301
|
Stoffel JJ, Kohler Riedi PL, Hadj Romdhane B. A multimodel regime for evaluating effectiveness of antimicrobial wound care products in microbial biofilms. Wound Repair Regen 2020; 28:438-447. [PMID: 32175636 PMCID: PMC7540695 DOI: 10.1111/wrr.12806] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/20/2020] [Accepted: 03/10/2020] [Indexed: 01/04/2023]
Abstract
Microbial biofilms have become increasingly recognized as a cause of wound chronicity. There are several topical antimicrobial wound care products available for use; however, their effectiveness has routinely been demonstrated with planktonic microorganisms. There is no target reference value for antimicrobial effectiveness of wound care products in biofilm models. In addition, data on antimicrobial activity of products in biofilm models are scattered across many test methods in a variety of studies. The aim of this work is to directly compare commercial products containing the commonly used topical antimicrobial agents iodine, silver, polyhexamethylene biguanide, octenidine, hypochlorous acid, benzalkonium chloride, and a surfactant-based topical containing poloxamer 188. Five different in vitro biofilm models of varied complexity were used, incorporating several bacterial pathogens such as Staphylococcus, Enterococcus, Streptococcus, Pseudomonas, Acinetobacter, Klebsiella, and Enterobacter. The fungal pathogens Candida albicans and Candida auris were also evaluated. A multispecies bacterial biofilm model was also used to evaluate the products. Additionally, C. albicans was used in combination with S. aureus and P. aeruginosa in a multikingdom version of the polymicrobial biofilm model. Statistically significant differences in antimicrobial performance were observed between treatments in each model and changing microbial growth conditions or combinations of organisms resulted in significant performance differences for some treatments. The iodine and benzalkonium chloride-containing products were overall the most effective in vitro and were then selected for in vivo evaluation in an infected immunocompromised murine model. Unexpectedly, the iodine product was statistically (P > .05) no different than the untreated control, while the benzalkonium chloride containing product significantly (P < .05) reduced the biofilm compared to untreated control. This body of work demonstrates the importance of not only evaluating antimicrobial wound care products in biofilm models but also the importance of using several different models to gain a comprehensive understanding of products' effectiveness.
Collapse
|
302
|
do Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Júnior PH, Cabral WF, da Glória da Silva M, Eaton P, de Souza de Almeida Leite JR, Nicola AM, Albuquerque P, Silva-Pereira I. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci Rep 2020; 10:10327. [PMID: 32587287 PMCID: PMC7316759 DOI: 10.1038/s41598-020-67041-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a major cause of human infections, ranging from relatively simple to treat skin and mucosal diseases to systemic life-threatening invasive candidiasis. Fungal infections treatment faces three major challenges: the limited number of therapeutic options, the toxicity of the available drugs, and the rise of antifungal resistance. In this study, we demonstrate the antifungal activity and mechanism of action of peptides ToAP2 and NDBP-5.7 against planktonic cells and biofilms of C. albicans. Both peptides were active against C. albicans cells; however, ToAP2 was more active and produced more pronounced effects on fungal cells. Both peptides affected C. albicans membrane permeability and produced changes in fungal cell morphology, such as deformations in the cell wall and disruption of ultracellular organization. Both peptides showed synergism with amphotericin B, while ToAP2 also presents a synergic effect with fluconazole. Besides, ToAP2 (6.25 µM.) was able to inhibit filamentation after 24 h of treatment and was active against both the early phase and mature biofilms of C. albicans. Finally, ToAP2 was protective in a Galleria mellonella model of infection. Altogether these results point to the therapeutic potential of ToAP2 and other antimicrobial peptides in the development of new therapies for C. albicans infections.
Collapse
Affiliation(s)
- Jhones do Nascimento Dias
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Calliandra de Souza Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | - Jessica Maria Teles Souza
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Wanessa Felix Cabral
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Maria da Glória da Silva
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | | | | | | | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
303
|
Sharma Y, Rastogi SK, Perwez A, Rizvi MA, Manzoor N. β-citronellol alters cell surface properties of Candida albicans to influence pathogenicity related traits. Med Mycol 2020; 58:93-106. [PMID: 30843057 DOI: 10.1093/mmy/myz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/26/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
The pathogenicity of Candida albicans, an opportunistic human fungal pathogen, is attributed to several virulence factors. β-citronellol is a monoterpenoid present in several plant essential oils. The present study explores the antifungal potential and mode of action of β-citronellol against C. albicans ATCC 90028 (standard), C. albicans D-27 (FLC-sensitive), and C. albicans S-1 (FLC-resistant). Anti-Candida potential was studied by performing MIC, MFC, growth curves, disc diffusion, spot assay, and WST1 cytotoxic assay. Morphological transition was monitored microscopically in both solid and liquid hyphae inducing media. β-citronellol inhibits yeast to hyphal transition in both liquid and solid hyphae inducing media. It had a significant inhibitory effect on biofilm formation and secretion of extracellular proteinases and phospholipases. We showed that it has an adverse effect on membrane ergosterol levels and modulates expression of related ERG genes. Expression profiles of selected genes associated with C. albicans pathogenicity displayed reduced expression in treated cells. This work suggests that β-citronellol inhibits morphological transition in C. albicans and decreases the secretion of hydrolytic enzymes involved in the early stage of infection as well as modulates the expression of associated genes. Pleiotropic phenotype shown by β-citronellol treated Candida cells suggests various modes of action. Further studies will assess the clinical application of β-citronellol in the treatment of fungal infections.
Collapse
Affiliation(s)
- Yamini Sharma
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sumit Kumar Rastogi
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ahmad Perwez
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah-30001, Kingdom of Saudi Arabia
| |
Collapse
|
304
|
Francisconi RS, Huacho PMM, Tonon CC, Bordini EAF, Correia MF, Sardi JDCO, Spolidorio DMP. Antibiofilm efficacy of tea tree oil and of its main component terpinen-4-ol against Candida albicans. Braz Oral Res 2020; 34:e050. [PMID: 32578760 DOI: 10.1590/1807-3107bor-2020.vol34.0050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Candida infection is an important cause of morbidity and mortality in immunocompromised patients. The increase in its incidence has been associated with resistance to antimicrobial therapy and biofilm formation. The aim of this study was to evaluate the efficacy of tea tree oil (TTO) and its main component - terpinen-4-ol - against resistant Candida albicans strains (genotypes A and B) identified by molecular typing and against C. albicans ATCC 90028 and SC 5314 reference strains in planktonic and biofilm cultures. The minimum inhibitory concentration, minimum fungicidal concentration, and rate of biofilm development were used to evaluate antifungal activity. Results were obtained from analysis of the biofilm using the cell proliferation assay 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and confocal laser scanning microscopy (CLSM). Terpinen-4-ol and TTO inhibited C. albicans growth. CLSM confirmed that 17.92 mg/mL of TTO and 8.86 mg/mL of terpinen-4-ol applied for 60 s (rinse simulation) interfered with biofilm formation. Hence, this in vitro study revealed that natural substances such as TTO and terpinen-4-ol present promising results for the treatment of oral candidiasis.
