301
|
Inoue Y, Toga K, Sudo T, Tachibana K, Tochizawa S, Kimura Y, Yoshida Y, Hidaka H. Suppression of arterial intimal hyperplasia by cilostamide, a cyclic nucleotide phosphodiesterase 3 inhibitor, in a rat balloon double-injury model. Br J Pharmacol 2000; 130:231-41. [PMID: 10807659 PMCID: PMC1572059 DOI: 10.1038/sj.bjp.0703287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Revised: 02/04/2000] [Accepted: 02/08/2000] [Indexed: 11/09/2022] Open
Abstract
The effects of cilostamide, a cyclic nucleotide phosphodiesterase 3 (PDE3) selective inhibitor, on vascular intimal hyperplasia were evaluated using a single-balloon injury model and a double-injury model in which the rat common carotid artery was subjected to a second injury at a site injured 14 days previously. In the double-injury model, the second balloon injury caused more severe intimal hyperplasia (intima/media (IM) ratio, 1.88+/-0.10) than in the single-injury model (1.09+/-0.08). Histopathological study revealed that vascular smooth muscle cells (VSMC) were the predominant cell-type in the affected neointimal area. Oral administration of cilostamide for 2 weeks after the second injury suppressed intimal hyperplasia in the double-injury model (30 mg kg(-1) bid, 83% inhibition in terms of the IM ratio, P<0.05; 100 mg kg(-1) bid, 69% inhibition, P<0.05). Similar effects were also observed in the single-injury model with oral administration of cilostamide for 2 weeks (100 mg kg(-1) bid, 36% inhibition, P<0.01). Cilostamide inhibited DNA synthesis of cultured VSMC stimulated by foetal calf serum or different kinds of growth factors, but did not affect their migration stimulated by platelet-derived growth factor (PDGF)-BB. Cilostamide significantly increased the cyclic AMP concentration of VSMC dose-dependently. These results indicate that cilostamide suppresses intimal hyperplasia both in the single- and double-injury models of rat, presumably by inhibiting proliferation rather than migration of VSMC. It is suggested that PDE3 inhibitors might find application in preventing intimal hyperplasia following angioplasty such as percutaneous transluminal coronary angioplasty (PTCA) or stent.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Thrombosis and Vascular Research Laboratory, Otsuka Pharmaceutical Co., Ltd. 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Kazuyuki Toga
- Thrombosis and Vascular Research Laboratory, Otsuka Pharmaceutical Co., Ltd. 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Toshiki Sudo
- Thrombosis and Vascular Research Laboratory, Otsuka Pharmaceutical Co., Ltd. 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Kazue Tachibana
- Thrombosis and Vascular Research Laboratory, Otsuka Pharmaceutical Co., Ltd. 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Shirou Tochizawa
- Thrombosis and Vascular Research Laboratory, Otsuka Pharmaceutical Co., Ltd. 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Yukio Kimura
- Thrombosis and Vascular Research Laboratory, Otsuka Pharmaceutical Co., Ltd. 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Yoji Yoshida
- Department of Pathology, Yamanashi Medical University, Yamanashi, 409-3898, Japan
| | - Hiroyoshi Hidaka
- Department of Pharmacology, Nagoya University School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
302
|
Roberson MS, Ban M, Zhang T, Mulvaney JM. Role of the cyclic AMP response element binding complex and activation of mitogen-activated protein kinases in synergistic activation of the glycoprotein hormone alpha subunit gene by epidermal growth factor and forskolin. Mol Cell Biol 2000; 20:3331-44. [PMID: 10779323 PMCID: PMC85626 DOI: 10.1128/mcb.20.10.3331-3344.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of these studies was to elucidate a role for epidermal growth factor (EGF) signaling in the transcriptional regulation of the glycoprotein hormone alpha subunit gene, a subunit of chorionic gonadotropin. Studies examined the effects of EGF and the adenylate cyclase activator forskolin on the expression of a transfected alpha subunit reporter gene in a human choriocarcinoma cell line (JEG3). At maximal doses, administration of EGF resulted in a 50% increase in a subunit reporter activity; forskolin administration induced a fivefold activation; the combined actions of EGF and forskolin resulted in synergistic activation (greater than eightfold) of the alpha subunit reporter. Mutagenesis studies revealed that the cyclic AMP response elements (CRE) were required and sufficient to mediate EGF-forskolin-induced synergistic activation. The combined actions of EGF and forskolin resulted in potentiated activation of extracellular signal-regulated kinase (ERK) enzyme activity compared with EGF alone. Specific blockade of ERK activation was sufficient to block EGF-forskolin-induced synergistic activation of the alpha subunit reporter. Pretreatment of JEG3 cells with a p38 mitogen-activated protein kinase inhibitor did not influence activation of the alpha reporter. However, overexpression of c-Jun N-terminal kinase (JNK)-interacting protein 1 as a dominant interfering molecule abolished the synergistic effects of EGF and forskolin on the alpha subunit reporter. CRE binding studies suggested that the CRE complex consisted of CRE binding protein and EGF-ERK-dependent recruitment of c-Jun-c-Fos (AP-1) to the CRE. A dominant negative form of c-Fos (A-Fos) that specifically disrupts c-Jun-c-Fos DNA binding inhibited synergistic activation of the alpha subunit. Thus, synergistic activation of the alpha subunit gene induced by EGF-forskolin requires the ERK and JNK cascades and the recruitment of AP-1 to the CRE binding complex.
