251
|
Westerlund E, Valfridsson C, Yi DX, Persson JJ. The Secreted Virulence Factor NADase of Group A Streptococcus Inhibits P2X7 Receptor-Mediated Release of IL-1β. Front Immunol 2019; 10:1385. [PMID: 31275321 PMCID: PMC6591467 DOI: 10.3389/fimmu.2019.01385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
The common human pathogen Group A Streptococcus (GAS) causes superficial as well as invasive, life-threatening diseases. An increase in the occurrence of invasive GAS infection by strains of the M1 and M89 serotypes has been correlated with increased expression of the genetically and functionally linked virulence factors streptolysin O (SLO) and β-NAD+-glycohydrolase (NADase). NADase affects host cells differently depending on its location: its SLO-dependent translocation into the cytosol can lead to cell death through β-NAD+ depletion, while extracellularly located NADase inhibits IL-1β release downstream of Nlrp3 inflammasome activation. In this study, we use a macrophage infection model to investigate the NADase-dependent inhibition of IL-1β release. We show that bacteria expressing a functional NADase evade P2X7 activation, while infection with a NADase-deficient GAS strain leads to a P2X7-mediated increase in IL-1β. Further, our data indicate that in the absence of NADase, IL-1β is released through both P2X7-dependent and -independent pathways, although the precise mechanisms of how this occur are still unclear. This study adds information about the mechanism by which NADase regulates inflammasome-dependent IL-1β release, which may in part explain why increased NADase expression correlates with bacterial virulence.
Collapse
Affiliation(s)
- Elsa Westerlund
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Christine Valfridsson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Daisy X Yi
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jenny J Persson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
252
|
Extracellular Vesicles and Their Potential Use in Monitoring Cancer Progression and Therapy: The Contribution of Proteomics. JOURNAL OF ONCOLOGY 2019; 2019:1639854. [PMID: 31281356 PMCID: PMC6590542 DOI: 10.1155/2019/1639854] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Extracellular Vesicles (EVs) are small membrane-enclosed particles released by cells and able to vehiculate information between them. The term EVs categorizes many and different vesicles based on their biogenesis and release pathway, such as exosomes (Exo), ectosomes, or shedding microvesicles (SMVs), apoptotic blebs (ABs), and other EVs subsets, generating a heterogeneous group of components able to redistribute their cargo into the entire organism. Moreover EVs are becoming increasingly important in monitoring cancer progression and therapy, since they are able to carry specific disease biomarkers such as Glypican-1, colon cancer-associated transcript 2, CD63, CD24, and many others. The importance of their biological role together with their heterogeneity prompted researchers to adopt and standardize purification methods able to isolate EVs for characterizing their cargo. In this way, mass spectrometry (MS)-based proteomics approaches are emerging as promising tool for the identification and quantification of EVs protein cargoes, but this technique resulted to be deeply influenced by the low quality of the isolation techniques. This review presents the state-of-the-art of EVs isolation, purification, and characterization for omics studies, with a particular focus to their potential use in monitoring cancer progression and therapy.
Collapse
|
253
|
Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S, Borràs FE. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell Mol Life Sci 2019; 76:2369-2382. [PMID: 30891621 PMCID: PMC11105396 DOI: 10.1007/s00018-019-03071-y] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) include a variety of nanosized vesicles released to the extracellular microenvironment by the vast majority of cells transferring bioactive lipids, proteins, mRNA, miRNA or non-coding RNA, as means of intercellular communication. Remarkably, among other fields of research, their use has become promising for immunomodulation, tissue repair and as source for novel disease-specific molecular signatures or biomarkers. However, a major challenge is to define accurate, reliable and easily implemented techniques for EV isolation due to their nanoscale size and high heterogeneity. In this context, differential ultracentrifugation (dUC) has been the most widely used laboratory methodology, but alternative procedures have emerged to allow purer EV preparations with easy implementation. Here, we present and discuss the most used of the different EV isolation methods, focusing on the increasing impact of size exclusion chromatography (SEC) on the resulting EV preparations from in vitro cultured cells-conditioned medium and biological fluids. Comparatively, low protein content and cryo-electron microscopy analysis show that SEC removes most of the overabundant soluble plasma proteins, which are not discarded using dUC or precipitating agents, while being more user friendly and less time-consuming than gradient-based EV isolation. Also, SEC highly maintains the major EVs' characteristics, including vesicular structure and content, which guarantee forthcoming applications. In sum, together with scaling-up possibilities to increase EV recovery and manufacturing following high-quality standards, SEC could be easily adapted to most laboratories to assist EV-associated biomarker discovery and to deliver innovative cell-free immunomodulatory and pro-regenerative therapies.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, UAB, Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain.
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.
| | - Francesc E Borràs
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.
| |
Collapse
|
254
|
Burkova EE, Grigor'eva AE, Bulgakov DV, Dmitrenok PS, Vlassov VV, Ryabchikova EI, Sedykh SE, Nevinsky GA. Extra Purified Exosomes from Human Placenta Contain An Unpredictable Small Number of Different Major Proteins. Int J Mol Sci 2019; 20:E2434. [PMID: 31100946 PMCID: PMC6566543 DOI: 10.3390/ijms20102434] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes are nanovesicles (30-100 nm) containing various RNAs and different proteins. Exosomes are important in intracellular communication, immune function, etc. Exosomes from different sources including placenta were mainly obtained by different types of centrifugation and ultracentrifugations and were reported to contain from a few dozen to thousands of different proteins. First crude exosome preparations from four placentas (normal pregnancy) were obtained here using several standard centrifugations but then were additionally purified by gel filtration on Sepharose 4B. Individual preparations demonstrated different gel filtration profiles showing good or bad separation of exosome peaks from two peaks of impurity proteins and their complexes. According to electron microscopy, exosomes before gel filtration contain vesicles of different size, ring-shaped structures forming by ferritin and clusters of aggregated proteins and their complexes. After filtration through 220 nm filters and gel filtration exosomes display typically for exosome morphology and size (30-100 nm) and do not contain visible protein admixtures. Identification of exosome proteins was carried out by MS and MS/MS MALDI mass spectrometry of proteins' tryptic hydrolyzates after their SDS-PAGE and 2D electrophoresis. We have obtained unexpected results. Good, purified exosomes contained only 11-13 different proteins: CD9, CD81, CD-63, hemoglobin subunits, interleukin-1 receptor, annexin A1, annexin A2, annexin A5, cytoplasmic actin, alkaline phosphatase, serotransferin, and probably human serum albumin and immunoglobulins. We assume that a possible number of exosome proteins found previously using crude preparations may be very much overestimated. Our data may be important for study of biological functions of pure exosomes.
Collapse
Affiliation(s)
- Evgeniya E Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Alina E Grigor'eva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia.
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., 690022 Vladivostok, Russia.
| | - Valentin V Vlassov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Elena I Ryabchikova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
255
|
Notarangelo M, Zucal C, Modelska A, Pesce I, Scarduelli G, Potrich C, Lunelli L, Pederzolli C, Pavan P, la Marca G, Pasini L, Ulivi P, Beltran H, Demichelis F, Provenzani A, Quattrone A, D'Agostino VG. Ultrasensitive detection of cancer biomarkers by nickel-based isolation of polydisperse extracellular vesicles from blood. EBioMedicine 2019; 43:114-126. [PMID: 31047861 PMCID: PMC6558028 DOI: 10.1016/j.ebiom.2019.04.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/06/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are secreted membranous particles intensively studied for their potential cargo of diagnostic markers. Efficient and cost-effective isolation methods need to be established for the reproducible and high-throughput study of EVs in the clinical practice. METHODS We designed the nickel-based isolation (NBI) to rapidly isolate EVs and combined it with newly-designed amplified luminescent proximity homogeneous assay or digital PCR to detect biomarkers of clinical utility. FINDINGS From plasma of 46 healthy donors, we systematically recovered small EV (~250 nm of mean diameter; ~3 × 1010/ml) and large EV (~560 nm of mean diameter; ~5 × 108/ml) lineages ranging from 50 to 700 nm, which displayed hematopoietic/endothelial cell markers that were also used in spike-in experiments using EVs from tumor cell lines. In retrospective studies, we detected picomolar concentrations of prostate-specific membrane antigen (PSMA) in fractions of EVs isolated from the plasma of prostate cancer patients, discriminating them from control subjects. Directly from oil-encapsulated EVs for digital PCR, we identified somatic BRAF and KRAS mutations circulating in the plasma of metastatic colorectal cancer (CRC) patients, matching 100% of concordance with tissue diagnostics. Importantly, with higher sensitivity and specificity compared with immuno-isolated EVs, we revealed additional somatic alterations in 7% of wild-type CRC cases that were subsequently validated by further inspections in the matched tissue biopsies. INTERPRETATION We propose NBI-combined approaches as simple, fast, and robust strategies to probe the tumor heterogeneity and contribute to the development of EV-based liquid biopsy studies. FUND: Associazione Italiana per la Ricerca sul Cancro (AIRC), Fondazione Cassa di Risparmio Trento e Rovereto (CARITRO), and the Italian Ministero Istruzione, Università e Ricerca (Miur).
Collapse
Affiliation(s)
- Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Chiara Zucal
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Angelika Modelska
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Isabella Pesce
- Cell Analysis and Separation Core Facility (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Giorgina Scarduelli
- Advanced Imaging Core Facility (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Cristina Potrich
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Cecilia Pederzolli
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, Trento, Via Sommarive 14, Trento 38123, Italy
| | - Paola Pavan
- Immunohematology and Cell Factory Unit, Meyer Children's University Hospital, Viale Pieraccini 24, Florence 50139, Italy
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, Centro di Eccellenza Denothe, Aou Meyer University of Florence, Viale Pieraccini 6, 50139, Italy
| | - Luigi Pasini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, Meldola 47014, Italy
| | - Paola Ulivi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, Meldola 47014, Italy
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Vito G D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento 38123, Italy.
| |
Collapse
|
256
|
Duong P, Chung A, Bouchareychas L, Raffai RL. Cushioned-Density Gradient Ultracentrifugation (C-DGUC) improves the isolation efficiency of extracellular vesicles. PLoS One 2019; 14:e0215324. [PMID: 30973950 PMCID: PMC6459479 DOI: 10.1371/journal.pone.0215324] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/31/2019] [Indexed: 12/16/2022] Open
Abstract
Ultracentrifugation (UC) is recognized as a robust approach for the isolation of extracellular vesicles (EVs). However, recent studies have highlighted limitations of UC including low recovery efficiencies and aggregation of EVs that could impact downstream functional analyses. We tested the benefit of using a liquid cushion of iodixanol during UC to address such shortcomings. In this study, we compared the yield and purity of EVs isolated from J774A.1 macrophage conditioned media by conventional UC and cushioned-UC (C-UC). We extended our study to include two other common EV isolation approaches: ultrafiltration (UF) and polyethylene glycol (PEG) sedimentation. After concentrating EVs using these four methods, the concentrates underwent further purification by using OptiPrep density gradient ultracentrifugation (DGUC). Our data show that C-DGUC provides a two-fold improvement in EV recovery over conventional UC-DGUC. We also found that UF-DGUC retained ten-fold more protein while PEG-DGUC achieved similar performance in nanoparticle and protein recovery compared to C-DGUC. Regarding purity as assessed by nanoparticle to protein ratio, our data show that EVs isolated by UC-DGUC achieved the highest purity while C-DGUC and PEG-DGUC led to similarly pure preparations. Collectively, we demonstrate that the use of a high-density iodixanol cushion during the initial concentration step improves the yield of EVs derived from cell culture media compared to conventional UC. This enhanced yield without substantial retention of protein contaminants and without exposure to forces causing aggregation offers new opportunities for the isolation of EVs that can subsequently be used for functional studies.
Collapse
Affiliation(s)
- Phat Duong
- Surgical Service San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Allen Chung
- Surgical Service San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Laura Bouchareychas
- Surgical Service San Francisco VA Medical Center, San Francisco, California, United States of America
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California, San Francisco, California, United States of America
| | - Robert L. Raffai
- Surgical Service San Francisco VA Medical Center, San Francisco, California, United States of America
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
257
|
Srinivasan S, Yeri A, Cheah PS, Chung A, Danielson K, De Hoff P, Filant J, Laurent CD, Laurent LD, Magee R, Moeller C, Murthy VL, Nejad P, Paul A, Rigoutsos I, Rodosthenous R, Shah RV, Simonson B, To C, Wong D, Yan IK, Zhang X, Balaj L, Breakefield XO, Daaboul G, Gandhi R, Lapidus J, Londin E, Patel T, Raffai RL, Sood AK, Alexander RP, Das S, Laurent LC. Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell 2019; 177:446-462.e16. [PMID: 30951671 PMCID: PMC6557167 DOI: 10.1016/j.cell.2019.03.024] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/29/2018] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level, and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development.
Collapse
Affiliation(s)
- Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pike See Cheah
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Allen Chung
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | - Kirsty Danielson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter De Hoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Justyna Filant
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clara D Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucie D Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rogan Magee
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Courtney Moeller
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Venkatesh L Murthy
- Department of Medicine, Division of Cardiovascular Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Parham Nejad
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rodosthenis Rodosthenous
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ravi V Shah
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bridget Simonson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David Wong
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | | | - Xuan Zhang
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Leonora Balaj
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra O Breakefield
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | | - Roopali Gandhi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jodi Lapidus
- Oregon Health Sciences University, Portland, OR, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Robert L Raffai
- Department of Surgery, University of California, San Francisco and VA Medical Center San Francisco, San Francisco, CA 94121, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
258
|
García-Romero N, Madurga R, Rackov G, Palacín-Aliana I, Núñez-Torres R, Asensi-Puig A, Carrión-Navarro J, Esteban-Rubio S, Peinado H, González-Neira A, González-Rumayor V, Belda-Iniesta C, Ayuso-Sacido A. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J Transl Med 2019; 17:75. [PMID: 30871557 PMCID: PMC6419425 DOI: 10.1186/s12967-019-1825-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it might provide an alternative to traditional solid biopsies. However, the most effective approach for EV isolation is not yet well established. RESULTS Here, we study the efficiency of the most common EV isolation methods-ultracentrifugation, Polyethlyene glycol and two commercial kits, Exoquick® and PureExo®. We isolated circulating EVs from the bloodstream of healthy donors, characterized the size and yield of EVs and analyzed their protein profiles and concentration. Moreover, we have used for the first time Digital-PCR to identify and detect specific gDNA sequences, which has several implications for diagnostic and monitoring many types of diseases. CONCLUSIONS Our findings present Polyethylene glycol precipitation as the most feasible and less cost-consuming EV isolation technique.
