8104-2-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 04/30/2007] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The forebrain consists of multiple structures necessary to achieve elaborate functions. Proper patterning is, therefore, a prerequisite for the generation of optimal functional areas. Only a few factors have been shown to control the genetic networks that establish early forebrain patterning. RESULTS AND CONCLUSION Using conditional inactivation, we show that the transcription factor Sp8 has an essential role in the molecular and functional patterning of the developing telencephalon along the anteroposterior axis by modulating the expression gradients of Emx2 and Pax6. Moreover, Sp8 is essential for the maintenance of ventral cell identity in the septum and medial ganglionic eminence (MGE). This is probably mediated through a positive regulatory interaction with Fgf8 in the medial wall, and Nkx2.1 in the rostral MGE anlage, and independent of SHH and WNT signaling. Furthermore, Sp8 is required during corticogenesis to sustain a normal progenitor pool, and to control preplate splitting, as well as the specification of cellular diversity within distinct cortical layers.
Collapse
Affiliation(s)
- Andreas Zembrzycki
- Max Planck Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, 37077 Goettingen, Germany
- DFG Center for the Molecular Physiology of the Brain, CMPB, Goettingen, Germany
| | - Gundula Griesel
- Max Planck Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, 37077 Goettingen, Germany
| | - Anastasia Stoykova
- Max Planck Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, 37077 Goettingen, Germany
- DFG Center for the Molecular Physiology of the Brain, CMPB, Goettingen, Germany
| | - Ahmed Mansouri
- Max Planck Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, 37077 Goettingen, Germany
- DFG Center for the Molecular Physiology of the Brain, CMPB, Goettingen, Germany
- Department of Clinical Neurophysiology, University Goettingen, Robert-Koch-Str., 37075 Goettingen, Germany
| |
Collapse
|
275
|
Le TN, Du G, Fonseca M, Zhou QP, Wigle JT, Eisenstat DD. Dlx homeobox genes promote cortical interneuron migration from the basal forebrain by direct repression of the semaphorin receptor neuropilin-2. J Biol Chem 2007; 282:19071-81. [PMID: 17259176 DOI: 10.1074/jbc.m607486200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dlx homeobox genes play an important role in vertebrate forebrain development. Dlx1/Dlx2 null mice die at birth with an abnormal cortical phenotype, including impaired differentiation and migration of GABAergic interneurons to the neocortex. However, the molecular basis for these defects downstream of loss of Dlx1/Dlx2 function is unknown. Neuropilin-2 (NRP-2) is a receptor for Class III semaphorins, which inhibit neuronal migration. Herein, we show that Neuropilin-2 is a specific DLX1 and DLX2 transcriptional target by applying chromatin immunoprecipitation to embryonic forebrain tissues. Both homeobox proteins repress Nrp-2 expression in vitro, confirming the functional significance of DLX binding. Furthermore, the homeodomain of DLX1 and DLX2 is necessary for DNA binding and this binding is essential for Dlx repression of Nrp-2 expression. Of importance, there is up-regulated and aberrant expression of NRP-2 in the forebrains of Dlx1/Dlx2 null mice. This is the first report that DLX1 or DLX2 can function as transcriptional repressors. Our data show that DLX proteins specifically mediate the repression of Neuropilin-2 in the developing forebrain. As well, our results support the hypothesis that down-regulation of Neuropilin-2 expression may facilitate tangential interneuron migration from the basal forebrain.
Collapse
Affiliation(s)
- Trung N Le
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | | | |
Collapse
|
276
|
Sprecher SG, Reichert H, Hartenstein V. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain. Gene Expr Patterns 2007; 7:584-95. [PMID: 17300994 PMCID: PMC3928073 DOI: 10.1016/j.modgep.2007.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 11/27/2022]
Abstract
The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map [Urbach, R., Technau, G.M. (2003a) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130, 3621-3637]. However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles ("primary axon bundles" or "PABs") are now available [Younossi-Hartenstein, A., Nguyen, B., Shy, D., Hartenstein, V. 2006. Embryonic origin of the Drosophila brain neuropile. J. Comp. Neurol. 497, 981-998]. In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops.