Collapse
Affiliation(s)
- M S Roberson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
303
|
Florio T, Thellung S, Arena S, Corsaro A, Bajetto A, Schettini G, Stork PJ. Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. JOURNAL OF PHYSIOLOGY, PARIS 2000; 94:239-50. [PMID: 11088001 DOI: 10.1016/s0928-4257(00)00214-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitogen activated protein (MAP) kinase cascade represents one of the major regulator of cell growth by hormones and growth factors. However, although the activation of this intracellular pathway has been often regarded as mediator of cell proliferation, in many cell types the increase in MAP kinase (also called extra-cellular signal regulated kinase: ERK) activity may result in cell growth arrest, depending on the length or the intensity of the stimulation. In this review we examine recent data concerning the effects of somatostatin on the MAP kinase cascade through one of its major receptor subtype, the somatostatin receptor 1 (SSTR1), stably expressed in CHO-K1 cells. Somatostatin inhibits the proliferative effects of basic FGF (bFGF) in CHO-SSTR1 cell line. However, in these cells, somatostatin robustly activates the MAP kinase and augments bFGF-induced stimulation of ERK. We show that the activation of ERK via SSTR1 is mediated by the betagamma subunit of a pertussis toxin-sensitive G-protein and requires both the small G protein Ras and the serine/threonine kinase Raf-1. Moreover the phosphatidyl inositol-3kinase and the cytosolic tyrosine kinase c-src participate in the signal transduction regulated by SSTRI to activate ERK, as well as it is involved the protein tyrosine phosphatase (PTP) SHP-2. Previous studies have suggested that somatostatin-stimulated PTP activity mediates the growth inhibitory actions of somatostatin, in CHO-SSTR1 cells. Thus, the activation of SHP-2 by SSTR1 may mediate the antiproliferative activity of somatostatin. SHP-2 may. in turn, regulate the activity of kinases upstream of ERK that require tyrosine dephosphorylation to be activated, such as c-src. Finally, the synergism between somatostatin and bFGF in the activation of ERK results in an increased expression of the cyclin-dependent kinase inhibitor p21cip/WAF1 as molecular effector of the antiproliferative activity of somatostatin.
Collapse
Affiliation(s)
- T Florio
- Pharmacology and Neuroscience, National Institute for Cancer Research (IST) and Advanced Biotechnology Center (CBA), Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
304
|
Izevbigie EB, Gutkind JS, Ray PE. Angiotensin II and basic fibroblast growth factor mitogenic pathways in human fetal mesangial cells. Pediatr Res 2000; 47:614-21. [PMID: 10813586 DOI: 10.1203/00006450-200005000-00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiotensin II (Ang II) and basic fibroblast growth factor (bFGF/FGF-2) play relevant roles in renal development. Since the signaling pathways modulating the mitogenic effects of Ang II and bFGF in human fetal mesangial cells (HFMc) are not clearly defined, we carried out experiments to determine whether they would exert their mitogenic effects by modulating the activity of the mitogen-activated protein kinases (MAPK) [extracellular signal-regulated kinase-2 (ERK-2)] and cAMP signaling pathways. In confluent HFMc, bFGF (20 ng/mL) induced a significant 4-fold increase in ERK-2 activity and [3H]-thymidine incorporation (6-fold). In contrast, under similar tissue culture conditions, Ang II (10(-6) M) induced a more modest increase in ERK-2 activity (2-fold) and [3H]-thymidine incorporation (35 +/- 4%). The mitogen-activated protein kinase kinase-1 (MEK-1) inhibitor PD098059 (25 microM) almost completely abolished the bFGF-induced proliferation in HFMc but did not significantly affect Ang II proliferative effects. In the presence of the cAMP elevating agent isoproterenol, Ang II and bFGF induced opposite changes in cAMP accumulation and cell growth. Isoproterenol inhibited the basal and bFGF-induced proliferation of HFMc through a MEK-1/2-independent pathway that included the accumulation of cAMP. In contrast, isoproterenol increased Ang II mitogenic effects in correlation with a reduction in cAMP accumulation. We conclude that Ang II and bFGF modulate the proliferation of HFMc through the stimulation of different MEK-1/2-dependent and independent signaling pathways. Activation of MEK-1/2 is required but not sufficient for mitogenesis in HFMc. The accumulation of cAMP in HFMc counteracts the mitogenic effects of bFGF by a MEK-1/2-independent pathway.