Collapse
Affiliation(s)
- N García-Romero
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - R Madurga
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - G Rackov
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
- IMDEA Nanoscience, Madrid, Spain
| | - I Palacín-Aliana
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - R Núñez-Torres
- Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - J Carrión-Navarro
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - S Esteban-Rubio
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
- Facultad de Medicina (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - H Peinado
- Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - A González-Neira
- Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - C Belda-Iniesta
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - A Ayuso-Sacido
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain.
- Facultad de Medicina (IMMA), Universidad San Pablo-CEU, Madrid, Spain.
| |
Collapse
|
259
|
Zhang H, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc 2019; 14:1027-1053. [PMID: 30833697 DOI: 10.1038/s41596-019-0126-x] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
Abstract
We describe the protocol development and optimization of asymmetric-flow field-flow fractionation (AF4) technology for separating and characterizing extracellular nanoparticles (ENPs), particularly small extracellular vesicles (sEVs), known as exosomes, and even smaller novel nanoparticles, known as exomeres. This technique fractionates ENPs on the basis of hydrodynamic size and demonstrates a unique capability to separate nanoparticles with sizes ranging from a few nanometers to an undefined level of micrometers. ENPs are resolved by two perpendicular flows-channel flow and cross-flow-in a thin, flat channel with a semi-permissive bottom wall membrane. The AF4 separation method offers several advantages over other isolation methods for ENP analysis, including being label-free, gentle, rapid (<1 h) and highly reproducible, as well as providing efficient recovery of analytes. Most importantly, in contrast to other available techniques, AF4 can separate ENPs at high resolution (1 nm) and provide a large dynamic range of size-based separation. In conjunction with real-time monitors, such as UV absorbance and dynamic light scattering (DLS), and an array of post-separation characterizations, AF4 facilitates the successful separation of distinct subsets of exosomes and the identification of exomeres. Although the whole procedure of cell culture and ENP isolation from the conditioned medium by ultracentrifugation (UC) can take ~3 d, the AF4 fractionation step takes only 1 h. Users of this technology will require expertise in the working principle of AF4 to operate and customize protocol applications. AF4 can contribute to the development of high-quality, exosome- and exomere-based molecular diagnostics and therapeutics.
Collapse
Affiliation(s)
- Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics and Department of Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics and Department of Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
260
|
Paone S, Baxter AA, Hulett MD, Poon IKH. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell Mol Life Sci 2019; 76:1093-1106. [PMID: 30569278 PMCID: PMC11105274 DOI: 10.1007/s00018-018-2983-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
Abstract
To maintain physiological homeostasis, cell turnover occurs every day in the body via a form of programmed cell death called apoptosis. During apoptosis, cells undergo distinct morphological changes culminating in the disassembly of the dying cell into smaller fragments known as apoptotic bodies (ApoBDs). Dysregulation of apoptosis is associated with diseases including infection, cancer and atherosclerosis. Although the development of atherosclerosis is largely attributed to the accumulation of lipids and inflammatory debris in vessel walls, it is also associated with apoptosis of macrophages, smooth muscle cells (SMCs) and endothelial cells. During cellular activation and apoptosis, endothelial cells can release several types of membrane-bound extracellular vesicles (EVs) including exosomes, microvesicles (MVs)/microparticles and ApoBDs. Emerging evidence in the field suggests that these endothelial cell-derived EVs (EndoEVs) can contribute to intercellular communication during the development of atherosclerosis via the transfer of cellular contents such as protein and microRNA, which may prevent or promote disease progression depending on the context. This review provides an up-to-date overview of the known causes and consequences of endothelial cell death during atherosclerosis along with highlighting current methodological approaches to studying EndoEVs and the potential roles of EndoEVs in atherosclerosis development.
Collapse
Affiliation(s)
- Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
261
|
Junqueira-Neto S, Batista IA, Costa JL, Melo SA. Liquid Biopsy beyond Circulating Tumor Cells and Cell-Free DNA. Acta Cytol 2019; 63:479-488. [PMID: 30783027 DOI: 10.1159/000493969] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Liquid biopsy represents the analysis of tumor-derived material in the blood and other body fluids of cancer patients. This portrays a minimally invasive detection tool for molecular biomarkers. Liquid biopsy has emerged as a complementary or alternative method to surgical biopsy. This non-invasive detection tool overcomes the recurrent problems in the clinical assessment of tumors that stem from the lack of accessibility to the tumor tissue and its clonal heterogeneity. Moreover, body fluid-derived components have shown to reflect the genetic profile of both primary and metastatic lesions and provide a real-time monitoring of tumor dynamics, representing a great promise for personalized medicine. This review will highlight the latest breakthroughs and the current applications of several tumor-derived biomarkers that can be found in body fluids. The authors will focus on tumor-derived exosomes, tumor-educated platelets, and circulating tumor miRNAs and mRNAs, and how these can be used for tumor detection.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/isolation & purification
- Cell-Free Nucleic Acids/blood
- Cell-Free Nucleic Acids/isolation & purification
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/isolation & purification
- Exosomes/chemistry
- Exosomes/pathology
- Humans
- Liquid Biopsy/methods
- MicroRNAs/blood
- MicroRNAs/isolation & purification
- Monitoring, Physiologic
- Mutation
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Neoplasms/blood
- Neoplasms/diagnosis
- Neoplasms/drug therapy
- Neoplasms/pathology
- Neoplastic Cells, Circulating/chemistry
- Neoplastic Cells, Circulating/pathology
- Precision Medicine/methods
- Prognosis
- RNA, Messenger/blood
- RNA, Messenger/isolation & purification
Collapse
Affiliation(s)
- Susana Junqueira-Neto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), Porto, Portugal
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty of the University of Porto (FMUP), Porto, Portugal
| | - Inês A Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), Porto, Portugal
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - José Luís Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), Porto, Portugal
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty of the University of Porto (FMUP), Porto, Portugal
| | - Sónia A Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), Porto, Portugal,
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), Porto, Portugal,
- Medical Faculty of the University of Porto (FMUP), Porto, Portugal,
| |
Collapse
|
262
|
Davis CN, Phillips H, Tomes JJ, Swain MT, Wilkinson TJ, Brophy PM, Morphew RM. The importance of extracellular vesicle purification for downstream analysis: A comparison of differential centrifugation and size exclusion chromatography for helminth pathogens. PLoS Negl Trop Dis 2019; 13:e0007191. [PMID: 30811394 PMCID: PMC6411213 DOI: 10.1371/journal.pntd.0007191] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/11/2019] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Robust protocols for the isolation of extracellular vesicles (EVs) from the rest of their excretory-secretory products are necessary for downstream studies and application development. The most widely used purification method of EVs for helminth pathogens is currently differential centrifugation (DC). In contrast, size exclusion chromatography (SEC) has been included in the purification pipeline for EVs from other pathogens, highlighting there is not an agreed research community 'gold standard' for EV isolation. In this case study, Fasciola hepatica from natural populations were cultured in order to collect EVs from culture media and evaluate a SEC or DC approach to pathogen helminth EV purification. METHODOLOGY/PRINCIPAL FINDINGS Transmission electron and atomic force microscopy demonstrated that EVs prepared by SEC were both smaller in size and less diverse than EV resolved by DC. Protein quantification and Western blotting further demonstrated that SEC purification realised a higher EV purity to free excretory-secretory protein (ESP) yield ratio compared to DC approaches as evident by the reduction of soluble free cathepsin L proteases in SEC EV preparations. Proteomic analysis further highlighted DC contamination from ESP as shown by an increased diversity of protein identifications and unique peptide hits in DC EVs as compared to SEC EVs. In addition, SEC purified EVs contained less tegumental based proteins than DC purified EVs. CONCLUSIONS/SIGNIFICANCE The data suggests that DC and SEC purification methods do not isolate equivalent EV population profiles and caution should be taken in the choice of EV purification utilised, with certain protocols for DC preparations including more free ES proteins and tegumental artefacts. We propose that SEC methods should be used for EV purification prior to downstream studies.
Collapse
Affiliation(s)
- Chelsea N. Davis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John J. Tomes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J. Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
263
|
Nath Neerukonda S, Egan NA, Patria J, Assakhi I, Tavlarides-Hontz P, Modla S, Muñoz ER, Hudson MB, Parcells MS. Comparison of exosomes purified via ultracentrifugation (UC) and Total Exosome Isolation (TEI) reagent from the serum of Marek’s disease virus (MDV)-vaccinated and tumor-bearing chickens. J Virol Methods 2019; 263:1-9. [DOI: 10.1016/j.jviromet.2018.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
|
264
|
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, et alThéry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DCI, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AGE, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li ITS, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SLN, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen ENM, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BCH, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IKH, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KMA, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PRM, Silva AM, Skowronek A, Snyder OL, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BWM, van der Grein SG, Van Deun J, van Herwijnen MJC, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MHM, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7:1535750. [PMID: 30637094 PMCID: PMC6322352 DOI: 10.1080/20013078.2018.1535750] [Show More Authors] [Citation(s) in RCA: 7534] [Impact Index Per Article: 1076.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/04/2022] Open
Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Collapse
Affiliation(s)
- Clotilde Théry
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Kenneth W Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
- The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Elena Aikawa
- Brigham and Women’s Hospital, Center for Interdisciplinary Cardiovascular Sciences, Boston, MA, USA
- Harvard Medical School, Cardiovascular Medicine, Boston, MA, USA
| | - Maria Jose Alcaraz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Valencia, Spain
| | | | | | - Anna Antoniou
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University Hospital Bonn (UKB), Bonn, Germany
| | - Tanina Arab
- Université de Lille, INSERM, U-1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse - PRISM, Lille, France
| | - Fabienne Archer
- University of Lyon, INRA, EPHE, UMR754 Viral Infections and Comparative Pathology, Lyon, France
| | - Georgia K Atkin-Smith
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - D Craig Ayre
- Atlantic Cancer Research Institute, Moncton, Canada
- Mount Allison University, Department of Chemistry and Biochemistry, Sackville, Canada
| | - Jean-Marie Bach
- Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France
| | - Daniel Bachurski
- University of Cologne, Department of Internal Medicine I, Cologne, Germany
| | - Hossein Baharvand
- Royan Institute for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran
- University of Science and Culture, ACECR, Department of Developmental Biology, Tehran, Iran
| | - Leonora Balaj
- Massachusetts General Hospital, Department of Neurosurgery, Boston, MA, USA
| | | | - Natalie N Bauer
- University of South Alabama, Department of Pharmacology, Center for Lung Biology, Mobile, AL, USA
| | - Amy A Baxter
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Mary Bebawy
- University of Technology Sydney, Discipline of Pharmacy, Graduate School of Health, Sydney, Australia
| | | | - Apolonija Bedina Zavec
- National Institute of Chemistry, Department of Molecular Biology and Nanobiotechnology, Ljubljana, Slovenia
| | - Abderrahim Benmoussa
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | | | - Paolo Bergese
- CSGI - Research Center for Colloids and Nanoscience, Florence, Italy
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Ewa Bielska
- University of Birmingham, Institute of Microbiology and Infection, Birmingham, UK
| | | | - Sylwia Bobis-Wozowicz
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
| | - Eric Boilard
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | - Wilfrid Boireau
- FEMTO-ST Institute, UBFC, CNRS, ENSMM, UTBM, Besançon, France
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR) of Italy, Palermo, Italy
| | - Francesc E Borràs
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-IVECAT Group, Badalona, Spain
- Germans Trias i Pujol University Hospital, Nephrology Service, Badalona, Spain
- Universitat Autònoma de Barcelona, Department of Cell Biology, Physiology & Immunology, Barcelona, Spain
| | - Steffi Bosch
- Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France
| | - Chantal M Boulanger
- INSERM UMR-S 970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xandra Breakefield
- Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Department of Neurology and Radiology, Boston, MA, USA
| | - Andrew M Breglio
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Meadhbh Á Brennan
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Boston, MA, USA
- Université de Nantes, INSERM UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissues, PhyOS, Nantes, France
| | - David R Brigstock
- Nationwide Children’s Hospital, Columbus, OH, USA
- The Ohio State University, Columbus, OH, USA
| | - Alain Brisson
- UMR-CBMN, CNRS-Université de Bordeaux, Bordeaux, France
| | - Marike LD Broekman
- Haaglanden Medical Center, Department of Neurosurgery, The Hague, The Netherlands
- Leiden University Medical Center, Department of Neurosurgery, Leiden, The Netherlands
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Jacqueline F Bromberg
- Memorial Sloan Kettering Cancer Center, Department of Medicine, New York City, NY, USA
- Weill Cornell Medicine, Department of Medicine, New York City, NY, USA
| | | | - Shilpa Buch
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Amy H Buck
- University of Edinburgh, Institute of Immunology & Infection Research, Edinburgh, UK
| | - Dylan Burger
- Kidney Research Centre, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Sara Busatto
- Mayo Clinic, Department of Transplantation, Jacksonville, FL, USA
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Dominik Buschmann
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Benedetta Bussolati
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Edit I Buzás
- MTA-SE Immuno-Proteogenomics Research Groups, Budapest, Hungary
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - James Bryan Byrd
- University of Michigan, Department of Medicine, Ann Arbor, MI, USA
| | - Giovanni Camussi
- University of Torino, Department of Medical Sciences, Torino, Italy
| | - David RF Carter
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - Sarah Caruso
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Lawrence W Chamley
- University of Auckland, Department of Obstetrics and Gynaecology, Auckland, New Zealand
| | - Yu-Ting Chang
- National Taiwan University Hospital, Department of Internal Medicine, Taipei, Taiwan
| | - Chihchen Chen
- National Tsing Hua University, Department of Power Mechanical Engineering, Hsinchu, Taiwan
- National Tsing Hua University, Institute of Nanoengineering and Microsystems, Hsinchu, Taiwan