Collapse
|
277
|
Love AC, Andrews ME, Raff RA. Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm. Evol Dev 2007; 9:51-68. [PMID: 17227366 DOI: 10.1111/j.1525-142x.2006.00137.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The larval arms of echinoid plutei are used for locomotion and feeding. They are composed of internal calcite skeletal rods covered by an ectoderm layer bearing a ciliary band. Skeletogenesis includes an autonomous molecular differentiation program in primary mesenchyme cells (PMCs), initiated when PMCs leave the vegetal plate for the blastocoel, and a patterning of the differentiated skeletal units that requires molecular cues from the overlaying ectoderm. The arms represent a larval feature that arose in the echinoid lineage during the Paleozoic and offers a subject for the study of gene co-option in the evolution of novel larval features. We isolated new molecular markers in two closely related but differently developing species, Heliocidaris tuberculata and Heliocidaris erythrogramma. We report the expression of a larval arm-associated ectoderm gene tetraspanin, as well as two new PMC markers, advillin and carbonic anhydrase. Tetraspanin localizes to the animal half of blastula stage H. tuberculata and then undergoes a restriction into the putative oral ectoderm and future location of the postoral arms, where it continues to be expressed at the leading edge of both the postoral and anterolateral arms. In H. erythrogramma, its expression initiates in the animal half of blastulae and expands over the entire ectoderm from gastrulation onward. Advillin and carbonic anhydrase are upregulated in the PMCs postgastrulation and localized to the leading edge of the growing larval arms of H. tuberculata but do not exhibit coordinated expression in H. erythrogramma larvae. The tight spatiotemporal regulation of these genes in H. tuberculata along with other ontogenetic and phylogenetic evidence suggest that pluteus arms are novel larval organs, distinguishable from the processes of skeletogenesis per se. The dissociation of expression control in H. erythrogramma suggest that coordinate gene expression in H. tuberculata evolved as part of the evolution of pluteus arms, and is not required for larval or adult development.
Collapse
Affiliation(s)
- Alan C Love
- Department of Biology, Indiana Molecular Biology Institute, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
278
|
Pescucci C, Caselli R, Grosso S, Mencarelli MA, Mari F, Farnetani MA, Piccini B, Artuso R, Bruttini M, Priolo M, Zuffardi O, Gimelli S, Balestri P, Renieri A. 2q24–q31 Deletion: Report of a case and review of the literature. Eur J Med Genet 2007; 50:21-32. [PMID: 17088112 DOI: 10.1016/j.ejmg.2006.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
We report a patient with a de novo interstitial deletion of the long arm of chromosome 2 involving bands 2q24.3-q31.1. The patient shows postnatal growth retardation, microcephaly, ptosis, down-slanting palpebral fissures, long eyelashes and micrognathia. Halluces are long, broad and medially deviated, while the other toes are laterally deviated and remarkably short with hypoplastic phalanges. She also showed developmental delay, seizures, lack of eye contact, stereotypic and repetitive hand movements and sleep disturbances with breath holding. Prenatal and three independent postnatal karyotypes were normal. Array-CGH analysis allowed us to identify and characterize a "de novo" 2q interstitial deletion of about 10.4Mb, involving segment between cytogenetic bands 2q24.3 and 2q31.1. The deletion was confirmed by quantitative PCR. About 30 children with 2q interstitial deletion have been reported. The deletion described here is overlapping with 15 of these cases. We have attempted to compare the clinical features of our patient with 15 overlapping cases. The emerging phenotypes include low birth weight, postnatal growth retardation, mental retardation and developmental delay, microcephaly, and peculiar facial dysmorphisms. Peculiar long and broad halluces with an increased distance between the first and the second toe are ("sandal gap" sign) present in most of the described patients. The gene content analysis of the deleted region revealed the presence of some genes that may be indicated as good candidates in generating both neurological and dysmorphic phenotype in the patient. In particular, a cluster of SCNA genes is located within the deleted region and it is known that loss of function mutations in SCNA1 gene cause a severe form of epilepsy.
Collapse
Affiliation(s)
- C Pescucci
- Medical Genetics, University of Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Maqbool T, Soler C, Jagla T, Daczewska M, Lodha N, Palliyil S, VijayRaghavan K, Jagla K. Shaping leg muscles in Drosophila: role of ladybird, a conserved regulator of appendicular myogenesis. PLoS One 2006; 1:e122. [PMID: 17205126 PMCID: PMC1762424 DOI: 10.1371/journal.pone.0000122] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 11/27/2006] [Indexed: 12/31/2022] Open
Abstract
Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing ladybird/Lbx1. The ladybird/Lbx1 gene family appears as a part of an ancient genetic circuitry determining leg-specific properties of myoblasts and making an appendage adapted for locomotion.
