301
|
Luo Q, He F, Cao J. A stromal and immune cell infiltration-based score model predicts prognosis and chemotherapy effect in colorectal cancer. Int Immunopharmacol 2021; 99:107940. [PMID: 34242996 DOI: 10.1016/j.intimp.2021.107940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
The stromal and immune cells crosstalk with cancer cells in tumor microenvironment, but few studies have fully considered the overall landscape of the infiltrating stromal and immune cells in colorectal cancer. We enrolled 1836 colorectal cancer patients and divided them into the training, validation and test cohorts. 64 stromal and immune cells were quantified in each primary colorectal cancer tissue by estimating gene expression data using xCell algorithm. Univariate, LASSO and multivariate Cox regression analyses were subsequently employed to establish a stromal and immune score prognostic model based on 13 potential cell biomarkers. Patients of the three cohorts were divided into the high- and low-risk groups according to the cutoff value. Compared with the low-risk group, high-risk group showed significant shorter survival, worse clinicopathologic outcomings, higher cancer-related expressions and more active epithelial-mesenchymal transformation. 5-Fu and FUFOL chemotherapy regimens made the low-risk patients gain significant survival advantage, while none chemotherapy regimens benefited the high-risk group, which may benefit from immune checkpoint inhibitors. The nomogram combining the stromal and immune score with standard TNM staging system showed better predictive accuracy than TNM stage alone. The stromal and immune cell infiltration-based score model can effectively and efficiently predict the prognosis and chemotherapy effect in colorectal cancer.
Collapse
Affiliation(s)
- Qingqing Luo
- Guangzhou Digestive Disease Center, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Feng He
- Guangzhou Digestive Disease Center, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Jie Cao
- Guangzhou Digestive Disease Center, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
302
|
Fang L, Che Y, Zhang C, Huang J, Lei Y, Lu Z, Sun N, He J. LAMC1 upregulation via TGFβ induces inflammatory cancer-associated fibroblasts in esophageal squamous cell carcinoma via NF-κB-CXCL1-STAT3. Mol Oncol 2021; 15:3125-3146. [PMID: 34218518 PMCID: PMC8564640 DOI: 10.1002/1878-0261.13053] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer‐associated fibroblasts (CAF) are a heterogeneous cell population within the tumor microenvironment,and play an important role in tumor development. By regulating the heterogeneity of CAF, transforming growth factor β (TGFβ) influences tumor development. Here, we explored oncogenes regulated by TGFβ1 that are also involved in signaling pathways and interactions within the tumor microenvironment. We analyzed sequencing data of The Cancer Genome Atlas (TCGA) and our own previously established RNA microarray data (GSE53625), as well as esophageal squamous cell carcinoma (ESCC) cell lines with or without TGFβ1 stimulation. We then focused on laminin subunit gamma 1 (LAMC1), which was overexpressed in ESCC cells, affecting patient prognosis, which could be upregulated by TGFβ1 through the synergistic activation of SMAD family member 4 (SMAD4) and SP1. LAMC1 directly promoted the proliferation and migration of tumor cells, mainly via Akt–NFκB–MMP9/14 signaling. Additionally, LAMC1 promoted CXCL1 secretion, which stimulated the formation of inflammatory CAF (iCAF) through CXCR2–pSTAT3. Inflammatory CAF promoted tumor progression. In summary, we identified the dual mechanism by which the upregulation of LAMC1 by TGFβ in tumor cells not only promotes ESCC proliferation and migration, but also indirectly induces carcinogenesis by stimulating CXCL1 secretion to promote the formation of iCAF. This finding suggests that LAMC1 could be a potential therapeutic target and prognostic marker for ESCC.
Collapse
Affiliation(s)
- Lingling Fang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
303
|
Li B, Pei G, Yao J, Ding Q, Jia P, Zhao Z. Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types. Oncogene 2021; 40:4686-4694. [PMID: 34140640 DOI: 10.1038/s41388-021-01870-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023]
Abstract
Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.
Collapse
Affiliation(s)
- Bingrui Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingqing Ding
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
304
|
Mortezaee K. Normalization in tumor ecosystem: Opportunities and challenges. Cell Biol Int 2021; 45:2017-2030. [PMID: 34189798 DOI: 10.1002/cbin.11655] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
Current research in cancer therapy aims to exploit efficient strategies to have long-lasting effects on tumors and to reduce or even revoke the chance of recurrence. Within the tumor stroma, O2 and nutrients are abnormally distributed between various cells (preferentially for supplying cancer cells), the immune contexture is abnormally positioned (permissive essentially for cells exhibiting tumor-promoting capacity), the fibroblast and fibrotic content is abnormally distributed (presence of both extracellular matrix [ECM] stiffening and ECM-degrading factors both for tumor-promoting purposes), and the tumor vasculature is abnormally orchestrated (for hindering drug delivery and increasing the chance of tumor metastasis). Resistance is actually an adaptive response to an imbalance in the tumor ecosystem; thus, the key consideration for effective cancer therapy is to bring back the normal status in this ecosystem so as to reach the desired durable outcome. Vascular normalization, metabolic modulation (glucose delivery in particular), balancing cellular dispersion, and balancing the pH rate and O2 delivery within the tumor microenvironment are suggested strategies to reverse abnormality within the tumor stroma.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
305
|
Jiang Y, Liang X, Han Z, Wang W, Xi S, Li T, Chen C, Yuan Q, Li N, Yu J, Xie Y, Xu Y, Zhou Z, Poultsides GA, Li G, Li R. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study. LANCET DIGITAL HEALTH 2021; 3:e371-e382. [PMID: 34045003 DOI: 10.1016/s2589-7500(21)00065-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The tumour stroma microenvironment plays an important part in disease progression and its composition can influence treatment response and outcomes. Histological evaluation of tumour stroma is limited by access to tissue, spatial heterogeneity, and temporal evolution. We aimed to develop a radiological signature for non-invasive assessment of tumour stroma and treatment outcomes. METHODS In this multicentre, retrospective study, we analysed CT images and outcome data of 2209 patients with resected gastric cancer from five independent cohorts recruited from two centres (Nanfang Hospital of Southern Medical University [Guangzhou, China] and Sun Yat-sen University Cancer Center [Guangzhou, China]). Patients with histologically confirmed gastric cancer, at least 15 lymph nodes harvested, preoperative abdominal CT available, and complete clinicopathological and follow-up data were eligible for inclusion. Tumour tissue was collected for patients in the training cohort (321 patients), internal validation cohort one (246 patients), and external validation cohort one (128 patients). Four stroma classes were defined according to the protein expression of α-smooth muscle actin and periostin assessed by immunohistochemistry. The primary objective was to predict the histologically based stroma classes by using preoperative CT images. We trained a deep convolutional neural network model using the training cohort and tested the model in the internal and external validation cohort one. We evaluated the model's association with prognosis in the training cohort, two internal, and two external validation cohorts and compared outcomes of patients who received or did not receive adjuvant chemotherapy. FINDINGS The deep-learning model achieved a high diagnostic accuracy for assessing tumour stroma in both internal validation cohort one (area under the receiver operating characteristic curve [AUC] 0·96-0·98]) and external validation cohort one (AUC 0·89-0·94). The stromal imaging signature was significantly associated with disease-free survival and overall survival in all cohorts (p<0·0001). The predicted stroma classes remained an independent prognostic factor adjusting for clinicopathological variables including tumour size, stage, differentiation, and Lauren histology. In patients with stage II or III disease in predicted stroma classes one and two subgroups, patients who received adjuvant chemotherapy had improved survival compared with those who did not (in those with stage II disease hazard ratio [HR] 0·48 [95% CI 0·29-0·77], p=0·0021; and in those with stage III disease HR 0·70 [0·57-0·85], p=0·00042). However, in the other two subgroups adjuvant chemotherapy was not associated with survival and might even be detrimental in the predicted stroma class 4 subgroup (HR 1·48 [1·08-2·03], p=0·013). INTERPRETATION The deep-learning model could allow for accurate and non-invasive evaluation of tumour stroma from CT images in gastric cancer. The radiographical model predicted chemotherapy outcomes and could be used in combination with clinicopathological criteria to refine prognosis and inform treatment decisions of patients with gastric cancer. FUNDING None.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaokun Liang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Han
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sujuan Xi
- The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tuanjie Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Yaoqin Xie
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Zhou
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - George A Poultsides
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
306
|
Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚDA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021; 9:682498. [PMID: 34239860 PMCID: PMC8258101 DOI: 10.3389/fbioe.2021.682498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Guilherme A. S. C. Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Renata S. N. Tavares
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Bianca Montenegro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Úrsula de A. Kopke
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leandra S. Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
307
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 384] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
308
|
Sbierski-Kind J, Mroz N, Molofsky AB. Perivascular stromal cells: Directors of tissue immune niches. Immunol Rev 2021; 302:10-31. [PMID: 34075598 DOI: 10.1111/imr.12984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Perivascular niches are specialized microenvironments where stromal and immune cells interact with vasculature to monitor tissue status. Adventitial perivascular niches surround larger blood vessels and other boundary sites, supporting collections of immune cells, stromal cells, lymphatics, and neurons. Adventitial fibroblasts (AFs), a subtype of mesenchymal stromal cell, are the dominant constituents in adventitial spaces, regulating vascular integrity while organizing the accumulation and activation of a variety of interacting immune cells. In contrast, pericytes are stromal mural cells that support microvascular capillaries and surround organ-specific parenchymal cells. Here, we outline the unique immune and non-immune composition of perivascular tissue immune niches, with an emphasis on the heterogeneity and immunoregulatory functions of AFs and pericytes across diverse organs. We will discuss how perivascular stromal cells contribute to the regulation of innate and adaptive immune responses and integrate immunological signals to impact tissue health and disease.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas Mroz
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
309
|
Sagha M, Mousaei F, Salahi M, Razzaghi-Asl N. Synthesis of new 2-aminothiazolyl/benzothiazolyl-based 3,4-dihydropyrimidinones and evaluation of their effects on adenocarcinoma gastric cell migration. Mol Divers 2021; 26:1039-1051. [PMID: 34050874 DOI: 10.1007/s11030-021-10229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022]
Abstract
Gastric cancer is one of the malignant tumors of the gastrointestinal tract that, despite its decrease in recent years, is still the fourth most common cancer and the second leading cause of cancer-related death. Various strategies including chemotherapy are used to keep cancer cells from spreading and induce apoptotic death in them. Recent studies have shown that dihydropyrimidinones (DHPMs) are privileged structures in medicinal chemistry due to their pharmacological effects. A number of new 2-aminothiazolyl/benzothiazolyl derivatives of 3,4-DHPMs (3-8) were synthesized and structurally identified, and then their effects on the migration behavior of human AGS cells (gastric cancer cells) were investigated. Molecular docking and molecular dynamics (MD) simulations were applied to explore binding potential and realistic binding model of the assessed derivatives through identification of key amino acid residues within L5/α2/α3 allosteric site of kinesin 5 (Eg5) as a validated microtubule-dependent target for monastrol as a privileged DHPM derivative.