| | - Shuai Chen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, Dummerstorf, Germany
| | - Lesley Cheng
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | | | - Aled Clayton
- Cardiff University, School of Medicine, Cardiff, UK
| | | | - Alex Cocks
- Cardiff University, School of Medicine, Cardiff, UK
| | - Emanuele Cocucci
- The Ohio State University, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, Columbus, OH, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Robert J Coffey
- Vanderbilt University Medical Center, Epithelial Biology Center, Department of Medicine, Nashville, TN, USA
| | | | - Yvonne Couch
- University of Oxford, Radcliffe Department of Medicine, Acute Stroke Programme - Investigative Medicine, Oxford, UK
| | - Frank AW Coumans
- Academic Medical Centre of the University of Amsterdam, Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands
| | - Beth Coyle
- The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham, UK
| | - Rossella Crescitelli
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | | | | | - Saumya Das
- Massachusetts General Hospital, Boston, MA, USA
| | - Amrita Datta Chaudhuri
- The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | | | - Eliezer F De Santana
- The Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, Brazil
| | - Olivier De Wever
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Hernando A del Portillo
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), PVREX group, Badalona, Spain
- ISGlobal, Hospital Clínic - Universitat de Barcelona, PVREX Group, Barcelona, Spain
| | - Tanguy Demaret
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Sarah Deville
- Universiteit Hasselt, Diepenbeek, Belgium
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Andrew Devitt
- Aston University, School of Life & Health Sciences, Birmingham, UK
| | - Bert Dhondt
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University Hospital, Department of Urology, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | | | | | - Vincenza Dolo
- University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy
| | - Ana Paula Dominguez Rubio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Massimo Dominici
- TPM of Mirandola, Mirandola, Italy
- University of Modena and Reggio Emilia, Division of Oncology, Modena, Italy
| | - Mauricio R Dourado
- University of Campinas, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, Brazil
- University of Oulu, Faculty of Medicine, Cancer and Translational Medicine Research Unit, Oulu, Finland
| | - Tom AP Driedonks
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | | | - Heather M Duncan
- McGill University, Division of Experimental Medicine, Montreal, Canada
- McGill University, The Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, Canada
| | - Ramon M Eichenberger
- James Cook University, Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia
| | - Karin Ekström
- University of Gothenburg, Institute of Clinical Sciences at Sahlgrenska Academy, Department of Biomaterials, Gothenburg, Sweden
| | - Samir EL Andaloussi
- Evox Therapeutics Limited, Oxford, UK
- Karolinska Institute, Stockholm, Sweden
| | | | - Uta Erdbrügger
- University of Virginia Health System, Department of Medicine, Division of Nephrology, Charlottesville, VA, USA
| | - Juan M Falcón-Pérez
- CIC bioGUNE, CIBERehd, Exosomes Laboratory & Metabolomics Platform, Derio, Spain
- IKERBASQUE Research Science Foundation, Bilbao, Spain
| | - Farah Fatima
- University of São Paulo, Ribeirão Preto Medical School, Department of Pathology and Forensic Medicine, Ribeirão Preto, Brazil
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Miguel Flores-Bellver
- University of Colorado, School of Medicine, Department of Ophthalmology, Cell Sight-Ocular Stem Cell and Regeneration Program, Aurora, CO, USA
| | - András Försönits
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | | | - Fabia Fricke
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Applied Tumor Biology, Heidelberg, Germany
- University Hospital Heidelberg, Institute of Pathology, Applied Tumor Biology, Heidelberg, Germany
| | - Gregor Fuhrmann
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Susanne Gabrielsson
- Karolinska Institute, Department of Medicine Solna, Division for Immunology and Allergy, Stockholm, Sweden
| | - Ana Gámez-Valero
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-IVECAT Group, Badalona, Spain
- Universitat Autònoma de Barcelona, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Department of Pathology, Barcelona, Spain
| | | | - Kathrin Gärtner
- Helmholtz Center Munich German Research Center for Environmental Health, Research Unit Gene Vectors, Munich, Germany
| | - Raphael Gaudin
- INSERM U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Yong Song Gho
- POSTECH (Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea
| | - Bernd Giebel
- University Hospital Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany
| | - Caroline Gilbert
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | - Mario Gimona
- Paracelsus Medical University, GMP Unit, Salzburg, Austria
| | - Ilaria Giusti
- University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy
| | - Deborah CI Goberdhan
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, UK
| | - André Görgens
- Evox Therapeutics Limited, Oxford, UK
- Karolinska Institute, Clinical Research Center, Department of Laboratory Medicine, Stockholm, Sweden
- University Hospital Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany
| | - Sharon M Gorski
- BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, Canada
| | - David W Greening
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Julia Christina Gross
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Milan, Italy
| | - Gopal N Gupta
- Loyola University Chicago, Department of Urology, Maywood, IL, USA
| | - Dakota Gustafson
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Aase Handberg
- Aalborg University Hospital, Department of Clinical Biochemistry, Aalborg, Denmark
- Aalborg University, Clinical Institute, Aalborg, Denmark
| | - Reka A Haraszti
- University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA
| | | | - Hargita Hegyesi
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - An Hendrix
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Andrew F Hill
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Fred H Hochberg
- Scintillon Institute, La Jolla, CA, USA
- University of California, San Diego, Department of Neurosurgery, La Jolla, CA, USA
| | - Karl F Hoffmann
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth, United Kingdom
| | - Beth Holder
- Imperial College London, London, UK
- MRC The Gambia, Fajara, The Gambia
| | | | - Baharak Hosseinkhani
- Hasselt University, Biomedical Research Institute (BIOMED), Department of Medicine and Life Sciences, Hasselt, Belgium
| | - Guoku Hu
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Yiyao Huang
- Nanfang Hospital, Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Veronica Huber
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Immunotherapy of Human Tumors, Milan, Italy
| | | | | | - Tsuneya Ikezu
- Boston University School of Medicine, Boston, MA, USA
| | - Jameel M Inal
- University of Hertfordshire, School of Life and Medical Sciences, Biosciences Research Group, Hatfield, UK
| | - Mustafa Isin
- Istanbul University Oncology Institute, Basic Oncology Department, Istanbul, Turkey
| | - Alena Ivanova
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg, Germany
| | - Hannah K Jackson
- The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham, UK
| | - Soren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Section 4242 - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Institute of Clinical Medicine, Copenhagen, Denmark
| | - Steven M Jay
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, USA
| | - Muthuvel Jayachandran
- Mayo Clinic, College of Medicine, Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | | | - Lanzhou Jiang
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Suzanne M Johnson
- University of Manchester, Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester, UK
| | - Jennifer C Jones
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Ambrose Jong
- Children’s Hospital of Los Angeles, Los Angeles, CA, USA
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Tijana Jovanovic-Talisman
- City of Hope Comprehensive Cancer Center, Beckman Research Institute, Department of Molecular Medicine, Duarte, CA, USA
| | - Stephanie Jung
- German Research Center for Environmental Health, Institute for Virology, Munich, Germany
| | - Raghu Kalluri
- University of Texas MD Anderson Cancer Center, Department of Cancer Biology, Metastasis Research Center, Houston, TX, USA
| | - Shin-ichi Kano
- The Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Sukhbir Kaur
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD, USA
| | - Yumi Kawamura
- National Cancer Center Research Institute, Tokyo, Japan
- University of Tsukuba, Tsukuba, Japan
| | - Evan T Keller
- University of Michigan, Biointerfaces Institute, Ann Arbor, MI, USA
- University of Michigan, Department of Urology, Ann Arbor, MI, USA
| | - Delaram Khamari
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Elena Khomyakova
- École normale supérieure, Paris, France
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Anastasia Khvorova
- University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA
| | - Peter Kierulf
- Oslo University Hospital, Department of Medical Biochemistry, Blood Cell Research Group, Oslo, Norway
| | - Kwang Pyo Kim
- Kyung Hee University, Department of Applied Chemistry, Yongin, Korea
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, Canada
| | | | - David J Klinke
- West Virginia University, Department of Chemical and Biomedical Engineering and WVU Cancer Institute, Morgantown, WV, USA
- West Virginia University, Department of Microbiology Immunology and Cell Biology, Morgantown, WV, USA
| | - Miroslaw Kornek
- German Armed Forces Central Hospital, Department of General, Visceral and Thoracic Surgery, Koblenz, Germany
- Saarland University Medical Center, Department of Medicine II, Homburg, Germany
| | - Maja M Kosanović
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Árpád Ferenc Kovács
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | | | - Susanne Krasemann
- University Medical Center Hamburg-Eppendorf, Institute of Neuropathology, Hamburg, Germany
| | - Mirja Krause
- Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Gina D Kusuma
- Hudson Institute of Medical Research, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Sören Kuypers
- Hasselt University, Biomedical Research Institute (BIOMED), Hasselt, Belgium
| | - Saara Laitinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Scott M Langevin
- Cincinnati Cancer Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lucia R Languino
- Thomas Jefferson University, Sidney Kimmel Medical School, Department of Cancer Biology, Philadelphia, PA, USA
| | - Joanne Lannigan
- University of Virginia, Flow Cytometry Core, School of Medicine, Charlottesville, VA, USA
| | - Cecilia Lässer
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Louise C Laurent
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, La Jolla, CA, USA
| | - Gregory Lavieu
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | | | - Soazig Le Lay
- INSERM U1063, Université d’Angers, CHU d’Angers, Angers, France
| | - Myung-Shin Lee
- Eulji University, School of Medicine, Daejeon, South Korea
| | | | - Debora S Lemos
- Federal University of Paraná, Department of Genetics, Human Molecular Genetics Laboratory, Curitiba, Brazil
| | - Metka Lenassi
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Ljubljana, Slovenia
| | | | - Isaac TS Li
- University of British Columbia Okanagan, Kelowna, Canada
| | - Ke Liao
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Sten F Libregts
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Department of Medicine, Cambridge NIHR BRC Cell Phenotyping Hub, Cambridge, UK
| | - Erzsebet Ligeti
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | - Rebecca Lim
- Hudson Institute of Medical Research, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Sai Kiang Lim
- Institute of Medical Biology (IMB), Agency for Science and Technology (A*STAR), Singapore
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Karen Linnemannstöns
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Alicia Llorente
- Oslo University Hospital-The Norwegian Radium Hospital, Institute for Cancer Research, Department of Molecular Cell Biology, Oslo, Norway
| | - Catherine A Lombard
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Magdalena J Lorenowicz
- Utrecht University, University Medical Center Utrecht, Center for Molecular Medicine & Regenerative Medicine Center, Utrecht, The Netherlands
| | - Ákos M Lörincz
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | - Jan Lötvall
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Jason Lovett
- Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa
| | - Michelle C Lowry
- Trinity College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Xavier Loyer
- INSERM UMR-S 970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Quan Lu
- Harvard University, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Barbara Lukomska
- Mossakowski Medical Research Centre, NeuroRepair Department, Warsaw, Poland
| | - Taral R Lunavat
- K.G. Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sybren LN Maas
- Utrecht University, University Medical Center Utrecht, Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, Utrecht, The Netherlands
- Utrecht University, University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | | | - Antonio Marcilla
- Universitat de València, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Àrea de Parasitologia, Valencia, Spain
- Universitat de València, Health Research Institute La Fe, Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Valencia, Spain
| | - Jacopo Mariani
- Università degli Studi di Milano, Department of Clinical Sciences and Community Health, EPIGET LAB, Milan, Italy
| | | | | | | | | | | | - Mathilde Mathieu
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Suresh Mathivanan
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Marco Maugeri
- University of Gothenburg, Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | | | - Mark J McVey
- SickKids Hospital, Department of Anesthesia and Pain Medicine, Toronto, Canada
- University of Toronto, Department of Anesthesia, Toronto, Canada
| | - David G Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL, USA
| | - Katie L Meehan
- The School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Inge Mertens
- University of Antwerp, Centre for Proteomics, Antwerp, Belgium
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Valentina R Minciacchi
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Andreas Möller
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Malene Møller Jørgensen
- Aalborg University Hospital, Department of Clinical Immunology, Aalborg, Denmark
- EVSEARCH.DK, Denmark
| | - Aizea Morales-Kastresana
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | | | - François Mullier
- Namur Thrombosis and Hemostasis Center (NTHC), NARILIS, Namur, Belgium
- Université Catholique de Louvain, CHU UCL Namur, Hematology-Hemostasis Laboratory, Yvoir, Belgium
| | - Maurizio Muraca
- University of Padova, Department of Women’s and Children’s Health, Padova, Italy
| | - Luca Musante
- University of Virginia Health System, Department of Medicine, Division of Nephrology, Charlottesville, VA, USA
| | - Veronika Mussack
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Dillon C Muth
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Kathryn H Myburgh
- Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa
| | - Tanbir Najrana
- Brown University, Women and Infants Hospital, Providence, RI, USA
| | - Muhammad Nawaz
- University of Gothenburg, Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | - Irina Nazarenko
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Freiburg, Germany
| | - Peter Nejsum
- Aarhus University, Department of Clinical Medicine, Aarhus, Denmark
| | - Christian Neri
- Sorbonne Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), Paris, France
| | - Tommaso Neri
- University of Pisa, Centro Dipartimentale di Biologia Cellulare Cardio-Respiratoria, Pisa, Italy
| | - Rienk Nieuwland
- Academic Medical Centre of the University of Amsterdam, Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia, Rio de Janeiro, Brazil
| | | | - Esther NM Nolte-’t Hoen
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Nicole Noren Hooten
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Lorraine O’Driscoll
- Trinity College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Tina O’Grady
- University of Liège, GIGA-R(MBD), PSI Laboratory, Liège, Belgium
| | - Ana O’Loghlen
- Queen Mary University of London, Blizard Institute, Epigenetics & Cellular Senescence Group, London, UK
| | - Takahiro Ochiya
- National Cancer Center Research Institute, Division of Molecular and Cellular Medicine, Tokyo, Japan
| | - Martin Olivier
