301
|
Guo K, Feng Y, Zheng X, Sun L, Wasan HS, Ruan S, Shen M. Resveratrol and Its Analogs: Potent Agents to Reverse Epithelial-to-Mesenchymal Transition in Tumors. Front Oncol 2021; 11:644134. [PMID: 33937049 PMCID: PMC8085503 DOI: 10.3389/fonc.2021.644134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a complicated program through which polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor microenvironment. EMT is involved in tumor progression, invasion and metastasis via reconstructing the cytoskeleton and degrading the tumor basement membrane. Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can reverse EMT and inhibit invasion and migration of human tumors via diverse mechanisms and signaling pathways. In the present review, we will summarize the detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl resveratrol, 3,5,4'-Trimethoxystilbene) might regulate the EMT process in cancer cells to better understand their potential as novel anti-tumor agents. Resveratrol can also reverse chemoresistance via EMT inhibition and improvement of the antiproliferative effects of conventional treatments. Therefore, resveratrol and its analogs have the potential to become novel adjunctive agents to inhibit cancer metastasis, which might be partly related to their blocking of the EMT process.
Collapse
Affiliation(s)
- Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueer Zheng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Harpreet S. Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Shanming Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minhe Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
302
|
Amini P, Nodooshan SJ, Ashrafizadeh M, Eftekhari SM, Aryafar T, Khalafi L, Musa AE, Mahdavi SR, Najafi M, Farhood B. Resveratrol Induces Apoptosis and Attenuates Proliferation of MCF-7 Cells in Combination with Radiation and Hyperthermia. Curr Mol Med 2021; 21:142-150. [PMID: 32436827 DOI: 10.2174/1566524020666200521080953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/22/2022]
Abstract
AIM In the current in vitro study, we tried to examine the possible role of resveratrol as a sensitizer in combination with radiotherapy or hyperthermia. BACKGROUND Breast cancer is the most common malignancy for women and one of the most common worldwide. It has been suggested that using non-invasive radiotherapy alone cannot eliminate cancer cells. Hyperthermia, which is an adjuvant modality, induces cancer cell death mainly through apoptosis and necrosis. However, cancer cells can also develop resistance to this modality. OBJECTIVE The objective of this study was to determine possible potentiation of apoptosis when MCF-7 cells treated with resveratrol before hyperthermia or radiotherapy. METHODS MCF-7 cancer cells were treated with different doses of resveratrol to achieve IC50%. Afterwards, cells treated with the achieved concentration of resveratrol were exposed to radiation or hyperthermia. Proliferation, apoptosis and the expression of pro-apoptotic genes were evaluated using flow cytometry, MTT assay and real-time PCR. Results for each combination therapy were compared to radiotherapy or hyperthermia without resveratrol. RESULTS Both irradiation or hyperthermia could reduce the viability of MCF-7 cells. Furthermore, the regulation of Bax and caspase genes increased, while Bcl-2 gene expression reduced. Resveratrol potentiated the effects of radiation and hyperthermia on MCF-7 cells. CONCLUSION Results of this study suggest that resveratrol is able to induce the regulation of pro-apoptotic genes and attenuate the viability of MCF-7 cells. This may indicate the sensitizing effect of resveratrol in combination with both radiotherapy and hyperthermia.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Jafari Nodooshan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Tayebeh Aryafar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Khalafi
- Omid Tehran Radiation Oncology Center, Physics Section, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabie Mahdavi
- Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
303
|
Lele W, Lei L, Liting Q. Resveratrol sensitizes A549 cells to irradiation damage via suppression of store-operated calcium entry with Orai1 and STIM1 downregulation. Exp Ther Med 2021; 21:587. [PMID: 33850559 PMCID: PMC8027717 DOI: 10.3892/etm.2021.10019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023] Open
Abstract
Resveratrol is a natural polyphenol with multiple positive biofunctions and was found to have potential as a radiosensitizer with an intricate molecular mechanism. Store-operated calcium entry (SOCE) is a novel intracellular calcium regulatory pattern that is mainly mediated by iron channels, such as by the stromal interaction molecule (STIM) and calcium release-activated calcium channel protein (Orai) families. SOCE was recently reported to be suppressed via the downregulation of STIM or Orai families for the promotion of tumor cell death induced by resveratrol. In the present study, resveratrol combined with irradiation treatment were found to induce more evident cell damage compared with irradiation treatment alone, as shown with Cell Counting Kit-8 assay and mitochondrial membrane potential detection with rhodamine 123. Additionally, resveratrol combined with irradiation treatment decreased the expression of STIM1 and Orai1, while it had no effects on STIM2, Orai2 and Orai3. Moreover, resveratrol combined with irradiation treatment lead to alleviated thapsigargin-induced SOCE. In addition, overexpression of STIM1 and Orai1 reversed resveratrol-induced SOCE inhibition and reduced death in A549 cells under irradiation. In summary, the present results revealed that resveratrol can significantly enhance the effect of irradiation damage on lung adenocarcinoma A549 cells, and this effect may be mediated by suppression of SOCE with reduced expression of both STIM1 and Orai1.
Collapse
Affiliation(s)
- Wu Lele
- Department of General Medicine, First People's Hospital of Yuhang, Hangzhou, Zhejiang 311100, P.R. China.,Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Lv Lei
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Qian Liting
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
304
|
Morze J, Danielewicz A, Przybyłowicz K, Zeng H, Hoffmann G, Schwingshackl L. An updated systematic review and meta-analysis on adherence to mediterranean diet and risk of cancer. Eur J Nutr 2021; 60:1561-1586. [PMID: 32770356 PMCID: PMC7987633 DOI: 10.1007/s00394-020-02346-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE The aim of current systematic review was to update the body of evidence on associations between adherence to the Mediterranean diet (MedDiet) and risk of cancer mortality, site-specific cancer in the general population; all-cause, and cancer mortality as well as cancer reoccurrence among cancer survivors. METHODS A literature search for randomized controlled trials (RCTs), case-control and cohort studies published up to April 2020 was performed using PubMed and Scopus. Study-specific risk estimates for the highest versus lowest adherence to the MedDiet category were pooled using random-effects meta-analyses. Certainty of evidence from cohort studies and RCTs was evaluated using the NutriGrade scoring system. RESULTS The updated search revealed 44 studies not identified in the previous review. Altogether, 117 studies including 3,202,496 participants were enclosed for meta-analysis. The highest adherence to MedDiet was inversely associated with cancer mortality (RRcohort: 0.87, 95% CI 0.82, 0.92; N = 18 studies), all-cause mortality among cancer survivors (RRcohort: 0.75, 95% CI 0.66, 0.86; N = 8), breast (RRobservational: 0.94, 95% CI 0.90, 0.97; N = 23), colorectal (RRobservational: 0.83, 95% CI 0.76, 0.90; N = 17), head and neck (RRobservational: 0.56, 95% CI 0.44, 0.72; N = 9), respiratory (RRcohort: 0.84, 95% CI 0.76, 0.94; N = 5), gastric (RRobservational: 0.70, 95% CI 0.61, 0.80; N = 7), bladder (RRobservational: 0.87, 95% CI 0.76, 0.98; N = 4), and liver cancer (RRobservational: 0.64, 95% CI 0.54, 0.75; N = 4). Adhering to MedDiet did not modify risk of blood, esophageal, pancreatic and prostate cancer risk. CONCLUSION In conclusion, our results suggest that highest adherence to the MedDiet was related to lower risk of cancer mortality in the general population, and all-cause mortality among cancer survivors as well as colorectal, head and neck, respiratory, gastric, liver and bladder cancer risks. Moderate certainty of evidence from cohort studies suggest an inverse association for cancer mortality and colorectal cancer, but most of the comparisons were rated as low or very low certainty of evidence.
Collapse
Affiliation(s)
- Jakub Morze
- Department of Cardiology and Internal Diseases, University of Warmia and Mazury, al. Warszawska 30, 10-082, Olsztyn, Poland.
- Department of Human Nutrition, University of Warmia and Mazury, ul. Sloneczna 45f, 10-718, Olsztyn, Poland.
| | - Anna Danielewicz
- Department of Human Nutrition, University of Warmia and Mazury, ul. Sloneczna 45f, 10-718, Olsztyn, Poland
| | - Katarzyna Przybyłowicz
- Department of Human Nutrition, University of Warmia and Mazury, ul. Sloneczna 45f, 10-718, Olsztyn, Poland
| | - Hongmei Zeng
- National Cancer Registry Office, National Cancer Center, 17 South Lane, Beijing, 100021, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Building 2, Boston, MA, 02551, USA
| | - Georg Hoffmann
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14, UZA II, 1090, Vienna, Austria
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 153, 79110, Freiburg, Germany
| |
Collapse
|
305
|
Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical Implications in Cancer Progression. Int J Mol Sci 2021; 22:ijms22073571. [PMID: 33808235 PMCID: PMC8036762 DOI: 10.3390/ijms22073571] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles), dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs, including Doxil® (liposome-encapsulated doxorubicin), Abraxane® (albumin-bound paclitaxel), and Oncaspar® (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast, several phytochemicals that were found to be effective in cultured cancer cells and animal studies have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid clearance, resistance, and toxicity. Research to overcome these drawbacks by using phytochemical NPs remains in the early stages of clinical translation. Thus, in the current review, we discuss the progress in nanotechnology, research milestones, the molecular mechanisms of phytochemicals encapsulated in NPs, and clinical implications. Several challenges that must be overcome and future research perspectives are also described.