Collapse
Affiliation(s)
- Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Mousaei
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahtab Salahi
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Razzaghi-Asl
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran.
| |
Collapse
|
310
|
Kardan M, Rafiei A, Golpour M, Ebrahimzadeh MA, Akhavan-Niaki H, Fattahi S. Urtica dioica Extract Inhibits Cell Proliferation and Induces Apoptosis in HepG2 and HTC116 as Gastrointestinal Cancer Cell Lines. Anticancer Agents Med Chem 2021; 20:963-969. [PMID: 32160852 DOI: 10.2174/1871520620666200311095836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 01/14/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Nowadays the use of plant-derived products has been extensively examined in the treatment of many types of gastrointestinal cancers such as hepatocarcinoma and colon cancer. Urtica dioica is a traditional herb that has many pharmacological effects and wildly used as a therapeutic agent in cancer. Herein, we have evaluated the effects of the different concentrations of Methanolic Extract of Urtica dioica (MEUD) on viability, death pattern, and expression of the apoptosis-related gene in normal Human Dermal Fibroblast (HDF), hepatocarcinoma cell lines (HepG2) and colon-cancer cell line (HCT116). METHODS A high-performance liquid chromatography method was developed to simultaneously separate 3 phenolic acids in MEUD. HepG2 and HCT116 cell lines as well as HDF normal cell line were cultured in suitable media. After 24 and 48h, in the cultured cell with different concentrations of MEUD, cells viability was assessed by MTT assay, and apoptosis was also evaluated at the cellular level by Annexin V/PI flow cytometry analyzing and AO/EB staining. BCL2 and BAX gene expressions were assessed by TaqMan real-time PCR assay. RESULTS MEUD showed antiproliferative effects on HepG2 and HTC116 cells after 48h with an IC50 value of about 410 and 420μg/ml, respectively (P < 0.001). Apoptotic cells were observed in HepG2 and HTC116 cells but not in HDF. Furthermore, the increased level of BAX/BCL-2 ratio was observed in HepG2 and HTC116 cells under the treatment of different concentrations of MEUD. CONCLUSION The MEUD may influence hepatocarcinoma and colon-cancer cell lines at specific doses and change their proliferation rate by changing the expression of BAX and BCL2.
Collapse
Affiliation(s)
- Mostafa Kardan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Monireh Golpour
- Molecular & Cell Biology Research Center, Student Research Committee, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
311
|
Zhu Y, Jin Z, Qian Y, Shen Y, Wang Z. Prognostic Value of Tumor-Stroma Ratio in Rectal Cancer: A Systematic Review and Meta-analysis. Front Oncol 2021; 11:685570. [PMID: 34123856 PMCID: PMC8187802 DOI: 10.3389/fonc.2021.685570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
Background Tumor-stroma ratio (TSR) is a promising new prognostic predictor for patients with rectal cancer (RC). Although several studies focused on this pathologic feature, results from those studies were still inconsistent. Methods This research aimed to estimate the prognostic values of TSR for RC. A search of PubMed, EMBASE, and Web of Science was carried out. A meta-analysis was performed on disease-free survival, cancer-specific survival, and overall survival in patients with RC. Results The literature search generated 1,072 possible studies, of which a total of 15 studies, involving a total of 5,408 patients, were eventually included in the meta-analysis. Thirteen of the 15 articles set the cutoff for the ratio of stroma at 50%, dividing patients into low-stroma and high-stroma groups. Low TSR (rich-stroma) was significantly associated with poorer survival outcome. (DFS: HR 1.54, 95% CI 1.32–1.79; OS: HR 1.52 95% CI 1.34–1.73; CSS: HR 2.05 95% CI 1.52–2.77). Conclusion Present data support TSR to be a risk predictor for poor prognosis in RC patients.
Collapse
Affiliation(s)
- Yuzhou Zhu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zechuan Jin
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuran Qian
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
312
|
Zhang H, Jiang H, Zhu L, Li J, Ma S. Cancer-associated fibroblasts in non-small cell lung cancer: Recent advances and future perspectives. Cancer Lett 2021; 514:38-47. [PMID: 34019960 DOI: 10.1016/j.canlet.2021.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of lung cancer, which is the leading cause of cancer-related deaths in the world. Nearly 70% of NSCLC patients were diagnosed at advanced stage with only 15% of five-year survival rate. Cancer-associated fibroblasts (CAFs) are the major component of tumor microenvironment and account for almost 70% of the cells in tumor tissues. By the crosstalk with cancer cells, CAFs reprogrammed cancer cell metabolism, remodeled extracellular matrix (ECM) and created a supportive niche for cancer stem cells. CAFs lead collective invasion of tumor cells and shape tumor immune microenvironment, promoting tumor metastasis and immune escape. In this review, we have summarized the progress of studies regarding CAFs influences on NSCLC in recent five years from the aspects of cell growth, metabolism, therapy resistance, invasion and metastasis and immune suppression. We have discussed the involved mechanisms and implications for the development of anti-NSCLC therapies. The current strategies of CAFs targeting and elimination have also been generalized. Only better understanding of the molecular biology of CAFs may contribute to the development of novel anti-NSCLC strategies.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Hong Jiang
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lucheng Zhu
- Department of Thoracic Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Jiawei Li
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Zhejiang University Cancer Center, Hangzhou, 310058, China.
| |
Collapse
|
313
|
Hara A, Kato K, Ishihara T, Kobayashi H, Asai N, Mii S, Shiraki Y, Miyai Y, Ando R, Mizutani Y, Iida T, Takefuji M, Murohara T, Takahashi M, Enomoto A. Meflin defines mesenchymal stem cells and/or their early progenitors with multilineage differentiation capacity. Genes Cells 2021; 26:495-512. [PMID: 33960573 PMCID: PMC8360184 DOI: 10.1111/gtc.12855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are the likely precursors of multiple lines of mesenchymal cells. The existence of bona fide MSCs with self‐renewal capacity and differentiation potential into all mesenchymal lineages, however, has been unclear because of the lack of MSC‐specific marker(s) that are not expressed by the terminally differentiated progeny. Meflin, a glycosylphosphatidylinositol‐anchored protein, is an MSC marker candidate that is specifically expressed in rare stromal cells in all tissues. Our previous report showed that Meflin expression becomes down‐regulated in bone marrow‐derived MSCs cultured on plastic, making it difficult to examine the self‐renewal and differentiation of Meflin‐positive cells at the single‐cell level. Here, we traced the lineage of Meflin‐positive cells in postnatal and adult mice, showing that those cells differentiated into white and brown adipocytes, osteocytes, chondrocytes and skeletal myocytes. Interestingly, cells derived from Meflin‐positive cells formed clusters of differentiated cells, implying the in situ proliferation of Meflin‐positive cells or their lineage‐committed progenitors. These results, taken together with previous findings that Meflin expression in cultured MSCs was lost upon their multilineage differentiation, suggest that Meflin is a useful potential marker to localize MSCs and/or their immature progenitors in multiple tissues.
Collapse
Affiliation(s)
- Akitoshi Hara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshikazu Ishihara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
314
|
Peng Y, Xiao J, Li W, Li S, Xie B, He J, Liu C. Prognostic and Clinicopathological Value of Human Leukocyte Antigen G in Gastrointestinal Cancers: A Meta-Analysis. Front Oncol 2021; 11:642902. [PMID: 34055611 PMCID: PMC8149900 DOI: 10.3389/fonc.2021.642902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The prognostic value of human leukocyte antigen G (HLA-G) expression in gastrointestinal (GI) cancers remains controversial. Thus, this meta-analysis aimed to summarize available evidence from case-control or cohort studies that evaluated this association. METHODS The PubMed, EMBASE, Cochrane Library, and Web of Science databases were searched to identify relevant studies written in English published up to April 1, 2021, and with no initial date. Furthermore, the Google Scholar and Google databases were also searched manually for gray literature. The protocol for this meta-analysis was registered at PROSPERO (CRD42020213411). Pooled hazard ratios (HRs) or odds ratios (ORs) and 95% confidence intervals (CIs) were estimated for end points using fixed- and random-effects statistical models to account for heterogeneity. Publication bias was evaluated using a funnel plot, Begg's and Egger's tests, and the "trim and fill" method. RESULTS A total of 30 eligible articles with 5737 unique patients, including 12 studies on colorectal cancer (CRC), 6 on gastric cancer (GC), 5 on esophageal cancer (ESCC), 5 on hepatocellular carcinoma (HCC), and 2 on pancreatic adenocarcinoma (PC), were retrieved. Both univariate (HR = 2.01, 95% CI: 1.48 ~ 2.72) and multivariate (HR = 2.69, 95% CI: 2.03 ~ 3.55) analyses revealed that HLA-G expression was significantly correlated with poor overall survival (OS), regardless of the cancer type or antibody used. Subgroup analysis stratified by antibody showed that the 4H84 (I2 = 45.8%, P = 0.101) antibodies could be trustworthy and reliable for detecting HLA-G expression in GI cancers. In addition, HLA-G expression was found to be correlated with adverse clinicopathological parameters such as clinical stage, nodal status, metastasis, and histological grade but not tumor status. CONCLUSION Elevated HLA-G expression indicates a poor prognosis for GI cancer patients, and screening for this marker could allow for the early diagnosis and treatment of GI cancers to improve survival rates.