Collapse
Affiliation(s)
- E B Izevbigie
- Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010, USA
| | | | | |
Collapse
|
305
|
Kintscher U, Wakino S, Kim S, Jackson SM, Fleck E, Hsueh WA, Law RE. Doxazosin inhibits retinoblastoma protein phosphorylation and G(1)-->S transition in human coronary smooth muscle cells. Arterioscler Thromb Vasc Biol 2000; 20:1216-24. [PMID: 10807736 DOI: 10.1161/01.atv.20.5.1216] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have demonstrated that the alpha(1)-adrenergic receptor antagonist doxazosin (Dox) inhibits multiple mitogenic signaling pathways in human vascular smooth muscle cells. This broad antiproliferative activity of Dox occurs through a novel mechanism unrelated to its blocking the alpha(1)-adrenergic receptor. Flow cytometry demonstrated that Dox prevents mitogen-induced G(1)-->S progression of human coronary artery smooth muscle cells (CASMCs) in a dose-dependent manner, with a maximal reduction of S-phase transition by 88+/-10.5% in 20 ng/mL platelet-derived growth factor and 1 micromol/L insulin (P+I)-stimulated cells (P<0.01 for 10 micromol/L Dox versus P+I alone) and 52+/-18.7% for 10% FBS-induced mitogenesis (P<0.05 for 10 micromol/L Dox versus 10% FBS alone). Inhibition of G(1) exit by Dox was accompanied by a significant blockade of retinoblastoma protein (Rb) phosphorylation. Hypophosphorylated Rb sequesters the E2F transcription factor, leading to G(1) arrest. Adenoviral overexpression of E2F-1 stimulated quiescent CASMCs to progress through G(1) and enter the S phase. E2F-mediated G(1) exit was not affected by Dox, suggesting that it targets events upstream from Rb hyperphosphorylation. Downregulation of the cyclin-dependent kinase inhibitory protein p27 is important for maximal activation of G(1) cyclin/cyclin-dependent kinase holoenzymes to overcome the cell cycle inhibitory activity of Rb. In Western blot analysis, p27 levels decreased after mitogenic stimulation (after P+I, 43+/-1.8% of quiescent cells [P<0.01 versus quiescent cells]; after 10% FBS, 55+/-7.7% of quiescent cells [P<0. 05 versus quiescent cells]), whereas the addition of Dox (10 micromol/L) markedly attenuated its downregulation (after P+I, 90+/-8.3% of quiescent cells [P<0.05 versus P+I alone]; after 10% FBS, 78+/-8.3% of quiescent cells [P<0.05 versus 10% FBS alone]). Furthermore, Dox inhibited cyclin A expression, an E2F regulated gene that is essential for cell cycle progression into the S phase. The present study demonstrates that Dox inhibits CASMC proliferation by blocking cell cycle progression from the G(0)/G(1) phase to the S phase. This G(1)-->S blockade likely results from an inhibition of mitogen-induced Rb hyperphosphorylation through prevention of p27 downregulation.