Collapse
|
306
|
An Overview on the Conservative Management of Endometriosis from a Naturopathic Perspective: Phytochemicals and Medicinal Plants. PLANTS 2021; 10:plants10030587. [PMID: 33804660 PMCID: PMC8003677 DOI: 10.3390/plants10030587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Background: Endometriosis is a chronic and debilitating disease, which affects millions of young women worldwide. Although medicine has incontestably evolved in the last years, there is no common ground regarding the early and accurate diagnosis of this condition, its pathogenic mechanisms, and curative treatment. Even though the spontaneous resolution of endometriosis is sometimes possible, recent reports suggested that it can be a progressive condition. It can associate chronic pelvic pain, vaginal bleeding, infertility, or malignant degenerescence. Conventional treatments could produce many side effects, and despite treatment, the symptoms may reappear. In recent years, experimental evidence suggested that plant-based medicine could exert beneficial effects on endometriosis and endometriosis-related symptoms. This study aims to highlight the pharmaceutical activity of phytochemicals and medicinal plants against endometriosis and to provide a source of information regarding the alternative treatment of this condition. Methods: For this review, we performed a research using PubMed, GoogleScholar, and CrossRef databases. We selected the articles published between January 2000 and July 2020, written in English. Results: We found 17 medicinal plants and 13 phytochemicals, which have demonstrated their beneficial effects against endometriosis. Several of their biological activities consist of antiangiogenic, anti-inflammatory effects, and oxidative-stress reduction. Conclusion: Medicinal herbs and their bioactive compounds exhibit antiangiogenic, antioxidant, sedative and pain-alleviating properties and the effects recorded until now encourage their use for the conservative management of endometriosis.
Collapse
|
307
|
Recent Advancements on Immunomodulatory Mechanisms of Resveratrol in Tumor Microenvironment. Molecules 2021; 26:molecules26051343. [PMID: 33802331 PMCID: PMC7959117 DOI: 10.3390/molecules26051343] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.
Collapse
|
308
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
309
|
Glibo M, Serman A, Karin-Kujundzic V, Bekavac Vlatkovic I, Miskovic B, Vranic S, Serman L. The role of glycogen synthase kinase 3 (GSK3) in cancer with emphasis on ovarian cancer development and progression: A comprehensive review. Bosn J Basic Med Sci 2021; 21:5-18. [PMID: 32767962 PMCID: PMC7861620 DOI: 10.17305/bjbms.2020.5036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a monomeric serine-threonine kinase discovered in 1980 in a rat skeletal muscle. It has been involved in various cellular processes including embryogenesis, immune response, inflammation, apoptosis, autophagy, wound healing, neurodegeneration, and carcinogenesis. GSK3 exists in two different isoforms, GSK3α and GSK3β, both containing seven antiparallel beta-plates, a short linking part and an alpha helix, but coded by different genes and variously expressed in human tissues. In the current review, we comprehensively appraise the current literature on the role of GSK3 in various cancers with emphasis on ovarian carcinoma. Our findings indicate that the role of GSK3 in ovarian cancer development cannot be decisively determined as the currently available data support both prooncogenic and tumor-suppressive effects. Likewise, the clinical impact of GSK3 expression on ovarian cancer patients and its potential therapeutic implications are also limited. Further studies are needed to fully elucidate the pathophysiological and clinical implications of GSK3 activity in ovarian cancer.
Collapse
Affiliation(s)
- Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivanka Bekavac Vlatkovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Berivoj Miskovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
310
|
Favero G, Moretti E, Krajčíková K, Tomečková V, Rezzani R. Evidence of Polyphenols Efficacy against Dry Eye Disease. Antioxidants (Basel) 2021; 10:antiox10020190. [PMID: 33525721 PMCID: PMC7911148 DOI: 10.3390/antiox10020190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease is a multifactorial pathology compromising the quality of life of patients, resulting in significant damage of the ocular surface and discomfort. The current therapeutical strategies are not able to definitively resolve the underlying causes and stop the symptoms. Polyphenols are promising natural molecules that are receiving increasing attention for their activity/effects in counteracting the main pathologic mechanisms of dry eye disease and reducing its symptoms. In the present review, a deep literature search focusing on the main polyphenols tested against dry eye disease was conducted, analyzing related in vitro, in vivo, and clinical studies to provide a comprehensive and current review on the state of the art. Polyphenols present multiple effects against dry eye diseases-related ocular surface injury. In particular, the observed beneficial effects of polyphenols on corneal cells are the reduction of the pathological processes of inflammation, oxidative stress, and apoptosis and modulation of the tear film. Due to numerous studies reporting that polyphenols are effective and safe for treating the pathological mechanisms of this ocular surface disease, we believe that future studies should confirm and extend the evidence of polyphenols efficacy in clinical practice against dry eye disease and help to develop new ophthalmic drug(s).
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| |
Collapse
|
311
|
Wang Y, Wu H, Dong N, Su X, Duan M, Wei Y, Wei J, Liu G, Peng Q, Zhao Y. Sulforaphane induces S-phase arrest and apoptosis via p53-dependent manner in gastric cancer cells. Sci Rep 2021; 11:2504. [PMID: 33510228 PMCID: PMC7843980 DOI: 10.1038/s41598-021-81815-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
Sulforaphane (SFN) extracted from broccoli sprout has previously been investigated for its potential properties in cancers, however, the underlying mechanisms of the anticancer activity of SFN remain not fully understood. In the present study, we investigate the effects of SFN on cell proliferation, cell cycle, cell apoptosis, and also the expression of several cell cycle and apoptosis-related genes by MTT assay, flow cytometry and western blot analysis in gastric cancer (GC) cells. The results showed that SFN could impair the colony-forming ability in BGC-823 and MGC-803 cell lines compared with the control. In addition, SFN significantly suppressed cell proliferation by arresting the cell cycle at the S phase and enhancing cell apoptosis in GC cells in a dose-dependent manner. Western blot results showed that SFN treatment significantly increased the expression levels of p53, p21 and decreased CDK2 expression, which directly regulated the S phase transition. The Bax and cleaved-caspase-3 genes involved in apoptosis executive functions were significantly increased in a dose-dependent manner in BGC-823 and MGC-803 cells. These results suggested that SFN-induced S phase cell cycle arrest and apoptosis through p53-dependent manner in GC cells, which suggested that SFN has a potential therapeutic application in the treatment and prevention of GC.
Collapse
Affiliation(s)
- Yuan Wang
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, People's Republic of China.
| | - Nannan Dong
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Xu Su
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Mingxiu Duan
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Yaqin Wei
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Jun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Gaofeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Qingjie Peng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Yunli Zhao
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China.
| |
Collapse
|
312
|
Woźniak M, Krajewski R, Makuch S, Agrawal S. Phytochemicals in Gynecological Cancer Prevention. Int J Mol Sci 2021; 22:1219. [PMID: 33530651 PMCID: PMC7865323 DOI: 10.3390/ijms22031219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Gynecological cancer confers an enormous burden among women worldwide. Accumulating evidence points to the role of phytochemicals in preventing cervical, endometrial, and ovarian cancer. Experimental studies emphasize the chemopreventive and therapeutic potential of plant-derived substances by inhibiting the early stages of carcinogenesis or improving the efficacy of traditional chemotherapeutic agents. Moreover, a number of epidemiological studies have investigated associations between a plant-based diet and cancer risk. This literature review summarizes the current knowledge on the phytochemicals with proven antitumor activity, emphasizing their effectiveness and mechanism of action in gynecological cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Rafał Krajewski
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
313
|
Palminteri M, Dhakar NK, Ferraresi A, Caldera F, Vidoni C, Trotta F, Isidoro C. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. Nanotheranostics 2021; 5:197-212. [PMID: 33564618 PMCID: PMC7868003 DOI: 10.7150/ntno.53888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Smart drug delivery systems are required for the site-specific drug targeting to enhance the therapeutic efficiency of a drug. Resveratrol (RV) is a polyphenolic compound with anti-cancer activity. However, its poor aqueous solubility and non-selectivity are the major challenges for its employment in cancer therapy. In this work, we present the synthesis of RV-loaded glutathione responsive cyclodextrin nanosponges (RV-GSH-NSs) to improve the therapeutic efficiency and selective delivery of RV. The drug loading and encapsulation efficiency were 16.12% and 80.64%, respectively. The in vitro release profile confirmed that RV release was enhanced in response to external glutathione (GSH). Nude NSs were not toxic per se to human fibroblasts when administered for up to 72 h at the highest dose. Cell internalization studies confirmed that RV-GSH-NSs were preferentially up-taken by tumor cells compared to non-tumorigenic cells. Accordingly, RV showed selective toxicity to cancer cells compared to normal cells. GSH depletion by buthionine sulfoximine, a potent inhibitor of its synthesis, reflected in a significant decrease of the NSs accumulation, and consequently resulted in a drastic reduction of RV-mediated toxic effects in cancer cells. These findings demonstrate that GSH- responsive NSs represent an effective delivery system for targeting cancer cells by harnessing the differential tumor characteristics in terms of redox status in parallel with the limitation of side effects toward normal cells.