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-UAM, Department of Nephrology and Hypertension, Madrid, Spain
- Spanish Kidney Research Network, REDINREN, Madrid, Spain
- Universidad Autónoma de Madrid, School of Medicine, Department of Medicine, Madrid, Spain
| | - Luis A Ortiz
- Graduate School of Public Health at the University of Pittsburgh, Division of Occupational and Environmental Medicine, Pittsburgh, PA, USA
| | | | - Ole Østergaard
- Statens Serum Institut, Department of Autoimmunology and Biomarkers, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Matias Ostrowski
- University of Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Jaesung Park
- POSTECH (Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea
| | - D. Michiel Pegtel
- Amsterdam University Medical Centers, Department of Pathology, Amsterdam, The Netherlands
| | - Hector Peinado
- Spanish National Cancer Research Center (CNIO), Molecular Oncology Programme, Microenvironment and Metastasis Laboratory, Madrid, Spain
| | - Francesca Perut
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Bologna, Italy
| | - Michael W Pfaffl
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Donald G Phinney
- The Scripps Research Institute-Scripps Florida, Department of Molecular Medicine, Jupiter, FL, USA
| | - Bartijn CH Pieters
- Radboud University Medical Center, Department of Rheumatology, Nijmegen, The Netherlands
| | - Ryan C Pink
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - David S Pisetsky
- Duke University Medical Center, Departments of Medicine and Immunology, Durham, NC, USA
- Durham VAMC, Medical Research Service, Durham, NC, USA
| | | | - Iva Polakovicova
- Pontificia Universidad Católica de Chile, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Pontificia Universidad Católica de Chile, Faculty of Medicine, Department of Hematology-Oncology, Santiago, Chile
| | - Ivan KH Poon
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Bonita H Powell
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | | | - Lynn Pulliam
- University of California, San Francisco, CA, USA
- Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Peter Quesenberry
- The Warren Alpert Medical School of Brown University, Department of Medicine, Providence, RI, USA
| | - Annalisa Radeghieri
- CSGI - Research Center for Colloids and Nanoscience, Florence, Italy
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Robert L Raffai
- Department of Veterans Affairs, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Stefania Raimondo
- University of Palermo, Department of Biopathology and Medical Biotechnologies, Palermo, Italy
| | - Janusz Rak
- McGill University, Montreal, Canada
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Marcel I Ramirez
- Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade Federal de Paraná, Paraná, Brazil
| | - Graça Raposo
- Institut Curie, CNRS UMR144, PSL Research University, Paris, France
| | - Morsi S Rayyan
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Neta Regev-Rudzki
- Weizmann Institute of Science, Department of Biomolecular Sciences, Rehovot, Israel
| | - Franz L Ricklefs
- University Medical Center Hamburg-Eppendorf, Department of Neurosurgery, Hamburg, Germany
| | - Paul D Robbins
- University of Minnesota Medical School, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN, USA
| | - David D Roberts
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD, USA
| | | | - Eva Rohde
- Paracelsus Medical University, Department of Transfusion Medicine, Salzburg, Austria
- Paracelsus Medical University, GMP Unit, Salzburg, Austria
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
| | - Sophie Rome
- University of Lyon, Lyon-Sud Faculty of Medicine, CarMeN Laboratory (UMR INSERM 1060-INRA 1397), Pierre-Bénite, France
| | - Kasper MA Rouschop
- Maastricht University, GROW, School for Oncology and Developmental Biology, Maastricht Radiation Oncology (MaastRO) Lab, Maastricht, The Netherlands
| | - Aurelia Rughetti
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy
| | | | - Paula Saá
- American Red Cross, Scientific Affairs, Gaithersburg, MD, USA
| | - Susmita Sahoo
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Cardiology, New York City, NY, USA
| | - Edison Salas-Huenuleo
- Advanced Center for Chronic Diseases, Santiago, Chile
- University of Chile, Faculty of Chemical and Pharmaceutical Science, Laboratory of Nanobiotechnology and Nanotoxicology, Santiago, Chile
| | - Catherine Sánchez
- Clínica las Condes, Extracellular Vesicles in Personalized Medicine Group, Santiago, Chile
| | - Julie A Saugstad
- Oregon Health & Science University, Department of Anesthesiology & Perioperative Medicine, Portland, OR, USA
| | - Meike J Saul
- Technische Universität Darmstadt, Department of Biology, Darmstadt, Germany
| | - Raymond M Schiffelers
- University Medical Center Utrecht, Laboratory for Clinical Chemistry & Hematology, Utrecht, The Netherlands
| | - Raphael Schneider
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
- University of Toronto, Department of Medicine, Division of Neurology, Toronto, Canada
| | - Tine Hiorth Schøyen
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | | | - Eriomina Shahaj
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Immunotherapy of Human Tumors, Milan, Italy
| | - Shivani Sharma
- University of California, Los Angeles, California NanoSystems Institute, Los Angeles, CA, USA
- University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Olga Shatnyeva
- AstraZeneca, Discovery Sciences, IMED Biotech Unit, Gothenburg, Sweden
| | - Faezeh Shekari
- Royan Institute for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran
| | - Ganesh Vilas Shelke
- University of Gothenburg, Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Cancer Center, Gothenburg, Sweden
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Ashok K Shetty
- Research Service, Olin E. Teague Veterans’ Medical Center, Temple, TX, USA
- Texas A&M University College of Medicine, Institute for Regenerative Medicine and Department of Molecular and Cellular Medicine, College Station, TX, USA
| | | | - Pia R-M Siljander
- University of Helsinki, EV Core Facility, Helsinki, Finland
- University of Helsinki, Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, EV group, Helsinki, Finland
| | - Andreia M Silva
- INEB - Instituto de Engenharia Biomédica, Porto, Portugal
- University of Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- University of Porto, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Agata Skowronek
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Orman L Snyder
- Kansas State University, College of Veterinary Medicine, Manhattan, KS, USA
| | | | - Barbara W Sódar
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Carolina Soekmadji
- QIMR Berghofer Medical Research Institute, Herston, Australia
- The University of Queensland, Brisbane, Australia
| | - Javier Sotillo
- James Cook University, Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia
| | | | - Willem Stoorvogel
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Shannon L Stott
- Harvard Medical School, Department of Medicine, Boston, MA, USA
- Massachusetts General Cancer Center, Boston, MA, USA
| | - Erwin F Strasser
- FAU Erlangen-Nuremberg, Transfusion and Haemostaseology Department, Erlangen, Germany
| | - Simon Swift
- University of Auckland, Department of Molecular Medicine and Pathology, Auckland, New Zealand
| | - Hidetoshi Tahara
- Hiroshima University, Institute of Biomedical & Health Sciences, Department of Cellular and Molecular Biology, Hiroshima, Japan
| | - Muneesh Tewari
- University of Michigan, Biointerfaces Institute, Ann Arbor, MI, USA
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
- University of Michigan, Department of Internal Medicine - Hematology/Oncology Division, Ann Arbor, MI, USA
| | - Kate Timms
- University of Manchester, Manchester, UK
| | - Swasti Tiwari
- Georgetown University, Department of Medicine, Washington, DC, USA
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Molecular Medicine & Biotechnology, Lucknow, India
| | - Rochelle Tixeira
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Mercedes Tkach
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Wei Seong Toh
- National University of Singapore, Faculty of Dentistry, Singapore
| | - Richard Tomasini
- INSERM U1068, Aix Marseille University, CNRS UMR7258, Marseille, France
| | | | - Juan Pablo Tosar
- Institut Pasteur de Montevideo, Functional Genomics Unit, Montevideo, Uruguay
- Universidad de la República, Faculty of Science, Nuclear Research Center, Analytical Biochemistry Unit, Montevideo, Uruguay
| | | | - Lorena Urbanelli
- University of Perugia, Department of Chemistry, Biology and Biotechnology, Perugia, Italy
| | - Pieter Vader
- University Medical Center Utrecht, Laboratory for Clinical Chemistry & Hematology, Utrecht, The Netherlands
| | - Bas WM van Balkom
- University Medical Center Utrecht, Department of Nephrology and Hypertension, Utrecht, The Netherlands
| | - Susanne G van der Grein
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Jan Van Deun
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Martijn JC van Herwijnen
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | | | | | - Martin E van Royen
- Department of Pathology, Erasmus MC, Erasmus Optical Imaging Centre, Rotterdam, The Netherlands
| | | | - M Helena Vasconcelos
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- University of Porto, Faculty of Pharmacy (FFUP), Porto, Portugal
- University of Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ivan J Vechetti
- University of Kentucky, College of Medicine, Department of Physiology, Lexington, KY, USA
| | - Tiago D Veit
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Brazil
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- The University of Melbourne, The Department of Medicine, Melbourne, Australia
| | - Émilie Velot
- UMR 7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Beate Vestad
- Oslo University Hospital Rikshospitalet, Research Institute of Internal Medicine, Oslo, Norway
- Regional Research Network on Extracellular Vesicles, RRNEV, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Jose L Viñas
- Kidney Research Centre, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Tamás Visnovitz
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Krisztina V Vukman
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Jessica Wahlgren
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal, Sweden
| | - Dionysios C Watson
- Case Western Reserve University, Department of Medicine, Cleveland, OH, USA
- University Hospitals Cleveland Medical Center, Department of Medicine, Cleveland, OH, USA
| | - Marca HM Wauben
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Alissa Weaver
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN, USA
| | | | - Viktoria Weber
- Danube University Krems, Department for Biomedical Research and Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Krems an der Donau, Austria
| | - Ann M Wehman
- University of Würzburg, Rudolf Virchow Center, Würzburg, Germany
| | - Daniel J Weiss
- The University of Vermont Medical Center, Department of Medicine, Burlington, VT, USA
| | - Joshua A Welsh
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Sebastian Wendt
- University Hospital RWTH Aachen, Department of Thoracic and Cardiovascular Surgery, Aachen, Germany
| | - Asa M Wheelock
- Karolinska Institute, Department of Medicine and Center for Molecular Medicine, Respiratory Medicine Unit, Stockholm, Sweden
| | - Zoltán Wiener
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Leonie Witte
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Joy Wolfram
- Chinese Academy of Sciences, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, TX, USA
- Mayo Clinic, Department of Transplantation Medicine/Department of Physiology and Biomedical Engineering, Jacksonville, FL, USA
| | - Angeliki Xagorari
- George Papanicolaou Hospital, Public Cord Blood Bank, Department of Haematology - BMT Unit, Thessaloniki, Greece
| | - Patricia Xander
- Universidade Federal de São Paulo Campus Diadema, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, São Paulo, Brazil
| | - Jing Xu
- BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, Canada
| | - Xiaomei Yan
- Xiamen University, Department of Chemical Biology, Xiamen, China
| | - María Yáñez-Mó
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Madrid, Spain
| | - Hang Yin
- Tsinghua University, School of Pharmaceutical Sciences, Beijing, China
| | - Yuana Yuana
- Technical University Eindhoven, Faculty Biomedical Technology, Eindhoven, The Netherlands
| | - Valentina Zappulli
- University of Padova, Department of Comparative Biomedicine and Food Science, Padova, Italy
| | - Jana Zarubova
- Institute of Physiology CAS, Department of Biomaterials and Tissue Engineering, BIOCEV, Vestec, Czech Republic
- Institute of Physiology CAS, Department of Biomaterials and Tissue Engineering, Prague, Czech Republic
- University of California, Los Angeles, Department of Bioengineering, Los Angeles, CA, USA
| | - Vytautas Žėkas
- Vilnius University, Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Vilnius, Lithuania
| | - Jian-ye Zhang
- Guangzhou Medical University, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, China
| | - Zezhou Zhao
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Lei Zheng
- Nanfang Hospital, Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China
| | | | - Antje M Zickler
- Karolinska Institute, Clinical Research Center, Unit for Molecular Cell and Gene Therapy Science, Stockholm, Sweden
| | - Pascale Zimmermann
- Aix-Marseille Université, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- KU Leuven (Leuven University), Department of Human Genetics, Leuven, Belgium
| | - Angela M Zivkovic
- University of California, Davis, Department of Nutrition, Davis, CA, USA
| | | | - Ewa K Zuba-Surma
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
| |
Collapse
|
265
|
Ultracentrifugation versus kit exosome isolation: nanoLC-MS and other tools reveal similar performance biomarkers, but also contaminations. Future Sci OA 2018; 5:FSO359. [PMID: 30652024 PMCID: PMC6331754 DOI: 10.4155/fsoa-2018-0088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023] Open
Abstract
Aim For isolation of exosomes, differential ultracentrifugation and an isolation kit from a major vendor were compared. Materials & methods 'Case study' exosomes isolated from patient-derived cells from glioblastoma multiforme and a breast cancer cell line were analyzed. Results Transmission electron microscopy, dynamic light scattering, western blotting, and so forth, revealed comparable performance. Potential protein biomarkers for both diseases were also identified in the isolates using nanoLC-MS. Western blotting and nanoLC-MS also revealed negative exosome markers regarding both isolation approaches. Conclusion The two isolation methods had an overall similar performance, but we hesitate to use the term 'exosome isolation' as impurities may be present with both isolation methods. NanoLC-MS can detect disease biomarkers in exosomes and is useful for critical assessment of exosome enrichment procedures.
Collapse
|
266
|
Dai YD, Dias P. Exosomes or Microvesicles, a Secreted Subcellular Organelle Contributing to Inflammation and Diabetes. Diabetes 2018; 67:2154-2156. [PMID: 30348822 DOI: 10.2337/dbi18-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yang D Dai
- Biomedical Research Institute of Southern California, San Diego, CA
- The Scripps Research Institute, La Jolla, CA
| | - Peter Dias
- Biomedical Research Institute of Southern California, San Diego, CA
| |
Collapse
|
267
|
Hisey CL, Dorayappan KDP, Cohn DE, Selvendiran K, Hansford DJ. Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes. LAB ON A CHIP 2018; 18:3144-3153. [PMID: 30191215 DOI: 10.1039/c8lc00834e] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Exosomes are nanoscale vesicles found in many bodily fluids which play a significant role in cell-to-cell signaling and contain biomolecules indicative of their cells of origin. Recently, microfluidic devices have provided the ability to efficiently capture exosomes based on specific membrane biomarkers, but releasing the captured exosomes intact and label-free for downstream characterization and experimentation remains a challenge. We present a herringbone-grooved microfluidic device which is covalently functionalized with antibodies against general and cancer exosome membrane biomarkers (CD9 and EpCAM) to isolate exosomes from small volumes of high-grade serous ovarian cancer (HGSOC) serum. Following capture, intact exosomes are released label-free using a low pH buffer and immediately neutralized downstream to ensure their stability. Characterization of captured and released exosomes was performed using fluorescence microscopy, nanoparticle tracking analysis, flow-cytometry, and SEM. Our results demonstrate the successful isolation of intact and label-free exosomes, indicate that the amount of both total and EpCAM+ exosomes increases with HGSOC disease progression, and demonstrate the downstream internalization of isolated exosomes by OVCAR8 cells. This device and approach can be utilized for a nearly limitless range of downstream exosome analytical and experimental techniques, both on and off-chip.