Collapse
Affiliation(s)
- Renata Serignoli Francisconi
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Patricia Milagros Maquera Huacho
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Caroline Coradi Tonon
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Ester Alves Ferreira Bordini
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Marília Ferreira Correia
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Universidade Estadual de Campinas - Unicamp, School of Dentistry of Piracicaba, Department of Physiological Sciences, Piracicaba, SP, Brazil
| | | |
Collapse
|
305
|
Mei Y, Jiang T, Zou Y, Wang Y, Zhou J, Li J, Liu L, Tan J, Wei L, Li J, Dai H, Peng Y, Zhang L, Lopez-Ribot JL, Shapiro RS, Chen C, Liu NN, Wang H. FDA Approved Drug Library Screening Identifies Robenidine as a Repositionable Antifungal. Front Microbiol 2020; 11:996. [PMID: 32582050 PMCID: PMC7283467 DOI: 10.3389/fmicb.2020.00996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the increasing prevalence of pathogenic fungal infections, the emergence of antifungal resistant clinical isolates worldwide, and the limited arsenal of available antifungals, developing new antifungal strategies is imperative. In this study, we screened a library of 1068 FDA-approved drugs to identify hits that exhibit broad-spectrum antifungal activity. Robenidine, an anticoccidial agent which has been widely used to treat coccidian infections of poultry and rabbits, was identified in this screen. Physiological concentration of robenidine (8 μM) was able to significantly inhibit yeast cell growth, filamentation and biofilm formation of Candida albicans – the most extensively studied human fungal pathogen. Moreover, we observed a broad-spectrum antifungal activity of this compound against fluconazole resistant clinical isolates of C. albicans, as well as a wide range of other clinically relevant fungal pathogens. Intriguingly, robenidine-treated C. albicans cells were hypersensitive to diverse cell wall stressors, and analysis of the cell wall structure by transmission electron microscopy (TEM) showed that the cell wall was severely damaged by robenidine, implying that this compound may target the cell wall integrity signaling pathway. Indeed, upon robenidine treatment, we found a dose dependent increase in the phosphorylation of the cell wall integrity marker Mkc1, which was decreased after prolonged exposure. Finally, we provide evidence by RNA-seq and qPCR that Rlm1, the downstream transcription factor of Mkc1, may represent a potential target of robenidine. Therefore, our data suggest that robenidine, a FDA approved anti-coccidiosis drug, displays a promising and broadly effective antifungal strategy, and represents a potentially repositionable candidate for the treatment of fungal infections.
Collapse
Affiliation(s)
- Yikun Mei
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zou
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyang Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Liu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingcong Tan
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luqi Wei
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingquan Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanqin Dai
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jose L Lopez-Ribot
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Changbin Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ning-Ning Liu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
306
|
Plocek V, Váchová L, Šťovíček V, Palková Z. Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops. Int J Mol Sci 2020; 21:ijms21113873. [PMID: 32485964 PMCID: PMC7312624 DOI: 10.3390/ijms21113873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multicellular structures formed by yeasts and other microbes are valuable models for investigating the processes of cell–cell interaction and pattern formation, as well as cell signaling and differentiation. These processes are essential for the organization and development of diverse microbial communities that are important in everyday life. Two major types of multicellular structures are formed by yeast Saccharomyces cerevisiae on semisolid agar. These are colonies formed by laboratory or domesticated strains and structured colony biofilms formed by wild strains. These structures differ in spatiotemporal organization and cellular differentiation. Using state-of-the-art microscopy and mutant analysis, we investigated the distribution of cells within colonies and colony biofilms and the involvement of specific processes therein. We show that prominent differences between colony and biofilm structure are determined during early stages of development and are associated with the different distribution of growing cells. Two distinct cell distribution patterns were identified—the zebra-type and the leopard-type, which are genetically determined. The role of Flo11p in cell adhesion and extracellular matrix production is essential for leopard-type distribution, because FLO11 deletion triggers the switch to zebra-type cell distribution. However, both types of cell organization are independent of cell budding polarity and cell separation as determined using respective mutants.
Collapse
Affiliation(s)
- Vítězslav Plocek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic; (V.P.); (V.Š.)
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic;
| | - Vratislav Šťovíček
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic; (V.P.); (V.Š.)
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic; (V.P.); (V.Š.)
- Correspondence:
| |
Collapse
|
307
|
Physiological Advantage of Phenotypic Heterogeneity in a Quorum-Sensing Population. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
308
|
Lohse MB, Gulati M, Craik CS, Johnson AD, Nobile CJ. Combination of Antifungal Drugs and Protease Inhibitors Prevent Candida albicans Biofilm Formation and Disrupt Mature Biofilms. Front Microbiol 2020; 11:1027. [PMID: 32523574 PMCID: PMC7261846 DOI: 10.3389/fmicb.2020.01027] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 02/04/2023] Open
Abstract
Biofilms formed by the fungal pathogen Candida albicans are resistant to many of the antifungal agents commonly used in the clinic. Previous reports suggest that protease inhibitors, specifically inhibitors of aspartyl proteases, could be effective antibiofilm agents. We screened three protease inhibitor libraries, containing a total of 80 compounds for the abilities to prevent C. albicans biofilm formation and to disrupt mature biofilms. The compounds were screened individually and in the presence of subinhibitory concentrations of the most commonly prescribed antifungal agents for Candida infections: fluconazole, amphotericin B, or caspofungin. Although few of the compounds affected biofilms on their own, seven aspartyl protease inhibitors inhibited biofilm formation when combined with amphotericin B or caspofungin. Furthermore, nine aspartyl protease inhibitors disrupted mature biofilms when combined with caspofungin. These results suggest that the combination of standard antifungal agents together with specific protease inhibitors may be useful in the prevention and treatment of C. albicans biofilm infections.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States.,Department of Biology, BioSynesis, Inc., San Francisco, CA, United States
| | - Megha Gulati
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| |
Collapse
|
309
|
A Selective Serotonin Reuptake Inhibitor, a Proton Pump Inhibitor, and Two Calcium Channel Blockers Inhibit Candida albicans Biofilms. Microorganisms 2020; 8:microorganisms8050756. [PMID: 32443498 PMCID: PMC7285287 DOI: 10.3390/microorganisms8050756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms formed by the human fungal pathogen Candida albicans are naturally resistant to many of the antifungal agents commonly used in the clinic. We screened a library containing 1600 clinically tested drug compounds to identify compounds that inhibit C. albicans biofilm formation. The compounds that emerged from the initial screen were validated in a secondary screen and then tested for (1) their abilities to disrupt mature biofilms and (2) for synergistic interactions with representatives of the three antifungal agents most commonly prescribed to treat Candida infections, fluconazole, amphotericin B, and caspofungin. Twenty compounds had antibiofilm activity in at least one of the secondary assays and several affected biofilms but, at the same concentration, had little or no effect on planktonic (suspension) growth of C. albicans. Two calcium channel blockers, a selective serotonin reuptake inhibitor, and an azole-based proton pump inhibitor were among the hits, suggesting that members of these three classes of drugs or their derivatives may be useful for treating C. albicans biofilm infections.
Collapse
|
310
|
Ramamourthy G, Park J, Seo C, J. Vogel H, Park Y. Antifungal and Antibiofilm Activities and the Mechanism of Action of Repeating Lysine-Tryptophan Peptides against Candida albicans. Microorganisms 2020; 8:E758. [PMID: 32443520 PMCID: PMC7285485 DOI: 10.3390/microorganisms8050758] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 11/29/2022] Open
Abstract
The rapid increase in the emergence of antifungal-resistant Candida albicans strains is becoming a serious health concern. Because antimicrobial peptides (AMPs) may provide a potential alternative to conventional antifungal agents, we have synthesized a series of peptides with a varying number of lysine and tryptophan repeats (KWn-NH2). The antifungal activity of these peptides increased with peptide length, but only the longest KW5 peptide displayed cytotoxicity towards a human keratinocyte cell line. The KW4 and KW5 peptides exhibited strong antifungal activity against C. albicans, even under conditions of high-salt and acidic pH, or the addition of fungal cell wall components. Moreover, KW4 inhibited biofilm formation by a fluconazole-resistant C. albicans strain. Circular dichroism and fluorescence spectroscopy indicated that fungal liposomes could interact with the longer peptides but that they did not release the fluorescent dye calcein. Subsequently, fluorescence assays with different dyes revealed that KW4 did not disrupt the membrane integrity of intact fungal cells. Scanning electron microscopy showed no changes in fungal morphology, while laser-scanning confocal microscopy indicated that KW4 can localize into the cytosol of C. albicans. Gel retardation assays revealed that KW4 can bind to fungal RNA as a potential intracellular target. Taken together, our data indicate that KW4 can inhibit cellular functions by binding to RNA and DNA after it has been translocated into the cell, resulting in the eradication of C. albicans.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.J.V.)
- Department of Biomedical Science and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea; (J.P.); (C.S.)
| | - Changho Seo
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea; (J.P.); (C.S.)