Collapse
Affiliation(s)
- Marco Palminteri
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Nilesh Kumar Dhakar
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| |
Collapse
|
314
|
He Y, Fu Y, Xi M, Zheng H, Zhang Y, Liu Y, Zhao Y, Xi J, He Y. Zn 2+ and mPTP mediate resveratrol-induced myocardial protection from endoplasmic reticulum stress. Metallomics 2021; 12:290-300. [PMID: 31872196 DOI: 10.1039/c9mt00264b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Resveratrol displays cardioprotective activity; however, its mechanism of action remains unclear. In the current study, resveratrol-induced myocardial protection from endoplasmic reticulum stress (ERS) was investigated, focusing on the roles of Zn2+ and the mitochondrial permeability transition pore (mPTP). We found, using the MTT/LDH kit, that 2-DG-induced ERS significantly decreased H9c2 cell viability. Resveratrol markedly inhibited the expression of endoplasmic reticulum chaperone GRP 78/94 and ERS-related apoptosis proteins CHOP, Caspase12, and JNK induced by 2-DG. The zinc ion chelator TPEN, and ERK/GSK-3β inhibitors PD98059 and SB216763 and their siRNAs blocked resveratrol function. The AKT inhibitor LY294002 and siRNA did not alter the action of resveratrol. In addition, resveratrol significantly increased the phosphorylation of ERK and GSK-3β. Resveratrol prevented 2-DG-induced mPTP opening and increased intracellular Zn2+ concentration indicated by TMRE and Newport Green DCF fluorescence intensity, which were further abrogated by ERK/GSK-3β inhibitors and siRNAs. Our data suggested that resveratrol protected cardiac cells from ERS by mobilizing intracellular Zn2+ and preventing mPTP opening through the ERK/GSK-3β but not PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yifei He
- Affiliated Hospital & Clinic School of Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Yu Fu
- Affiliated Hospital & Clinic School of Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Mengyao Xi
- School of Nursing, Dalian Medical University, Dalian, 116044, China
| | - Huan Zheng
- Affiliated Hospital & Clinic School of Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Yidong Zhang
- Affiliated Hospital & Clinic School of Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Yulin Liu
- Affiliated Hospital & Clinic School of Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Yang Zhao
- Affiliated Hospital & Clinic School of Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Jinkun Xi
- Affiliated Hospital & Clinic School of Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Yonggui He
- Affiliated Hospital & Clinic School of Medicine, North China University of Science and Technology, Tangshan 063000, China.
| |
Collapse
|
315
|
Vitis labrusca Extract (HP01) Improves Blood Circulation and Lipid Metabolism in Hyperlipidemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:6180310. [PMID: 33424986 PMCID: PMC7781693 DOI: 10.1155/2020/6180310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Excessive intake of high-lipid foods and lifestyle changes can easily cause hyperlipidemia. Hyperlipidemia is clinically considered a major risk factor for cardiovascular disease, which is the second leading cause of death worldwide. In this study, the effects of a Vitis labrusca extract (HP01) on coagulation, platelet aggregation, and lipid metabolism were investigated in hyperlipidemic rats. A rat model of high-fat diet- (HFD-) induced hyperlipidemia was used. Hemostatic parameters and lipid levels were investigated after HP01 treatment of hyperlipidemic rats. Different doses of HP01 (200 mg/kg/day and 400 mg/kg/day, p.o.) were administered for 3 weeks, and prothrombin time (PT), activated partial thromboplastin time (aPTT), and platelet aggregation and bleed time (BT) were determined. The levels of thromboxane B(2) (TXB(2)) and serotonin were measured using enzyme-linked immunosorbent assay kits. Simultaneously, hepatic function and blood fat indexes, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), malondialdehyde (MDA), and glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were also measured. In comparison with the data obtained for rats in the untreated HFD group, HP01 (200 mg/kg) treatment prolonged PT but did not affect aPTT. HP01 treatment did not alter plasma TXB(2), PGI2, or serotonin levels. However, HP01 showed some effects in improving liver function by reducing the levels of hepatic lipids. ALT, MDA, and hepatic TG levels significantly decreased, whereas GSH, GPx, CAT, and SOD levels significantly increased. These results confirm the HP01 extract will improve thromboplastic and the liver metabolic disorders in hyperlipidemia by oxidative stress response.
Collapse
|
316
|
Liu Y, Liu X, Lin C, Jia X, Zhu H, Song J, Zhang Y. Noncoding RNAs regulate alternative splicing in Cancer. J Exp Clin Cancer Res 2021; 40:11. [PMID: 33407694 PMCID: PMC7789004 DOI: 10.1186/s13046-020-01798-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
AS (alternative splicing) is a fundamental process by which a gene can generate multiple distinct mRNA transcripts to increase protein diversity. Defects in AS influence the occurrence and development of many diseases, including cancers, and are frequently found to participate in various aspects of cancer biology, such as promoting invasion, metastasis, apoptosis resistance and drug resistance. NcRNAs (noncoding RNAs) are an abundant class of RNAs that do not encode proteins. NcRNAs include miRNAs (microRNAs), lncRNAs (long noncoding RNAs), circRNAs (circular RNAs) and snRNAs (small nuclear RNAs) and have been proven to act as regulatory molecules that mediate cancer processes through AS. NcRNAs can directly or indirectly influence a plethora of molecular targets to regulate cis-acting elements, trans-acting factors, or pre-mRNA transcription at multiple levels, affecting the AS process and generating alternatively spliced isoforms. Consequently, ncRNA-mediated AS outcomes affect multiple cellular signaling pathways that promote or suppress cancer progression. In this review, we summarize the current mechanisms by which ncRNAs regulate AS in cancers and discuss their potential clinical applications as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yunze Liu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xin Liu
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, the Third XiangYa Hospital of Central South University, Changsha, 410013, China
| | - Xianhong Jia
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Hongmei Zhu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
317
|
Chen JJ, Shen JX, Yu ZH, Pan C, Han F, Zhu XL, Xu H, Xu RT, Wei TY, Lu YP. The Antidepressant Effects of Resveratrol are Accompanied by the Attenuation of Dendrite/Dendritic Spine Loss and the Upregulation of BDNF/p-cofilin1 Levels in Chronic Restraint Mice. Neurochem Res 2021; 46:660-674. [PMID: 33392910 DOI: 10.1007/s11064-020-03200-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Depression afflicts more than 300 million people worldwide, but there is currently no universally effective drug in clinical practice. In this study, chronic restraint stress (CRS)-induced mice depression model was used to study the antidepressant effects of resveratrol and its mechanism. Our results showed that resveratrol significantly attenuated depression-like behavior in mice. Consistent with behavioral changes, resveratrol significantly attenuated CRS-induced reduction in the density of dendrites and dendritic spines in both hippocampus and medial prefrontal cortex (mPFC). Meanwhile, in hippocampus and mPFC, resveratrol consistently alleviated CRS-induced cofilin1 activation by increasing its ser3 phosphorylation. In addition, cofilin1 immunofluorescence distribution in neuronal inner peri-membrane in controls, and cofilin1 diffusely distribution in the cytoplasm in CRS group were common in hippocampus. However, the distribution of cofilin1 in mPFC was reversed. Pearson's correlation analysis revealed that there was a significant positive correlation found between the sucrose consumption in sucrose preference test and the dendrite density in multiple sub-regions of hippocampus and mPFC, and a significant negative correlation between the immobility time in tail suspension test and the dendrite/dendritic spine density in several different areas of hippocampus and mPFC. P-cofilin1 was significantly positively correlated with the overall dendritic spine density in mPFC as well as with the overall dendrite density or BDNF in the hippocampus. Our results suggest that the BDNF/cofilin1 pathway, in which cofilin1 may be activated in a brain-specific manner, was involved in resveratrol's attenuating the dendrite and dendritic spine loss and behavioral abnormality.
Collapse
Affiliation(s)
- Jing-Jing Chen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Jun-Xian Shen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Zong-Hao Yu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
- Department of Anatomy, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Hui Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
- Anhui College of Traditional Chinese Medicine, No. 18 Wuxiashan West Road, Wuhu, 241002, China
| | - Rui-Ting Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Tong-Yao Wei
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China.