Collapse
Affiliation(s)
- Colin L Hisey
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
268
|
Burkova EE, Dmitrenok PS, Bulgakov DV, Vlassov VV, Ryabchikova EI, Nevinsky GA. Exosomes from human placenta purified by affinity chromatography on sepharose bearing immobilized antibodies against CD81 tetraspanin contain many peptides and small proteins. IUBMB Life 2018; 70:1144-1155. [PMID: 30277306 DOI: 10.1002/iub.1928] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are nanovesicles (40-100 nm) containing various RNAs and different proteins. Exosomes are involved in intracellular communication and immune system function. Exosomes from different sources are usually isolated using standard methods-centrifugation and ultracentrifugations. Exosomes isolated by these procedures were reported to contain from a few dozen to thousands of different proteins. Here crude vesicle preparations from five placentas (normal pregnancy) were first obtained using standard centrifugation procedures. According to electron-microscopic studies, these preparations contained vesicles of different size (30-225 nm), particles of round shape of average electron density ("nonvesicles" 20-40 nm) (A), structured clusters of associated proteins and shapeless aggregations (B), as well as ring-shaped 10-14 nm structures formed by ferritin (C). After additional purification of the vesicle preparations by gel filtration on Sepharose 4B, the main part of protein structures was removed; however, the preparations still contained small admixtures of components A-C. Further purification of the preparations by affinity chromatography on Sepharose bearing immobilized antibodies against exosome surface protein CD81 led to isolation of highly purified exosomes (40-100 nm). These exosomes according to electron microscopy data contained tetraspanin embedded in the membrane, which was stained with antibodies against CD81 conjugated with 10-12 nm gold nanoparticles. SDS-PAGE and MALDI MS and MS/MS mass spectrometry of tryptic hydrolysates of proteins contained in these exosomes revealed eleven major proteins (>10 kDa): hemoglobin subunits, CD81, interleukin-1 receptor, annexin A5, cytoplasmic actin, alpha-actin-4, alkaline phosphatase, human serum albumin, serotransferrin, and lactotrasferrin. Using MALDI mass analysis of the highly purified exosomes, we for the first time found that in addition to the large proteins (>10 kDa), exosomes having affinity to CD81 contain more than 27 different peptides and small proteins of 2-10 kDa. This finding can be useful for revealing biological functions of pure exosomes. © 2018 IUBMB Life, 70(11):1144-1155, 2018.
Collapse
Affiliation(s)
- Evgeniya E Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Valentin V Vlassov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Elena I Ryabchikova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
269
|
Wu X, Li L, Iliuk A, Tao WA. Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles. J Proteome Res 2018; 17:3308-3316. [PMID: 30080416 PMCID: PMC7236337 DOI: 10.1021/acs.jproteome.8b00459] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Analysis of protein phosphorylation in extracellular vesicles (EVs) offers an unprecedented potential for understanding cancer signaling and early stage disease diagnosis. However, prior to the phosphoproteome analysis step, the isolation of EVs from biofluids remains a challenging issue to overcome due to the low yield and impurity from current isolation methods. Here, we carry out an extensive assessment of several EV isolation methods including a novel rapid isolation method EVTRAP for highly efficient capture of extracellular vesicles from human urine sample. We demonstrate that over 95% recovery yield can be consistently achieved by EVTRAP, a significant improvement over current standard techniques. We then applied EVTRAP to identify over 16 000 unique peptides representing 2000 unique EV proteins from 200 μL urine sample, including all known EV markers with substantially increased recovery levels over ultracentrifugation. Most importantly, close to 2000 unique phosphopeptides were identified from more than 860 unique phosphoproteins using 10 mL of urine. The data demonstrated that EVTRAP is a highly effective and potentially widely implementable clinical isolation method for analysis of EV protein phosphorylation.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Li
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - W. Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| |
Collapse
|
270
|
Yoshioka Y, Katsuda T, Ochiya T. Extracellular vesicles and encapusulated miRNAs as emerging cancer biomarkers for novel liquid biopsy. Jpn J Clin Oncol 2018; 48:869-876. [DOI: 10.1093/jjco/hyy120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
271
|
Oeyen E, Van Mol K, Baggerman G, Willems H, Boonen K, Rolfo C, Pauwels P, Jacobs A, Schildermans K, Cho WC, Mertens I. Ultrafiltration and size exclusion chromatography combined with asymmetrical-flow field-flow fractionation for the isolation and characterisation of extracellular vesicles from urine. J Extracell Vesicles 2018; 7:1490143. [PMID: 29988836 PMCID: PMC6032024 DOI: 10.1080/20013078.2018.1490143] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) have a great potential in clinical applications. However, their isolation from different bodily fluids and their characterisation are currently not optimal or standardised. Here, we report the results of examining the performance of ultrafiltration combined with size exclusion chromatography (UF-SEC) to isolate EVs from urine. The results reveal that UF-SEC is an efficient method and provides high purity. Furthermore, we introduce asymmetrical-flow field-flow fractionation coupled with a UV detector and multi-angle light-scattering detector (AF4/UV-MALS) as a characterisation method and compare it with current methods. We demonstrate that AF4/UV-MALS is a straightforward and reproducible method for determining size, amount and purity of isolated urinary EVs.
Collapse
Affiliation(s)
- Eline Oeyen
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | | | - Geert Baggerman
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Hanny Willems
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Christian Rolfo
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) & Edegem & Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Pathological Anatomy Department, Antwerp University Hospital (UZA), Edegem, Belgium
| | - An Jacobs
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Inge Mertens
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
272
|
Ku A, Lim HC, Evander M, Lilja H, Laurell T, Scheding S, Ceder Y. Acoustic Enrichment of Extracellular Vesicles from Biological Fluids. Anal Chem 2018; 90:8011-8019. [PMID: 29806448 PMCID: PMC7556308 DOI: 10.1021/acs.analchem.8b00914] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a rich source of biomarkers providing diagnostic and prognostic information in diseases such as cancer. Large-scale investigations into the contents of EVs in clinical cohorts are warranted, but a major obstacle is the lack of a rapid, reproducible, efficient, and low-cost methodology to enrich EVs. Here, we demonstrate the applicability of an automated acoustic-based technique to enrich EVs, termed acoustic trapping. Using this technology, we have successfully enriched EVs from cell culture conditioned media and urine and blood plasma from healthy volunteers. The acoustically trapped samples contained EVs ranging from exosomes to microvesicles in size and contained detectable levels of intravesicular microRNAs. Importantly, this method showed high reproducibility and yielded sufficient quantities of vesicles for downstream analysis. The enrichment could be obtained from a sample volume of 300 μL or less, an equivalent to 30 min of enrichment time, depending on the sensitivity of downstream analysis. Taken together, acoustic trapping provides a rapid, automated, low-volume compatible, and robust method to enrich EVs from biofluids. Thus, it may serve as a novel tool for EV enrichment from large number of samples in a clinical setting with minimum sample preparation.
Collapse
Affiliation(s)
- Anson Ku
- Department of Translational Medicine, Lund University, SE-202 13 Malmö, Sweden
| | - Hooi Ching Lim
- Division of Molecular Hematology and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| | - Mikael Evander
- Department of Biomedical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - Hans Lilja
- Department of Translational Medicine, Lund University, SE-202 13 Malmö, Sweden
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K., OX3 9DU
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
- Department of Hematology, Skåne University Hospital, SE-221-85, Lund, Sweden
| | - Yvonne Ceder
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81 Lund, Sweden
| |
Collapse
|
273
|
Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc Natl Acad Sci U S A 2018; 115:E6604-E6613. [PMID: 29946031 DOI: 10.1073/pnas.1720125115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes dengue fever in humans, worldwide. Using in vitro cell lines derived from Aedes albopictus and Aedes aegypti, the primary vectors of DENV, we report that DENV2/DENV3-infected cells secrete extracellular vesicles (EVs), including exosomes, containing infectious viral RNA and proteins. A full-length DENV2 genome, detected in arthropod EVs, was infectious to naïve mosquito and mammalian cells, including human-skin keratinocytes and blood endothelial cells. Cryo-electron microscopy showed mosquito EVs with a size range from 30 to 250 nm. Treatments with RNase A, Triton X-100, and 4G2 antibody-bead binding assays showed that infectious DENV2-RNA and proteins are contained inside EVs. Viral plaque formation and dilution assays also showed securely contained infectious viral RNA and proteins in EVs are transmitted to human cells. Up-regulated HSP70 upon DENV2 infection showed no role in viral replication and transmission through EVs. In addition, qRT-PCR and immunoblotting results revealed that DENV2 up-regulates expression of a mosquito tetraspanin-domain-containing glycoprotein, designated as Tsp29Fb, in A. aegypti mosquitoes, cells, and EVs. RNAi-mediated silencing and antibody blocking of Tsp29Fb resulted in reduced DENV2 loads in both mosquito cells and EVs. Immunoprecipitation showed Tsp29Fb to directly interact with DENV2 E-protein. Furthermore, treatment with GW4869 (exosome-release inhibitor) affected viral burden, direct interaction of Tsp29Fb with E-protein and EV-mediated transmission of viral RNA and proteins to naïve human cells. In summary, we report a very important finding on EV-mediated transmission of DENV2 from arthropod to mammalian cells through interactions with an arthropod EVs-enriched marker Tsp29Fb.
Collapse
|
274
|
Cheung LS, Sahloul S, Orozaliev A, Song YA. Rapid Detection and Trapping of Extracellular Vesicles by Electrokinetic Concentration for Liquid Biopsy on Chip. MICROMACHINES 2018; 9:E306. [PMID: 30424239 PMCID: PMC6187315 DOI: 10.3390/mi9060306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/04/2023]
Abstract
Exosomes have gained immense importance since their proteomic and genetic contents could potentially be used for disease diagnostics, monitoring of cancer progression, metastasis, and drug efficacy. However, establishing the clinical utility of exosomes has been restricted due to small sizes and high sample loss from extensive sample preparation. Sample loss is particularly critical for body fluids limited in volume and difficult to access, e.g., cerebrospinal fluid. We present a microfluidic technique that locally enhances the concentration of extracellular vesicles extracted from MDA-MB-231 human breast cancer cell lines by using an ion concentration polarization (ICP)-based electrokinetic concentrator. Our design incorporates a trapping mechanism near the conductive polymer membrane; therefore, we can preconcentrate and capture extracellular vesicles simultaneously. Compared with standard fluorescence detection, our method increased the limit of detection (LOD) of extracellular vesicles by two orders of magnitude in 30 min. Our concentrator increased the extracellular vesicle concentration for 5.0 × 10⁷ particles/1 mL (LOD), 5.0 × 10⁸ particles/1 mL, and 5.0 × 10⁸ particles/1 mL by ~100-fold each within 30 min using 45 V. This study demonstrates an alternative platform to simultaneously preconcentrate and capture extracellular vesicles that can be incorporated as part of a liquid biopsy-on-a-chip system for the detection of exosomal biomarkers and analysis of their contents for early cancer diagnosis.
Collapse
Affiliation(s)
- Lucia S Cheung
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Sarah Sahloul
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Ajymurat Orozaliev
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| |
Collapse
|
275
|
Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol 2018; 9:738. [PMID: 29760691 PMCID: PMC5936763 DOI: 10.3389/fimmu.2018.00738] [Citation(s) in RCA: 663] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Cells release membrane enclosed nano-sized vesicles termed extracellular vesicles (EVs) that function as mediators of intercellular communication by transferring biological information between cells. Tumor-derived EVs have emerged as important mediators in cancer development and progression, mainly through transfer of their bioactive content which can include oncoproteins, oncogenes, chemokine receptors, as well as soluble factors, transcripts of proteins and miRNAs involved in angiogenesis or inflammation. This transfer has been shown to influence the metastatic behavior of primary tumors. Moreover, tumor-derived EVs have been shown to influence distant cellular niches, establishing favorable microenvironments that support growth of disseminated cancer cells upon their arrival at these pre-metastatic niches. It is generally accepted that cells release a number of major EV populations with distinct biophysical properties and biological functions. Exosomes, microvesicles, and apoptotic bodies are EV populations most widely studied and characterized. They are discriminated based primarily on their intracellular origin. However, increasing evidence suggests that even within these EV populations various subpopulations may exist. This heterogeneity introduces an extra level of complexity in the study of EV biology and function. For example, EV subpopulations could have unique roles in the intricate biological processes underlying cancer biology. Here, we discuss current knowledge regarding the role of subpopulations of EVs in cancer development and progression and highlight the relevance of EV heterogeneity. The position of tetraspanins and integrins therein will be highlighted. Since addressing EV heterogeneity has become essential for the EV field, current and novel techniques for isolating EV subpopulations will also be discussed. Further dissection of EV heterogeneity will advance our understanding of the critical roles of EVs in health and disease.
Collapse
Affiliation(s)
- Eduard Willms
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Department of Microbiology I (Immunology), Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pieter Vader
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
276
|
Dhondt B, Van Deun J, Vermaerke S, de Marco A, Lumen N, De Wever O, Hendrix A. Urinary extracellular vesicle biomarkers in urological cancers: From discovery towards clinical implementation. Int J Biochem Cell Biol 2018; 99:236-256. [PMID: 29654900 DOI: 10.1016/j.biocel.2018.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 12/31/2022]
Abstract
Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect an individual's metabolic and pathophysiologic state. Despite intensive research into the discovery of urinary biomarkers to facilitate early diagnosis, accurate prognosis and prediction of therapy response in urological cancers, none of these markers has reached widespread use. Their implementation into daily clinical practice is hampered by a substantial degree of heterogeneity in performance characteristics and uncertainty about reliability, clinical utility and cost-effectiveness, in addition to several technical limitations. Extracellular vesicles (EV) have raised interest as a potential source of biomarker discovery because of their role in intercellular communication and the resemblance of their molecular content to that of the releasing cells. We review currently used urinary biomarkers in the clinic and attempts that have been made to identify EV-derived biomarkers for urological cancers. In addition, we discuss technical and methodological considerations towards their clinical implementation.