Collapse
Affiliation(s)
- Yongjia Peng
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenyun Li
- Department of Statistics, School of Medicine, Jinan University, Guangzhou, China
| | - Shuna Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Binbin Xie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Jiang He
- Department of Mathematics and Physics, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
315
|
Jia J, Dai Y, Zhang Q, Tang P, Fu Q, Xiong G. Stromal Score-Based Gene Signature: A Prognostic Prediction Model for Colon Cancer. Front Genet 2021; 12:655855. [PMID: 34054919 PMCID: PMC8150004 DOI: 10.3389/fgene.2021.655855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Growing evidence has revealed the crucial roles of stromal cells in the microenvironment of various malignant tumors. However, efficient prognostic signatures based on stromal characteristics in colon cancer have not been well-established yet. The present study aimed to construct a stromal score-based multigene prognostic prediction model for colon cancer. METHODS Stromal scores were calculated based on the expression profiles of a colon cancer cohort from TCGA database applying the ESTIMATE algorithm. Linear models were used to identify differentially expressed genes between low-score and high-score groups by limma R package. Univariate, LASSO, and multivariate Cox regression models were used successively to select the prognostic gene signature. Two independent datasets from GEO were used as external validation cohorts. RESULTS Low stromal score was demonstrated to be a favorable factor to the overall survival of colon cancer patients in TCGA cohort (p = 0.0046). Three hundred and seven stromal score-related differentially expressed genes were identified. Through univariate, LASSO, and multivariate Cox regression analyses, a gene signature consisting of LEP, NOG, and SYT3 was recognized to build a prognostic prediction model. Based on the predictive values estimated by the established integrated model, patients were divided into two groups with significantly different overall survival outcomes (p < 0.0001). Time-dependent Receiver operating characteristic curve analyses suggested the satisfactory predictive efficacy for the 5-year overall survival of the model (AUC value = 0.733). A nomogram with great predictive performance combining the multigene prediction model and clinicopathological factors was developed. The established model was validated in an external cohort (AUC value = 0.728). In another independent cohort, the model was verified to be of significant prognostic value for different subgroups, which was demonstrated to be especially accurate for young patients (AUC value = 0.763). CONCLUSION The well-established model based on stromal score-related gene signature might serve as a promising tool for the prognostic prediction of colon cancer.
Collapse
Affiliation(s)
- Jing Jia
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhan Dai
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peiyu Tang
- The School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qiang Fu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guanying Xiong
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
316
|
Arai H, Sato Y, Yanagita M. Fibroblast heterogeneity and tertiary lymphoid tissues in the kidney. Immunol Rev 2021; 302:196-210. [PMID: 33951198 PMCID: PMC8360208 DOI: 10.1111/imr.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts reside in various organs and support tissue structure and homeostasis under physiological conditions. Phenotypic alterations of fibroblasts underlie the development of diverse pathological conditions, including organ fibrosis. Recent advances in single‐cell biology have revealed that fibroblasts comprise heterogeneous subpopulations with distinct phenotypes, which exert both beneficial and detrimental effects on the host organs in a context‐dependent manner. In the kidney, phenotypic alterations of resident fibroblasts provoke common pathological conditions of chronic kidney disease (CKD), such as renal anemia and peritubular capillary loss. Additionally, in aged injured kidneys, fibroblasts provide functional and structural supports for tertiary lymphoid tissues (TLTs), which serve as the ectopic site of acquired immune reactions in various clinical contexts. TLTs are closely associated with aging and CKD progression, and the developmental stages of TLTs reflect the severity of renal injury. In this review, we describe the current understanding of fibroblast heterogeneity both under physiological and pathological conditions, with special emphasis on fibroblast contribution to TLT formation in the kidney. Dissecting the heterogeneous characteristics of fibroblasts will provide a promising therapeutic option for fibroblast‐related pathological conditions, including TLT formation.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
317
|
Zhang Y, Bian Y, Wang Y, Wang Y, Duan X, Han Y, Zhang L, Wang F, Gu Z, Qin Z. HIF-1α is necessary for activation and tumour-promotion effect of cancer-associated fibroblasts in lung cancer. J Cell Mol Med 2021; 25:5457-5469. [PMID: 33943003 PMCID: PMC8184678 DOI: 10.1111/jcmm.16556] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer‐associated fibroblasts (CAFs) activation is crucial for the establishment of a tumour promoting microenvironment, but our understanding of CAFs activation is still limited. In this study, we found that hypoxia‐inducible factor‐1α (HIF‐1α) was highly expressed in CAFs of human lung cancer tissues and mouse spontaneous lung tumour. Accordingly, enhancing the expression of HIF‐1α in fibroblasts via hypoxia induced the conversion of normal fibroblasts into CAFs. HIF‐1α‐specific inhibitor or HIF‐1α knockout (KO) significantly attenuated CAFs activation, which was manifested by the decreased expression of COL1A2 and α‐SMA. In vivo, during tumour formation, the expression of Ki‐67 and proliferating cell nuclear antigen (PCNA) in the tumour tissue with HIF‐1α KO fibroblasts was significantly lower than that of normal fibroblasts. Moreover, HIF‐1α in fibroblasts could activate the NF‐κB signalling pathway and enhance a subsequent secretion of CCL5, thus promoting the tumour growth. In conclusion, our results suggest that HIF‐1α is essential for the activation and tumour‐promotion function of CAFs in lung cancer (LC). And targeting HIF‐1α expression on CAFs may be a promising strategy for LC therapy.
Collapse
Affiliation(s)
- Yana Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yangyang Bian
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuanyuan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuning Han
- General Hospital of Ningxia Medical University, Ningxia, China
| | - Lijing Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Fei Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
318
|
Liu J, Huang Z, Chen HN, Qin S, Chen Y, Jiang J, Zhang Z, Luo M, Ye Q, Xie N, Zhou ZG, Wei Y, Xie K, Huang C. ZNF37A promotes tumor metastasis through transcriptional control of THSD4/TGF-β axis in colorectal cancer. Oncogene 2021; 40:3394-3407. [PMID: 33875786 DOI: 10.1038/s41388-021-01713-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/05/2023]
Abstract
Poorly differentiated colorectal cancer (CRC) is characterized by aggressive invasion and stromal fibroblast activation, which results in rapid progression and poor therapeutic consequences. However, the regulatory mechanism involved remains unclear. Here, we showed that ZNF37A, a member of KRAB-ZFP family, was upregulated in poorly differentiated CRCs and associated with tumor metastasis. ZNF37A enhanced the metastatic potential of multiple CRC cell lines and promoted distant metastasis in an orthotopic CRC model. Further investigation attributed the ZNF37A-exacerbated metastasis to increased extracellular TGF-β and the consequent activation of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME). Mechanistically, ZNF37A formed a complex with KAP1 and bound to the promoter of THSD4, a TME modulator, to suppress its transcription, which is required for ZNF37A-mediated TGF-β activation and CRC metastasis. Collectively, our study indicates that ZNF37A promotes TGF-β signaling in CRC cells and activates CAFs by transcriptionally repressing THSD4 to drive CRC metastasis, implicating ZNF37A as a potential biomarker for CRC differentiation and progression.
Collapse
Affiliation(s)
- Jiayang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Qin Ye
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
319
|
Liu H, Sun Y, O'Brien JA, Franco-Barraza J, Qi X, Yuan H, Jin W, Zhang J, Gu C, Zhao Z, Yu C, Feng S, Yu X. Necroptotic astrocytes contribute to maintaining stemness of disseminated medulloblastoma through CCL2 secretion. Neuro Oncol 2021; 22:625-638. [PMID: 31729527 DOI: 10.1093/neuonc/noz214] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) with metastases at diagnosis and recurrence correlates with poor prognosis. Unfortunately, the molecular mechanism underlying metastases growth has received less attention than primary therapy-naïve MB. Though astrocytes have been frequently detected in brain tumors, their roles in regulating the stemness properties of MB stem-like cells (MBSCs) in disseminated lesions remain elusive. METHODS Effects of tumor-associated astrocyte (TAA)-secreted chemokine C-C ligand 2 (CCL2) on MBSC self-renewal was determined by immunostaining analysis. Necroptosis of TAA was examined by measuring necrosome activity. Alterations in Notch signaling were examined after inhibition of CCL2. Progression of MBSC-derived tumors was evaluated after pharmaceutical blockage of necroptosis. RESULTS TAA, as the essential components of disseminated tumor, produced high levels of CCL2 to shape the inflammation microenvironment, which stimulated the enrichment of MBSCs in disseminated MB. In particular, CCL2 played a pivotal role in maintaining stem-like properties via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3)-mediated activation of Notch signaling. Loss of CCL2/C-C chemokine receptor 2 (CCR2) function repressed the JAK2/STAT3-Notch pathway and impaired MBSC proliferation, leading to a dramatic reduction of stemness, tumorigenicity, and metastasizing capability. Furthermore, necroptosis-induced CCL2 release depended on activation of receptor-interacting protein 1 (RIP1)/RIP3/mixed lineage kinase domain-like pseudokinase (MLKL) in TAA, which promoted the oncogenic phenotype. Blockade of necroptosis resulted in CCL2 deprivation and compromised MBSC self-proliferation, indicating MBSCs outsourced CCL2 from necroptotic TAA. Finally, CCL2 was upregulated in high-risk stages of MB, further supporting its value as a prognostic indicator. CONCLUSION These findings highlighted the critical role of CCL2/CCR2 in Notch signaling activation in MBSCs and revealed a necroptosis-associated glial cytokine microenvironment driving stemness maintenance in disseminations.Key Points1. TAA-derived CCL2 promoted stemness in disseminated MBSCs through Notch signaling activation via the JAK2/STAT3 pathway.2. TAA released CCL2 in a RIP1/RIP3/MLKL-dependent manner leading to necroptosis.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.,Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Youliang Sun
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jenny A O'Brien
- Department of Internal Medicine, Temple University Health System, Philadelphia, Pennsylvania, USA.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Xueling Qi
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Science Cancer Hospital/National Cancer Center, Beijing, China
| | - Wei Jin
- Department of Pathology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junping Zhang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chunyu Gu
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhao
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunjiang Yu
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Shiyu Feng
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
320
|
Rihawi K, Ricci AD, Rizzo A, Brocchi S, Marasco G, Pastore LV, Llimpe FLR, Golfieri R, Renzulli M. Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int J Mol Sci 2021; 22:3805. [PMID: 33916915 PMCID: PMC8067563 DOI: 10.3390/ijms22083805] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) represents the fifth most frequently diagnosed cancer worldwide, with a poor prognosis in patients with advanced disease despite many improvements in systemic treatments in the last decade. In fact, GC has shown resistance to several treatment options, and thus, notable efforts have been focused on the research and identification of novel therapeutic targets in this setting. The tumor microenvironment (TME) has emerged as a potential therapeutic target in several malignancies including GC, due to its pivotal role in cancer progression and drug resistance. Therefore, several agents and therapeutic strategies targeting the TME are currently under assessment in both preclinical and clinical studies. The present study provides an overview of available evidence of the inflammatory TME in GC, highlighting different types of tumor-associated cells and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Karim Rihawi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Vincenzo Pastore
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Fabiola Lorena Rojas Llimpe
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| |
Collapse
|
321
|
Colon Fibroblasts and Inflammation: Sparring Partners in Colorectal Cancer Initiation? Cancers (Basel) 2021; 13:cancers13081749. [PMID: 33916891 PMCID: PMC8067599 DOI: 10.3390/cancers13081749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cause of cancer-related death. Patients suffering inflammatory bowel disease have an increased risk of CRC. It is admitted that CRC found its origin within crypts of the colon mucosa, which host the intestinal stem cells (ISCs) responsible of the tissue renewal. ISC behavior is controlled by the fibroblasts that surround the crypt. During inflammation, the signals delivered by fibroblasts are altered, leading to stem cells’ dysregulation, possibly turning them into cancer-initiating cells. Here, we reviewed the interplays between the fibroblast and the ISCs, possibly leading to the initiation of CRC due to chronic inflammation. Abstract Colorectal cancer (CRC) is the third most common cause of cancer-related death. Significant improvements in CRC treatment have been made for the last 20 years, on one hand thanks to a better detection, allowing surgical resection of the incriminated area, and on the other hand, thanks to a better knowledge of CRC’s development allowing the improvement of drug strategies. Despite this crucial progress, CRC remains a public health issue. The current model for CRC initiation and progression is based on accumulation of sequential known genetic mutations in the colon epithelial cells’ genome leading to a loss of control over proliferation and survival. However, increasing evidence reveals that CRC initiation is more complex. Indeed, chronic inflammatory contexts, such as inflammatory bowel diseases, have been shown to increase the risk for CRC development in mice and humans. In this manuscript, we review whether colon fibroblasts can go from the main regulators of the ISC homeostasis, regulating not only the renewal process but also the epithelial cells’ differentiation occurring along the colon crypt, to the main player in the initiation of the colorectal cancer process due to chronic inflammation.