| |
Collapse
|
318
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2021; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
319
|
Poltronieri P, Xu B, Giovinazzo G. Resveratrol and other Stilbenes: Effects on Dysregulated Gene Expression in Cancers and Novel Delivery Systems. Anticancer Agents Med Chem 2021; 21:567-574. [PMID: 32628597 DOI: 10.2174/1871520620666200705220722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 11/22/2022]
Abstract
Trans-resveratrol (RESV), pterostilbene, trans-piceid and trans-viniferins are bioactive stilbenes present in grapes and other plants. Several groups applied biotechnology to introduce their synthesis in plant crops. Biochemical interaction with enzymes, regulation of non-coding RNAs, and activation of signaling pathways and transcription factors are among the main effects described in literature. However, solubility in ethanol, short half-life, metabolism by gut bacteria, make the concentration responsible for the effects observed in cultured cells difficult to achieve. Derivatives obtained by synthesis, trans-resveratrol analogs and methoxylated stilbenes show to be more stable and allow the synthesis of bioactive compounds with higher bioavailability. However, changes in chemical structure may require testing for toxicity. Thus, the delivery of RESV and its natural analogs incorporated into liposomes or nanoparticles, is the best choice to ensure stability during administration and appropriate absorption. The application of RESV and its derivatives with anti-inflammatory and anticancer activity is presented with description of novel clinical trials.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Department of Agrofood and Biological Sciences, National Research Council, CNR-ISPA, Lecce, Italy
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Giovanna Giovinazzo
- Department of Agrofood and Biological Sciences, National Research Council, CNR-ISPA, Lecce, Italy
| |
Collapse
|
320
|
|
321
|
Alikiaii B, Bagherniya M, Askari G, Johnston TP, Sahebkar A. The role of phytochemicals in sepsis: A mechanistic and therapeutic perspective. Biofactors 2021; 47:19-40. [PMID: 33217777 DOI: 10.1002/biof.1694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Sepsis and septic shock are still a leading cause of mortality and morbidity in intensive care units worldwide. Sepsis is an uncontrolled and excessive response of the innate immune system toward the invading infectious microbes, characterized by the hyper-production of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6, tumor-necrosis factor (TNF)-α, and high-mobility group box 1 (HMGB1). In severe sepsis, the overwhelming production of pro-inflammatory cytokines and reactive oxygen species may compromise organ function and lead to the induction of abnormal apoptosis in different organs, resulting in multiple organ dysfunction syndrome and death. Hence, compounds that are able to attenuate inflammatory responses may have therapeutic potential for sepsis treatment. Understanding the pathophysiology and underlying molecular mechanisms of sepsis may provide useful insights in the discovery and development of new effective therapeutics. Therefore, numerous studies have invested much effort into elucidating the mechanisms involved with the onset and development of sepsis. The present review mainly focuses on the molecules and signaling pathways involved in the pathogenicity of sepsis. Additionally, several well-known natural bioactive herbal compounds and phytochemicals, which have shown protective and therapeutic effects with regard to sepsis, as well as their mechanisms of action, are presented. This review suggests that these phytochemicals are able to attenuate the overwhelming inflammatory responses developed during sepsis by modulating different signaling pathways. Moreover, the anti-inflammatory and cytoprotective activities of phytochemicals make them potent compounds to be included as complementary therapeutic agents in the diets of patients suffering from sepsis in an effort to alleviate sepsis and its life-threatening complications, such as multi-organ failure.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
322
|
Inclusion of Hydroxycinnamic Acids in Methylated Cyclodextrins: Host-Guest Interactions and Effects on Guest Thermal Stability. Biomolecules 2020; 11:biom11010045. [PMID: 33396316 PMCID: PMC7823409 DOI: 10.3390/biom11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
There is ongoing interest in exploiting the antioxidant activity and other medicinal properties of natural monophenolic/polyphenolic compounds, but their generally low aqueous solubility limits their applications. Numerous studies have been undertaken to solubilize such compounds via supramolecular derivatization with co-crystal formation with biocompatible coformer molecules and cyclodextrin (CD) complexation being two successful approaches. In this study, eight new crystalline products obtained by complexation between methylated cyclodextrins and the bioactive phenolic acids (ferulic, hydroferulic, caffeic, and p-coumaric acids) were investigated using thermal analysis (hot stage microscopy, thermogravimetry, differential scanning calorimetry) and X-ray diffraction. All of the complexes crystallized as ternary systems containing the host CD, a phenolic acid guest, and water. On heating each complex, the primary thermal events were dehydration and liberation of the respective phenolic acid component, the mass loss for the latter step enabling determination of the host-guest stoichiometry. Systematic examination of the X-ray crystal structures of the eight complexes enabled their classification according to the extent of inclusion of each guest molecule within the cavity of its respective CD molecule. This revealed three CD inclusion compounds with full guest encapsulation, three with partial guest inclusion, and two that belong to the rare class of ‘non-inclusion’ compounds.
Collapse
|
323
|
Pagano K, Tomaselli S, Molinari H, Ragona L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front Neurosci 2020; 14:619667. [PMID: 33414705 PMCID: PMC7783407 DOI: 10.3389/fnins.2020.619667] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-β (Aβ) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aβ oligomers and to the deposition of β-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aβ aggregation by direct interaction with Aβ peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aβ regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and β1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.
Collapse
Affiliation(s)
- Katiuscia Pagano
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Simona Tomaselli
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
324
|
Fernandes IG, de Brito CA, dos Reis VMS, Sato MN, Pereira NZ. SARS-CoV-2 and Other Respiratory Viruses: What Does Oxidative Stress Have to Do with It? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8844280. [PMID: 33381273 PMCID: PMC7757116 DOI: 10.1155/2020/8844280] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
The phenomenon of oxidative stress, characterized as an imbalance in the production of reactive oxygen species and antioxidant responses, is a well-known inflammatory mechanism and constitutes an important cellular process. The relationship of viral infections, reactive species production, oxidative stress, and the antiviral response is relevant. Therefore, the aim of this review is to report studies showing how reactive oxygen species may positively or negatively affect the pathophysiology of viral infection. We focus on known respiratory viral infections, especially severe acute respiratory syndrome coronaviruses (SARS-CoVs), in an attempt to provide important information on the challenges posed by the current COVID-19 pandemic. Because antiviral therapies for severe acute respiratory syndrome coronaviruses (e.g., SARS-CoV-2) are rare, knowledge about relevant antioxidant compounds and oxidative pathways may be important for understanding viral pathogenesis and identifying possible therapeutic targets.
Collapse
Affiliation(s)
- Iara Grigoletto Fernandes
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
325
|
Benedetti F, Sorrenti V, Buriani A, Fortinguerra S, Scapagnini G, Zella D. Resveratrol, Rapamycin and Metformin as Modulators of Antiviral Pathways. Viruses 2020; 12:v12121458. [PMID: 33348714 PMCID: PMC7766714 DOI: 10.3390/v12121458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Balanced nutrition and appropriate dietary interventions are fundamental in the prevention and management of viral infections. Additionally, accurate modulation of the inflammatory response is necessary to achieve an adequate antiviral immune response. Many studies, both in vitro with mammalian cells and in vivo with small animal models, have highlighted the antiviral properties of resveratrol, rapamycin and metformin. The current review outlines the mechanisms of action of these three important compounds on the cellular pathways involved with viral replication and the mechanisms of virus-related diseases, as well as the current status of their clinical use.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
- Bendessere™ Study Center, Via Prima Strada 23/3, 35129 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: (G.S.); (D.Z.)
| | - Davide Zella
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: (G.S.); (D.Z.)
| |
Collapse
|
326
|
Kong X, Xu X, Zhou L, Zhu M, Yao S, Ding Y, Liu T, Wang Y, Zhang Y, Li R, Tang X, Ling J, Wu J, Zhu X, Gu Y, Zhou H. MTA1, a Target of Resveratrol, Promotes Epithelial-Mesenchymal Transition of Endometriosis via ZEB2. Mol Ther Methods Clin Dev 2020; 19:295-306. [PMID: 33145366 PMCID: PMC7578554 DOI: 10.1016/j.omtm.2020.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023]
Abstract
Endometriosis is a benign disease that shares some malignant features. Epithelial-mesenchymal transition (EMT) is involved in the pathogenesis of endometriosis. Metastasis-associated protein 1 (MTA1) plays an important role in various cancers by promoting EMT, yet there are no studies on its function in endometriosis. In the present study, we found that MTA1 was highly expressed in the ectopic endometrium of endometriosis patients and that the expression of MTA1 was related to the revised American Fertility Society stage. MTA1 facilitated endometrial stroma cell proliferation, migration, and invasion by inducing EMT, and the promotion function and MTA1 expression were suppressed by resveratrol, a natural polyphenol. Moreover, we revealed that MTA1 induced EMT through interaction with ZEB2. The findings in a mouse endometriosis model further showed that MTA1 and ZEB2 were upregulated in ectopic tissues and that resveratrol inhibited the growth of ectopic lesions and expression of MTA1 and ZEB2. Taken together, we demonstrate that MTA1 is a protein that promotes EMT via interacting with ZEB2 in the pathogenesis of endometriosis, and may be a target of resveratrol.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiaofeng Xu
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ling Zhou
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Mengjing Zhu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Shuang Yao
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Yue Ding
- Nanjing University Medical School, Nanjing 210008, China
| | - Tao Liu
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yijin Wang
- Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Yan Zhang
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Rong Li
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiaoqiu Tang
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jingxian Ling
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jun Wu
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xianghong Zhu
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanyuan Gu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou 510623, China
- Care Center, Guangzhou Women and Children’s Medical Center, Guangzhou, 510623, China
| | - Huaijun Zhou
- Department of Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
327
|
Mondal P, Natesh J, Penta D, Meeran SM. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin Cancer Biol 2020; 83:503-522. [PMID: 33309850 DOI: 10.1016/j.semcancer.2020.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications are heritable yet reversible, essential for normal physiological functions and biological development. Aberrant epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation play a crucial role in cancer progression. In cellular reprogramming, irregular epigenomic modulations alter cell signaling pathways and the expression of tumor suppressor genes and oncogenes, resulting in cancer growth and metastasis. Therefore, alteration of epigenetic-status in cancer cells can be used as a potential target for cancer therapy. Several synthetic epigenetic inhibitors (epi-drugs) and natural epigenetic modulatory bioactives (epi-diets) have been shown to have the potential to alter the aberrant epigenetic status and inhibit cancer progression. Further, the use of combinatorial approaches with epigenetic drugs and diets has brought promising outcomes in cancer prevention and therapy. In this article, we have summarized the epigenetic modulatory activities of epi-drugs, epi-diets, and their combination against various cancers. We have also compiled the preclinical and clinical status of these epigenetic modulators in different cancers.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
328
|
Wu J, Li YT, Tian XT, Liu YS, Wu ML, Li PN, Liu J. STAT3 signaling statuses determine the fate of resveratrol-treated anaplastic thyroid cancer cells. Cancer Biomark 2020; 27:461-469. [PMID: 31958078 DOI: 10.3233/cbm-191010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUNDS Anaplastic thyroid cancer/ATC is highly lethal malignancy without reliable chemotherapeutic drug. Resveratrol possesses anti-ATC activities but encounters resistance in some cases due to certain unknown reason(s). OBJECTIVE Because signal transducer and activator of transcription/STAT3 signaling is critical for ATC cell survival and the main molecular target of resveratrol, its roles in determining the fates of resveratrol-treated ATC cells were investigated here. METHODS Human THJ-11T, THJ-16 and THJ-21T ATC cell lines were treated by 100 μM resveratrol and their growth, statuses of STAT3 signaling and STAT3-related gene expression were examined. The relevance of STAT3 activation with resveratrol resistance was elucidated using STAT selective inhibitor AG490. Leukemia inhibitory factor/LIF expression and phosphorylated-STAT3/p-STAT3 nuclear translocation in ATC tissues were immunohistochemically analyzed. RESULTS Resveratrol inhibited proliferation, p-STAT3 nuclear translocation as well as LIF and STAT3 expression of THJ-16T and THJ-21T but not THJ-21T cells which showed LIF upregulation and more frequent p-STAT3 nuclear translocation. AG490 significantly prevent p-STAT3 nuclear translocation, and reversed the resveratrol tolerance of THJ-11T cells. Immonohistochemical staining revealed 14.3% (4/28) of LIF and 3.6% (1/28) of p-STAT3 detection in noncancerous ATC-surrounding tissues, which increased to 89.5% (17/19) and 52.6% (10/19) respectively among ATC specimens. The correlative analysis indicated the relevance of LIF expression and STAT3 activation (r= 0.825; P< 0.01). CONCLUSIONS The status of STAT3 activation and LIF expression are closely correlated with the therapeutic effect of resveratrol on ATCs. Frequent LIF upregulation and STAT3 activation are the unfavorable factors of ATCs and the potential targets of anti-ATC therapy.