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.J.V.)
| | - Yoonkyung Park
- Department of Biomedical Science and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
- Research Center for Proteineous Materials, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
311
|
LuTheryn G, Glynne-Jones P, Webb JS, Carugo D. Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb Biotechnol 2020; 13:613-628. [PMID: 32237219 PMCID: PMC7111087 DOI: 10.1111/1751-7915.13471] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilms are an ever-growing concern for public health, featuring both inherited genetic resistance and a conferred innate tolerance to traditional antibiotic therapies. Consequently, there is a growing interest in novel methods of drug delivery, in order to increase the efficacy of antimicrobial agents. One such method is the use of acoustically activated microbubbles, which undergo volumetric oscillations and collapse upon exposure to an ultrasound field. This facilitates physical perturbation of the biofilm and provides the means to control drug delivery both temporally and spatially. In line with current literature in this area, this review offers a rounded argument for why ultrasound-responsive agents could be an integral part of advancing wound care. To achieve this, we will outline the development and clinical significance of biofilms in the context of chronic infections. We will then discuss current practices used in combating biofilms in chronic wounds and then critically evaluate the use of acoustically activated gas microbubbles as an emerging treatment modality. Moreover, we will introduce the novel concept of microbubbles carrying biologically active gases that may facilitate biofilm dispersal.
Collapse
Affiliation(s)
- Gareth LuTheryn
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | - Peter Glynne-Jones
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
312
|
|
313
|
Jiang L, Zheng L, Sun KA, Zhou P, Xu R, Gu J, Wei X. In vitro and in vivo evaluation of the antifungal activity of fluoxetine combined with antifungals against Candida albicans biofilms and oral candidiasis. BIOFOULING 2020; 36:537-548. [PMID: 32551919 DOI: 10.1080/08927014.2020.1777401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Candida albicans biofilms are responsible for oral candidiasis. Fluoxetine is a widely used antidepressant, with certain anti-Candida activities. The antifungal activity of fluoxetine combined with various antifungals against C. albicans biofilms and oral candidiasis was evaluated in this study. The morphological change in the inhibition of fluoxetine on C. albicans biofilms was observed using SEM. The interactions between fluoxetine and antifungals against C. albicans biofilms were evaluated using microdilution checkerboard methods, FICI and the ΔE model. The synergistic combination was tested in vivo on the mice model of oral candidiasis. SEM imaging showed fluoxetine inhibited hyphal growth and biofilm formation. Fluoxetine combined with caspofungin exhibited synergistic effects against C. albicans biofilms. Antagonistic effects occurred when fluoxetine was combined with amphotericin B or terbinafine. Further, the fluoxetine combined with caspofungin significantly reduced the lesion score and CFU of C. albicans on the murine tongue (p < 0.05), and relieved oral candidiasis of the infected mice.
Collapse
Affiliation(s)
- Liuliu Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Linxia Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - K Airui Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyi Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Wei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
314
|
Evaluation of Biofilm Formation in Candida tropicalis Using a Silicone-Based Platform with Synthetic Urine Medium. Microorganisms 2020; 8:microorganisms8050660. [PMID: 32369936 PMCID: PMC7284471 DOI: 10.3390/microorganisms8050660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Molecular mechanisms of biofilm formation in Candida tropicalis and current methods for biofilm analyses in this fungal pathogen are limited. (2) Methods: Biofilm biomass and crystal violet staining of the wild-type and each gene mutant strain of C. tropicalis were evaluated on silicone under synthetic urine culture conditions. (3) Results: Seven media were tested to compare the effects on biofilm growth with or without silicone. Results showed that biofilm cells of C. tropicalis were unable to form firm biofilms on the bottom of 12-well polystyrene plates. However, on a silicone-based platform, Roswell Park Memorial Institute 1640 (RPMI 1640), yeast nitrogen base (YNB) + 1% glucose, and synthetic urine media were able to induce strong biofilm growth. In particular, replacement of Spider medium with synthetic urine in the adherence step and the developmental stage is necessary to gain remarkably increased biofilms. Interestingly, unlike Candida albicans, the C. tropicalisROB1 deletion strain but not the other five biofilm-associated mutants did not cause a significant reduction in biofilm formation, suggesting that the biofilm regulatory circuits of the two species are divergent. (4) Conclusions: This system for C. tropicalis biofilm analyses will become a useful tool to unveil the biofilm regulatory network in C. tropicalis.
Collapse
|
315
|
Thomas G, Bain JM, Budge S, Brown AJP, Ames RM. Identifying Candida albicans Gene Networks Involved in Pathogenicity. Front Genet 2020; 11:375. [PMID: 32391057 PMCID: PMC7193023 DOI: 10.3389/fgene.2020.00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is a normal member of the human microbiome. It is also an opportunistic pathogen, which can cause life-threatening systemic infections in severely immunocompromized individuals. Despite the availability of antifungal drugs, mortality rates of systemic infections are high and new drugs are needed to overcome therapeutic challenges including the emergence of drug resistance. Targeting known disease pathways has been suggested as a promising avenue for the development of new antifungals. However, <30% of C. albicans genes are verified with experimental evidence of a gene product, and the full complement of genes involved in important disease processes is currently unknown. Tools to predict the function of partially or uncharacterized genes and generate testable hypotheses will, therefore, help to identify potential targets for new antifungal development. Here, we employ a network-extracted ontology to leverage publicly available transcriptomics data and identify potential candidate genes involved in disease processes. A subset of these genes has been phenotypically screened using available deletion strains and we present preliminary data that one candidate, PEP8, is involved in hyphal development and immune evasion. This work demonstrates the utility of network-extracted ontologies in predicting gene function to generate testable hypotheses that can be applied to pathogenic systems. This could represent a novel first step to identifying targets for new antifungal therapies.
Collapse
Affiliation(s)
- Graham Thomas
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Susan Budge
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,MRC Centre for Medical Mycology at the University of Exeter, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ryan M Ames
- Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
316
|
de Barros PP, Rossoni RD, de Souza CM, Scorzoni L, Fenley JDC, Junqueira JC. Candida Biofilms: An Update on Developmental Mechanisms and Therapeutic Challenges. Mycopathologia 2020; 185:415-424. [PMID: 32277380 DOI: 10.1007/s11046-020-00445-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
Fungi of the genus Candida are important etiological agents of superficial and life-threatening infections in individuals with a compromised immune system. One of the main characteristics of Candida is its ability to form highly drug tolerance biofilms in the human host. Biofilms are a dynamic community of multiple cell types whose formation over time is orchestrated by a network of transcription regulators. In this brief review, we provide an update of the processes involved in biofilm formation by Candida spp. (formation, treatment, and control), as well as the transcriptional circuitry that regulates its development and interactions with other microorganisms. Candida albicans is known to build mixed species biofilms with other Candida species and with various other bacterial species in different host niches. Taken together, these properties play a key role in Candida pathogenesis. In addition, this review gathers recent studies with new insights and perspectives for the treatment and control of Candida biofilms.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Juliana De Camargo Fenley
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
317
|
Alam F, Catlow D, Di Maio A, Blair JMA, Hall RA. Candida albicans enhances meropenem tolerance of Pseudomonas aeruginosa in a dual-species biofilm. J Antimicrob Chemother 2020; 75:925-935. [PMID: 31865379 PMCID: PMC7069478 DOI: 10.1093/jac/dkz514] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic bacterium that infects the airways of cystic fibrosis patients, surfaces of surgical and burn wounds, and indwelling medical devices. Patients are prone to secondary fungal infections, with Candida albicans being commonly co-isolated with P. aeruginosa. Both P. aeruginosa and C. albicans are able to form extensive biofilms on the surfaces of mucosa and medical devices. OBJECTIVES To determine whether the presence of C. albicans enhances antibiotic tolerance of P. aeruginosa in a dual-species biofilm. METHODS Single- and dual-species biofilms were established in microtitre plates and the survival of each species was measured following treatment with clinically relevant antibiotics. Scanning electron microscopy and confocal microscopy were used to visualize biofilm structure. RESULTS C. albicans enhances P. aeruginosa biofilm tolerance to meropenem at the clinically relevant concentration of 5 mg/L. This effect is specific to biofilm cultures and is dependent upon C. albicans extracellular matrix polysaccharides, mannan and glucan, with C. albicans cells deficient in glycosylation structures not enhancing P. aeruginosa tolerance to meropenem. CONCLUSIONS We propose that fungal mannan and glucan secreted into the extracellular matrix of P. aeruginosa/C. albicans dual-species biofilms play a central role in enhancing P. aeruginosa tolerance to meropenem, which has direct implications for the treatment of coinfected patients.