Collapse
Affiliation(s)
- Bert Dhondt
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Silke Vermaerke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipava, Slovenia
| | - Nicolaas Lumen
- Cancer Research Institute Ghent, Ghent, Belgium; Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
277
|
Cabral J, Ryan AE, Griffin MD, Ritter T. Extracellular vesicles as modulators of wound healing. Adv Drug Deliv Rev 2018; 129:394-406. [PMID: 29408181 DOI: 10.1016/j.addr.2018.01.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
Impaired healing of cutaneous wounds and ulcers continues to have a major impact on the quality of life of millions of people. In recent years, the capacity for stem and progenitor cells to promote wound repair has been investigated with evidence that secreted factors are responsible for the observed therapeutic benefits. This review addresses current evidence in support of stem/progenitor cell-derived extracellular vesicles (EVs) as a regenerative therapy for acceleration of wound healing. Encouraging results for local or systemic administration of EVs have been reported in a range of clinically-relevant animal models of cutaneous wounds. Furthermore, a number of plausible mechanisms involving EV-mediated transfer of proteins and RNAs that trigger pro-repair pathways in target cells have been demonstrated experimentally. However, for successful clinical translation in the coming years, further emphasis on standardized experimental protocols, detailed methodological reporting and clear definition of EV-based therapeutic products will be required.
Collapse
Affiliation(s)
- Joana Cabral
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland; CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland; Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland; CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland; CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland; CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
278
|
Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing Exosomes: A Promising Therapeutic Platform. Trends Mol Med 2018; 24:242-256. [PMID: 29449149 DOI: 10.1016/j.molmed.2018.01.006] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles, in particular the subclass exosomes, are rapidly emerging as a novel therapeutic platform. However, currently very few clinical validation studies and no clearly defined manufacturing process exist. As exosomes progress towards the clinic for treatment of a vast array of diseases, it is important to define the engineering basis for their manufacture early in the development cycle to ensure they can be produced cost-effectively at the appropriate scale. We hypothesize that transitioning to defined manufacturing platforms will increase consistency of the exosome product and improve their clinical advancement as a new therapeutic tool. We present manufacturing technologies and strategies that are being implemented and consider their application for the transition from bench-scale to clinical production of exosomes.
Collapse
Affiliation(s)
- Ivano Luigi Colao
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK
| | | | - Daniel Bracewell
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK.
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK; Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK; Department of Nanobiomedical Science, BK21+ NBM Global Research Center for Regenerative Medicine & Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
279
|
Wang S, Dong X, Gao J, Wang Z. Targeting Inflammatory Vasculature by Extracellular Vesicles. AAPS JOURNAL 2018; 20:37. [PMID: 29484558 DOI: 10.1208/s12248-018-0200-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are cell membrane-derived compartments that regulate physiology and pathology in the body. Naturally secreted EVs have been well studied in their biogenesis and have been exploited in targeted drug delivery. Due to the limitations on production of EVs, nitrogen cavitation has been utilized to efficiently generate EV-like drug delivery systems used in treating inflammatory disorders. In this short review, we will discuss the production and purification of EVs, and we will summarize what technologies are needed to improve their production for translation. We describe the drug-loading processes in EVs and their applications as drug delivery systems for inflammatory therapies, focusing on a new type of EVs made from neutrophil membrane using nitrogen cavitation.
Collapse
Affiliation(s)
- Sihan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
280
|
Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8545347. [PMID: 29662902 PMCID: PMC5831698 DOI: 10.1155/2018/8545347] [Citation(s) in RCA: 841] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) play an essential role in the communication between cells and transport of diagnostically significant molecules. A wide diversity of approaches utilizing different biochemical properties of EVs and a lack of accepted protocols make data interpretation very challenging. SCOPE OF REVIEW This review consolidates the data on the classical and state-of-the-art methods for isolation of EVs, including exosomes, highlighting the advantages and disadvantages of each method. Various characteristics of individual methods, including isolation efficiency, EV yield, properties of isolated EVs, and labor consumption are compared. MAJOR CONCLUSIONS A mixed population of vesicles is obtained in most studies of EVs for all used isolation methods. The properties of an analyzed sample should be taken into account when planning an experiment aimed at studying and using these vesicles. The problem of adequate EVs isolation methods still remains; it might not be possible to develop a universal EV isolation method but the available protocols can be used towards solving particular types of problems. GENERAL SIGNIFICANCE With the wide use of EVs for diagnosis and therapy of various diseases the evaluation of existing methods for EV isolation is one of the key problems in modern biology and medicine.
Collapse
Affiliation(s)
- Maria Yu. Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Evgeniy A. Lekchnov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Alexander V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk 630055, Russia
| |
Collapse
|
281
|
Prospects in non-invasive assessment of liver fibrosis: Liquid biopsy as the future gold standard? Biochim Biophys Acta Mol Basis Dis 2018; 1864:1024-1036. [PMID: 29329986 DOI: 10.1016/j.bbadis.2018.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is the result of persistent liver injury, and is characterized by sustained scar formation and disruption of the normal liver architecture. The extent of fibrosis is considered as an important prognostic factor for the patient outcome, as an absence of (early) treatment can lead to the development of liver cirrhosis and hepatocellular carcinoma. Till date, the most sensitive and specific way for the diagnosis and staging of liver fibrosis remains liver biopsy, an invasive diagnostic tool, which is associated with high costs and discomfort for the patient. Over time, non-invasive scoring systems have been developed, of which the measurements of serum markers and liver stiffness are validated for use in the clinic. These tools lack however the sensitivity and specificity to detect small changes in the progression or regression of both early and late stages of fibrosis. Novel non-invasive diagnostic markers with the potential to overcome these limitations have been developed, but often lack validation in large patient cohorts. In this review, we will summarize novel trends in non-invasive markers of liver fibrosis development and will discuss their (dis-)advantages for use in the clinic.
Collapse
|
282
|
Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, Neelakanta G, Sultana H. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog 2018; 14:e1006764. [PMID: 29300779 PMCID: PMC5754134 DOI: 10.1371/journal.ppat.1006764] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Molecular determinants and mechanisms of arthropod-borne flavivirus transmission to the vertebrate host are poorly understood. In this study, we show for the first time that a cell line from medically important arthropods, such as ticks, secretes extracellular vesicles (EVs) including exosomes that mediate transmission of flavivirus RNA and proteins to the human cells. Our study shows that tick-borne Langat virus (LGTV), a model pathogen closely related to tick-borne encephalitis virus (TBEV), profusely uses arthropod exosomes for transmission of viral RNA and proteins to the human- skin keratinocytes and blood endothelial cells. Cryo-electron microscopy showed the presence of purified arthropod/neuronal exosomes with the size range of 30 to 200 nm in diameter. Both positive and negative strands of LGTV RNA and viral envelope-protein were detected inside exosomes derived from arthropod, murine and human cells. Detection of Nonstructural 1 (NS1) protein in arthropod and neuronal exosomes further suggested that exosomes contain viral proteins. Viral RNA and proteins in exosomes derived from tick and mammalian cells were secured, highly infectious and replicative in all tested evaluations. Treatment with GW4869, a selective inhibitor that blocks exosome release affected LGTV loads in both arthropod and mammalian cell-derived exosomes. Transwell-migration assays showed that exosomes derived from infected-brain-microvascular endothelial cells (that constitute the blood-brain barrier) facilitated LGTV RNA and protein transmission, crossing of the barriers and infection of neuronal cells. Neuronal infection showed abundant loads of both tick-borne LGTV and mosquito-borne West Nile virus RNA in exosomes. Our data also suggest that exosome-mediated LGTV viral transmission is clathrin-dependent. Collectively, our results suggest that flaviviruses uses arthropod-derived exosomes as a novel means for viral RNA and protein transmission from the vector, and the vertebrate exosomes for dissemination within the host that may subsequently allow neuroinvasion and neuropathogenesis.
Collapse
MESH Headings
- Animals
- Arthropod Vectors/cytology
- Arthropod Vectors/ultrastructure
- Arthropod Vectors/virology
- Cell Line
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/pathology
- Cerebral Cortex/ultrastructure
- Cerebral Cortex/virology
- Chlorocebus aethiops
- Coculture Techniques
- Cryoelectron Microscopy
- Embryo, Mammalian/cytology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis Viruses, Tick-Borne/ultrastructure
- Encephalitis, Tick-Borne/pathology
- Encephalitis, Tick-Borne/transmission
- Encephalitis, Tick-Borne/virology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/ultrastructure
- Endothelium, Vascular/virology
- Exosomes/ultrastructure
- Exosomes/virology
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Ixodes/cytology
- Ixodes/ultrastructure
- Ixodes/virology
- Keratinocytes/cytology
- Keratinocytes/pathology
- Keratinocytes/ultrastructure
- Keratinocytes/virology
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Neurons/cytology
- Neurons/pathology
- Neurons/ultrastructure
- Neurons/virology
- RNA, Viral/metabolism
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Wenshuo Zhou
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
| | - Michael Woodson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Biswas Neupane
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Kyung H. Choi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States of America
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States of America
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
283
|
Abstract
Exosomes are nano-vesicles which can transport a range of molecules including but not limited to proteins and miRNA. This ability of exosomes renders them useful in cellular communication often resulting in biological changes. They have several functions in facilitating normal biological processes such as immune responses and an involvement in pregnancy. However, they have also been linked to pathological conditions including cancer and pregnancy complications such as preeclampsia. An understanding for the role of exosomes in preeclampsia is based on the ability to purify and characterize exosomes. There have been several techniques proposed for the enrichment of exosomes such as ultracentrifugation, density gradient separation, and ultrafiltration although there is no widely accepted optimized technique. Here we describe a workflow for isolating exosomes from cell-conditioned media and biological fluids using a combination of centrifugation, buoyant density, and ultrafiltration approaches.
Collapse
|
284
|
Pomatto MAC, Gai C, Deregibus MC, Tetta C, Camussi G. Noncoding RNAs Carried by Extracellular Vesicles in Endocrine Diseases. Int J Endocrinol 2018; 2018:4302096. [PMID: 29808089 PMCID: PMC5902008 DOI: 10.1155/2018/4302096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are essential and fine regulators of important biological processes. Their role is well documented also in the endocrine system, both in physiological and pathological conditions. Increasing interest is arising about the function and the importance of noncoding RNAs shuttled by extracellular vesicles (EVs). In fact, EV membrane protects nucleic acids from enzyme degradation. Nowadays, the research on EVs and their cargoes, as well as their biological functions, faces the lack of standardization in EV purification. Here, the main techniques for EV isolation are discussed and compared for their advantages and vulnerabilities. Despite the possible discrepancy due to methodological variability, EVs and their RNA content are reported to be key mediators of intercellular communication in pathologies of main endocrine organs, including the pancreas, thyroid, and reproductive system. In particular, the present work describes the role of RNAs contained in EVs in pathogenesis and progression of several metabolic dysfunctions, including obesity and diabetes, and their related manifestations. Their importance in the establishment and progression of thyroid autoimmunity disorders and complicated pregnancy is also discussed. Preliminary studies highlight the attractive possibility to use RNAs contained in EVs as biomarkers suggesting their exploitation for new diagnostic approaches in endocrinology.
Collapse
Affiliation(s)
| | - Chiara Gai
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Scarl, Univerity of Turin, Turin, Italy
| | - Ciro Tetta
- Unicyte AG, Oberdorf, Nidwalden, Switzerland
| | - Giovanni Camussi
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Scarl, Univerity of Turin, Turin, Italy
| |
Collapse
|
285
|
Sharma S, Zuñiga F, Rice GE, Perrin LC, Hooper JD, Salomon C. Tumor-derived exosomes in ovarian cancer - liquid biopsies for early detection and real-time monitoring of cancer progression. Oncotarget 2017; 8:104687-104703. [PMID: 29262670 PMCID: PMC5732836 DOI: 10.18632/oncotarget.22191] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer usually has a poor prognosis because it predominantly presents as high stage disease. New approaches are required to develop more effective early detection strategies and real-time treatment response monitoring. Nano-sized extracellular vesicles (EVs, including exosomes) may provide an approach to enrich tumor biomarker detection and address this clinical need. Exosomes are membranous extracellular vesicles of approximately 100 nm in diameter that have potential to be used as biomarkers and therapeutic delivery tools for ovarian cancer. Exosomal content (proteins and miRNA) is often parent cell specific thus providing an insight or "fingerprint" of the intracellular environment. Furthermore, exosomes can aid cell-cell communication and have the ability to modify target cells by transferring their content. Additionally, via the capacity to evade the immune system and remain stable over long periods in circulation, exosomes have potential as natural drug agents. This review examines the potential role of exosomes in diagnosis, drug delivery and real-time monitoring in ovarian cancer.
Collapse
Affiliation(s)
- Shayna Sharma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Brisbane, Australia
- Department of Obstetrics and Gynecology, Ochsner Baptist Hospital, New Orleans, Louisiana, USA
| | - Lewis C. Perrin
- Mater Health Services, South Brisbane, Australia
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Brisbane, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Department of Obstetrics and Gynecology, Ochsner Baptist Hospital, New Orleans, Louisiana, USA
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
286
|
Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep 2017; 7:15297. [PMID: 29127410 PMCID: PMC5681555 DOI: 10.1038/s41598-017-15717-7] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Appropriate isolation methods are essential for unravelling the relative contribution of extracellular vesicles (EVs) and the EV-free secretome to homeostasis and disease. We hypothesized that ultrafiltration followed by size exclusion chromatography (UF-SEC) provides well-matched concentrates of EVs and free secreted molecules for proteomic and functional studies. Conditioned media of BEAS-2B bronchial epithelial cells were concentrated on 10 kDa centrifuge filters, followed by separation of EVs and free protein using sepharose CL-4B SEC. Alternatively, EVs were isolated by ultracentrifugation. EV recovery was estimated by bead-coupled flow cytometry and tuneable resistive pulse sensing. The proteomic composition of EV isolates and SEC protein fractions was characterized by nano LC-MS/MS. UF-SEC EVs tended to have a higher yield and EV-to-protein rate of purity than ultracentrifugation EVs. UF-SEC EVs and ultracentrifugation EVs showed similar fold-enrichments for biological pathways that were distinct from those of UF-SEC protein. Treatment of BEAS-2B cells with UF-SEC protein, but not with either type of EV isolate increased the IL-8 concentration in the media whereas EVs, but not protein induced monocyte adhesion to endothelial cells. Thus, UF-SEC is a useful alternative for ultracentrifugation and allows comparing the proteomic composition and functional effects of EVs and free secreted molecules.