Collapse
Affiliation(s)
- Jiao Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yi-Tian Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xiao-Ting Tian
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yu-Si Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Pei-Nan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
329
|
Pulmonary administration of resveratrol/hydroxypropyl-β-cyclodextrin inclusion complex: in vivo disposition and in vitro metabolic study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
330
|
Lagunas-Rangel FA, Bermúdez-Cruz RM. Natural Compounds That Target DNA Repair Pathways and Their Therapeutic Potential to Counteract Cancer Cells. Front Oncol 2020; 10:598174. [PMID: 33330091 PMCID: PMC7710985 DOI: 10.3389/fonc.2020.598174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance to current cancer treatments is an important problem that arises through various mechanisms, but one that stands out involves an overexpression of several factors associated with DNA repair. To counteract this type of resistance, different drugs have been developed to affect one or more DNA repair pathways, therefore, to test different compounds of natural origin that have been shown to induce cell death in cancer cells is paramount. Since natural compounds target components of the DNA repair pathways, they have been shown to promote cancer cells to be resensitized to current treatments. For this and other reasons, natural compounds have aroused great curiosity and several research projects are being developed around the world to establish combined treatments between them and radio or chemotherapy. In this work, we summarize the effects of different natural compounds on the DNA repair mechanisms of cancer cells and emphasize their possible application to re-sensitize these cells.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Rosa María Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
331
|
Gao Q, Yuan X, Yang J, Fu X. Dietary profile and phenolics consumption in university students from the Ningxia Hui Autonomous Region of China. BMC Nutr 2020; 6:58. [PMID: 33292628 PMCID: PMC7672828 DOI: 10.1186/s40795-020-00386-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 09/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Polyphenol intake assessment is a first step for evaluating relationships between polyphenols and health-related outcomes. Ningxia Hui Autonomous Region is one of the minority areas in China, which is primarily consists of arid, dry desert. Objectives This study was to make assessment about phenolics intake by university students from Ningxia of China. Methods This study employed data from a cross-sectional survey conducted from February to June 2018 in Ningxia Hui Autonomous Region of Northwest China. A total of 413 undergraduate students (143 boys, 270 girls), mean age 20.6 years, participated in the study. Food-frequency consumption and anthropometric measurements were included in the survey. According to phenol-explorer website, the amount of different classes of phenolic compounds were established. Statistics analyses were conducted with IBM SPSS 20.0. Results Profile of the student subjects showed low weight (19.1%), overweight (6.8%) and obesity (0.5%). The mean value about phenolics intake was 1378 mg/day. The main polyphenols consumed were flavonoids (58.7% of total polyphenols), followed by phenolic acids (38.1%). Vegetables, fruits and cereals products were the most consumed foods, while infusions and sugar products were lower. Fruit was the main food sources of total polyphenols, especially apple (22.95%), orange juice (19.03%) and apple juice (3.93%). Conclusions This is the first study on the polyphenol intake of university students in Ningxia of China. The present results will be benefit for further investigation on the role of polyphenol intake against disease occurrence for this adults group.
Collapse
Affiliation(s)
- Qinghan Gao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Xiao Yuan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianjun Yang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| |
Collapse
|
332
|
Meresman GF, Götte M, Laschke MW. Plants as source of new therapies for endometriosis: a review of preclinical and clinical studies. Hum Reprod Update 2020; 27:367-392. [PMID: 33124671 DOI: 10.1093/humupd/dmaa039] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Given the disadvantages and limitations of current endometriosis therapy, there is a progressive increase in studies focusing on plant-derived agents as a natural treatment option with the intention of achieving high efficiency, avoiding adverse effects and preserving the chance for successful pregnancy. The heterogeneity of these studies in terms of evaluated agents, applied approaches and outcomes illustrates the need for an up-to-date summary and critical view on this rapidly growing field in endometriosis research. OBJECTIVE AND RATIONALE This review provides a comprehensive overview of plant-derived agents and natural treatment strategies that are under preclinical or clinical investigation and critically evaluates their potential for future endometriosis therapy. SEARCH METHODS An English language PubMed literature search was performed using variations of the terms 'endometriosis', 'natural therapy', 'herb/herbal', 'plant', 'flavonoid', 'polyphenol', 'phytochemical', 'bioactive', 'Kampo' and 'Chinese medicine'. It included both animal and human studies. Moreover, the Clinicaltrials.gov database was searched with the term 'endometriosis' for clinical trials on plant-derived agents. No restriction was set for the publication date. OUTCOMES Natural therapies can be assigned to three categories: (i) herbal extracts, (ii) specific plant-derived bioactive compounds and (iii) Chinese herbal medicine (CHM). Agents of the first category have been shown to exert anti-proliferative, anti-inflammatory, anti-angiogenic and anti-oxidant effects on endometrial cells and endometriotic lesions. However, the existing evidence supporting their use in endometriosis therapy is quite limited. The most studied specific plant-derived bioactive compounds are resveratrol, epigallocatechin-3-gallate, curcumin, puerarin, ginsenosides, xanthohumol, 4-hydroxybenzyl alcohol, quercetin, apigenin, carnosic acid, rosmarinic acid, wogonin, baicalein, parthenolide, andrographolide and cannabinoids, with solid evidence about their inhibitory activity in experimental endometriosis models. Their mechanisms of action include pleiotropic effects on known signalling effectors: oestrogen receptor-α, cyclooxygenase-2, interleukin-1 and -6, tumour necrosis factor-α, intercellular adhesion molecule-1, vascular endothelial growth factor, nuclear factor-kappa B, matrix metalloproteinases as well as reactive oxygen species (ROS) and apoptosis-related proteins. Numerous studies suggest that treatment with CHM is a good choice for endometriosis management. Even under clinical conditions, this approach has already been shown to decrease the size of endometriotic lesions, alleviate chronic pelvic pain and reduce postoperative recurrence rates. WIDER IMPLICATIONS The necessity to manage endometriosis as a chronic disease highlights the importance of identifying novel and affordable long-term safety therapeutics. For this purpose, natural plant-derived agents represent promising candidates. Many of these agents exhibit a pleiotropic action profile, which simultaneously inhibits fundamental processes in the pathogenesis of endometriosis, such as proliferation, inflammation, ROS formation and angiogenesis. Hence, their inclusion into multimodal treatment concepts may essentially contribute to increase the therapeutic efficiency and reduce the side effects of future endometriosis therapy.