Collapse
Affiliation(s)
- Farhana Alam
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dominic Catlow
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alessandro Di Maio
- Birmingham Advanced Light Microscopy, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NZ, UK
| |
Collapse
|
318
|
Gupta R, Thakur J, Pal S, Mishra D, Rani P, Kumar S, Saini A, Singh A, Yadav K, Srivastava A, Prasad R, Gupta S, Bajaj A. Cholic-Acid-Derived Amphiphiles Can Prevent and Degrade Fungal Biofilms. ACS APPLIED BIO MATERIALS 2020; 4:7332-7341. [DOI: 10.1021/acsabm.9b01221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ragini Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amandeep Saini
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology,
South Campus, Mathura Road, New Delhi 110029, India
| | - Kavita Yadav
- School of Physical Sciences, Jawahar Lal Nehru University, New Delhi 110067, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
319
|
Bartnicka D, Gonzalez-Gonzalez M, Sykut J, Koziel J, Ciaston I, Adamowicz K, Bras G, Zawrotniak M, Karkowska-Kuleta J, Satala D, Kozik A, Zyla E, Gawron K, Lazarz-Bartyzel K, Chomyszyn-Gajewska M, Rapala-Kozik M. Candida albicans Shields the Periodontal Killer Porphyromonas gingivalis from Recognition by the Host Immune System and Supports the Bacterial Infection of Gingival Tissue. Int J Mol Sci 2020; 21:E1984. [PMID: 32183255 PMCID: PMC7139284 DOI: 10.3390/ijms21061984] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a pathogenic fungus capable of switching its morphology between yeast-like cells and filamentous hyphae and can associate with bacteria to form mixed biofilms resistant to antibiotics. In these structures, the fungal milieu can play a protective function for bacteria as has recently been reported for C. albicans and a periodontal pathogen-Porphyromonas gingivalis. Our current study aimed to determine how this type of mutual microbe protection within the mixed biofilm affects the contacting host cells. To analyze C. albicans and P. gingivalis persistence and host infection, several models for host-biofilm interactions were developed, including microbial exposure to a representative monocyte cell line (THP1) and gingival fibroblasts isolated from periodontitis patients. For in vivo experiments, a mouse subcutaneous chamber model was utilized. The persistence of P. gingivalis cells was observed within mixed biofilm with C. albicans. This microbial co-existence influenced host immunity by attenuating macrophage and fibroblast responses. Cytokine and chemokine production decreased compared to pure bacterial infection. The fibroblasts isolated from patients with severe periodontitis were less susceptible to fungal colonization, indicating a modulation of the host environment by the dominating bacterial infection. The results obtained for the mouse model in which a sequential infection was initiated by the fungus showed that this host colonization induced a milder inflammation, leading to a significant reduction in mouse mortality. Moreover, high bacterial counts in animal organisms were noted on a longer time scale in the presence of C. albicans, suggesting the chronic nature of the dual-species infection.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Sykut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Edyta Zyla
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland;
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland;
| | - Katarzyna Lazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| |
Collapse
|
320
|
Kurakado S, Chiba R, Sato C, Matsumoto Y, Sugita T. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine, a zinc chelator, inhibits biofilm and hyphal formation in Trichosporon asahii. BMC Res Notes 2020; 13:142. [PMID: 32156305 PMCID: PMC7063706 DOI: 10.1186/s13104-020-04990-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/27/2020] [Indexed: 11/10/2022] Open
Abstract
Objective Trichosporon asahii is the major causative fungus of disseminated or deep-seated trichosporonosis and forms a biofilm on medical devices. Biofilm formation leads to antifungal drug resistance, so biofilm-related infections are relatively difficult to treat and infected devices often require surgical removal. Therefore, prevention of biofilm formation is important in clinical settings. In this study, to identify metal cations that affect biofilm formation, we evaluated the effects of cation chelators on biofilm formation in T. asahii. Results We evaluated the effect of cation chelators on biofilm formation, since microorganisms must assimilate essential nutrients from their hosts to form and maintain biofilms. The inhibition by N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) was greater than those by other cation chelators, such as deferoxamine, triethylenetetramine, and ethylenediaminetetraacetic acid. The inhibitory effect of TPEN was suppressed by the addition of zinc. TPEN also inhibited T. asahii hyphal formation, which is related to biofilm formation, and the inhibition was suppressed by the addition of zinc. These results suggest that zinc is essential for biofilm formation and hyphal formation. Thus, zinc chelators have the potential to be developed into a new treatment for biofilm-related infection caused by T. asahii.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| | - Ryota Chiba
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Chisato Sato
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
321
|
Co-immobilization of cellobiose dehydrogenase and deoxyribonuclease I on chitosan nanoparticles against fungal/bacterial polymicrobial biofilms targeting both biofilm matrix and microorganisms. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110499. [DOI: 10.1016/j.msec.2019.110499] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022]
|
322
|
Novel 2,4-Disubstituted-1,3-Thiazole Derivatives: Synthesis, Anti- Candida Activity Evaluation and Interaction with Bovine Serum Albumine. Molecules 2020; 25:molecules25051079. [PMID: 32121062 PMCID: PMC7179180 DOI: 10.3390/molecules25051079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022] Open
Abstract
Herein we report the synthesis of two novel series of 1,3-thiazole derivatives having a lipophilic C4-substituent on account of the increasing need for novel and versatile antifungal drugs for the treatment of resistant Candida sp.-based infections. Following their structural characterization, the anti-Candida activity was evaluated in vitro while using the broth microdilution method. Three compounds exhibited lower Minimum Inhibitory Concentration (MIC) values when compared to fluconazole, being used as the reference antifungal drug. An in silico molecular docking study was subsequently carried out in order to gain more insight into the antifungal mechanism of action, while using lanosterol-C14α-demethylase as the target enzyme. Fluorescence microscopy was employed to further investigate the cellular target of the most promising molecule, with the obtained results confirming its damaging effect towards the fungal cell membrane integrity. Finally, the distribution and the pharmacological potential in vivo of the novel thiazole derivatives was investigated through the study of their binding interaction with bovine serum albumin, while using fluorescence spectroscopy.
Collapse
|
323
|
Mukherjee S, Barman S, Mukherjee R, Haldar J. Amphiphilic Cationic Macromolecules Highly Effective Against Multi-Drug Resistant Gram-Positive Bacteria and Fungi With No Detectable Resistance. Front Bioeng Biotechnol 2020; 8:55. [PMID: 32117934 PMCID: PMC7033416 DOI: 10.3389/fbioe.2020.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
The ever increasing threats of Gram-positive superbugs such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), and vancomycin-resistant Enterococccus faecium (VRE) are serious matter of concern worldwide toward public health. Such pathogens cause repeated recurrence of infections through the formation of biofilms which consist of metabolically inactive or slow growing dormant bacterial population in vast majority. Concurrently, dispersal of biofilms originates even more virulent dispersed cells responsible for pathogenesis. Along with this, fungal infections most commonly associated with Candida albicans also created a major complicacy in human healthcare. Moreover, concomitant survival of C. albicans and MRSA in a multispecies biofilms created extremely complicated polymicrobial infections. Surprisingly, infections associated with single species biofilm as well as multiple species biofilm (co-existence of MRSA and C. albicans) are almost untreatable with conventional antibiotics. Therefore, the situation demands an urgent development of antimicrobial agent which would tackle persistent infections associated with bacteria, fungi and their biofilms. Toward this goal, herein we developed a new class of branched polyethyleneimine based amphiphilic cationic macromolecules (ACMs) bearing normal alkyl, alkyl ester and alkyl amide moieties. An optimized compound with dual activity against drug-resistant bacteria (MIC = 2-4 μg/mL) and fungi (MIC = 4-8 μg/mL) was identified with minimal toxicity toward human erythrocytes (HC50 = 270 μg/mL). The lead compound, ACM-AHex (12) displayed rapid bactericidal and fungicidal kinetics (>5 log CFU/mL reduction within 1-4 h). It also killed metabolically dormant stationary (MRSA and VRE) and persister (S. aureus) cells. Moreover, this compound was able to disrupt the preformed biofilm of MRSA and reduced the bacterial burden related to the dispersed cells. It showed significant proficiencies to eliminate polymicrobial biofilms of MRSA and C. albicans. Bacteria also could not develop any resistant against this class of membrane active molecules even after 15 days of successive passages. Taken together this class of macromolecule can be developed further as a dual therapeutic agent to combat infections associated with bacterial and fungal co-existence.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
324
|
Abstract
Systemic fungal infections pose a serious clinical problem. Treatment options are limited, and antifungal drug resistance is increasing. In addition, a substantial proportion of patients do not respond to therapy despite being infected with fungi that are susceptible to the drug. The discordance between overall treatment outcome and low levels of clinical resistance may be attributable to antifungal drug tolerance. In this Review, we define and distinguish resistance and tolerance and discuss the current understanding of the molecular, genetic and physiological mechanisms that contribute to those phenomena. Distinguishing tolerance from resistance might provide important insights into the reasons for treatment failure in some settings.