Collapse
|
322
|
Yang X, Lei P, Huang L, Tang X, Wei B, Wei H. Prognostic value of LRRC4C in Colon and Gastric Cancers correlates with Tumour Microenvironment Immunity. Int J Biol Sci 2021; 17:1413-1427. [PMID: 33867855 PMCID: PMC8040466 DOI: 10.7150/ijbs.58876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, we aimed to use ESTIMATE and CIBERSORT computational methods to analyse transcriptional information on COAD and STAD in TCGA. We downloaded transcriptome RNA-seq data of 446 patients with colon cancer from TCGA and estimated the amount of immune and stromal components in the COAD samples using CIBERSORT algorithms. We analysed differentially expressed genes in 446 TCGA samples and 585 Series GSE39582 samples, in high- and low-scoring groups, using Cox regression. The expression of LRRC4C, correlated positively with clinicopathological characteristics and negatively with the survival of patients with COAD. Single-gene survival analysis using Gene Expression Profiling Interactive Analysis 2.0 and Kaplan-Meier plotter revealed an association between high levels of LRRC4C expression and poor prognosis in patients with colon and gastric cancers. Gene set enrichment analysis of COAD and STAD samples indicated that genes in groups expressing high and low LRRC4C levels were mainly enriched in immune-related activities and metabolic pathways, respectively. Difference and correlation analyses of the relationship between LRRC4C expression and tumour-infiltrating immune cells, determined using CIBERSORT algorithms, revealed that monocytes, resting mast cells, and M2 macrophages were positively correlated with LRRC4C expression.
Collapse
Affiliation(s)
- XiaoFeng Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - Purun Lei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - Lijun Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - Xiao Tang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| | - HongBo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou 510630, China
| |
Collapse
|
323
|
Joshi RS, Kanugula SS, Sudhir S, Pereira MP, Jain S, Aghi MK. The Role of Cancer-Associated Fibroblasts in Tumor Progression. Cancers (Basel) 2021; 13:cancers13061399. [PMID: 33808627 PMCID: PMC8003545 DOI: 10.3390/cancers13061399] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
In the era of genomic medicine, cancer treatment has become more personalized as novel therapeutic targets and pathways are identified. Research over the past decade has shown the increasing importance of how the tumor microenvironment (TME) and the extracellular matrix (ECM), which is a major structural component of the TME, regulate oncogenic functions including tumor progression, metastasis, angiogenesis, therapy resistance, and immune cell modulation, amongst others. Within the TME, cancer-associated fibroblasts (CAFs) have been identified in several systemic cancers as critical regulators of the malignant cancer phenotype. This review of the literature comprehensively profiles the roles of CAFs implicated in gastrointestinal, endocrine, head and neck, skin, genitourinary, lung, and breast cancers. The ubiquitous presence of CAFs highlights their significance as modulators of cancer progression and has led to the subsequent characterization of potential therapeutic targets, which may help advance the cancer treatment paradigm to determine the next generation of cancer therapy. The aim of this review is to provide a detailed overview of the key roles that CAFs play in the scope of systemic disease, the mechanisms by which they enhance protumoral effects, and the primary CAF-related markers that may offer potential targets for novel therapeutics.
Collapse
Affiliation(s)
- Rushikesh S. Joshi
- School of Medicine, University of California, San Diego, La Jolla, CA 92092, USA;
| | | | - Sweta Sudhir
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Matheus P. Pereira
- School of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA;
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +1-415-514-9820
| |
Collapse
|
324
|
Zhang D, Song Y, Li D, Liu X, Pan Y, Ding L, Shi G, Wang Y, Ni Y, Hou Y. Cancer-associated fibroblasts promote tumor progression by lncRNA-mediated RUNX2/GDF10 signaling in oral squamous cell carcinoma. Mol Oncol 2021; 16:780-794. [PMID: 33657265 PMCID: PMC8807363 DOI: 10.1002/1878-0261.12935] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in tumor and exert a pro-tumoral effect in cancer progression. Numerous evidence shows long non-coding RNA (lncRNA) abnormally regulates gene expression in various cancers. However, little is known about the role of lncRNA in the interaction between CAF and cancer cells. Here, we first identify an uncharacterized lncRNA, LOC100506114, which is significantly upregulated in CAF and is involved in the functional transformation of normal fibroblasts (NF) and CAF. Expression of LOC100506114 enhances the expression of fibroblast activation protein alpha and α-smooth muscle actin in NF and promotes malignant characteristics of NF and CAF in vivo and in vitro. The profile of gene co-expression analysis shows that growth differentiation factor 10 (GDF10) is positively correlated with the expression of LOC100506114. CAF promote stromal fibroblast activation and the proliferation and migration of tumor cells by secreting GDF10. Our data demonstrate that lncRNA plays a critical role in the interplay of stromal fibroblasts and tumor cells in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China
| | - Yuxian Song
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China
| | - Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yanhong Ni
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology and Central Laboratory of Stomatology Nanjing of Stomatological Hospital, Division of Immunology, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
325
|
Zhang WJ. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal 2021; 17:151-162. [PMID: 33420658 PMCID: PMC7954979 DOI: 10.1007/s11302-020-09761-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 343000, Jiangxi, China.
| |
Collapse
|
326
|
Lan M, Lu W, Zou T, Li L, Liu F, Cai T, Cai Y. Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Cell Mol Life Sci 2021; 78:2105-2129. [PMID: 33386887 PMCID: PMC11073202 DOI: 10.1007/s00018-020-03696-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/20/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Tumor cells, inflammatory cells and chemical factors work together to mediate complex signaling networks, which forms inflammatory tumor microenvironment (TME). The development of breast cancer is closely related to the functional activities of TME. This review introduces the origins of cancer-related chronic inflammation and the main constituents of inflammatory microenvironment. Inflammatory microenvironment plays an important role in breast cancer growth, metastasis, drug resistance and angiogenesis through multifactorial mechanisms. It is suggested that inflammatory microenvironment contributes to providing possible mechanisms of drug action and modes of drug transport for anti-cancer treatment. Nano-drug delivery system (NDDS) becomes a popular topic for optimizing the design of tumor targeting drugs. It is seen that with the development of therapeutic approaches, NDDS can be used to achieve drug-targeted delivery well across the biological barriers and into cells, resulting in superior bioavailability, drug dose reduction as well as off-target side effect elimination. This paper focuses on the review of modulation mechanisms of inflammatory microenvironment and combination with nano-targeted therapeutic strategies, providing a comprehensive basis for further research on breast cancer prevention and control.
Collapse
Affiliation(s)
- Meng Lan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, 110036, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Cancer Research Institute of Jinan University, Guangzhou, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
327
|
Aronovich A, Moyal L, Gorovitz B, Amitay-Laish I, Naveh HP, Forer Y, Maron L, Knaneh J, Ad-El D, Yaacobi D, Barel E, Erez N, Hodak E. Cancer-Associated Fibroblasts in Mycosis Fungoides Promote Tumor Cell Migration and Drug Resistance through CXCL12/CXCR4. J Invest Dermatol 2021; 141:619-627.e2. [DOI: 10.1016/j.jid.2020.06.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
|
328
|
Kobayashi H, Gieniec KA, Wright JA, Wang T, Asai N, Mizutani Y, Lida T, Ando R, Suzuki N, Lannagan TRM, Ng JQ, Hara A, Shiraki Y, Mii S, Ichinose M, Vrbanac L, Lawrence MJ, Sammour T, Uehara K, Davies G, Lisowski L, Alexander IE, Hayakawa Y, Butler LM, Zannettino ACW, Din MO, Hasty J, Burt AD, Leedham SJ, Rustgi AK, Mukherjee S, Wang TC, Enomoto A, Takahashi M, Worthley DL, Woods SL. The Balance of Stromal BMP Signaling Mediated by GREM1 and ISLR Drives Colorectal Carcinogenesis. Gastroenterology 2021; 160:1224-1239.e30. [PMID: 33197448 PMCID: PMC7617122 DOI: 10.1053/j.gastro.2020.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor β and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Krystyna A Gieniec
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Josephine A Wright
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Tongtong Wang
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Naoya Asai
- Department of Molecular Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Lida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobumi Suzuki
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tamsin R M Lannagan
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jia Q Ng
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Akitoshi Hara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Ichinose
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, Australia
| | - Tarik Sammour
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, Australia
| | - Kay Uehara
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia; Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
| | - Ian E Alexander
- Gene Therapy Research Unit, Sydney Children's Hospitals Network and Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lisa M Butler
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Alastair D Burt
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Precision and Molecular Pathology, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York
| | - Siddhartha Mukherjee
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, New York
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, New York
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan.