Collapse
Affiliation(s)
- Gabriela F Meresman
- Institute of Biology and Experimental Medicine (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
333
|
Association between Polyphenol Intake and Gastric Cancer Risk by Anatomic and Histologic Subtypes: MCC-Spain. Nutrients 2020; 12:nu12113281. [PMID: 33114671 PMCID: PMC7692577 DOI: 10.3390/nu12113281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
Several anticancer properties have been largely attributed to phenolics in in vivo and in vitro studies, but epidemiologic evidence is still scarce. Furthermore, some classes have not been studied in relation to gastric cancer (GC). The aim of this study was to assess the relationship between the intake of phenolic acids, stilbenes, and other phenolics and the risk of developing GC and its anatomical and histological subtypes. We used data from a multi-case-control study (MCC-Spain) obtained from different regions of Spain. We included 2700 controls and 329 GC cases. Odds ratios (ORs) were calculated using mixed effects logistic regression considering quartiles of phenolic intake. Our results showed an inverse association between stilbene and lignan intake and GC risk (ORQ4 vs. Q1 = 0.47; 95% CI: 0.32–0.69 and ORQ4 vs. Q1 = 0.53; 95% CI: 0.36–0.77, respectively). We found no overall association between total phenolic acid and other polyphenol class intake and GC risk. However, hydroxybenzaldehydes (ORQ4 vs. Q1 = 0.41; 95% CI: 0.28–0.61), hydroxycoumarins (ORQ4 vs. Q1 = 0.49; 95% CI: 0.34–0.71), and tyrosols (ORQ4 vs. Q1 = 0.56; 95% CI: 0.39–0.80) were inversely associated with GC risk. No differences were found in the analysis by anatomical or histological subtypes. In conclusion, a diet high in stilbenes, lignans, hydroxybenzaldehydes, hydroxycoumarins, and tyrosols was associated with a lower GC risk. Further prospective studies are needed to confirm our results.
Collapse
|
334
|
Evaluation of Toxic Effects of Novel Platinum (IV) Complexes in Female Rat Liver: Potential Protective Role of Resveratrol. Cell Biochem Biophys 2020; 79:141-152. [PMID: 33094405 DOI: 10.1007/s12013-020-00953-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
The use of cisplatin in chemotherapy may provoke a deteriorating impact in many vital organs, suggesting the need for more selective derivatives and effective protective cotreatments. This study assesses the effects of three novel Pt(IV) complexes containing ethyl-, propyl- and butyl-esters of the ethylenediamine-N, N'-di-S, S- (2,2'-dibenzyl) acetic acid on liver injury markers, redox parameters, and cell morphology of female rat liver tissue in comparison to cisplatin. In addition, the study evaluates the possible protective effects of resveratrol as well. The rats were divided into ten groups and were administered intraperitoneally with a single dose of cisplatin (7.5 mg/kg) or Pt(IV) complexes (10 mg/kg) and/or resveratrol (25 mg/kg). All treatments caused changes in body weight, food intake, and liver/bw ratio. Acute treatment with novel complexes decreased the levels of TB and TP while elevated the activity of ALT, AST, GGT, ALP which subsequently indicated on the liver damage. All three complexes significantly reduced the levels of LPO, O2.-, NO2- and activity of CAT, while increasing the activity of SOD, GSH-Px, GR, GST, and level of GSH, implying that these compounds could provoke redox balance disruption in liver cells. Moreover, according to the histopathological observations, the novel Pt(IV) complexes exerted stronger hepatotoxicity than cisplatin. Possible protective effects of resveratrol were not detected and even combined with examined compounds it abolished the activity of the antioxidative system of the liver cells causing more intense toxicity. Further investigation is required to elucidate the effects of Pt-based drugs and resveratrol in the estradiol-rich environment of female rats as well their influence on male rats' tissues.
Collapse
|
335
|
Sun X, Xu Q, Zeng L, Xie L, Zhao Q, Xu H, Wang X, Jiang N, Fu P, Sang M. Resveratrol suppresses the growth and metastatic potential of cervical cancer by inhibiting STAT3 Tyr705 phosphorylation. Cancer Med 2020; 9:8685-8700. [PMID: 33040485 PMCID: PMC7666735 DOI: 10.1002/cam4.3510] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/17/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Aberrant signal transducer and activator of transcription 3 (STAT3) signaling promotes the initiation and progression of cancer in humans by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. The role of resveratrol(RES)in inhibiting the STAT3 signaling pathway in vivo, particularly in cervical cancer is still unknown. This study aims to investigate the role of STAT3 and its phosphorylation in RES‐mediated suppression of cervical cancer. The effects of RES on cervical cancer were determined by examining tumor tissues, their histological changes, and the volume and weight of tumor tissues grown from HeLa cells injected in female athymic BALB/C nude mice. The structure and target interaction of RES were virtually screened using the molecular docking program Autodock Vina. The status of phosphorylated STAT3, protein levels of epithelial‐mesenchymal transition molecular markers and extracellular matrix degradation enzymes were determined through Western blot. We demonstrated that RES could suppress the proliferation and metastatic potential of cervical cancer cells by inactivating phosphorylation of STAT3 at Tyr705 but not Ser727. This effect was intensified by inhibition of the STAT3 signal pathway.
Collapse
Affiliation(s)
- Xiaodong Sun
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Qianqian Xu
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Lian Zeng
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Lixia Xie
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Qiang Zhao
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Hongxia Xu
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Xuanbin Wang
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Nan Jiang
- Hubei Province Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Pan Fu
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Ming Sang
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
336
|
Xiao D, Dong S, Yang S, Liu Z. CKS2 and RMI2 are two prognostic biomarkers of lung adenocarcinoma. PeerJ 2020; 8:e10126. [PMID: 33083148 PMCID: PMC7547618 DOI: 10.7717/peerj.10126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Background Lung adenocarcinoma (ACA) is the most common subtype of non-small-cell lung cancer. About 70%–80% patients are diagnosed at an advanced stage; therefore, the survival rate is poor. It is urgent to discover accurate markers that can differentiate the late stages of lung ACA from the early stages. With the development of biochips, researchers are able to efficiently screen large amounts of biological analytes for multiple purposes. Methods Our team downloaded GSE75037 and GSE32863 from the Gene Expression Omnibus (GEO) database. Next, we utilized GEO’s online tool, GEO2R, to analyze the differentially expressed genes (DEGs) between stage I and stage II–IV lung ACA. The using the Cytoscape software was used to analyze the DEGs and the protein-protein interaction (PPI) network was further constructed. The function of the DEGs were further analyzed by cBioPortal and Gene Expression Profiling Interactive Analysis (GEPIA) online tools. We validated these results in 72 pairs human samples. Results We identified 109 co-DEGs, most of which were involved in either proliferation, S phase of mitotic cell cycle, regulation of exit from mitosis, DNA replication initiation, DNA replication, and chromosome segregation. Utilizing cBioPortal and University of California Santa Cruz databases, we further confirmed 35 hub genes. Two of these genes, encoding CDC28 protein kinase regulatory subunit 2 (CKS2) and RecQ-mediated genome instability 2 (RMI2), were upregulated in lung ACA compared with adjacent normal tissues. The Kaplan–Meier curves revealed upregulation of CKS2 and RMI2 are associated with worse survival. Using CMap analysis, we discovered 10 small molecular compounds that reversed the altered DEGs, the top five are phenoxybenzamine, adiphenine, resveratrol, and trifluoperazine. We also evaluated 72 pairs resected samples, results revealed that upregulation of CKS2 and RMI2 in lung ACA were associated with larger tumor size. Our results allow the deeper recognizing of the mechanisms of the progression of lung ACA, and may indicate potential therapeutic strategies for the therapy of lung ACA.
Collapse
Affiliation(s)
- Dayong Xiao
- Department of Thoracic Surgery, The People's Hospital of Wanning, Wanning, Hainan, China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shize Yang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhenghua Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
337
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
338
|
The chemosensitizer ferulic acid enhances epirubicin-induced apoptosis in MDA-MB-231 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
339
|
Huang H, Liao D, Zhou G, Zhu Z, Cui Y, Pu R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153230. [PMID: 32682225 DOI: 10.1016/j.phymed.2020.153230] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rotavirus (RV) is the primary causative agent for viral gastroenteritis among infants and young children worldwide. Currently, no clinically approved and effective antiviral drug for the treatment of RV infection is available. PURPOSE We investigated the potential anti-RV activity of resveratrol and underlying mechanisms by which resveratrol acted against RV. METHODS The anti-RV activity of resveratrol in vitro was evaluated using plaque reduction assays. The effects of resveratrol on yield of virion progeny, viral polyprotein expression and genomic RNA synthesis were respectively investigated using enzyme-linked immunosorbent assays, western blotting and qRT-PCR assays. Further, we also measured the antiviral effect of resveratrol by evaluation of antigen clearance and assessment of changes in proinflammatory cytokines/chemokines in RV-infected neonatal mouse model. RESULTS Our results indicated that 20 μM of resveratrol significantly inhibited RV replication in Caco-2 cell line by suppressing RV RNA synthesis, protein expression, viroplasm plaque formation, progeny virion production, and RV-induced cytopathy independent of the different strains and cell lines of RV that we used. Analysis of the effect of time post-addition of resveratrol indicated that its application inhibited early processes in the RV replication cycle. Further study of the underlying mechanism of anti-RV activity indicated that resveratrol inhibited RV replication by suppressing expression of heat-shock protein 90 (HSP90) mRNA and protein, and that the effect occurred in a dose-dependent manner. Overexpression of HSP90 was found to have attenuated the inhibitory effect of resveratrol on RV replication. Interestingly, the application of resveratrol were found to down-regulate the level of inhibition of RV-mediated MEK1/2 and ERK phosphorylation. Using a RV-infected suckling mice model, we found that application of resveratrol significantly lessened the severity of diarrhea, decreased viral titers, and relieved associated symptoms. Levels of mRNA expression of interleukin-2, interleukin-10, tumor necrosis factor-α, interferon-γ, macrophage inflammatory protein 1, and monocyte chemotactic protein-1 were all found to have been sharply reduced in intestinal tissue from mice which had been treated with resveratrol (10 or 20 mg/kg) after RV infection (p < 0.05). CONCLUSION These findings implied that resveratrol exhibits antiviral activity and could be a promising treatment for rotavirus infection.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Clinical Pharmacy, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Central Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Dan Liao
- Department of Gynaecology, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- Department of Rehabilitation medicine, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Zhu Zhu
- Sino-American Cancer Research Institute, Guangdong Medical University, Dongguan, Guangdong, China; Scientific Research Platform, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- Central Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Department of Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Rong Pu
- Department of Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China.