Collapse
|
325
|
Antifungal and Antivirulence Activities of Hydroalcoholic Extract and Fractions of Platonia insignis Leaves against Vaginal Isolates of Candida Species. Pathogens 2020; 9:pathogens9020084. [PMID: 32013047 PMCID: PMC7168675 DOI: 10.3390/pathogens9020084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022] Open
Abstract
Vulvovaginal candidiasis is a common fungal infection in women. In this study, Platonia insignis hydroalcoholic extract (PiHE) and its fractions were evaluated for antifungal and antivirulence activities against vaginal Candida species. Dichloromethane (DCMF) and ethyl acetate fractions (EAF) obtained from PiHE effectively inhibited the pathogen. Electrospray ionization mass spectrometry was used for identifying the main compounds in extracts. Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) were determined by a broth microdilution assay. Furthermore, we evaluated the effect of the extract and fractions on the virulence properties of Candida albicans, and their cytotoxicity effect was determined on RAW 264.7 cells. Compounds found in extracts were flavonoid glycosides, mainly derivatives of quercetin and myricetin. Extracts showed antifungal potential, with the lowest MIC value for EAF (1.3 mg/mL) and inhibited Candida adherence and biofilm formation. EAF disrupted 48 h biofilms with an inhibition rate of more than 90%. The extract and its fractions exhibited no cytotoxicity. The antifungal effects were attributed to the ability of these extracts to alter the mitochondrial membrane potential for the release of pro-apoptotic factors in the cytosol. In conclusion, our data suggest that PiHE and EAF could act as novel candidates for the development of new therapeutic treatments against fungal infections.
Collapse
|
326
|
Perry AM, Hernday AD, Nobile CJ. Unraveling How Candida albicans Forms Sexual Biofilms. J Fungi (Basel) 2020; 6:jof6010014. [PMID: 31952361 PMCID: PMC7151012 DOI: 10.3390/jof6010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans.
Collapse
Affiliation(s)
- Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
327
|
Shing SR, Ramos AR, Patras KA, Riestra AM, McCabe S, Nizet V, Coady A. The Fungal Pathogen Candida albicans Promotes Bladder Colonization of Group B Streptococcus. Front Cell Infect Microbiol 2020; 9:437. [PMID: 31998657 PMCID: PMC6966239 DOI: 10.3389/fcimb.2019.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Group B Streptococcus (GBS) is a common cause of bacterial urinary tract infections (UTI) in susceptible populations, including pregnant women and the elderly. However, the factors that govern GBS persistence and disease severity in this niche are not fully understood. Here, we report that the presence of the fungus Candida albicans, a common urogenital colonizer, can promote GBS UTI. Co-inoculation of GBS with C. albicans increased bacterial adherence to bladder epithelium and promoted GBS colonization in vivo in a C. albicans adhesin-dependent manner. This study demonstrates that fungal colonization of the urogenital tract may be an important determinant of bacterial pathogenesis during UTI.
Collapse
Affiliation(s)
- Samuel R Shing
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Anissa R Ramos
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Kathryn A Patras
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Angelica M Riestra
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Sinead McCabe
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Alison Coady
- Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
328
|
Starosta R, de Almeida RFM, Puchalska M, Białońska A, Panek JJ, Jezierska A, Szmigiel I, Suchodolski J, Krasowska A. New anticandidal Cu(i) complexes with neocuproine and ketoconazole derived diphenyl(aminomethyl)phosphane: luminescence properties for detection in fungal cells. Dalton Trans 2020; 49:8528-8539. [DOI: 10.1039/d0dt01162b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anticandidal activity and a complex luminescence in water solutions of the new copper(i) complexes with a ketoconazole derived phosphane ligand.
Collapse
Affiliation(s)
- Radosław Starosta
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
- Centro de Química Estrutural
| | - Rodrigo F. M. de Almeida
- Centro de Química Estrutural
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | | | - Agata Białońska
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | - Aneta Jezierska
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Ida Szmigiel
- Faculty of Biotechnology
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | - Anna Krasowska
- Faculty of Biotechnology
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| |
Collapse
|
329
|
Ishchuk OP, Sterner O, Ellervik U, Manner S. Simple Carbohydrate Derivatives Diminish the Formation of Biofilm of the Pathogenic Yeast Candida albicans. Antibiotics (Basel) 2019; 9:antibiotics9010010. [PMID: 31905828 PMCID: PMC7167926 DOI: 10.3390/antibiotics9010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 11/30/2022] Open
Abstract
The opportunistic human fungal pathogen Candida albicans relies on cell morphological transitions to develop biofilm and invade the host. In the current study, we developed new regulatory molecules, which inhibit the morphological transition of C. albicans from yeast-form cells to cells forming hyphae. These compounds, benzyl α-l-fucopyranoside and benzyl β-d-xylopyranoside, inhibit the hyphae formation and adhesion of C. albicans to a polystyrene surface, resulting in a reduced biofilm formation. The addition of cAMP to cells treated with α-l-fucopyranoside restored the yeast-hyphae switch and the biofilm level to that of the untreated control. In the β-d-xylopyranoside treated cells, the biofilm level was only partially restored by the addition of cAMP, and these cells remained mainly as yeast-form cells.
Collapse
Affiliation(s)
- Olena P. Ishchuk
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden;
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (O.S.); (U.E.)
| | - Olov Sterner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (O.S.); (U.E.)
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (O.S.); (U.E.)
| | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (O.S.); (U.E.)
- Correspondence:
| |
Collapse
|
330
|
Li Y, Jiao P, Li Y, Gong Y, Chen X, Sun S. The Synergistic Antifungal Effect and Potential Mechanism of D-Penicillamine Combined With Fluconazole Against Candida albicans. Front Microbiol 2019; 10:2853. [PMID: 31921035 PMCID: PMC6930176 DOI: 10.3389/fmicb.2019.02853] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, candidiasis has exhibited an increasing incidence worldwide, causing high mortality in immunocompromised patients. Candida albicans is one of the leading opportunistic fungal pathogens. However, due to the increased use of antifungal agents, resistance of C. albicans to conventional agents, especially fluconazole, has frequently emerged. Therefore, research on the use of combinations of current drugs to sensitize antifungal agents and overcome fungal resistance has attracted considerable attention. This study demonstrated for the first time that D-penicillamine (PCA) combined with fluconazole showed a synergistic effect against C. albicans. PCA combined with fluconazole not only showed synergistic effects against planktonic cells of C. albicans, but also showed synergistic effects against C. albicans biofilms formed within 12 h in vitro. In addition, a Galleria mellonella infection model was used to evaluate the in vivo effects of this drug combination. The results showed that the combination of the two drugs could improve the survival rate, decrease the fungal burden, and reduce the tissue invasion of G. mellonella larvae. Finally, we explored the potential synergistic mechanisms of the drug combination, mainly including inhibition of the morphological transformation, reduction of the intracellular calcium concentration, and the activation of metacaspase, which is closely related to cell apoptosis. These findings might provide novel insights into antifungal drug discovery and the treatment of candidiasis caused by C. albicans.