| | - Daniel L Worthley
- South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
329
|
Wen S, Qu N, Ma B, Wang X, Luo Y, Xu W, Jiang H, Zhang Y, Wang Y, Ji Q. Cancer-Associated Fibroblasts Positively Correlate with Dedifferentiation and Aggressiveness of Thyroid Cancer. Onco Targets Ther 2021; 14:1205-1217. [PMID: 33654411 PMCID: PMC7910116 DOI: 10.2147/ott.s294725] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
Background and Objectives Targeting cancer-associated fibroblast (CAF) is being explored as an approach to improve cancer therapies. The roles of CAF remain unclarified in malignant transformation of papillary thyroid cancer (PTC) into dedifferentiated thyroid cancer (DDTC). This study aimed to investigate correlations of CAF with dedifferentiation and clinicopathological characteristics of thyroid cancer. Materials and Methods We applied three different mRNA-based CAF gene signatures to quantify CAF in our cohort, the Gene Expression Omnibus (GEO) cohort and The Cancer Genome Atlas (TCGA) cohort, and analyzed expression of α-SMA by immunohistochemistry in thyroid cancer. The CAF score was analyzed for its associations with clinicopathological characteristics, genetic mutations, tumor-associated signaling pathways and immune landscape. Results The CAF score increased significantly in DDTCs compared with normal thyroid tissues and PTCs, and the α-SMA-positive CAFs were found enriched in DDTCs. The high CAF score showed a significant correlation with the anaplastic phenotype in DDTC and low thyroid differentiation score in PTC. Patients with a high CAF score remarkably increased the risk of aggressive outcomes in both DDTC and PTC. Furthermore, the CAF score was positively correlated with genetic mutations, oncogenic signaling pathways, the immune score and increased expression of tumor microenvironment (TME) target markers. Conclusion Our findings suggest CAFs positively correlate with dedifferentiation and aggressive outcomes of thyroid cancer, and targeting CAFs as a therapeutic approach may benefit DDTC patients.
Collapse
Affiliation(s)
- Shishuai Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hongyi Jiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
330
|
In Vitro Suppression of T Cell Proliferation Is a Conserved Function of Primary and Immortalized Human Cancer-Associated Fibroblasts. Int J Mol Sci 2021; 22:ijms22041827. [PMID: 33673197 PMCID: PMC7918788 DOI: 10.3390/ijms22041827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
T cell immunotherapy is now a mainstay therapy for several blood-borne cancers as well as metastatic melanoma. Unfortunately, many epithelial tumors respond poorly to immunotherapy, and the reasons for this are not well understood. Cancer-associated fibroblasts (CAFs) are the most frequent non-neoplastic cell type in most solid tumors, and they are emerging as a key player in immunotherapy resistance. A range of immortalized CAF lines will be essential tools that will allow us to understand immune responses against cancer and develop novel strategies for cancer immunotherapy. To study the effect of CAFs on T cell proliferation, we created and characterized a number of novel immortalized human CAFs lines (Im-CAFs) from human breast, colon, and pancreatic carcinomas. Im-CAFs shared similar phenotypes, matrix remodeling and contraction capabilities, and growth and migration rates compared to the primary CAFs. Using primary isolates from breast carcinoma, colorectal carcinoma, and pancreatic ductal adenocarcinoma, we report that CAFs across major tumor types are able to potently suppress T cell proliferation in vitro. Im-CAFs retained this property. Im-CAFs are a key tool that will provide important insights into the mechanisms of CAF-mediated T cell suppression through techniques such as CRISPR-Cas9 modification, molecular screens, and pipeline drug testing.
Collapse
|
331
|
PLAU directs conversion of fibroblasts to inflammatory cancer-associated fibroblasts, promoting esophageal squamous cell carcinoma progression via uPAR/Akt/NF-κB/IL8 pathway. Cell Death Discov 2021; 7:32. [PMID: 33574243 PMCID: PMC7878926 DOI: 10.1038/s41420-021-00410-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 01/17/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) plays an important role in the tumor microenvironment. The heterogeneity of CAFs affects the effect of CAFs on promoting or inhibiting tumors, which can be regulated by other cells in the tumor microenvironment through paracrine methods. The urokinase-type plasminogen activator (PLAU) system mediates cell proliferation, migration, adhesion, and other functions through the proteolytic system, intracellular signal transduction, and chemokine activation. PLAU promotes tumor progression in many tumors. We explored the function of PLAU in ESCC and the influence of PLAU secreted by tumor cells on the heterogeneity of CAFs. We found that PLAU is highly expressed in ESCC, which is related to poor prognosis and can be used as a prognostic marker for ESCC. Through loss-of function and gain-of function experiments, we found that PLAU promoted ESCC proliferation and clone formation via MAPK pathway, and promotes migration by upregulating Slug and MMP9, which can be reversed by the MEK 1/2 inhibitor U0126. At the same time, through sequencing, cytokine detection, and RT-qPCR verification, we found that tumor cells secreted PLAU promoted the conversion of fibroblasts to inflammatory CAFs, which upregulated expression and secretion of IL8 via the uPAR/Akt/NF-κB pathway. The IL8 secreted by CAFs in turn promotes the high expression of PLAU in tumor cells and further promoted the progression of ESCC. In summary, PLAU was not only a prognostic marker of ESCC, which promoted tumor cell proliferation and migration, but also promoted the formation of inflammatory CAFs by the PLAU secreted by tumor cells.
Collapse
|
332
|
Goto S, Seino H, Yoshizawa T, Morohashi S, Ishido K, Hakamada K, Kijima H. Time density curve of dynamic contrast-enhanced computed tomography correlates with histological characteristics of pancreatic cancer. Oncol Lett 2021; 21:276. [PMID: 33732352 PMCID: PMC7905685 DOI: 10.3892/ol.2021.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an infiltrative growth pattern with intense desmoplastic stroma comprised of cancer-associated fibroblasts (CAFs). Additionally, the histological characteristics are considered to play a vital role in the poor prognosis of PDAC. However, the density of cancer cells, degree of desmoplasia and vascular proliferation varies in individual cases. We hypothesized that preoperative radiological images would reflect histological characteristics, such as cancer cell density, CAF density and microvessel density. To clarify the association between the histological characteristics and radiological images of PDAC, the cancer cell density, CAF density and microvessel density from surgical specimens were measured with immunostaining, and the time density curve of dynamic contrast-enhanced computed tomography (CECT) was analyzed. Overall, the initial slope between non-enhanced and arterial phases was correlated with microvessel density, and the second slope between arterial and portal phases was correlated with CAF and cancer cell densities. In conclusion, the present study suggested the possibility of estimating cancer cell, CAF and microvessel densities using the TDC of dynamic CECT.
Collapse
Affiliation(s)
- Shintaro Goto
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hiroko Seino
- Department of Radiology, Aomori National Hospital, Namioka, Aomori 038-1331, Japan
| | - Tadashi Yoshizawa
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Satoko Morohashi
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Keinosuke Ishido
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
333
|
Zhou S, Zhen Z, Paschall AV, Xue L, Yang X, Bebin-Blackwell AG, Cao Z, Zhang W, Wang M, Teng Y, Zhou G, Li Z, Avci FY, Tang W, Xie J. FAP-Targeted Photodynamic Therapy Mediated by Ferritin Nanoparticles Elicits an Immune Response against Cancer Cells and Cancer Associated Fibroblasts. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007017. [PMID: 35822179 PMCID: PMC9273013 DOI: 10.1002/adfm.202007017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 06/15/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are present in many types of tumors and play a pivotal role in tumor progression and immunosuppression. Fibroblast-activation protein (FAP), which is overexpressed on CAFs, has been indicated as a universal tumor target. However, FAP expression is not restricted to tumors, and systemic treatment against FAP often causes severe side effects. To solve this problem, a photodynamic therapy (PDT) approach was developed based on ZnF16Pc (a photosensitizer)-loaded and FAP-specific single chain variable fragment (scFv)-conjugated apoferritin nanoparticles, or αFAP-Z@FRT. αFAP-Z@FRT PDT efficiently eradicates CAFs in tumors without inducing systemic toxicity. When tested in murine 4T1 models, the PDT treatment elicits anti-cancer immunity, causing suppression of both primary and distant tumors, i.e. abscopal effect. Treatment efficacy is enhanced when αFAP-Z@FRT PDT is used in combination with anti-PD1 antibodies. Interestingly, it is found that the PDT treatment not only elicits a cellular immunity against cancer cells, but also stimulates an anti-CAFs immunity. This is supported by an adoptive cell transfer study, where T cells taken from 4T1-tumor-bearing animals treated with αFAP PDT retard the growth of A549 tumors established on nude mice. Overall, our approach is unique for permitting site-specific eradication of CAFs and inducing a broad spectrum anti-cancer immunity.
Collapse
Affiliation(s)
- Shiyi Zhou
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zipeng Zhen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, Nanjing University Clinical School of Medicine, Nanjing, Jiangsu 210002, China
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | - Zhengwei Cao
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Mengzhe Wang
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yong Teng
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Wei Tang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
334
|
Wang Z, Yang Q, Tan Y, Tang Y, Ye J, Yuan B, Yu W. Cancer-Associated Fibroblasts Suppress Cancer Development: The Other Side of the Coin. Front Cell Dev Biol 2021; 9:613534. [PMID: 33614646 PMCID: PMC7890026 DOI: 10.3389/fcell.2021.613534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the main stromal components of cancer, representing a group of heterogeneous cells. Many studies indicate that CAFs promote tumor development. Besides, evidence of the tumor suppression effects of CAFs keeps on merging. In the tumor microenvironment, multiple stimuli can activate fibroblasts. Notably, this does not necessarily mean the activated CAFs become strong tumor promoters immediately. The varying degree of CAFs activation makes quiescent CAFs, tumor-restraining CAFs, and tumor-promoting CAFs. Quiescent CAFs and tumor-restraining CAFs are more present in early-stage cancer, while comparatively, more tumor-promoting CAFs present in advanced-stage cancer. The underlying mechanism that balances tumor promotion or tumor inhibition effects of CAFs is mostly unknown. This review focus on the inhibitory effects of CAFs on cancer development. We describe the heterogeneous origin, markers, and metabolism in the CAFs population. Transgenetic mouse models that deplete CAFs or deplete CAFs activation signaling in the tumor stroma present direct evidence of CAFs protective effects against cancer. Moreover, we outline CAFs subpopulation and CAFs derived soluble factors that act as a tumor suppressor. Single-cell RNA-sequencing on CAFs population provides us new insight to classify CAFs subsets. Understanding the full picture of CAFs will help translate CAFs biology from bench to bedside and develop new strategies to improve precision cancer therapy.