| |
Collapse
|
340
|
Yang C, Zhang W, Dong X, Fu C, Yuan J, Xu M, Liang Z, Qiu C, Xu C. A natural product solution to aging and aging-associated diseases. Pharmacol Ther 2020; 216:107673. [PMID: 32926934 DOI: 10.1016/j.pharmthera.2020.107673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
Aging is a natural biological progress accompanied by the gradual decline in physiological functions, manifested by its close association with an increased incidence of human diseases and higher vulnerability to death. Those diseases include neurological disorders, cardiovascular diseases, diabetes, and cancer, many of which are currently without effective cures. Even though aging is inevitable, there are still interventions that can be developed to prevent/delay the onset and progression of those aging-associated diseases and extend healthspan and/or lifespan. Here, we review decades of research that reveals the molecular pathways underlying aging and forms the biochemical basis for anti-aging drug development. Importantly, due to the vast chemical space of natural products and the rich history of herb medicines in treating human diseases documented in different cultures, natural products have played essential roles in aging research. Using several of the most promising natural products and their derivatives as examples, we discuss how natural products serve as an inspiration resource that helped the identification of key components/pathways underlying aging, their mechanisms of action inside the cell, and the functional scaffolds or targeting mechanisms that can be learned from natural products for drug engineering and optimization. We argue that natural products might eventually provide a solution to aging and aging-associated diseases.
Collapse
Affiliation(s)
- Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Wei Zhang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Xiaoduo Dong
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Chunjin Fu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jimin Yuan
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Menglong Xu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Chengchao Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
341
|
Friedman M, Tam CC, Cheng LW, Land KM. Anti-trichomonad activities of different compounds from foods, marine products, and medicinal plants: a review. BMC Complement Med Ther 2020; 20:271. [PMID: 32907567 PMCID: PMC7479404 DOI: 10.1186/s12906-020-03061-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Human trichomoniasis, caused by the pathogenic parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually transmitted disease that contributes to reproductive morbidity in affected women and possibly to prostate cancer in men. Tritrichomonas foetus strains cause the disease trichomoniasis in farm animals (cattle, bulls, pigs) and diarrhea in domestic animals (cats and dogs). Because some T. vaginalis strains have become resistant to the widely used drug metronidazole, there is a need to develop alternative treatments, based on safe natural products that have the potential to replace and/or enhance the activity of lower doses of metronidazole. To help meet this need, this overview collates and interprets worldwide reported studies on the efficacy of structurally different classes of food, marine, and medicinal plant extracts and some of their bioactive pure compounds against T. vaginalis and T. foetus in vitro and in infected mice and women. Active food extracts include potato peels and their glycoalkaloids α-chaconine and α-solanine, caffeic and chlorogenic acids, and quercetin; the tomato glycoalkaloid α-tomatine; theaflavin-rich black tea extracts and bioactive theaflavins; plant essential oils and their compounds (+)-α-bisabolol and eugenol; the grape skin compound resveratrol; the kidney bean lectin, marine extracts from algae, seaweeds, and fungi and compounds that are derived from fungi; medicinal extracts and about 30 isolated pure compounds. Also covered are the inactivation of drug-resistant T. vaginalis and T. foetus strains by sensitized light; anti-trichomonad effects in mice and women; beneficial effects of probiotics in women; and mechanisms that govern cell death. The summarized findings will hopefully stimulate additional research, including molecular-mechanism-guided inactivations and human clinical studies, that will help ameliorate adverse effects of pathogenic protozoa.
Collapse
Affiliation(s)
- Mendel Friedman
- United States Department of Agriculture, Healthy Processed Foods Research Unit, Agricultural Research Service, Albany, CA, 94710, USA.
| | - Christina C Tam
- United States Department of Agriculture, Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, Albany, California, 94710, USA
| | - Luisa W Cheng
- United States Department of Agriculture, Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, Albany, California, 94710, USA
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
342
|
Riccio BVF, Spósito L, Carvalho GC, Ferrari PC, Chorilli M. Resveratrol isoforms and conjugates: A review from biosynthesis in plants to elimination from the human body. Arch Pharm (Weinheim) 2020; 353:e2000146. [PMID: 32886393 DOI: 10.1002/ardp.202000146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
The natural isomers of resveratrol, cis- and trans-resveratrol, are natural phenolic substances synthetized via the shikimate pathway and found in many sources, including grapes, peanuts, blackberries, pistachios, cacao, cranberries, and jackfruits. They have functional and pharmacological properties such as anticarcinogenic, antidiabetic, anti-inflammatory, and cardioprotective activities. The aim of this article is to review the data published on resveratrol and its isomers, and their biosynthesis in plants, food sources, health and toxic effects, and the excretion of their metabolites. Due to its contribution to the promotion of human health, it is convenient to gather more knowledge about its functional properties, food sources, and the interactions with the human body during the processes of eating, digestion, absorption, biotransformation, and excretion, to combine this information to improve the understanding of these substances.
Collapse
Affiliation(s)
- Bruno V F Riccio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Larissa Spósito
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela C Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Priscileila C Ferrari
- Department of Pharmaceutical Sciences, Ponta Grossa State University (UEPG), Ponta Grossa, Paraná, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
343
|
García-Martínez DJ, Calzada Funes J, Martín Saborido C, Santos C. Grape Polyphenols to Arrest in Vitro Proliferation of Human Leukemia Cells: A Systematic Review and Meta-analysis. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1810700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Javier Calzada Funes
- Instituto De Nanociencia Y Materiales De Aragón (INMA), CSIC-Universidad De Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Universidad De Zaragoza, Zaragoza, Spain
| | - Carlos Martín Saborido
- ERN-Transplant Child, Hospital La Paz Institute for Health Research (Idipaz), Madrid, Spain
| | - Cruz Santos
- Faculty of Experimental Sciences, Universidad Francisco De Vitoria, Madrid, Spain
| |
Collapse
|
344
|
Song JY, Shen TC, Hou YC, Chang JF, Lu CL, Liu WC, Chen PJ, Chen BH, Zheng CM, Lu KC. Influence of Resveratrol on the Cardiovascular Health Effects of Chronic Kidney Disease. Int J Mol Sci 2020; 21:E6294. [PMID: 32878067 PMCID: PMC7504483 DOI: 10.3390/ijms21176294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is closely related to chronic kidney disease (CKD), and patients with CKD have a high risk of CVD-related mortality. Traditional CVD risk factors cannot account for the higher cardiovascular risk of patients with CKD, and standard CVD interventions cannot reduce the mortality rates among patients with CKD. Nontraditional factors related to mineral and vitamin-D metabolic disorders provide some explanation for the increased CVD risk. Non-dialyzable toxins, indoxyl sulfate (IS) and p-cresol sulfate (PCS)-produced in the liver by colonic microorganisms-cause kidney and vascular dysfunction. Plasma trimethylamine-N-oxide (TMAO)-a gut microbe-dependent metabolite of dietary L-carnitine and choline-is elevated in CKD and related to vascular disease, resulting in poorer long-term survival. Therefore, the modulation of colonic flora can improve prospects for patients with CKD. Managing metabolic syndrome, anemia, and abnormal mineral metabolism is recommended for the prevention of CVD in patients with CKD. Considering nontraditional risk factors, the use of resveratrol (RSV), a nutraceutical, can be helpful for patients with CVD and CKD. This paper discusses the beneficial effects of RSV on biologic, pathophysiological and clinical responses, including improvements in intestinal epithelial integrity, modulation of the intestinal microbiota and reduction in hepatic synthesis of IS, PCS and TMAO in patients with CVD and CKD.
Collapse
Affiliation(s)
- Jenn-Yeu Song
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (J.-Y.S.); (T.-C.S.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ta-Chung Shen
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (J.-Y.S.); (T.-C.S.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 234, Taiwan;
| | - Jia-Feng Chang
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan;
| | - Po-Jui Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (P.-J.C.); (B.-H.C.)
| | - Bo-Hau Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (P.-J.C.); (B.-H.C.)
| | - Cai-Mei Zheng
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| |
Collapse
|
345
|
Olcum M, Tastan B, Ercan I, Eltutan IB, Genc S. Inhibitory effects of phytochemicals on NLRP3 inflammasome activation: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 75:153238. [PMID: 32507349 DOI: 10.1016/j.phymed.2020.153238] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The NLRP3 inflammasome formation and following cytokine secretion is a crucial step in innate immune responses. Internal and external factors may trigger inflammasome activation and result in inflammatory cytokine secretion. Inflammasome formation and activity play critical roles in several disease pathologies such as cardiovascular, metabolic, renal, digestive, and CNS diseases. Underlying pathways are not yet clear, but phytochemicals as alternative therapies have been extensively used for suppression of inflammatory responses. PURPOSE In this review, we aimed to summarize in vivo and in vitro effects on NLRP3 inflammasome activation of selected phytochemicals. METHOD Three phytochemicals; Sulforaphane, Curcumin, and Resveratrol were selected, and studies were reviewed to clarify their intracellular signaling mechanism in NLRP3 inflammasome activity. PubMed and Scopus databases are used for the search. For sulforaphane, 8 articles, for curcumin, 25 articles, and for resveratrol, 41 articles were included in the review. CONCLUSION In vitro and in vivo studies pointed out that the selected phytochemicals have inhibitory properties on NLRP3 inflammasome activity. However, neither the mechanism is clear, nor the study designs and doses are standardized.