Collapse
Affiliation(s)
- Birke J Benedikter
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Tanja Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Gert Grauls
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Edwin C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Paul H Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Van Boechorststraat 7, 1081BT, Amsterdam, The Netherlands
| | - Carmen Lopez-Iglesias
- Microscopy Core Lab, M4I Nanoscopy division, FHML, Maastricht University, Universiteitssingel 50, G0.201, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Medical clinic I, Department of Respiratory Medicine, Goethe University Hospital, Frankfurt/Main, Germany
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.
| |
Collapse
|
287
|
Maburutse BE, Park MR, Oh S, Kim Y. Evaluation and Characterization of Milk-derived Microvescicle Isolated from Bovine Colostrum. Korean J Food Sci Anim Resour 2017; 37:654-662. [PMID: 29147088 PMCID: PMC5686323 DOI: 10.5851/kosfa.2017.37.5.654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
Extracellular microvesicles are membranous nano-sized cellular organelles secreted by a variety of cells under normal and pathological conditions and heterogeneous in size ranging from 30 nm to 1 μm. They carry functional microRNAs that can influence immunity and development. For a particular application of microvesicles, choice of isolation method is particularly important; however, their isolation methods from colostrum in particular have not been described clearly. In this work, differential ultracentrifugation as a conventional method, ultracentrifugation with some modification such as additional precipitations, ultrafiltration, sucrose gradient separation and ExoQuick™ as a commercial reagent were compared. The goal was to compare mainly microvesicular total microRNA yield, distribution and purity among the methods then select the best isolation method for bovine colostrum microvesicles based largely on microRNA yield with the view of applying the vesicles in work where vesicular micro-RNA cargo is the target bioactive component. Highest yields for vesicular microRNA were obtained using conventional methods and among them, subsequent ultracentrifugation with 100,000 g and 135,000 g conventional method 2 was selected as it had the highest RNA to protein ratio indicating that it pelleted the least protein in relation to RNA an important factor for in vivo applications to assess microvesicle functionalities without risk of contaminating non-vesicular biomaterial. Microvesicles isolated using conventional method 2 were successfully internalized by cells in vitro showing their potential to deliver their cargo into cells in vitro and in vivo in case of functional studies.
Collapse
Affiliation(s)
- Brighton E Maburutse
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Mi-Ri Park
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
288
|
Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, El Fatimy R, Rabinovsky R, Balaj L, Chen CC, Hochberg F, Carter B, Breakefield XO, Krichevsky AM. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun 2017; 8:1145. [PMID: 29074968 PMCID: PMC5658400 DOI: 10.1038/s41467-017-01196-x] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
Tumor-released RNA may mediate intercellular communication and serve as biomarkers. Here we develop a protocol enabling quantitative, minimally biased analysis of extracellular RNAs (exRNAs) associated with microvesicles, exosomes (collectively called EVs), and ribonucleoproteins (RNPs). The exRNA complexes isolated from patient-derived glioma stem-like cultures exhibit distinct compositions, with microvesicles most closely reflecting cellular transcriptome. exRNA is enriched in small ncRNAs, such as miRNAs in exosomes, and precisely processed tRNA and Y RNA fragments in EVs and exRNPs. EV-enclosed mRNAs are mostly fragmented, and UTRs enriched; nevertheless, some full-length mRNAs are present. Overall, there is less than one copy of non-rRNA per EV. Our results suggest that massive EV/exRNA uptake would be required to ensure functional impact of transferred RNA on brain recipient cells and predict the most impactful miRNAs in such conditions. This study also provides a catalog of diverse exRNAs useful for biomarker discovery and validates its feasibility on cerebrospinal fluid. While circulating DNA has been extensively explored as a potential cancer biomarker, RNA potential has been overlooked so far. Here the authors present a comprehensive analysis of extracellular RNA secreted by glioblastoma cells that could prove a valuable resource for biomarker discovery and a means of intercellular communication.
Collapse
Affiliation(s)
- Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Arsen O Batagov
- Vishuo Biomedical, #3-33 Teletech Park, 20 Science Park Road, Singapore, 117674, Singapore
| | - Sergio Schinelli
- Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy
| | - Jintu Wang
- Beijing Genomics Institute, Shenzhen, 518083, China
| | - Yang Wang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Leonora Balaj
- Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Clark C Chen
- Neurosurgery Department, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fred Hochberg
- Department of Neurosurgery, University of California, La Jolla, San Diego, CA, 92093, USA.,Scintillon Institute, San Diego, CA, 92121, USA
| | - Bob Carter
- Department of Neurosurgery, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Xandra O Breakefield
- Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, HMS Initiative for RNA Medicine, Boston, MA, 02115, USA.
| |
Collapse
|
289
|
Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. LAB ON A CHIP 2017; 17:3558-3577. [PMID: 28832692 PMCID: PMC5656537 DOI: 10.1039/c7lc00592j] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Exosomes, the smallest sized extracellular vesicles (∽30-150 nm) packaged with lipids, proteins, functional messenger RNAs and microRNAs, and double-stranded DNA from their cells of origin, have emerged as key players in intercellular communication. Their presence in bodily fluids, where they protect their cargo from degradation, makes them attractive candidates for clinical application as innovative diagnostic and therapeutic tools. But routine isolation and analysis of high purity exosomes in clinical settings is challenging, with conventional methods facing a number of drawbacks including low yield and/or purity, long processing times, high cost, and difficulties in standardization. Here we review a promising solution, microfluidic-based technologies that have incorporated a host of separation and sensing capabilities for exosome isolation, detection, and analysis, with emphasis on point-of-care and clinical applications. These new capabilities promise to advance fundamental research while paving the way toward routine exosome-based liquid biopsy for personalized medicine.
Collapse
Affiliation(s)
- Jose C Contreras-Naranjo
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.
| | | | | |
Collapse
|
290
|
Niu Z, Pang RTK, Liu W, Li Q, Cheng R, Yeung WSB. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. PLoS One 2017; 12:e0186534. [PMID: 29023592 PMCID: PMC5638560 DOI: 10.1371/journal.pone.0186534] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles released by cells and act as media for transfer of proteins, small RNAs and mRNAs to distant sites. They can be isolated by different methods. However, the biological activities of the purified EVs have seldom been studied. In this study, we compared the use of ultracentrifugation (UC), ultra-filtration (UF), polymer-based precipitation (PBP), and PBP with size-based purification (PBP+SP) for isolation of EVs from human endometrial cells and mouse uterine luminal fluid (ULF). Electron microscopy revealed that the diameters of the isolated EVs were similar among the tested methods. UF recovered the highest number of EVs followed by PBP, while UC and PBP+SP were significantly less efficient (P<0.05). Based on the number of EVs-to-protein ratios, PBP had the least protein contamination, significantly better than the other methods (P<0.05). All the isolated EVs expressed exosome-enriched proteins CD63, TSG101 and HSP70. Incubation of the trophoblast JEG-3 cells with an equal amount of the fluorescence-labelled EVs isolated by the studied methods showed that many of the PBP-EVs treated cells were fluorescence positive but only a few cells were labelled in the UC- and UF-EVs treated groups. Moreover, the PBP-EVs could transfer significantly more miRNA to the recipient cells than the other 3 methods (P<0.05). The PBP method could isolate EVs from mouse ULF; the diameter of the isolated EVs was 62±19 nm and expressed CD63, TSG101 and HSP70 proteins. In conclusion, PBP could best preserve the activities of the isolated EVs among the 4 methods studied and was able to isolate EVs from a small volume of sample. The simple setup and low equipment demands makes PBP the most suitable method for rapid EV assessment and isolation of EVs in clinical and basic research settings.
Collapse
Affiliation(s)
- Ziru Niu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ronald T. K. Pang
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weimin Liu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qian Li
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ranran Cheng
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital
- * E-mail:
| |
Collapse
|
291
|
Kang YT, Kim YJ, Bu J, Cho YH, Han SW, Moon BI. High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. NANOSCALE 2017; 9:13495-13505. [PMID: 28862274 DOI: 10.1039/c7nr04557c] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a microfluidic device for the capture and release of circulating exosomes from human blood. The exosome-specific dual-patterned immunofiltration (ExoDIF) device is composed of two distinct immuno-patterned layers, and is capable of enhancing the chance of binding between the antibody and exosomes by generating mechanical whirling, thus achieving high-throughput exosome isolation with high specificity. Moreover, follow-up recovery after the immuno-affinity based isolation, via cleavage of a linker, enables further downstream analysis. We verified the performance of the present device using MCF-7 secreted exosomes and found that both the concentration and proportion of exosome-sized vesicles were higher than in the samples obtained from the conventional exosome isolation kit. We then isolated exosomes from the human blood samples with our device to compare the exosome level between cancer patients and healthy donors. Cancer patients show a significantly higher exosome level with higher selectivity when validating the exosome-sized vesicles using both electron microscopy and nanoparticle tracking analysis. The captured exosomes from cancer patients also express abundant cancer-associated antigens, the epithelial cell adhesion molecule (EpCAM) on their surface. Our simple and rapid exosome recovery technique has huge potential to elucidate the function of exosomes in cancer patients and can thus be applied for various exosome-based cancer research studies.
Collapse
Affiliation(s)
- Yoon-Tae Kang
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
292
|
Akbar N, Digby JE, Cahill TJ, Tavare AN, Corbin AL, Saluja S, Dawkins S, Edgar L, Rawlings N, Ziberna K, McNeill E, Oxford Acute Myocardial Infarction (OxAMI) Study, Johnson E, Aljabali AA, Dragovic RA, Rohling M, Belgard TG, Udalova IA, Greaves DR, Channon KM, Riley PR, Anthony DC, Choudhury RP. Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight 2017; 2:93344. [PMID: 28878126 PMCID: PMC5621885 DOI: 10.1172/jci.insight.93344] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Transcriptionally activated monocytes are recruited to the heart after acute myocardial infarction (AMI). After AMI in mice and humans, the number of extracellular vesicles (EVs) increased acutely. In humans, EV number correlated closely with the extent of myocardial injury. We hypothesized that EVs mediate splenic monocyte mobilization and program transcription following AMI. Some plasma EVs bear endothelial cell (EC) integrins, and both proinflammatory stimulation of ECs and AMI significantly increased VCAM-1-positive EV release. Injected EC-EVs localized to the spleen and interacted with, and mobilized, splenic monocytes in otherwise naive, healthy animals. Analysis of human plasma EV-associated miRNA showed 12 markedly enriched miRNAs after AMI; functional enrichment analyses identified 1,869 putative mRNA targets, which regulate relevant cellular functions (e.g., proliferation and cell movement). Furthermore, gene ontology termed positive chemotaxis as the most enriched pathway for the miRNA-mRNA targets. Among the identified EV miRNAs, EC-associated miRNA-126-3p and -5p were highly regulated after AMI. miRNA-126-3p and -5p regulate cell adhesion- and chemotaxis-associated genes, including the negative regulator of cell motility, plexin-B2. EC-EV exposure significantly downregulated plexin-B2 mRNA in monocytes and upregulated motility integrin ITGB2. These findings identify EVs as a possible novel signaling pathway by linking ischemic myocardium with monocyte mobilization and transcriptional activation following AMI.
Collapse
Affiliation(s)
- Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Janet E. Digby
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Thomas J. Cahill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Abhijeet N. Tavare
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Alastair L. Corbin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Sushant Saluja
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Sam Dawkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Laurienne Edgar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Nadiia Rawlings
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Klemen Ziberna
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Eileen McNeill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | | | | | - Alaa A. Aljabali
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | | | - Mala Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Irina A. Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Robin P. Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
293
|
Welsh JA, Holloway JA, Wilkinson JS, Englyst NA. Extracellular Vesicle Flow Cytometry Analysis and Standardization. Front Cell Dev Biol 2017; 5:78. [PMID: 28913335 PMCID: PMC5582084 DOI: 10.3389/fcell.2017.00078] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022] Open
Abstract
The term extracellular vesicles (EVs) describes membranous vesicles derived from cells, ranging in diameter from 30 to 1,000 nm with the majority thought to be in the region of 100-150 nm. Due to their small diameter and complex and variable composition, conventional techniques have struggled to accurately count and phenotype EVs. Currently, EV characterization using high-resolution flow cytometry is the most promising method when compared to other currently available techniques, due to it being a high-throughput, single particle, multi-parameter analysis technique capable of analyzing a large range of particle diameters. Whilst high resolution flow cytometry promises detection of the full EV diameter range, standardization of light scattering and fluorescence data between different flow cytometers remains an problem. In this mini review, we will discuss the advances in high-resolution flow cytometry development and future direction of EV scatter and fluorescence standardization. Standardization and therefore reproducibility between research groups and instrumentation is lacking, hindering the validation of EVs use as diagnostic biomarkers and therapeutics.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Faculty of Medicine, University of SouthamptonSouthampton, United Kingdom
| | - Judith A. Holloway
- Faculty of Medicine, University of SouthamptonSouthampton, United Kingdom
| | - James S. Wilkinson
- Optoelectronics Research Centre, University of SouthamptonSouthampton, United Kingdom
| | - Nicola A. Englyst
- Faculty of Medicine, University of SouthamptonSouthampton, United Kingdom
| |
Collapse
|
294
|
Maroto R, Zhao Y, Jamaluddin M, Popov VL, Wang H, Kalubowilage M, Zhang Y, Luisi J, Sun H, Culbertson CT, Bossmann SH, Motamedi M, Brasier AR. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles 2017; 6:1359478. [PMID: 28819550 PMCID: PMC5556670 DOI: 10.1080/20013078.2017.1359478] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/16/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Extracellular vesicles contain biological molecules specified by cell-type of origin and modified by microenvironmental changes. To conduct reproducible studies on exosome content and function, storage conditions need to have minimal impact on airway exosome integrity. Aim: We compared surface properties and protein content of airway exosomes that had been freshly isolated vs. those that had been treated with cold storage or freezing. Methods: Mouse bronchoalveolar lavage fluid (BALF) exosomes purified by differential ultracentrifugation were analysed immediately or stored at +4°C or -80°C. Exosomal structure was assessed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and charge density (zeta potential, ζ). Exosomal protein content, including leaking/dissociating proteins, were identified by label-free LC-MS/MS. Results: Freshly isolated BALF exosomes exhibited a mean diameter of 95 nm and characteristic morphology. Storage had significant impact on BALF exosome size and content. Compared to fresh, exosomes stored at +4°C had a 10% increase in diameter, redistribution to polydisperse aggregates and reduced ζ. Storage at -80°C produced an even greater effect, resulting in a 25% increase in diameter, significantly reducing the ζ, resulting in multilamellar structure formation. In fresh exosomes, we identified 1140 high-confidence proteins enriched in 19 genome ontology biological processes. After storage at room temperature, 848 proteins were identified. In preparations stored at +4°C, 224 proteins appeared in the supernatant fraction compared to the wash fractions from freshly prepared exosomes; these proteins represent exosome leakage or dissociation of loosely bound "peri-exosomal" proteins. In preparations stored at -80°C, 194 proteins appeared in the supernatant fraction, suggesting that distinct protein groups leak from exosomes at different storage temperatures. Conclusions: Storage destabilizes the surface characteristics, morphological features and protein content of BALF exosomes. For preservation of the exosome protein content and representative functional analysis, airway exosomes should be analysed immediately after isolation.