Collapse
Affiliation(s)
- Zhanhuai Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinuo Tan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Tang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Wei Yu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
335
|
Holmström MO, Mortensen REJ, Pavlidis AM, Martinenaite E, Weis-Banke SE, Aaboe-Jørgensen M, Bendtsen SK, Met Ö, Pedersen AW, Donia M, Svane IM, Andersen MH. Cytotoxic T cells isolated from healthy donors and cancer patients kill TGFβ-expressing cancer cells in a TGFβ-dependent manner. Cell Mol Immunol 2021; 18:415-426. [PMID: 33408343 PMCID: PMC8027197 DOI: 10.1038/s41423-020-00593-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-beta (TGFβ) is a highly potent immunosuppressive cytokine. Although TGFβ is a tumor suppressor in early/premalignant cancer lesions, the cytokine has several tumor-promoting effects in advanced cancer; abrogation of the antitumor immune response is one of the most important tumor-promoting effects. As several immunoregulatory mechanisms have recently been shown to be targets of specific T cells, we hypothesized that TGFβ is targeted by naturally occurring specific T cells and thus could be a potential target for immunomodulatory cancer vaccination. Hence, we tested healthy donor and cancer patient T cells for spontaneous T-cell responses specifically targeting 38 20-mer epitopes derived from TGFβ1. We identified numerous CD4+ and CD8+ T-cell responses against several epitopes in TGFβ. Additionally, several ex vivo responses were identified. By enriching specific T cells from different donors, we produced highly specific cultures specific to several TGFβ-derived epitopes. Cytotoxic CD8+ T-cell clones specific for both a 20-mer epitope and a 9-mer HLA-A2 restricted killed epitope peptide were pulsed in HLA-A2+ target cells and killed the HLA-A2+ cancer cell lines THP-1 and UKE-1. Additionally, stimulation of THP-1 cancer cells with cytokines that increased TGFβ expression increased the fraction of killed cells. In conclusion, we have shown that healthy donors and cancer patients harbor CD4+ and CD8+ T cells specific for TGFβ-derived epitopes and that cytotoxic T cells with specificity toward TGFβ-derived epitopes are able to recognize and kill cancer cell lines in a TGFβ-dependent manner.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | | | - Angelos Michail Pavlidis
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Stine Emilie Weis-Banke
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Mia Aaboe-Jørgensen
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Simone Kloch Bendtsen
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | | | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark.
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
336
|
Zhang Y, Elechalawar CK, Hossen MN, Francek ER, Dey A, Wilhelm S, Bhattacharya R, Mukherjee P. Gold nanoparticles inhibit activation of cancer-associated fibroblasts by disrupting communication from tumor and microenvironmental cells. Bioact Mater 2021; 6:326-332. [PMID: 32954051 PMCID: PMC7479257 DOI: 10.1016/j.bioactmat.2020.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment (TME) and an important contributor to cancer progression and therapeutic resistance. Regulation of CAF activation is a promising strategy to influence cancer outcomes. Here, we report that ovarian cancer cells (OCs) and TME cells promote the activation of ovarian CAFs, whereas gold nanoparticles (GNPs) of 20 nm in diameter inhibit the activation, as demonstrated by the changes in cell morphology, migration, and molecular markers. GNPs exert the effect by altering the levels of multiple fibroblast activation or inactivation proteins, such as TGF-β1, PDGF, uPA and TSP1, secreted by OCs and TME cells. Thus, GNPs represent a potential tool to help understand multicellular communications existing in the TME as well as devise strategies to disrupt the communication.
Collapse
Affiliation(s)
- Yushan Zhang
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Chandra Kumar Elechalawar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Md Nazir Hossen
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Emmy R. Francek
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefan Wilhelm
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, OK, 73019, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
337
|
Meng L, Tian Z, Wang J, Liu X, Zhang W, Hu M, Wang M, Zhang Y. Effect of myeloid ecotropic viral integration site (MEIS) family genes on tumor microenvironment remodeling and its potential therapeutic effect. Transl Androl Urol 2021; 10:594-608. [PMID: 33718062 PMCID: PMC7947450 DOI: 10.21037/tau-20-1163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The myeloid ecotropic viral integration site (MEIS) family of genes is related to the occurrence, development, and outcome of many cancers. However, its role in the immune and tumor microenvironment (TME) is unclear. This study explored the relationship between the expression of MEIS genes and patient survival, immune subtypes, TME, tumor stem cell correlation, and drug sensitivity in cancer. METHODS We used The Cancer Genome Atlas pan-cancer data to analyze the expression of the MEIS family genes. Kaplan-Meier analysis and univariate Cox proportional hazard regression model were used to detect the relationship between gene expression and overall survival. Analysis of variance was used to explore the relationship between the MEIS family and the immune components in the tumor, and the ESTIMATE algorithm was used to calculate the proportion and level of tumor-infiltrating immune cells. Spearman and Pearson's correlation tests were carried out to detect the relationship between MEIS and the characteristics of tumor stem cells and drug sensitivity. RESULTS The MEIS family of genes shows different expression profiles in different cancers, with substantial inter- and intra-cancer heterogeneity. Among them, MEIS3 was upregulated in most cancers, whereas MEIS2 was downregulated. The change in MEIS gene expression was usually related to overall survival, but whether a member of the MEIS family was a risk factor or a protective factor was cancer-dependent. Immune component analysis suggested that the role of MEIS genes in promoting or inhibiting cancer may be related to different degrees of immune silencing. Further, there were varying degrees of correlation between MEIS gene expression and cancer cell stemness characteristics. It was also found that MEIS genes, especially MEIS1 and MEIS2, may be related to chemotherapy resistance. CONCLUSIONS We explored the expression, prognostic relationship, molecular characteristics, and effects on immunity and TME of the MEIS gene family in cancer. Our results suggest that MEIS members should be studied as independent entities in different types of cancer. The MEIS gene family may be a potential target for cancer therapy, but further experiments are needed to confirm this.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zijian Tian
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiawen Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodong Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Maolin Hu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaoguang Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
338
|
AlMusawi S, Ahmed M, Nateri AS. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin Transl Med 2021; 11:e308. [PMID: 33635003 PMCID: PMC7868082 DOI: 10.1002/ctm2.308] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinomas are complex heterocellular systems containing epithelial cancer cells, stromal fibroblasts, and multiple immune cell-types. Cell-cell communication between these tumor microenvironments (TME) and cells drives cancer progression and influences response to existing therapies. In order to provide better treatments for patients, we must understand how various cell-types collaborate within the TME to drive cancer and consider the multiple signals present between and within different cancer types. To investigate how tissues function, we need a model to measure both how signals are transferred between cells and how that information is processed within cells. The interplay of collaboration between different cell-types requires cell-cell communication. This article aims to review the current in vitro and in vivo mono-cellular and multi-cellular cultures models of colorectal cancer (CRC), and to explore how they can be used for single-cell multi-omics approaches for isolating multiple types of molecules from a single-cell required for cell-cell communication to distinguish cancer cells from normal cells. Integrating the existing single-cell signaling measurements and models, and through understanding the cell identity and how different cell types communicate, will help predict drug sensitivities in tumor cells and between- and within-patients responses.
Collapse
Affiliation(s)
- Shaikha AlMusawi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| | - Mehreen Ahmed
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Abdolrahman S. Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
339
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
340
|
Fibroblast activation protein targeted near infrared photoimmunotherapy (NIR PIT) overcomes therapeutic resistance in human esophageal cancer. Sci Rep 2021; 11:1693. [PMID: 33462372 PMCID: PMC7814141 DOI: 10.1038/s41598-021-81465-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) have an important role in the tumor microenvironment. CAFs have the multifunctionality which strongly support cancer progression and the acquisition of therapeutic resistance by cancer cells. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that uses a highly selective monoclonal antibody (mAb)-photosensitizer conjugate. We developed fibroblast activation protein (FAP)-targeted NIR-PIT, in which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAFs-targeted NIR-PIT: CAFs-PIT). Thus, we hypothesized that the control of CAFs could overcome the resistance to conventional chemotherapy in esophageal cancer (EC). In this study, we evaluated whether EC cell acquisition of stronger malignant characteristics and refractoriness to chemoradiotherapy are mediated by CAFs. Next, we assessed whether the resistance could be rescued by eliminating CAF stimulation by CAFs-PIT in vitro and in vivo. Cancer cells acquired chemoradiotherapy resistance via CAF stimulation in vitro and 5-fluorouracil (FU) resistance in CAF-coinoculated tumor models in vivo. CAF stimulation promoted the migration/invasion of cancer cells and a stem-like phenotype in vitro, which were rescued by elimination of CAF stimulation. CAFs-PIT had a highly selective effect on CAFs in vitro. Finally, CAF elimination by CAFs-PIT in vivo demonstrated that the combination of 5-FU and NIR-PIT succeeded in producing 70.9% tumor reduction, while 5-FU alone achieved only 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich tumors. In conclusion, CAFs-PIT could overcome therapeutic resistance via CAF elimination. The combined use of novel targeted CAFs-PIT with conventional anticancer treatments can be expected to provide a more effective and sensible treatment strategy.