Collapse
Affiliation(s)
- Tariq Maqbool
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Cedric Soler
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Malgorzata Daczewska
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
- Department of General Zoology, Wroclaw University, Wroclaw, Poland
| | - Neha Lodha
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sudhir Palliyil
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - K. VijayRaghavan
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Krzysztof Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
280
|
Abe G, Ide H, Tamura K. Function of FGF signaling in the developmental process of the median fin fold in zebrafish. Dev Biol 2006; 304:355-66. [PMID: 17258191 DOI: 10.1016/j.ydbio.2006.12.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 12/12/2022]
Abstract
Median fins, unpaired appendages in fish, are fundamental locomotory organs that are believed to have evolved before paired lateral appendages in vertebrates. However, the early process of median fin development remains largely unknown. We investigated the early development of the median fin fold, a rudiment of median fins, and report here the process in zebrafish embryos and the function of FGF signaling in the process. Using expressions of three genes, dlx5a, sp9 and fgf24, as markers of different phases of fold development, our findings suggest that the early process of median fin fold development can be divided into two steps, specification of the median fin fold territory and construction of the fold structure. Both loss-of-function and gain-of-function assays revealed that FGF signaling plays roles in each step, suggesting a common mechanism for the development of median appendages and paired lateral appendages.
Collapse
Affiliation(s)
- Gembu Abe
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
281
|
Depew MJ, Simpson CA. 21st century neontology and the comparative development of the vertebrate skull. Dev Dyn 2006; 235:1256-91. [PMID: 16598716 DOI: 10.1002/dvdy.20796] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Classic neontology (comparative embryology and anatomy), through the application of the concept of homology, has demonstrated that the development of the gnathostome (jawed vertebrate) skull is characterized both by a fidelity to the gnathostome bauplan and the exquisite elaboration of final structural design. Just as homology is an old concept amended for modern purposes, so are many of the questions regarding the development of the skull. With due deference to Geoffroy-St. Hilaire, Cuvier, Owen, Lankester et al., we are still asking: How are bauplan fidelity and elaboration of design maintained, coordinated, and modified to generate the amazing diversity seen in cranial morphologies? What establishes and maintains pattern in the skull? Are there universal developmental mechanisms underlying gnathostome autapomorphic structural traits? Can we detect and identify the etiologies of heterotopic (change in the topology of a developmental event), heterochronic (change in the timing of a developmental event), and heterofacient (change in the active capacetence, or the elaboration of capacity, of a developmental event) changes in craniofacial development within and between taxa? To address whether jaws are all made in a like manner (and if not, then how not), one needs a starting point for the sake of comparison. To this end, we present here a "hinge and caps" model that places the articulation, and subsequently the polarity and modularity, of the upper and lower jaws in the context of cranial neural crest competence to respond to positionally located epithelial signals. This model expands on an evolving model of polarity within the mandibular arch and seeks to explain a developmental patterning system that apparently keeps gnathostome jaws in functional registration yet tractable to potential changes in functional demands over time. It relies upon a system for the establishment of positional information where pattern and placement of the "hinge" is driven by factors common to the junction of the maxillary and mandibular branches of the first arch and of the "caps" by the signals emanating from the distal-most first arch midline and the lamboidal junction (where the maxillary branch meets the frontonasal processes). In this particular model, the functional registration of jaws is achieved by the integration of "hinge" and "caps" signaling, with the "caps" sharing at some critical level a developmental history that potentiates their own coordination. We examine the evidential foundation for this model in mice, examine the robustness with which it can be applied to other taxa, and examine potential proximate sources of the signaling centers. Lastly, as developmental biologists have long held that the anterior-most mesendoderm (anterior archenteron roof or prechordal plate) is in some way integral to the normal formation of the head, including the cranial skeletal midlines, we review evidence that the seminal patterning influences on the early anterior ectoderm extend well beyond the neural plate and are just as important to establishing pattern within the cephalic ectoderm, in particular for the "caps" that will yield medial signaling centers known to coordinate jaw development.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London, United Kingdom.