Collapse
Affiliation(s)
- Yiman Li
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ping Jiao
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Yuanyuan Li
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ying Gong
- Department of Pharmacy, Wuxi People's Hospital, Wuxi, China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
331
|
Jiang L, Chen S, Sun K, Zhou P, Wei X. Intracellular cAMP Measurements in Candida albicans Biofilms. Bio Protoc 2019; 9:e3461. [PMID: 33654947 DOI: 10.21769/bioprotoc.3461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/29/2019] [Accepted: 10/12/2019] [Indexed: 11/02/2022] Open
Abstract
Candida albicans is the most common cause of fungal infections worldwide. Infection by C. albicans is closely associated with its ability to form a biofilm, closely packed communities of cells attached to the surfaces of human tissues and implanted devices, in or on the host. When tested for susceptibility to antifungals, such as polyenes, azoles, and allylamines, C. albicans cells in a biofilm are more resistant to antifungal agents than C. albicans cells in the planktonic form. Cyclic Adenosine monophosphate (cAMP) is one of the key elements for triggering hyphal and biofilm formation in C. albicans. It is hard to detect or extract molecular markers (e.g., cAMP) from C. albicans biofilms because the biofilms have a complex three-dimensional architecture with an extracellular matrix surrounding the cell walls of the cells in the biofilm. Here, we present an improved protocol that can effectively measure the level of intracellular cAMP in C. albicans biofilms.
Collapse
Affiliation(s)
- Liuliu Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Stomatology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shengyan Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Stomatology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Kairui Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Stomatology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Peng Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Stomatology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xin Wei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Stomatology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
332
|
Patel KD, De Zoysa GH, Kanamala M, Patel K, Pilkington LI, Barker D, Reynisson J, Wu Z, Sarojini V. Novel Cell-Penetrating Peptide Conjugated Proteasome Inhibitors: Anticancer and Antifungal Investigations. J Med Chem 2019; 63:334-348. [DOI: 10.1021/acs.jmedchem.9b01694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kamal D. Patel
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Gayan Heruka De Zoysa
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Manju Kanamala
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand
| | - Krunal Patel
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Lisa I. Pilkington
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - David Barker
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
333
|
Shin DS, Eom YB. Efficacy of zerumbone against dual-species biofilms of Candida albicans and Staphylococcus aureus. Microb Pathog 2019; 137:103768. [DOI: 10.1016/j.micpath.2019.103768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
|
334
|
Garud NR, Pollard KS. Population Genetics in the Human Microbiome. Trends Genet 2019; 36:53-67. [PMID: 31780057 DOI: 10.1016/j.tig.2019.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
While the human microbiome's structure and function have been extensively studied, its within-species genetic diversity is less well understood. However, genetic mutations in the microbiome can confer biomedically relevant traits, such as the ability to extract nutrients from food, metabolize drugs, evade antibiotics, and communicate with the host immune system. The population genetic processes by which these traits evolve are complex, in part due to interacting ecological and evolutionary forces in the microbiome. Advances in metagenomic sequencing, coupled with bioinformatics tools and population genetic models, facilitate quantification of microbiome genetic variation and inferences about how this diversity arises, evolves, and correlates with traits of both microbes and hosts. In this review, we explore the population genetic forces (mutation, recombination, drift, and selection) that shape microbiome genetic diversity within and between hosts, as well as efforts towards predictive models that leverage microbiome genetics.
Collapse
Affiliation(s)
- Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
335
|
Ramírez-Lozada T, Espinosa-Hernández VM, Frías-De-León MG, Martínez-Herrera E. Update of Vulvovaginal Candidiasis in Pregnant and Non-pregnant Patients. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00357-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
336
|
New diphenylphosphane derivatives of ketoconazole are promising antifungal agents. Sci Rep 2019; 9:16214. [PMID: 31700024 PMCID: PMC6838151 DOI: 10.1038/s41598-019-52525-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Four new derivatives of ketoconazole (Ke) were synthesized: diphenylphosphane (KeP), and phosphane chalcogenides: oxide (KeOP), sulphide (KeSP) and selenide (KeSeP). These compounds proved to be promising antifungal compounds towards Saccharomyces cerevisiae and Candida albicans, especially in synergy with fluconazole. Simulations of docking to the cytochrome P450 14α-demethylase (azoles’ primary molecular target) proved that the new Ke derivatives are capable of inhibiting this enzyme by binding to the active site. Cytotoxicity towards hACSs (human adipose-derived stromal cells) of the individual compounds was studied and the IC50 values were higher than the MIC50 for C. albicans and S. cerevisiae. KeP and KeOP increased the level of the p21 gene transcript but did not change the level of p53 gene transcript, a major regulator of apoptosis, and decreased the mitochondrial membrane potential. Taken together, the results advocate that the new ketoconazole derivatives have a similar mechanism of action and block the lanosterol 14α-demethylase and thus inhibit the production of ergosterol in C. albicans membranes.
Collapse
|
337
|
Cholic Acid-Peptide Conjugates as Potent Antimicrobials against Interkingdom Polymicrobial Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.00520-19. [PMID: 31427303 DOI: 10.1128/aac.00520-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022] Open
Abstract
Interkingdom polymicrobial biofilms formed by Gram-positive Staphylococcus aureus and Candida albicans pose serious threats of chronic systemic infections due to the absence of any common therapeutic target for their elimination. Herein, we present the structure-activity relationship (SAR) of membrane-targeting cholic acid-peptide conjugates (CAPs) against Gram-positive bacterial and fungal strains. Structure-activity investigations validated by mechanistic studies revealed that valine-glycine dipeptide-derived CAP 3 was the most effective broad-spectrum antimicrobial against S. aureus and C. albicans CAP 3 was able to degrade the preformed single-species and polymicrobial biofilms formed by S. aureus and C. albicans, and CAP 3-coated materials prevented the formation of biofilms. Murine wound and catheter infection models further confirmed the equally potent bactericidal and fungicidal effect of CAP 3 against bacterial, fungal, and polymicrobial infections. Taken together, these results demonstrate that CAPs, as potential broad-spectrum antimicrobials, can effectively clear the frequently encountered polymicrobial infections and can be fine-tuned further for future applications.
Collapse
|
338
|
Ho V, Herman-Bausier P, Shaw C, Conrad KA, Garcia-Sherman MC, Draghi J, Dufrene YF, Lipke PN, Rauceo JM. An Amyloid Core Sequence in the Major Candida albicans Adhesin Als1p Mediates Cell-Cell Adhesion. mBio 2019; 10:e01766-19. [PMID: 31594814 PMCID: PMC6786869 DOI: 10.1128/mbio.01766-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023] Open
Abstract
The human fungal commensal Candida albicans can become a serious opportunistic pathogen in immunocompromised hosts. The C. albicans cell adhesion protein Als1p is a highly expressed member of a large family of paralogous adhesins. Als1p can mediate binding to epithelial and endothelial cells, is upregulated in infections, and is important for biofilm formation. Als1p includes an amyloid-forming sequence at amino acids 325 to 331, identical to the sequence in the paralogs Als5p and Als3p. Therefore, we mutated Val326 to test whether this sequence is important for activity. Wild-type Als1p (Als1pWT) and Als1p with the V326N mutation (Als1pV326N) were expressed at similar levels in a Saccharomyces cerevisiae surface display model. Als1pV326N cells adhered to bovine serum albumin (BSA)-coated beads similarly to Als1pWT cells. However, cells displaying Als1pV326N showed visibly smaller aggregates and did not fluoresce in the presence of the amyloid-binding dye Thioflavin-T. A new analysis tool for single-molecule force spectroscopy-derived surface mapping showed that statistically significant force-dependent Als1p clustering occurred in Als1pWT cells but was absent in Als1pV326N cells. In single-cell force spectroscopy experiments, strong cell-cell adhesion was dependent on an intact amyloid core sequence on both interacting cells. Thus, the major adhesin Als1p interacts through amyloid-like β-aggregation to cluster adhesin molecules in cis on the cell surface as well as in trans to form cell-cell bonds.IMPORTANCE Microbial cell surface adhesins control essential processes such as adhesion, colonization, and biofilm formation. In the opportunistic fungal pathogen Candida albicans, the agglutinin-like sequence (ALS) gene family encodes eight cell surface glycoproteins that mediate adherence to biotic and abiotic surfaces and cell-cell aggregation. Als proteins are critical for commensalism and virulence. Their activities include attachment and invasion of endothelial and epithelial cells, morphogenesis, and formation of biofilms on host tissue and indwelling medical catheters. At the molecular level, Als5p-mediated cell-cell aggregation is dependent on the formation of amyloid-like nanodomains between Als5p-expressing cells. A single-site mutation to valine 326 abolishes cellular aggregation and amyloid formation. Our results show that the binding characteristics of Als1p follow a mechanistic model similar to Als5p, despite its differential expression and biological roles.