Collapse
|
341
|
Fibroblast Subsets in Intestinal Homeostasis, Carcinogenesis, Tumor Progression, and Metastasis. Cancers (Basel) 2021; 13:cancers13020183. [PMID: 33430285 PMCID: PMC7825703 DOI: 10.3390/cancers13020183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer often develops via the adenoma–carcinoma sequence, a process which is accompanied by (epi) genetic alterations in epithelial cells and gradual phenotypic changes in fibroblast populations. Recent studies have made it clear that these fibroblast populations which, in the context of invasive cancers are termed cancer-associated fibroblasts (CAFs), play an important role in intestinal tumor progression. This review provides an overview on the emerging role of fibroblasts in various stages of colorectal cancer development, ranging from adenoma initiation to metastatic spread of tumor cells. As fibroblasts show considerable heterogeneity in subsets and phenotypes during cancer development, a better functional understanding of stage-specific (alterations in) fibroblast/CAF populations is key to increase the effectiveness of fibroblast-based prognosticators and therapies. Abstract In intestinal homeostasis, continuous renewal of the epithelium is crucial to withstand the plethora of stimuli which can damage the structural integrity of the intestines. Fibroblasts contribute to this renewal by facilitating epithelial cell differentiation as well as providing the structural framework in which epithelial cells can regenerate. Upon dysregulation of intestinal homeostasis, (pre-) malignant neoplasms develop, a process which is accompanied by (epi) genetic alterations in epithelial cells as well as phenotypic changes in fibroblast populations. In the context of invasive carcinomas, these fibroblast populations are termed cancer-associated fibroblasts (CAFs). CAFs are the most abundant cell type in the tumor microenvironment of colorectal cancer (CRC) and consist of various functionally heterogeneous subsets which can promote or restrain cancer progression. Although most previous research has focused on the biology of epithelial cells, accumulating evidence shows that certain fibroblast subsets can also importantly contribute to tumor initiation and progression, thereby possibly providing avenues for improvement of clinical care for CRC patients. In this review, we summarized the current literature on the emerging role of fibroblasts in various stages of CRC development, ranging from adenoma initiation to the metastatic spread of cancer cells. In addition, we highlighted translational and therapeutic perspectives of fibroblasts in the different stages of intestinal tumor progression.
Collapse
|
342
|
Wei T, Song J, Liang K, Li L, Mo X, Huang Z, Chen G, Mao N, Yang J. Identification of a novel therapeutic candidate, NRK, in primary cancer-associated fibroblasts of lung adenocarcinoma microenvironment. J Cancer Res Clin Oncol 2021; 147:1049-1064. [PMID: 33387038 DOI: 10.1007/s00432-020-03489-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Lung adenocarcinoma (LUAD) accounts for approximately half of patients in lung cancer. Cancer-associated fibroblasts (CAFs) are the major component in the tumor microenvironment (TME). Targeting CAFs is a promising therapeutic strategy for cancer treatment. However, therapeutic targets of CAFs in LUAD remains largely unclear. METHODS Seven CAFs and nine normal fibroblasts (NFs) were isolated from tumor and paratumor tissues of LUAD patients undergoing surgery, respectively. RNA-seq and bioinformatics analysis were performed to identify the differentially expressed genes (DEGs) and their functions in CAFs compared with NFs. DEGs of ten overlaying were obtained from RNA-seq, our previously reported lncRNA microarray and public datasets (E-MTAB-6149, E-MTAB-6653) and validated by RT-qPCR. Nik-related kinase (NRK) was further validated by RT-qPCR, immunofluorescence (IF), Western Blot (WB) in vitro, and in Cancer Cell Line Encyclopedia (CCLE) database. Survival analysis was performed on Kaplan-Meier plotter. RESULTS A total of 1799 DEGs were identified, including 650 upregulated DEGs and 1149 downregulated DEGs. The upregulated and downregulated DEGs were mostly enriched in extracellular matrix (ECM) functions and in glycolysis/gluconeogenesis pathways. Interestingly, NRK was the most significantly upregulated overlaying DEGs which was rarely associated with CAFs before. NRK was predominantly expressed in CAFs, but weakly expressed in NFs, normal lung bronchial epithelial cell line BEAS-2B, LUAD cell lines A549 and H1299, as well as in the majority of 191 lung cancer cell lines including LUAD. Moreover, elevated NRK predicted poor survival in LUAD patients. CONCLUSION Here, we first report that NRK is significantly elevated in LUAD-associated CAFs and may function as a promising therapeutic target for cancer combination treatment. Besides, modulation of ECM and glycolysis/gluconeogenesis pathways may be an efficient approach to alter CAFs functionality in LUAD.
Collapse
Affiliation(s)
- Tongtong Wei
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jinjing Song
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Kai Liang
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Li Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Zhiguang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Naiquan Mao
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
343
|
Xing X, Yang F, Huang Q, Guo H, Li J, Qiu M, Bai F, Wang J. Decoding the multicellular ecosystem of lung adenocarcinoma manifested as pulmonary subsolid nodules by single-cell RNA sequencing. SCIENCE ADVANCES 2021; 7:eabd9738. [PMID: 33571124 PMCID: PMC7840134 DOI: 10.1126/sciadv.abd9738] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/08/2020] [Indexed: 05/11/2023]
Abstract
Lung adenocarcinomas (LUAD) that radiologically display as subsolid nodules (SSNs) exhibit more indolent biological behavior than solid LUAD. The transcriptomic features and tumor microenvironment (TME) of SSN remain poorly understood. Here, we performed single-cell RNA sequencing analyses of 16 SSN samples, 6 adjacent normal lung tissues (nLung), and 9 primary LUAD with lymph node metastasis (mLUAD). Approximately 0.6 billion unique transcripts were obtained from 118,293 cells. We found that cytotoxic natural killer/T cells were dominant in the TME of SSN, and malignant cells in SSN undergo a strong metabolic reprogram and immune stress. In SSN, the subtype composition of endothelial cells was similar to that in mLUAD, while the subtype distribution of fibroblasts was more like that in nLung. Our study provides single-cell transcriptomic profiling of SSN and their TME. This resource provides deeper insight into the indolent nature of SSN and will be helpful in advancing lung cancer immunotherapy.
Collapse
Affiliation(s)
- Xudong Xing
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Qi Huang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haifa Guo
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Jiawei Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
344
|
Sunami Y, Häußler J, Kleeff J. Cellular Heterogeneity of Pancreatic Stellate Cells, Mesenchymal Stem Cells, and Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123770. [PMID: 33333727 PMCID: PMC7765115 DOI: 10.3390/cancers12123770] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is projected to become the second deadliest cancer by 2030 in the United States, and the overall five-year survival rate stands still at around 9%. The stroma compartment can make up more than 90% of the pancreatic tumor mass, contributing to the hypoxic tumor microenvironment. The dense stroma with extracellular matrix proteins can be a physical and metabolic barrier reducing therapeutic efficacy. Cancer-associated fibroblasts are a source of extracellular matrix proteins. Therefore, targeting these cells, or extracellular matrix proteins, have been considered as therapeutic strategies. However, several studies show that deletion of cancer-associated fibroblasts may have tumor-promoting effects. Cancer-associated fibroblasts are derived from a variety of different cell types, such as pancreatic stellate cells and mesenchymal stem cells, and constitute a diverse cell population consisting of several functionally heterogeneous subtypes. Several subtypes of cancer-associated fibroblasts exhibit a tumor-restraining function. This review article summarizes recent findings regarding origin and functional heterogeneity of tumor-promoting as well as tumor-restraining cancer-associated fibroblasts. A better understanding of cancer-associated fibroblast heterogeneity could provide more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
|
345
|
Hicks RJ, Roselt PJ, Kallur KG, Tothill RW, Mileshkin L. FAPI PET/CT: Will It End the Hegemony of 18F-FDG in Oncology? J Nucl Med 2020; 62:296-302. [PMID: 33277397 DOI: 10.2967/jnumed.120.256271] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
For over 40 years, 18F-FDG has been the dominant PET tracer in neurology, cardiology, inflammatory diseases, and, most particularly, oncology. Combined with the ability to perform whole-body scanning, 18F-FDG has revolutionized the evaluation of cancer and has stifled the adoption of other tracers, except in situations where low avidity or high background activity limits diagnostic performance. The strength of 18F-FDG has generally been its ability to detect disease in the absence of structural abnormality, thereby enhancing diagnostic sensitivity, but its simultaneous weakness has been a lack of specificity due to diverse pathologies with enhanced glycolysis. Radiotracers that leverage other hallmarks of cancer or specific cell-surface targets are gradually finding a niche in the diagnostic armamentarium. However, none have had sufficient sensitivity to realistically compete with 18F-FDG for evaluation of the broad spectrum of malignancies. Perhaps, this situation is about to change with development of a class of tracers targeting fibroblast activation protein that have low uptake in almost all normal tissues but high uptake in most cancer types. In this review, the development and exciting preliminary clinical data relating to various fibroblast activation protein-specific small-molecule inhibitor tracers in oncology will be discussed along with potential nononcologic applications.
Collapse
Affiliation(s)
- Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Roselt
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Richard W Tothill
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Linda Mileshkin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
346
|
Yu J, Xie M, Ge S, Chai P, Zhou Y, Ruan J. Hierarchical Clustering of Cutaneous Melanoma Based on Immunogenomic Profiling. Front Oncol 2020; 10:580029. [PMID: 33330057 PMCID: PMC7735560 DOI: 10.3389/fonc.2020.580029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma is an aggressive malignancy with high heterogeneity. Several studies have been performed to identify cutaneous melanoma subtypes based on genomic profiling. However, few classifications based on assessments of immune-associated genes have limited clinical implications for cutaneous melanoma. Using 470 cutaneous melanoma samples from The Cancer Genome Atlas (TCGA), we calculated the enrichment levels of 29 immune-associated gene sets in each sample and hierarchically clustered them into Immunity High (Immunity_H, n=323, 68.7%), Immunity Medium (Immunity_M, n=135, 28.7%), and Immunity Low (Immunity_L, n=12, 2.6%) based on the ssGSEA score. The ESTIMATE algorithm was used to calculate stromal scores (range: -1,800.51-1,901.99), immune scores (range: -1,476.28-3,780.33), estimate scores (range: -2,618.28-5,098.14) and tumor purity (range: 0.216-0.976) and they were significantly correlated with immune subtypes (Kruskal-Wallis test, P < 0.001). The Immunity_H group tended to have higher expression levels of HLA and immune checkpoint genes (Kruskal-Wallis test, P < 0.05). The Immunity_H group had the highest level of naïve B cells, resting dendritic cells, M1 macrophages, resting NK cells, plasma cells, CD4 memory activated T cells, CD8 T cells, follicular helper T cells and regulatory T cells, and the Immunity_L group had better overall survival. The GO terms identified in the Immunity_H group were mainly immune related. In conclusion, immune signature-associated cutaneous melanoma subtypes play a role in cutaneous melanoma prognosis stratification. The construction of immune signature-associated cutaneous melanoma subtypes predicted possible patient outcomes and provided possible immunotherapy candidates.