| | | |
Collapse
|
282
|
Jackman WR, Stock DW. Transgenic analysis of Dlx regulation in fish tooth development reveals evolutionary retention of enhancer function despite organ loss. Proc Natl Acad Sci U S A 2006; 103:19390-5. [PMID: 17146045 PMCID: PMC1748236 DOI: 10.1073/pnas.0609575103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been considered a "law" that a lost structure cannot reappear in evolution. The common explanation, that genes required for the development of the lost structure degrade by mutation, remains largely theoretical, however. Additionally, the extent to which this mechanism applies to systems of repeated parts, where individual modules are likely to exhibit few unique aspects of genetic control, is unclear. We investigated reversibility of evolution in one such system, the vertebrate dentition, using as a model loss of oral teeth in cypriniform fishes, which include the zebrafish. This evolutionary event, which occurred > 50 million years ago, has not been reversed despite subsequent diversification of feeding modes and retention of pharyngeal teeth. We asked whether the cis-regulatory region of a gene whose expression loss parallels cypriniform tooth loss, Dlx2b, retains the capacity for expression in oral teeth. We first created a zebrafish reporter transgenic line that recapitulates endogenous dlx2b expression. We then showed that this zebrafish construct drives reporter expression in oral teeth of the related characiform Astyanax mexicanus. This result, along with our finding that Dlx genes are required for normal tooth development, suggests that changes in trans-acting regulators of these genes were responsible for loss of cypriniform oral teeth. Preservation of oral enhancer function unused for > 50 million years could be the result of pleiotropic function in the pharyngeal dentition. If enhancers of other genes in the tooth developmental pathway are similarly preserved, teeth lost from specific regions may be relatively easy to reacquire in evolution.
Collapse
Affiliation(s)
- William R Jackman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
283
|
Kraus P, Lufkin T. Dlx homeobox gene control of mammalian limb and craniofacial development. Am J Med Genet A 2006; 140:1366-74. [PMID: 16688724 DOI: 10.1002/ajmg.a.31252] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Dlx homeobox gene family is of ancient origin and crucial for embryonic development in invertebrates and vertebrates. The Dlx proteins are thought to function as DNA-binding transcriptional regulators, likely controlling large numbers of downstream effector genes. In mammals gene expression analysis of the six members of the Dlx gene family has been demonstrated in the nervous system, neural crest derivatives, branchial arches, and developing appendages. Through genetic approaches the Dlx genes have been implicated in patterning and development of the brain, craniofacial structures, and the axial and appendicular skeleton. Substantial functional redundancy within the Dlx gene family has prevented the analysis of single gene mutations from demonstrating the full developmental control exerted by the Dlx proteins. Here, we will discuss data from recent combined loss and gain-of-function genetic mutations, which have given greater insight into the role of Dlx homeobox genes in craniofacial, limb, and bone development.
Collapse
Affiliation(s)
- Petra Kraus
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | | |
Collapse
|
284
|
Coubrough ML, Bendall AJ. Impaired nuclear import of mammalian Dlx4 proteins as a consequence of rapid sequence divergence. Exp Cell Res 2006; 312:3880-91. [PMID: 17011548 DOI: 10.1016/j.yexcr.2006.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/22/2006] [Accepted: 08/22/2006] [Indexed: 11/25/2022]
Abstract
Dlx genes encode a developmentally important family of transcription factors with a variety of functions and sites of action during vertebrate embryogenesis. The murine Dlx4 gene is an enigmatic member of the family; little is known about the normal developmental function(s) of Dlx4. Here, we show that Dlx4 is expressed in the murine placenta and in a trophoblast cell line where the protein localizes to both the nucleus and cytoplasm. Despite the presence of several leucine/valine-rich motifs that match known nuclear export sequences, cytoplasmic Dlx4 is not due to CRM-1-mediated nuclear export. Rather, nuclear import of Dlx4 is compromised by specific residues that flank the nuclear localization signal. One of these residues represents a novel conserved feature of the Dlx4 protein in placental mammals, and the second represents novel variation within mouse Dlx4 isoforms. Comparison of orthologous protein sequences reveals a particularly high rate of non-synonymous change in the coding regions of mammalian Dlx4 genes. Since impaired nuclear localization is unlikely to enhance the function of a nuclear transcription factor, these data point to reduced selection pressure as the basis for the rapid divergence of the Dlx4 gene within the mammalian clade.
Collapse
Affiliation(s)
- Melissa L Coubrough
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
285
|
Robledo RF, Lufkin T. Dlx5 and Dlx6 homeobox genes are required for specification of the mammalian vestibular apparatus. Genesis 2006; 44:425-37. [PMID: 16900517 DOI: 10.1002/dvg.20233] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian inner ear is a complex organ that develops from a surface ectoderm into distinct auditory and vestibular components. Congenital malformation of these two components resulting from single or multiple gene defects is a common clinical occurrence and is observed in patients with split hand/split foot malformation, a malformation which is phenocopied by Dlx5/6 null mice. Analysis of mice lacking Dlx5 and Dlx6 homeobox genes identified their restricted and combined expression in the otic epithelium as a crucial regulator of vestibular cell fates. Otic induction initiates without incident in Dlx5/6(-/-) embryos, but dorsal otic derivatives including the semicircular ducts, utricle, saccule, and endolymphatic duct fail to form. Dlx5 and Dlx6 seem to influence vestibular cell fates by restricting Pax2 and activating Gbx2 and Bmp4 expression domains. Given their proximity to the disease locus and the observed phenotype in Dlx5/6 null mice, Dlx5/6 are likely candidates to mediate the inner ear defects observed in patients with split hand/split foot malformation.