Collapse
Affiliation(s)
- Vida Ho
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | | | - Christopher Shaw
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Karen A Conrad
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Melissa C Garcia-Sherman
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Jeremy Draghi
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Yves F Dufrene
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Peter N Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Jason M Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
339
|
Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol 2019; 35:154. [PMID: 31576429 PMCID: PMC6773674 DOI: 10.1007/s11274-019-2728-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
Yeasts occur in all environments and have been described as potent antagonists of various plant pathogens. Due to their antagonistic ability, undemanding cultivation requirements, and limited biosafety concerns, many of these unicellular fungi have been considered for biocontrol applications. Here, we review the fundamental research on the mechanisms (e.g., competition, enzyme secretion, toxin production, volatiles, mycoparasitism, induction of resistance) by which biocontrol yeasts exert their activity as plant protection agents. In a second part, we focus on five yeast species (Candida oleophila, Aureobasidium pullulans, Metschnikowia fructicola, Cryptococcus albidus, Saccharomyces cerevisiae) that are or have been registered for the application as biocontrol products. These examples demonstrate the potential of yeasts for commercial biocontrol usage, but this review also highlights the scarcity of fundamental studies on yeast biocontrol mechanisms and of registered yeast-based biocontrol products. Yeast biocontrol mechanisms thus represent a largely unexplored field of research and plentiful opportunities for the development of commercial, yeast-based applications for plant protection exist.
Collapse
Affiliation(s)
- Florian M Freimoser
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland.
| | - Maria Paula Rueda-Mejia
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Bruno Tilocca
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi and NRD - Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
340
|
Xue YP, Kao MC, Lan CY. Novel mitochondrial complex I-inhibiting peptides restrain NADH dehydrogenase activity. Sci Rep 2019; 9:13694. [PMID: 31548559 PMCID: PMC6757105 DOI: 10.1038/s41598-019-50114-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug-resistant fungal pathogens is becoming increasingly serious due to overuse of antifungals. Antimicrobial peptides have potent activity against a broad spectrum of pathogens, including fungi, and are considered a potential new class of antifungals. In this study, we examined the activities of the newly designed peptides P-113Du and P-113Tri, together with their parental peptide P-113, against the human fungal pathogen Candida albicans. The results showed that these peptides inhibit mitochondrial complex I, specifically NADH dehydrogenase, of the electron transport chain. Moreover, P-113Du and P-113Tri also block alternative NADH dehydrogenases. Currently, most inhibitors of the mitochondrial complex I are small molecules or artificially-designed antibodies. Here, we demonstrated novel functions of antimicrobial peptides in inhibiting the mitochondrial complex I of C. albicans, providing insight in the development of new antifungal agents.
Collapse
Affiliation(s)
- Yao-Peng Xue
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC. .,Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC. .,Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
341
|
Kart D, Yabanoglu Ciftci S, Nemutlu E. Altered metabolomic profile of dual-species biofilm: Interactions between Proteus mirabilis and Candida albicans. Microbiol Res 2019; 230:126346. [PMID: 31563763 DOI: 10.1016/j.micres.2019.126346] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 01/04/2023]
Abstract
In this study, we aimed to determine the interspecies interactions between Proteus mirabilis and Candida albicans. Mono and dual-species biofilms were grown in a microtiter plate and metabolomic analysis of the biofilms was performed. The effects of togetherness of two species on the expression levels of candidal virulence genes and urease and swarming activities of P.mirabilis were investigated. The growth of C.albicans was inhibited by P.mirabilis whereas the growth and swarming activity of P.mirabilis were increased by C.albicans. The inhibition of Candida cell growth was found to be biofilm specific. The alteration was not detected in urease activity. The expressions of EFG1, HWP1 and SAP2 genes were significantly down-regulated, however, LIP1 was upregulated by P.mirabilis. In the presence of P.mirabilis carbonhydrates, amino acids, polyamine and lipid metabolisms were altered in C.albicans. Interestingly, the putrescine level was increased up to 230 fold in dual-species biofilm compared to monospecies C.albicans biofilm. To our knowledge, this is the first study to investigate the impact of each microbial pathogen on the dual microbial environment by integration of metabolomic data.
Collapse
Affiliation(s)
- Didem Kart
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Sıhhiye, Ankara, Turkey.
| | - Samiye Yabanoglu Ciftci
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Sıhhiye, Ankara, Turkey
| |
Collapse
|
342
|
Coad BR, Michl TD, Bader CA, Baranger J, Giles C, Gonçalves GC, Nath P, Lamont-Friedrich SJ, Johnsson M, Griesser HJ, Plush SE. Visualizing Biomaterial Degradation by Candida albicans Using Embedded Luminescent Molecules To Report on Substrate Digestion and Cellular Uptake of Hydrolysate. ACS APPLIED BIO MATERIALS 2019; 2:3934-3941. [DOI: 10.1021/acsabm.9b00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bryan R. Coad
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- School of Agriculture, Food & Wine, University of Adelaide, Adelaide 5000, Australia
| | - Thomas D. Michl
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Christie A. Bader
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Joris Baranger
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Carla Giles
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Centre for Aquatic Animal Health & Vaccines, Tasmania Department of Primary Industries Parks Water & Environment, 165 Westbury Road, Prospect, Tasmania 7250, Australia
| | - Giovanna Cufaro Gonçalves
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Pratiti Nath
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | | | - Malin Johnsson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hans J. Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Sally E. Plush
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
343
|
Mosaddad SA, Tahmasebi E, Yazdanian A, Rezvani MB, Seifalian A, Yazdanian M, Tebyanian H. Oral microbial biofilms: an update. Eur J Clin Microbiol Infect Dis 2019; 38:2005-2019. [PMID: 31372904 DOI: 10.1007/s10096-019-03641-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/14/2019] [Indexed: 01/20/2023]
Abstract
Human oral cavity (mouth) hosts a complex microbiome consisting of bacteria, archaea, protozoa, fungi and viruses. These bacteria are responsible for two common diseases of the human mouth including periodontal (gum) and dental caries (tooth decay). Dental caries is caused by plaques, which are a community of microorganisms in biofilm format. Genetic and peripheral factors lead to variations in the oral microbiome. It has known that, in commensalism and coexistence between microorganisms and the host, homeostasis in the oral microbiome is preserved. Nonetheless, under some conditions, a parasitic relationship dominates the existing situation and the rise of cariogenic microorganisms results in dental caries. Utilizing advanced molecular biology techniques, new cariogenic microorganisms species have been discovered. The oral microbiome of each person is quite distinct. Consequently, commonly taken measures for disease prevention cannot be exactly the same for other individuals. The chance for developing tooth decay in individuals is dependent on factors such as immune system and oral microbiome which itself is affected by the environmental and genetic determinants. Early detection of dental caries, assessment of risk factors and designing personalized measure let dentists control the disease and obtain desired results. It is necessary for a dentist to consider dental caries as a result of a biological process to be targeted than treating the consequences of decay cavities. In this research, we critically review the literature and discuss the role of microbial biofilms in dental caries.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Center, London, UK
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
344
|
LIN MY, YUAN ZL, HU DD, HU GH, ZHANG RL, ZHONG H, YAN L, JIANG YY, SU J, WANG Y. Effect of loureirin A against Candida albicans biofilms. Chin J Nat Med 2019; 17:616-623. [DOI: 10.1016/s1875-5364(19)30064-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 12/27/2022]
|
345
|
Abstract
The enigmatic yeast Candida auris has emerged over the last decade and rapidly penetrated our consciousness. The global threat from this multidrug-resistant yeast has generated a call to arms from within the medical mycology community. Over the past decade, our understanding of how this yeast has spread globally, its clinical importance, and how it tolerates and resists antifungal agents has expanded. This review highlights the clinical importance of antifungal resistance in C. auris and explores our current understanding of the mechanisms associated with azole, polyene, and echinocandin resistance. We also discuss the impact of phenotypic tolerance, with particular emphasis on biofilm-mediated resistance, and present new pipelines of antifungal drugs that promise new hope in the management of C. auris infection.