Collapse
Affiliation(s)
| | | | | | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yixiong Zhou
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
347
|
Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. The promising role of noncoding RNAs in cancer-associated fibroblasts: an overview of current status and future perspectives. J Hematol Oncol 2020; 13:154. [PMID: 33213510 PMCID: PMC7678062 DOI: 10.1186/s13045-020-00988-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
As the most important component of the stromal cell population in the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) are crucial players in tumor initiation and progression. The interaction between CAFs and tumor cells, as well as the resulting effect, is much greater than initially expected. Numerous studies have shown that noncoding RNAs (ncRNAs) play an irreplaceable role in this interplay, and related evidence continues to emerge and advance. Under the action of ncRNAs, normal fibroblasts are directly or indirectly activated into CAFs, and their metabolic characteristics are changed; thus, CAFs can more effectively promote tumor progression. Moreover, via ncRNAs, activated CAFs can affect the gene expression and secretory characteristics of cells, alter the TME and enhance malignant biological processes in tumor cells to contribute to tumor promotion. Previously, ncRNA dysregulation was considered the main mechanism by which ncRNAs participate in the crosstalk between CAFs and tumor cells. Recently, however, exosomes containing ncRNAs have been identified as another vital mode of interaction between these two types of cells, with a more direct and clear function. Gaining an in-depth understanding of ncRNAs in CAFs and the complex regulatory network connecting CAFs with tumor cells might help us to establish more effective and safer approaches for cancer therapies targeting ncRNAs and CAFs and offer new hope for cancer patients.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
348
|
Dang H, van Pelt GW, Haasnoot KJC, Backes Y, Elias SG, Seerden TCJ, Schwartz MP, Spanier BWM, de Vos tot Nederveen Cappel WH, van Bergeijk JD, Kessels K, Geesing JMJ, Groen JN, ter Borg F, Wolfhagen FHJ, Seldenrijk CA, Raicu MG, Milne AN, van Lent AUG, Brosens LAA, Johan A. Offerhaus G, Siersema PD, Tollenaar RAEM, Hardwick JCH, Hawinkels LJAC, Moons LMG, Lacle MM, Mesker WE, Boonstra JJ, the Dutch T1 CRC Working Group. Tumour-stroma ratio has poor prognostic value in non-pedunculated T1 colorectal cancer: A multi-centre case-cohort study. United European Gastroenterol J 2020; 9:2050640620975324. [PMID: 33210982 PMCID: PMC8259249 DOI: 10.1177/2050640620975324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current risk stratification models for early invasive (T1) colorectal cancer are not able to discriminate accurately between prognostic favourable and unfavourable tumours, resulting in over-treatment of a large (>80%) proportion of T1 colorectal cancer patients. The tumour-stroma ratio (TSR), which is a measure for the relative amount of desmoplastic tumour stroma, is reported to be a strong independent prognostic factor in advanced-stage colorectal cancer, with a high stromal content being associated with worse prognosis and survival. We aimed to investigate whether the TSR predicts clinical outcome in patients with non-pedunculated T1 colorectal cancer. METHODS Hematoxylin and eosin (H&E)-stained tumour tissue slides from a retrospective multi-centre case cohort of patients with non-pedunculated surgically treated T1 colorectal cancer were assessed for TSR by two independent observers who were blinded for clinical outcomes. The primary end point was adverse outcome, which was defined as the presence of lymph node metastasis in the resection specimen or colorectal cancer recurrence during follow-up. RESULTS All 261 patients in the case cohort had H&E slides available for TSR scoring. Of these, 183 were scored as stroma-low, and 78 were scored as stroma-high. There was moderate inter-observer agreement (κ = 0.42). In total, 41 patients had lymph node metastasis, 17 patients had recurrent cancer and five had both. Stroma-high tumours were not associated with an increased risk for an adverse outcome (adjusted hazard ratio = 0.66, 95% confidence interval 0.37-1.18; p = 0.163). CONCLUSIONS Our study emphasises that existing prognosticators may not be simply extrapolated to T1 colorectal cancers, even though their prognostic value has been widely validated in more advanced-stage tumours.
Collapse
Affiliation(s)
- Hao Dang
- Department of Gastroenterology and HepatologyLeiden University Medical CentreLeidenThe Netherlands
| | - Gabi W. van Pelt
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | - Krijn J. C. Haasnoot
- Department of Gastroenterology and HepatologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Yara Backes
- Department of Gastroenterology and HepatologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Sjoerd G. Elias
- Julius Centre for Health Sciences and Primary CareUniversity Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Tom C. J. Seerden
- Department of Gastroenterology and HepatologyAmphia HospitalBredaThe Netherlands
| | - Matthijs P. Schwartz
- Department of Gastroenterology and HepatologyMeander Medical CentreAmersfoortThe Netherlands
| | | | | | | | - Koen Kessels
- Department of Gastroenterology and HepatologySint Antonius HospitalNieuwegeinThe Netherlands
| | - Joost M. J. Geesing
- Department of Gastroenterology and HepatologyDiakonessenhuisUtrechtThe Netherlands
| | - John N. Groen
- Department of Gastroenterology and HepatologySint JansdalHarderwijkThe Netherlands
| | - Frank ter Borg
- Department of Gastroenterology and HepatologyDeventer HospitalDeventerThe Netherlands
| | - Frank H. J. Wolfhagen
- Department of Gastroenterology and HepatologyAlbert Schweitzer HospitalDordrechtThe Netherlands
| | | | | | - Anya N. Milne
- Pathology DNASint Antonius HospitalNieuwegeinThe Netherlands
| | - Anja U. G. van Lent
- Department of Gastroenterology and HepatologyOnze Lieve Vrouwe GasthuisAmsterdamThe Netherlands
| | - Lodewijk A. A. Brosens
- Department of PathologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - G. Johan A. Offerhaus
- Department of PathologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Peter D. Siersema
- Department of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | | | - James C. H. Hardwick
- Department of Gastroenterology and HepatologyLeiden University Medical CentreLeidenThe Netherlands
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and HepatologyLeiden University Medical CentreLeidenThe Netherlands
| | - Leon M. G. Moons
- Department of Gastroenterology and HepatologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Miangela M. Lacle
- Department of PathologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Wilma E. Mesker
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | - Jurjen J. Boonstra
- Department of Gastroenterology and HepatologyLeiden University Medical CentreLeidenThe Netherlands
| | | |
Collapse
|
349
|
Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG, Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L, Wang W. Periostin + cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol 2020; 15:210-227. [PMID: 33124726 PMCID: PMC7782076 DOI: 10.1002/1878-0261.12837] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Lymph node metastasis (LNM), a critical prognostic determinant in cancer patients, is critically influenced by the presence of numerous heterogeneous cancer‐associated fibroblasts (CAFs) in the tumor microenvironment. However, the phenotypes and characteristics of the various pro‐metastatic CAF subsets in cervical squamous cell carcinoma (CSCC) remain unknown. Here, we describe a CAF subpopulation with elevated periostin expression (periostin+CAFs), located in the primary tumor sites and metastatic lymph nodes, that positively correlated with LNM and poor survival in CSCC patients. Mechanistically, periostin+CAFs impaired lymphatic endothelial barriers by activating the integrin‐FAK/Src‐VE‐cadherin signaling pathway in lymphatic endothelial cells and consequently enhanced metastatic dissemination. In contrast, inhibition of the FAK/Src signaling pathway alleviated periostin‐induced lymphatic endothelial barrier dysfunction and its related effects. Notably, periostin‐CAFs were incapable of impairing endothelial barrier integrity, which may explain the occurrence of CAF‐enriched cases without LNM. In conclusion, we identified a specific periostin+CAF subset that promotes LNM in CSCC, mainly by impairing the lymphatic endothelial barriers, thus providing the basis for potential stromal fibroblast‐targeted interventions that block CAF‐dependent metastasis.
Collapse
Affiliation(s)
- Wen-Fei Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Luo-Jiao Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Lan Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Zheng Hu
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| |
Collapse
|
350
|
Pan MS, Wang H, Ansari KH, Li XP, Sun W, Fan YZ. Gallbladder cancer-associated fibroblasts promote vasculogenic mimicry formation and tumor growth in gallbladder cancer via upregulating the expression of NOX4, a poor prognosis factor, through IL-6-JAK-STAT3 signal pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:234. [PMID: 33153467 PMCID: PMC7643415 DOI: 10.1186/s13046-020-01742-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
Background Cancer-associated fibroblasts (CAFs) and vasculogenic mimicry (VM) play important roles in the occurrence and development of tumors. However, the relationship between CAFs and VM formation, especially in gallbladder cancer (GBC) has not been clarified. In this study, we investigated whether gallbladder CAFs (GCAFs) can promote VM formation and tumor growth and explored the underlying molecular mechanism. Methods A co-culture system of human GBC cells and fibroblasts or HUVECs was established. VM formation, proliferation, invasion, migration, tube formation assays, CD31-PAS double staining, optic/electron microscopy and tumor xenograft assay were used to detect VM formation and malignant phenotypes of 3-D co-culture matrices in vitro, as well as the VM formation and tumor growth of xenografts in vivo, respectively. Microarray analysis was used to analyze gene expression profile in GCAFs/NFs and VM (+)/VM (−) in vitro. QRT-PCR, western blotting, IHC and CIF were used to detected NOX4 expression in GCAFs/NFs, 3-D culture/co-culture matrices in vitro, the xenografts in vivo and human gallbladder tissue/stroma samples. The correlation between NOX4 expression and clinicopathological and prognostic factors of GBC patients was analyzed. And, the underlying molecular mechanism of GCAFs promoting VM formation and tumor growth in GBC was explored. Results GCAFs promote VM formation and tumor growth in GBC; and the finding was confirmed by facts that GCAFs induced proliferation, invasion, migration and tube formation of GBC cells in vitro, and promoted VM formation and tumor growth of xenografts in vivo. NOX4 is highly expressed in GBC and its stroma, which is the key gene for VM formation, and is correlated with tumor aggression and survival of GBC patients. The GBC patients with high NOX4 expression in tumor cells and stroma have a poor prognosis. The underlying molecular mechanism may be related to the upregulation of NOX4 expression through paracrine IL-6 mediated IL-6/JAK/STAT3 signaling pathway. Conclusions GCAFs promote VM formation and tumor growth in GBC via upregulating NOX4 expression through the activation of IL-6-JAK-STAT3 signal pathway. NOX4, as a VM-related gene in GBC, is overexpressed in GBC cells and GCAFs, which is related to aggression and unfavorable prognosis of GBC patients.
Collapse
Affiliation(s)
- Mu-Su Pan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China
| | - Hui Wang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China
| | - Kamar Hasan Ansari
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China
| | - Xin-Ping Li
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China
| | - Wei Sun
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China.
| |
Collapse
|