Collapse
|
286
|
Abstract
Large noncoding RNAs (lncRNAs) have emerged as key players in regulating various fundamental cellular processes. Recent reports identify a functional lncRNA, Evf-2, that operates during development to control the expression of specific homeodomain proteins, and they provide important insights into the mechanism of cooperation between a newly discovered nuclear receptor co-repressor protein (SLIRP) and steroid receptor activator RNA. Evf-2 is the first example of lncRNA directly involved in organogenesis in vertebrates.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Alternative Splicing
- Amino Acid Motifs
- Animals
- Cell Line, Tumor
- Enhancer Elements, Genetic
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Genes, Reporter
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/physiology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Mice
- Nuclear Receptor Coactivator 1
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA/genetics
- RNA/physiology
- RNA, Small Interfering/pharmacology
- RNA-Binding Proteins/physiology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic/physiology
- Transfection
Collapse
Affiliation(s)
- Ilya Shamovsky
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA
| | | |
Collapse
|
287
|
|
288
|
Lim Y, Golden JA. Patterning the developing diencephalon. ACTA ACUST UNITED AC 2006; 53:17-26. [PMID: 16876871 DOI: 10.1016/j.brainresrev.2006.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 12/22/2022]
Abstract
The diencephalon is the embryonic precursor to the caudal forebrain. The major diencephalic derivative is the thalamus, which functions as a relay station between the cortex and lower nervous system structures. Although the diencephalon has been recognized as a vital brain region, our understanding of its development remains superficial. In this review, we discuss recent progresses in understanding one essential aspect of diencephalic development, diencephalic patterning. Signaling centers identified in the zona limitans intrathalamica and along the dorsal and ventral midlines have emerged as essential organizers in diencephalic patterning. The cumulative data reveal that the diencephalon shares some developmental principles with more caudal brain regions, whereas other mechanisms are unique to this region.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Abramson Research Center, Rm. 516h, Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, United States
| | | |
Collapse
|
289
|
Polley DB, Cobos I, Merzenich MM, Rubenstein JLR. Severe hearing loss in Dlxl mutant mice. Hear Res 2006; 214:84-8. [PMID: 16632068 DOI: 10.1016/j.heares.2006.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 02/16/2006] [Accepted: 02/16/2006] [Indexed: 11/19/2022]
Abstract
The Dlx homeobox gene family participates in regulating middle and inner ear development. A significant role for Dlxl, in particular,has been demonstrated in the development of the middle ear ossicles, but the functional consequences of Dlx.l gene mutation on hearing thresholds has not been assessed. The present study characterizes auditory brainstem responses to click and tonal stimuli in a non-lethal variant of a Dlxl gene knockout. We found that peripheral hearing thresholds for click and tonal stimuli were significantly elevated in homozygous Dlxl knockout (Dlxl-/ ) compared to both heterozygous (Dlxl+/ ) and wild type (Dlxl+/+) mice. Thus, abnormal mor-phogenesis of the incus and stapes that has been documented previously with histological measures is now known to result in a severe peripheral hearing deficit.