Collapse
Affiliation(s)
- Melis Olcum
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ilkcan Ercan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Irem B Eltutan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
346
|
Gupta R, Kumar A. Transfersomes: The Ultra-Deformable Carrier System for Non-Invasive Delivery of Drug. Curr Drug Deliv 2020; 18:408-420. [PMID: 32753015 DOI: 10.2174/1567201817666200804105416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 04/18/2020] [Indexed: 11/22/2022]
Abstract
Vesicular systems have many advantages like prolonging the existence of the drug in the systemic circulation, minimizing the undesirable side-effects and helping the active moieties to reach their target sites using the carriers. However, the main drawback related to transdermal delivery is to cross stratum corneum, which can be overcome by the utilization of novel carrier systems e.g., transfersomes, which are ultra-deformable carrier systems composed of phospholipid (phosphatidylcholine) and edge activators (surfactants). Edge activators are responsible for the flexibility of the bilayer membranes of transfersomes. Different edge activators used in transfersomes include tween, span, bile salts (sodium cholate and sodium deoxycholate) and dipotassium glycyrrhizinate. These activators decrease the interfacial tension, thereby, increasing the deformability of the carrier system. Transfersomes can encapsulate both hydrophilic and hydrophobic drugs into a vesicular structure, which consists of one or more concentric bilayers. Due to the elastic nature of transfersomes, they can easily cross the natural physiological barriers i.e., skin and deliver the drug to its active site. The main benefit of using transfersomes as a carrier is the delivery of macromolecules through the skin by non-invasive route thereby increasing the patient's compliance. The transfersomal formulations can be used in the treatment of ocular diseases, alopecia, vulvovaginal candidiasis, osteoporosis, atopic dermatitis, tumor, leishmaniasis. It is also used in the delivery of growth hormones, anaesthesia, insulin, proteins, and herbal drugs. This review also focuses on the patents and clinical studies for various transfersomal products.
Collapse
Affiliation(s)
- Ritika Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, 201310, India
| | - Amrish Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, 201310, India
| |
Collapse
|
347
|
Stable Isotope Tracing Metabolomics to Investigate the Metabolic Activity of Bioactive Compounds for Cancer Prevention and Treatment. Cancers (Basel) 2020; 12:cancers12082147. [PMID: 32756373 PMCID: PMC7463803 DOI: 10.3390/cancers12082147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
A major hallmark of cancer is the metabolic reprogramming of cancer cells to fuel tumor growth and proliferation. Various plant-derived bioactive compounds efficiently target the metabolic vulnerabilities of cancer cells and exhibit potential as emerging therapeutic agents. Due to their safety and common use as dietary components, they are also ideal for cancer prevention. However, to render their use as efficient as possible, the mechanism of action of these phytochemicals needs to be well characterized. Stable isotope tracing is an essential technology to study the molecular mechanisms by which nutraceuticals modulate and target cancer metabolism. The use of positionally labeled tracers as exogenous nutrients and the monitoring of their downstream metabolites labeling patterns enable the analysis of the specific metabolic pathway activity, via the relative production and consumption of the labeled metabolites. Although stable isotope tracing metabolomics is a powerful tool to investigate the molecular activity of bioactive compounds as well as to design synergistic nutraceutical combinations, this methodology is still underutilized. This review aims to investigate the research efforts and potentials surrounding the use of stable isotope tracing metabolomics to examine the metabolic alterations mediated by bioactive compounds in cancer.
Collapse
|
348
|
Huang J, Wen F, Huang W, Bai Y, Lu X, Shu P. Identification of hub genes and discovery of promising compounds in gastric cancer based on bioinformatics analysis. Biomark Med 2020; 14:1069-1084. [PMID: 32969243 DOI: 10.2217/bmm-2019-0608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To explore the mechanism of gastric carcinogenesis by mining potential hub genes and to search for promising small-molecular compounds for gastric cancer (GC). Materials & methods: The microarray datasets were downloaded from Gene Expression Omnibus database and the genes and compounds were analyzed by bioinformatics-related tools and software. Results: Six hub genes (MKI67, PLK1, COL1A1, TPX2, COL1A2 and SPP1) related to the prognosis of GC were confirmed to be upregulated in GC and their high expression was correlated with poor overall survival rate in GC patients. In addition, eight candidate compounds with potential anti-GC activity were identified, among which resveratrol was closely correlated with six hub genes. Conclusion: Six hub genes identified in the present study may contribute to a more comprehensive understanding of the mechanism of gastric carcinogenesis and the predicted potential of resveratrol may provide valuable clues for the future development of targeted anti-GC inhibitors.
Collapse
Affiliation(s)
- Jiani Huang
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- College of Traditional ChineseMedicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang Wen
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yingfeng Bai
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- College of Traditional ChineseMedicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaona Lu
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Peng Shu
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
349
|
Joshi T, Patel I, Kumar A, Donovan V, Levenson AS. Grape Powder Supplementation Attenuates Prostate Neoplasia Associated with Pten Haploinsufficiency in Mice Fed High-Fat Diet. Mol Nutr Food Res 2020; 64:e2000326. [PMID: 32618118 PMCID: PMC8103660 DOI: 10.1002/mnfr.202000326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Previous studies have identified potent anticancer activities of polyphenols in preventing prostate cancer. The aim of the current study is to evaluate the chemopreventive potential of grape powder (GP) supplemented diets in genetically predisposed and obesity-provoked prostate cancer. METHODS AND RESULTS Prostate-specific Pten heterozygous (Pten+/f ) transgenic mice are fed low- and high-fat diet (LFD and HFD, respectively) supplemented with 10% GP for 33 weeks, ad libitum. Prostate tissues are characterized using immunohistochemistry and western blots, and sera are analyzed by ELISA and qRT-PCR. Pten+/f mice fed LFD and HFD supplemented with 10% GP show favorable histopathology, significant reduction of the proliferative rate of prostate epithelial cells (Ki67), and rescue of PTEN expression. The most potent protective effect of GP supplementation is detected against HFD-induced increase in inflammation (IL-1β; TGF-β1), activation of cell survival pathways (Akt, AR), and angiogenesis (CD31) in Pten+/f mice. Moreover, GP supplementation reduces circulating levels of oncogenic microRNAs (miR-34a; miR-22) in Pten+/f mice. There are no significant changes in body weight and food intake in GP supplemented diet groups. CONCLUSIONS GP diet supplementation can be a beneficial chemopreventive strategy for obesity-related inflammation and prostate cancer progression. Monitoring serum miRNAs can facilitate the non-invasive evaluation of chemoprevention efficacy.
Collapse
Affiliation(s)
- Tanvi Joshi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Ishani Patel
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | | | - Anait S. Levenson
- School of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
350
|
Wang H, Jia R, Lv T, Wang M, He S, Zhang X. Resveratrol Suppresses Tumor Progression via Inhibiting STAT3/HIF-1α/VEGF Pathway in an Orthotopic Rat Model of Non-Small-Cell Lung Cancer (NSCLC). Onco Targets Ther 2020; 13:7057-7063. [PMID: 32801741 PMCID: PMC7382608 DOI: 10.2147/ott.s259016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The STAT3/HIF-1α/VEGF pathway is associated with the development and progress of various tumors including NSCLC. The aim of the present study was to investigate whether resveratrol (RES) could suppress NSCLC progression via inhibiting the expressions of STAT3, HIF-1α, and VEGF in a nude rat model. Methods Twenty-four nude rats were randomly divided into control, NSCLC, and NSCLC+RES groups. An orthotopic rat model of NSCLC was established. The animals in the NSCLC+RES group received the same operation as the NSCLC group and were intragastrically administered RES at 250 mg/kg/day for 12 weeks. Lung tissue samples were harvested for gross tumor burden measurement, histological examinations, RT-PCR, and Western blot assays. Results In the NSCLC+RES group, significant decreases in lung weight index, lung tumor burden, STAT3/HIF-1α/VEGF mRNA, and protein levels were observed when compared with the NSCLC group (all P<0.05). The structural integrity of the lung was less affected and the apoptotic index was significantly higher in the NSCLC+RES group, when compared to the NSCLC group (P<0.05). Conclusion RES suppresses NSCLC partly through inhibiting the expressions of STAT3, HIF-1α, and VEGF. The STAT3/HIF-1α/VEGF pathway might be a candidate drug target for developing new chemotherapy agents derived from RES for the treatment of NSCLC.
Collapse
Affiliation(s)
- Huixia Wang
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Ruzhen Jia
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Tianle Lv
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Mei Wang
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Shiwei He
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Xia Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Hanzhong City, Hanzhong, Shaanxi 723000, People's Republic of China
| |
Collapse
|