Collapse
Affiliation(s)
- Rosario Maroto
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Institute for Translational Sciences, UTMB, Galveston, TX, USA
| | - Yingxin Zhao
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Institute for Translational Sciences, UTMB, Galveston, TX, USA
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| | - Mohammad Jamaluddin
- Institute for Translational Sciences, UTMB, Galveston, TX, USA
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| | | | - Hongwang Wang
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | | | - Yueqing Zhang
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| | - Jonathan Luisi
- Center for Biomedical Engineering, UTMB, Galveston, TX, USA
| | - Hong Sun
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| | | | | | | | - Allan R. Brasier
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Institute for Translational Sciences, UTMB, Galveston, TX, USA
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| |
Collapse
|
295
|
Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH, Wang Q. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 2017; 40:834-844. [PMID: 28737826 PMCID: PMC5548045 DOI: 10.3892/ijmm.2017.3080] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Exosomes are cell-derived vesicles and are abundant in biological fluids; they contain RNA molecules which may serve as potential diagnostic biomarkers in 'precision medicine'. To promote the clinical application of exosomal RNA (exoRNA), many isolation methods must be compared and validated. Exosomes in cell culture medium (CCM) and serum may be isolated using ultracentrifugation (UC), ExoQuick or Total Exosome Isolation Reagent (TEI), and exoRNA may be extracted using TRIzol-LS, SeraMir, Total Exosome RNA Isolation (TER), HiPure Liquid RNA/miRNA kit (HLR), miRNeasy or exoRNeasy. ExoRNA was assessed using NanoDrop, Bioanalyzer 2100, quantitative polymerase chain reaction and high-throughput sequencing. UC showed the lowest recovery of particles, but the highest protein purity for exosome isolation. For isolation of exoRNA, we found that combinations of the TEI and TER methods resulted in high extraction efficiency and purity of small RNA obtained using CCM. High yield and a narrow size distribution pattern of small RNA were shown in exoRNA isolated by exoRNeasy from serum. In RNA profile analysis, the small RNA constituent ratio, miRNA content and amount varied as a result of methodological differences. This study showed that different methods may introduce variations in the concentration, purity and size of exosomes and exoRNA. Herein we discuss the advantages and disadvantages of each method and their application to different materials, therefore providing a reference according to research design.
Collapse
Affiliation(s)
- Yue-Ting Tang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi-Yao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Si-Hua Qin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xu-Ping Xu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tai-Xue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying-Song Wu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiu-Mei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bao-Hong Ping
- Department of Hui Qiao, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
296
|
Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. MOLECULAR BIOSYSTEMS 2017; 12:1407-19. [PMID: 27030573 DOI: 10.1039/c6mb00082g] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The re-discovery of exosomes as intercellular messengers with high potential for diagnostic and therapeutic utility has led to them becoming a popular topic of research in recent years. One of the essential research areas in this field is the characterization of exosomal cargo, which includes numerous non-randomly packed proteins and nucleic acids. Unexpectedly, a very challenging aspect of exploration of extracellular vesicles has turned out to be their effective and selective isolation. The plurality of developed protocols leads to qualitative and quantitative variability in terms of the obtained exosomes, which significantly affects the results of downstream analyses and makes them difficult to compare, reproduce and interpret between research groups. Currently, there is a general consensus among the exosome-oriented community concerning the urgent need for the optimization and standardization of methods employed for the purification of these vesicles. Hence, we review here several strategies for exosome preparation including ultracentrifugation, chemical precipitation, affinity capturing and filtration techniques. The advantages and disadvantages of different approaches are discussed with special emphasis being placed on their adequacy for proteomics applications, which are particularly sensitive to sample quality. We conclude that certain methods, exemplified by ultracentrifugation combined with iodixanol density gradient centrifugation or gel filtration, although labor-intensive, provide superior quality exosome preparations suitable for reliable analysis by mass spectrometry.
Collapse
Affiliation(s)
- Agata Abramowicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Piotr Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Monika Pietrowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
297
|
Benedikter BJ, Volgers C, van Eijck PH, Wouters EFM, Savelkoul PHM, Reynaert NL, Haenen GRMM, Rohde GGU, Weseler AR, Stassen FRM. Cigarette smoke extract induced exosome release is mediated by depletion of exofacial thiols and can be inhibited by thiol-antioxidants. Free Radic Biol Med 2017; 108:334-344. [PMID: 28359953 DOI: 10.1016/j.freeradbiomed.2017.03.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Airway epithelial cells have been described to release extracellular vesicles (EVs) with pathological properties when exposed to cigarette smoke extract (CSE). As CSE causes oxidative stress, we investigated whether its oxidative components are responsible for inducing EV release and whether this could be prevented using the thiol antioxidants N-acetyl-l-cysteine (NAC) or glutathione (GSH). METHODS BEAS-2B cells were exposed for 24h to CSE, H2O2, acrolein, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), bacitracin, rutin or the anti-protein disulfide isomerase (PDI) antibody clone RL90; with or without NAC or GSH. EVs in media were measured using CD63+CD81+ bead-coupled flow cytometry or tunable resistive pulse sensing (TRPS). For characterization by Western Blotting, cryo-transmission electron microscopy and TRPS, EVs were isolated using ultracentrifugation. Glutathione disulfide and GSH in cells were assessed by a GSH reductase cycling assay, and exofacial thiols using Flow cytometry. RESULTS CSE augmented the release of the EV subtype exosomes, which could be prevented by scavenging thiol-reactive components using NAC or GSH. Among thiol-reactive CSE components, H2O2 had no effect on exosome release, whereas acrolein imitated the NAC-reversible exosome induction. The exosome induction by CSE and acrolein was paralleled by depletion of cell surface thiols. Membrane impermeable thiol blocking agents, but not specific inhibitors of the exofacially located thiol-dependent enzyme PDI, stimulated exosome release. SUMMARY/CONCLUSION Thiol-reactive compounds like acrolein account for CSE-induced exosome release by reacting with cell surface thiols. As acrolein is produced endogenously during inflammation, it may influence exosome release not only in smokers, but also in ex-smokers with chronic obstructive pulmonary disease. NAC and GSH prevent acrolein- and CSE-induced exosome release, which may contribute to the clinical benefits of NAC treatment.
Collapse
Affiliation(s)
- Birke J Benedikter
- Department of Medical Microbiology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; Department of Respiratory Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Charlotte Volgers
- Department of Medical Microbiology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Pascalle H van Eijck
- Department of Medical Microbiology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Paul H M Savelkoul
- Department of Medical Microbiology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; Department of Medical Microbiology & Infection Control, VU University Medical Center, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands.
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Guido R M M Haenen
- Department of Pharmacology and Toxicology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Gernot G U Rohde
- Department of Respiratory Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Antje R Weseler
- Department of Pharmacology and Toxicology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Frank R M Stassen
- Department of Medical Microbiology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
298
|
Zabeo D, Cvjetkovic A, Lässer C, Schorb M, Lötvall J, Höög JL. Exosomes purified from a single cell type have diverse morphology. J Extracell Vesicles 2017; 6:1329476. [PMID: 28717422 PMCID: PMC5505001 DOI: 10.1080/20013078.2017.1329476] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by all known organisms and are important for cell communication and physiology. Great morphological diversity has been described regarding EVs found in body fluids such as blood plasma, breast milk, and ejaculate. However, a detailed morphological analysis has never been performed on exosomes when purified from a single cell type. In this study we analysed and quantified, via multiple electron microscopy techniques, the morphology of exosomes purified from the human mast cell line HMC-1. The results revealed a wide diversity in exosome morphology, suggesting that subpopulations of exosomes with different and specific functions may exist. Our findings imply that a new, more efficient way of defining exosome subpopulations is necessary. A system was proposed where exosomes were classified into nine different categories according to their size and shape. Three additional morphological features were also found in exosomes regardless of their morphological classification. These findings show that exosomes purified from a single cell line are also morphologically diverse, similar to previous observations for EVs in body fluids. This knowledge can help to improve the interpretation of experimental results and widen our general understanding of the biological functions of exosomes.
Collapse
Affiliation(s)
- Davide Zabeo
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Cecilia Lässer
- Krefting Research Center, University of Gothenburg, Gothenburg, Sweden
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratories, Heidelberg, Germany
| | - Jan Lötvall
- Krefting Research Center, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
299
|
Effects of Inhibiting VPS4 Support a General Role for ESCRTs in Extracellular Vesicle Biogenesis. Biophys J 2017. [PMID: 28629620 DOI: 10.1016/j.bpj.2017.05.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are proposed to play important roles in intercellular communication. Two classes of EVs can be distinguished based on their intracellular origin. Exosomes are generated within endosomes and released when these fuse with the plasma membrane, whereas ectosomes bud directly from the plasma membrane. Studies of EV function have been hindered by limited understanding of their biogenesis. Components of the endosomal sorting complex required for transport (ESCRT) machinery play essential roles in topologically equivalent processes at both the endosome and the plasma membrane and are consistently recovered in EVs, but whether they are generally required to produce EVs is still debated. Here, we study the effects of inhibiting the ESCRT-associated AAA+ ATPase VPS4 on EV release from cultured cells using two methods for EV recovery, differential centrifugation and polyethylene glycol precipitation followed by lectin affinity chromatography. We find that inhibiting VPS4 in HEK293 cells decreases release of EV-associated proteins and miRNA as well as the overall number of EV particles. The tetraspanins CD63 and CD9 are among the most frequently monitored EV proteins, but they differ in their subcellular localization, with CD63 primarily in endosomes and CD9 on the plasma membrane. We find that CD63 and CD9 are enriched in separable populations of EVs that are both sensitive to VPS4 inhibition. Serum stimulation increases release of both types of EVs and is also reduced by inhibiting VPS4. Taken together, our data indicate that VPS4 activity is important for generating exosomes and ectosomes, thereby generally implicating the ESCRT machinery in EV biogenesis.
Collapse
|
300
|
Sutaria DS, Jiang J, Elgamal OA, Pomeroy SM, Badawi M, Zhu X, Pavlovicz R, Azevedo-Pouly ACP, Chalmers J, Li C, Phelps MA, Schmittgen TD. Low active loading of cargo into engineered extracellular vesicles results in inefficient miRNA mimic delivery. J Extracell Vesicles 2017; 6:1333882. [PMID: 28717424 PMCID: PMC5505005 DOI: 10.1080/20013078.2017.1333882] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) hold great potential as novel systems for nucleic acid delivery due to their natural composition. Our goal was to load EVs with microRNA that are synthesized by the cells that produce the EVs. HEK293T cells were engineered to produce EVs expressing a lysosomal associated membrane, Lamp2a fusion protein. The gene encoding pre-miR-199a was inserted into an artificial intron of the Lamp2a fusion protein. The TAT peptide/HIV-1 transactivation response (TAR) RNA interacting peptide was exploited to enhance the EV loading of the pre-miR-199a containing a modified TAR RNA loop. Computational modeling demonstrated a stable interaction between the modified pre-miR-199a loop and TAT peptide. EMSA gel shift, recombinant Dicer processing and luciferase binding assays confirmed the binding, processing and functionality of the modified pre-miR-199a. The TAT-TAR interaction enhanced the loading of the miR-199a into EVs by 65-fold. Endogenously loaded EVs were ineffective at delivering active miR-199a-3p therapeutic to recipient SK-Hep1 cells. While the low degree of miRNA loading into EVs through this approach resulted in inefficient distribution of RNA cargo into recipient cells, the TAT TAR strategy to load miRNA into EVs may be valuable in other drug delivery approaches involving miRNA mimics or other hairpin containing RNAs.
Collapse
Affiliation(s)
- Dhruvitkumar S Sutaria
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Divisions of Pharmaceutics, The Ohio State University, Columbus, OH, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ola A Elgamal
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Divisions of Pharmaceutics, The Ohio State University, Columbus, OH, USA
| | - Steven M Pomeroy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Mohamed Badawi
- Divisions of Pharmaceutics, The Ohio State University, Columbus, OH, USA
| | - Xiaohua Zhu
- Divisions of Pharmaceutics, The Ohio State University, Columbus, OH, USA
| | - Ryan Pavlovicz
- Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Chenglong Li
- Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Mitch A Phelps
- Divisions of Pharmaceutics, The Ohio State University, Columbus, OH, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|