Collapse
Affiliation(s)
- Daniel B Polley
- Coleman Memorial Laboratory, Department of Otolaryngology, University of California, San Francisco, CA 94143, USA. daniel.polley@vanderbilt. edu
| | | | | | | |
Collapse
|
290
|
Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Chung J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 2006; 231:534-44. [PMID: 16636301 DOI: 10.1177/153537020623100507] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activins, cytokine members of the transforming growth factor-beta superfamily, have various effects on many physiological processes, including cell proliferation, cell death, metabolism, homeostasis, differentiation, immune responses endocrine function, etc. Activins interact with two structurally related serine/threonine kinase receptors, type I and type II, and initiate downstream signaling via Smads to regulate gene expression. Understanding how activin signaling is controlled extracellularly and intracellularly would not only lead to more complete understanding of cell growth and apoptosis, but would also provide the basis for therapeutic strategies to treat cancer and other related diseases. This review focuses on the recent progress on activin-receptor interactions, regulations of activin signaling by ligand-binding proteins, receptor-binding proteins, and nucleocytoplasmic shuttling of Smad proteins.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
291
|
Monteiro AS, Schierwater B, Dellaporta SL, Holland PWH. A low diversity of ANTP class homeobox genes in Placozoa. Evol Dev 2006; 8:174-82. [PMID: 16509895 DOI: 10.1111/j.1525-142x.2006.00087.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Homeobox genes of the ANTP and PRD classes play important roles in body patterning of metazoans, and a large diversity of these genes have been described in bilaterian animals and cnidarians. Trichoplax adhaerens (Phylum Placozoa) is a small multicellular marine animal with one of the simplest body organizations of all metazoans, showing no symmetry and a small number of distinct cell types. Only two ANTP class genes have been described from Trichoplax: the Hox/ParaHox gene Trox-2 and a gene related to the Not family. Here we report an extensive screen for ANTP class genes in Trichoplax, leading to isolation of three additional ANTP class genes. These can be assigned to the Dlx, Mnx and Hmx gene families. Sequencing approximately 12-20 kb around each gene indicates that none are part of tight gene clusters, and in situ hybridization reveals that at least two have spatially restricted expression around the periphery of the animal. The low diversity of ANTP class genes isolated in Trichoplax can be reconciled with the low anatomical complexity of this animal, although the finding that these genes are assignable to recognized gene families is intriguing.
Collapse
Affiliation(s)
- A S Monteiro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | |
Collapse
|
292
|
Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 2006; 20:1470-84. [PMID: 16705037 PMCID: PMC1475760 DOI: 10.1101/gad.1416106] [Citation(s) in RCA: 559] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of ultraconserved noncoding sequences in vertebrates has been associated with developmental regulators and DNA-binding proteins. One of the first of these was identified in the intergenic region between the Dlx-5 and Dlx-6 genes, members of the Dlx/dll homeodomain-containing protein family. In previous experiments, we showed that Sonic hedgehog treatment of forebrain neural explants results in the activation of Dlx-2 and the novel noncoding RNA (ncRNA), Evf-1. In this report, we show that the Dlx-5/6 ultraconserved region is transcribed to generate an alternatively spliced form of Evf-1, the ncRNA Evf-2. Evf-2 specifically cooperates with Dlx-2 to increase the transcriptional activity of the Dlx-5/6 enhancer in a target and homeodomain-specific manner. A stable complex containing the Evf-2 ncRNA and the Dlx-2 protein forms in vivo, suggesting that the Evf-2 ncRNA activates transcriptional activity by directly influencing Dlx-2 activity. These experiments identify a novel mechanism whereby transcription is controlled by the cooperative actions of an ncRNA and a homeodomain protein. The possibility that a subset of vertebrate ultraconserved regions may function at both the DNA and RNA level to control key developmental regulators may explain why ultraconserved sequences exhibit 90% or more conservation even after 450 million years of vertebrate evolution.
Collapse
Affiliation(s)
- Jianchi Feng
- Program in Neurobiology and Department of Pediatrics, Children's Memorial Hospital and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA
| | | | | | | | | | | |
Collapse
|
293
|
Borday-Birraux V, Van der Heyden C, Debiais-Thibaud M, Verreijdt L, Stock DW, Huysseune A, Sire JY. Expression of Dlx genes during the development of the zebrafish pharyngeal dentition: evolutionary implications. Evol Dev 2006; 8:130-41. [PMID: 16509892 DOI: 10.1111/j.1525-142x.2006.00084.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to investigate similarities and differences in genetic control of development among teeth within and between species, we determined the expression pattern of all eight Dlx genes of the zebrafish during development of the pharyngeal dentition and compared these data with that reported for mouse molar tooth development. We found that (i) dlx1a and dlx6a are not expressed in teeth, in contrast to their murine orthologs, Dlx1 and Dlx6; (ii) the expression of the six other zebrafish Dlx genes overlaps in time and space, particularly during early morphogenesis; (iii) teeth in different locations and generations within the zebrafish dentition differ in the number of genes expressed; (iv) expression similarities and differences between zebrafish Dlx genes do not clearly follow phylogenetic and linkage relationships; and (v) similarities and differences exist in the expression of zebrafish and mouse Dlx orthologs. Taken together, these results indicate that the Dlx gene family, despite having been involved in vertebrate tooth development for over 400 million years, has undergone extensive diversification of expression of individual genes both within and between dentitions. The latter type of difference may reflect the highly specialized dentition of the mouse relative to that of the zebrafish, and/or genome duplication in the zebrafish lineage facilitating a redistribution of Dlx gene function during odontogenesis.