Collapse
Affiliation(s)
- Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Gordon Ramage
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
346
|
Role of Amino Acid Metabolism in the Virulence of Human Pathogenic Fungi. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00124-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
347
|
Shivarathri R, Tscherner M, Zwolanek F, Singh NK, Chauhan N, Kuchler K. The Fungal Histone Acetyl Transferase Gcn5 Controls Virulence of the Human Pathogen Candida albicans through Multiple Pathways. Sci Rep 2019; 9:9445. [PMID: 31263212 PMCID: PMC6603162 DOI: 10.1038/s41598-019-45817-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Fungal virulence is regulated by a tight interplay of transcriptional control and chromatin remodelling. Despite compelling evidence that lysine acetylation modulates virulence of pathogenic fungi such as Candida albicans, the underlying mechanisms have remained largely unexplored. We report here that Gcn5, a paradigm lysyl-acetyl transferase (KAT) modifying both histone and non-histone targets, controls fungal morphogenesis - a key virulence factor of C. albicans. Our data show that genetic removal of GCN5 abrogates fungal virulence in mice, suggesting strongly diminished fungal fitness in vivo. This may at least in part arise from increased susceptibility to killing by macrophages, as well as by other phagocytes such as neutrophils or monocytes. Loss of GCN5 also causes hypersensitivity to the fungicidal drug caspofungin. Caspofungin hypersusceptibility requires the master regulator Efg1, working in concert with Gcn5. Moreover, Gcn5 regulates multiple independent pathways, including adhesion, cell wall-mediated MAP kinase signaling, hypersensitivity to host-derived oxidative stress, and regulation of the Fks1 glucan synthase, all of which play critical roles in virulence and antifungal susceptibility. Hence, Gcn5 regulates fungal virulence through multiple mechanisms, suggesting that specific inhibition of Gcn5 could offer new therapeutic strategies to combat invasive fungal infections.
Collapse
Affiliation(s)
- Raju Shivarathri
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | - Florian Zwolanek
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria
| | | | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA.
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, A-1030, Vienna, Austria.
| |
Collapse
|
348
|
Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii. mBio 2019; 10:mBio.01179-19. [PMID: 31213561 PMCID: PMC6581863 DOI: 10.1128/mbio.01179-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial communities have a great impact in health and disease. C. albicans interacts with multiple microorganisms in the oral cavity, frequently forming polymicrobial biofilms. We report on the synergistic interactions between C. albicans and the Gram-positive bacterium S. gordonii, for which we have examined the different contributions of adhesive interactions, filamentation, and the extracellular matrix to the formation of dual-species biofilms. Our results demonstrate that growth in the presence of the bacterium can restore the biofilm-forming ability of different C. albicans mutant strains with defects in adhesion and filamentation. The mixed-species biofilms also show high levels of resistance to antibacterial and antifungal antibiotics, and our results indicate that the fungal biofilm matrix protects bacterial cells within these mixed-species biofilms. Our observations add to a growing body of evidence indicating a high level of complexity in the reciprocal interactions and consortial behavior of fungal/bacterial biofilms. Fungal and bacterial populations coexist in the oral cavity, frequently forming mixed-species biofilms that complicate treatment against polymicrobial infections. However, despite relevance to oral health, the bidirectional interactions between these microbial populations are poorly understood. In this study, we aimed to elucidate the mechanisms underlying the interactions between the fungal species Candida albicans and the bacterial species Streptococcus gordonii as they coexist in mixed-species biofilms. Specifically, the interactions of different C. albicans mutant strains deficient in filamentation (efg1Δ/Δ and brg1Δ/Δ), adhesive interactions (als3Δ/Δ and bcr1Δ/Δ), and production of matrix exopolymeric substances (EPS) (kre5Δ/Δ, mnn9Δ/Δ, rlm1Δ/Δ, and zap1Δ/Δ) were evaluated with S. gordonii under different conditions mimicking the environment in the oral cavity. Interestingly, our results revealed that growth of the biofilm-deficient C. albicansals3Δ/Δ and bcr1Δ/Δ mutant strains in synthetic saliva or with S. gordonii restored their biofilm-forming ability. Moreover, challenging previous observations indicating an important role of morphogenetic conversions in the interactions between these two species, our results indicated a highly synergistic interaction between S. gordonii and the C. albicans filamentation-deficient efg1Δ/Δ and brg1Δ/Δ deletion mutants, which was particularly noticeable when the mixed biofilms were grown in synthetic saliva. Importantly, dual-species biofilms were found to exhibit increase in antimicrobial resistance, indicating that components of the fungal exopolymeric material confer protection to streptococcal cells against antibacterial treatment. Collectively, these findings unravel a high degree of complexity in the interactions between C. albicans and S. gordonii in mixed-species biofilms, which may impact homeostasis in the oral cavity.
Collapse
|
349
|
Dehullu J, Valotteau C, Herman-Bausier P, Garcia-Sherman M, Mittelviefhaus M, Vorholt JA, Lipke PN, Dufrêne YF. Fluidic Force Microscopy Demonstrates That Homophilic Adhesion by Candida albicans Als Proteins Is Mediated by Amyloid Bonds between Cells. NANO LETTERS 2019; 19:3846-3853. [PMID: 31038969 PMCID: PMC6638552 DOI: 10.1021/acs.nanolett.9b01010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fungal pathogen Candida albicans frequently forms drug-resistant biofilms in hospital settings and in chronic disease patients. Cell adhesion and biofilm formation involve a family of cell surface Als (agglutinin-like sequence) proteins. It is now well documented that amyloid-like clusters of laterally arranged Als proteins activate cell-cell adhesion under mechanical stress, but whether amyloid-like bonds form between aggregating cells is not known. To address this issue, we measure the forces driving Als5-mediated intercellular adhesion using an innovative fluidic force microscopy platform. Strong cell-cell adhesion is dependent on expression of amyloid-forming Als5 at high cell surface density and is inhibited by a short antiamyloid peptide. Furthermore, there is greatly attenuated binding between cells expressing amyloid-forming Als5 and cells with a nonamyloid form of Als5. Thus, homophilic bonding between Als5 proteins on adhering cells is the major mode of fungal aggregation, rather than protein-ligand interactions. These results point to a model whereby amyloid-like β-sheet interactions play a dual role in cell-cell adhesion, that is, in formation of adhesin nanoclusters ( cis-interactions) and in homophilic bonding between amyloid sequences on opposing cells ( trans-interactions). Because potential amyloid-forming sequences are found in many microbial adhesins, we speculate that this novel mechanism of amyloid-based homophilic adhesion might be widespread and could represent an interesting target for treating biofilm-associated infections.
Collapse
Affiliation(s)
- Jérôme Dehullu
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Herman-Bausier
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Melissa Garcia-Sherman
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | | | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Peter N. Lipke
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 4000 Liege, Belgium
| |
Collapse
|
350
|
Yang L, Liu X, Sui Y, Ma Z, Feng X, Wang F, Ma T. Lycorine Hydrochloride Inhibits the Virulence Traits of Candida albicans. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1851740. [PMID: 31275963 PMCID: PMC6582861 DOI: 10.1155/2019/1851740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2019] [Accepted: 05/26/2019] [Indexed: 11/24/2022]
Abstract
The human opportunistic fungal pathogen Candida albicans causes a severe health burden while the biofilms formed by C. albicans present a kind of infections that are hard to cure, highlighting the pressing need for new antifungal drugs against C. albicans. This study was to explore the antifungal activities of lycorine hydrochloride (LH) against C. albicans. The minimal inhibitory concentration (MIC) of LH against C. albicans SC5314 was 64 μM. Below its MIC, LH demonstrated antivirulence property by suppressing adhesion, filamentation, biofilm formation, and development, as well as the production of extracellular phospholipase and exopolymeric substances (EPS). The cytotoxicity of LH against mammalian cells was low, with half maximal inhibitory concentrations (IC50) above 256 μM. Moreover, LH showed a synergistic effect with AmB, although its interaction with fluconazole, as well as caspofungin, was indifferent. Thus, our study reports the potential use of LH, alone or in combination with current antifungal drugs, to fight C. albicans infections.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xuechao Feng
- College of Life Science, Northeast Normal University, Changchun 130024, China
| | - Fang Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|