Collapse
|
294
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
295
|
|
296
|
Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol 2006; 291:193-206. [PMID: 16515781 DOI: 10.1016/j.ydbio.2005.10.032] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/18/2022]
Abstract
Hox genes encode homeodomain-containing transcription factors that pattern the body axes of animal embryos. It is well established that the exquisite DNA-binding specificity that allows different Hox proteins to specify distinct structures along the body axis is frequently dependent on interactions with other DNA-binding proteins which act as Hox cofactors. These include the PBC and MEIS classes of TALE (Three Amino acid Loop Extension) homeodomain proteins. The PBC class comprises fly Extradenticle (Exd) and vertebrate Pbx homeoproteins, whereas the MEIS class includes fly Homothorax (Hth) and vertebrate Meis and Prep homeoproteins. Exd was first implicated as a Hox cofactor based on mutant phenotypes in the fly. In vertebrates, PBC and MEIS homeobox proteins play important roles in development and disease. In this review, we describe the evidence that these functions reflect a requirement for Pbx and Meis/Prep proteins as Hox cofactors. However, there is mounting evidence that, like in the fly, Pbx and Meis/Prep proteins function more broadly, and we also discuss how "Hox cofactors" function as partners for other, non-Hox transcription factors during development. Conversely, we review the evidence that Hox proteins have functions that are independent of Pbx and Meis/Prep cofactors and discuss the possibility that other proteins may participate in the DNA-bound Hox complex, contributing to DNA-binding specificity in the absence of, or in addition to, Pbx and Meis/Prep.
Collapse
Affiliation(s)
- Cecilia B Moens
- Division of Basic Science and HHMI, Fred Hutchinson Cancer Research Center, Seattle, WA 98115, USA.
| | | |
Collapse
|
297
|
Depew MJ, Simpson CA, Morasso M, Rubenstein JLR. Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat 2006; 207:501-61. [PMID: 16313391 PMCID: PMC1571560 DOI: 10.1111/j.1469-7580.2005.00487.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The branchial arches are meristic vertebrate structures, being metameric both between each other within the rostrocaudal series along the ventrocephalic surface of the embryonic head and within each individual arch: thus, just as each branchial arch must acquire a unique identity along the rostrocaudal axis, each structure within the proximodistal axis of an arch must also acquire a unique identity. It is believed that regional specification of metameric structures is controlled by the nested expression of related genes resulting in a regional code, a principal that is though to be demonstrated by the regulation of rostrocaudal axis development in animals exerted by the nested HOM-C/Hox homeobox genes. The nested expression pattern of the Dlx genes within the murine branchial arch ectomesenchyme has more recently led to the proposal of a Dlx code for the regional specification along the proximodistal axis of the branchial arches (i.e. it establishes intra-arch identity). This review re-examines this hypothesis, and presents new work on an allelic series of Dlx loss-of-function mouse mutants that includes various combinations of Dlx1, Dlx2, Dlx3, Dlx5 and Dlx6. Although we confirm fundamental aspects of the hypothesis, we further report a number of novel findings. First, contrary to initial reports, Dlx1, Dlx2 and Dlx1/2 heterozygotes exhibit alterations of branchial arch structures and Dlx2-/- and Dlx1/2-/- mutants have slight alterations of structures derived from the distal portions of their branchial arches. Second, we present evidence for a role for murine Dlx3 in the development of the branchial arches. Third, analysis of compound Dlx mutants reveals four grades of mandibular arch transformations and that the genetic interactions of cis first-order (e.g. Dlx5 and Dlx6), trans second-order (e.g. Dlx5 and Dlx2) and trans third-order paralogues (e.g. Dlx5 and Dlx1) result in significant and distinct morphological differences in mandibular arch development. We conclude by integrating functions of the Dlx genes within the context of a hypothesized general mechanism for the establishment of pattern and polarity in the first branchial arch of gnathostomes that includes regionally secreted growth factors such as Fgf8 and Bmp and other transcription factors such as Msx1, and is consistent both with the structure of the conserved gnathostome jaw bauplan and the elaboration of this bauplan to meet organismal end-point designs.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London, UK.
| | | | | | | |
Collapse
|
298
|
Bagheri-Fam S, Barrionuevo F, Dohrmann U, Günther T, Schüle R, Kemler R, Mallo M, Kanzler B, Scherer G. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 2006; 291:382-97. [PMID: 16458883 DOI: 10.1016/j.ydbio.2005.11.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 11/09/2005] [Accepted: 08/29/2005] [Indexed: 11/20/2022]
Abstract
SOX9 is an evolutionary conserved transcription factor that is expressed in a variety of tissues, with essential functions in cartilage, testis, heart, glial cell, inner ear and neural crest development. By comparing human and pufferfish genomic sequences, we previously identified eight highly conserved sequence elements between 290 kb 5' and 450 kb 3' to human SOX9. In this study, we assayed the regulatory potential of elements E1 to E7 in transgenic mice using a lacZ reporter gene driven by a 529 bp minimal mouse Sox9 promoter. We found that three of these elements and the Sox9 promoter control distinct subsets of the tissue-specific expression pattern of Sox9. E3, located 251 kb 5' to SOX9, directs lacZ expression to cranial neural crest cells and to the inner ear. E1 is located 28 kb 5' to SOX9 and controls expression in the node, notochord, gut, bronchial epithelium and pancreas. Transgene expression in the neuroectoderm is mediated by E7, located 95 kb 3' to SOX9, which regulates expression in the telencephalon and midbrain, and by the Sox9 minimal promoter which controls expression in the ventral spinal cord and hindbrain. We show that E3-directed reporter gene expression in neural crest cells of the first but not of the second and third pharyngeal arch is dependent on beta-catenin, revealing a complex regulation of Sox9 in cranial neural crest cells. Moreover, we identify and discuss highly conserved transcription factor binding sites within enhancer E3 that are in good agreement with current models for neural crest and inner ear development. Finally, we identify enhancer E1 as a cis-regulatory element conserved between vertebrates and invertebrates, indicating that some cis-regulatory sequences that control developmental genes in vertebrates might be phylogenetically ancient.
Collapse
Affiliation(s)
- Stefan Bagheri-Fam
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacherstr. 33, D-79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Gaasch JA, Bolwahnn AB, Lindsey JS. Hepatocyte growth factor-regulated genes in differentiated RAW 264.7 osteoclast and undifferentiated cells. Gene 2006; 369:142-52. [PMID: 16403606 DOI: 10.1016/j.gene.2005.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/31/2005] [Accepted: 10/31/2005] [Indexed: 11/21/2022]
Abstract
Hepatocyte Growth Factor (HGF) and its protooncogene receptor c-Met regulate osteoclast function by activating pp60(c-Src) kinase and alpha(v)beta3 integrin. HGF causes transcription yet in osteoclast cells, this gene regulation is currently unknown. To begin characterization of HGF-regulated gene expression in osteoclast cells, we used a well characterized model of osteoclast cells. Using microarray, relative RT-PCR, and Western blot analyses, we have identified and confirmed differentially expressed genes in RAW 264.7 osteoclast cells in response to HGF. HGF regulation of transcription of these genes was concordant with microarray results. We report that HGF downregulates transcription factors, Distal-less 5 (Dlx-5), Distal-less 6 (Dlx-6) and Aristaless 4 (Alx-4), in RAW 264.7 osteoclast cells but has an inverse effect in undifferentiated RAW 264.7 cells.
Collapse
Affiliation(s)
- Julie A Gaasch
- Department of Pharmaceutical Sciences, Texas Tech University Health Science Center School of Pharmacy, Amarillo, TX 79106, USA
| | | | | |
Collapse
|
300
|
Verreijdt L, Debiais-Thibaud M, Borday-Birraux V, Van der Heyden C, Sire JY, Huysseune A. Expression of thedlx gene family during formation of the cranial bones in the zebrafish (Danio rerio): Differential involvement in the visceral skeleton and braincase. Dev Dyn 2006; 235:1371-89. [PMID: 16534783 DOI: 10.1002/dvdy.20734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have used dlx genes to test the hypothesis of a separate developmental program for dermal and cartilage bones within the neuro- and splanchnocranium by comparing expression patterns of all eight dlx genes during cranial bone formation in zebrafish from 1 day postfertilization (dPF) to 15 dPF. dlx genes are expressed in the visceral skeleton but not during the formation of dermal or cartilage bones of the braincase. The spatiotemporal expression pattern of all the members of the dlx gene family, support the view that dlx genes impart cellular identity to the different arches, required to make arch-specific dermal bones. Expression patterns seemingly associated with cartilage (perichondral) bones of the arches, in contrast, are probably related to ongoing differentiation of the underlying cartilage rather than with differentiation of perichondral bones themselves. Whether dlx genes originally functioned in the visceral skeleton only, and whether their involvement in the formation of neurocranial bones (as in mammals) is secondary, awaits clarification.
Collapse
Affiliation(s)
- L Verreijdt
- Ghent University, Biology Department, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|