Collapse
Affiliation(s)
- U Kintscher
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, School of Medicine, University of California, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
306
|
Abstract
Recent advances in the molecular biology has served to unveil the underlying genetic and epigenetic alterations in pituitary adenomas. Three nuclear transcriptional factors, AP-1, CREB, and Pit-1, which are targets of protein kinase C and A, appear to play critical roles in both neoplastic growth and hormone secretion in hormone-producing adenomas. The alteration of G proteins such as Gs and Gi2 is a direct cause of the activation of such transcriptional factors. Autocrine growth factor/cytokine loops also contribute to the augmented signal transductions. Bromocriptine and somatostatin analogs have effects to lower cellular cAMP level through inhibitory G proteins, although the mechanism leading to cellular apoptosis is unknown. On the other hand, most non-functioning adenomas may not have PKC- or PKA-mediated oncogenic mechanisms. Although the loss of Rb and p27Kip1 genes has been demonstrated as a cause of murine pituitary adenomas, the role of tumor suppressor genes for human pituitary adenomas remains elusive. However, potential candidates for the suppressor genes are now emerging. The recently cloned multiple endocrine neoplasia type I gene is one example. Alterations of c-myc/bcl-2, and ras, although rare, appear to be an important cause of the process by which adenoma cells acquire aggressive phenotypes. Further studies on the links between abnormal signal transductions and aberrant tumor suppressor genes will be needed to clarify the whole picture of pituitary oncogenesis.
Collapse
Affiliation(s)
- M Tada
- Division of Cell Biology, Cancer Institute, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|
307
|
|
308
|
Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, Rome LA, Sullivan LP, Grantham JJ. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 2000; 57:1460-71. [PMID: 10760082 DOI: 10.1046/j.1523-1755.2000.00991.x] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND : Cellular proliferation is a key factor in the enlargement of renal cysts in autosomal dominant polycystic kidney disease (ADPKD). We determined the extent to which adenosine 3':5'-cyclic monophosphate (cAMP) may regulate the in vitro proliferation of cyst epithelial cells derived from human ADPKD cysts. METHODS : Epithelial cells from cysts of individuals with ADPKD and from normal human kidney cortex (HKC) of individuals without ADPKD were cultured. The effects of agonists and inhibitors on the rate of cellular proliferation and the activation of extracellular signal-regulated kinase (ERK1/2) were determined. RESULTS : 8-Br-cAMP (100 micromol/L) stimulated the proliferation of cells from eight different ADPKD subjects to 99.0% above baseline; proliferation was inhibited by protein kinase A (PKA) antagonists H-89 (97%) and Rp-cAMP (90%). Forskolin (10 micromol/L), which activates adenylyl cyclase, increased proliferation 124%, and receptor-mediated agonists arginine vasopressin, desmopressin, secretin, vasoactive intestinal polypeptide, and prostaglandin E2 stimulated proliferation 54.2, 56.3, 46.7, 37.1, and 48.3%, respectively. The mitogen extracellular kinase (MEK) inhibitor PD98059 completely inhibited ADPKD cell proliferation in response to cAMP agonists, but genistein, a receptor tyrosine kinase inhibitor, did not block cAMP-dependent proliferation. cAMP agonists increased the activity of ERK above control levels within five minutes. In contrast to ADPKD, proliferation and ERK activity of cells derived from normal HKC were not stimulated by cAMP agonists, although electrogenic Cl- secretion was increased by these agonists in both ADPKD and HKC cell monolayers. CONCLUSIONS : We conclude that cAMP agonists stimulate the proliferation of ADPKD but not HKC epithelial cells through PKA activation of the ERK pathway at a locus distal to receptor tyrosine kinase. We suggest that the adenylyl cyclase signaling pathway may have a unique role in determining the rate of cyst enlargement in ADPKD through its actions to stimulate cellular proliferation and transepithelial solute and fluid secretion.
Collapse
Affiliation(s)
- T Yamaguchi
- Department of Medicine, Kansas University Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Lenz G, Gottfried C, Luo Z, Avruch J, Rodnight R, Nie WJ, Kang Y, Neary JT. P(2Y) purinoceptor subtypes recruit different mek activators in astrocytes. Br J Pharmacol 2000; 129:927-36. [PMID: 10696092 PMCID: PMC1571921 DOI: 10.1038/sj.bjp.0703138] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Revised: 12/03/1999] [Accepted: 12/07/1999] [Indexed: 11/09/2022] Open
Abstract
Extracellular ATP can function as a glial trophic factor as well as a neuronal transmitter. In astrocytes, mitogenic signalling by ATP is mediated by metabotropic P(2Y) receptors that are linked to the extracellular signal regulated protein kinase (Erk) cascade, but the types of P(2Y) receptors expressed in astrocytes have not been defined and it is not known whether all P(2Y) receptor subtypes are coupled to Erk by identical or distinct signalling pathways. We found that the P(2Y) receptor agonists ATP, ADP, UTP and 2-methylthioATP (2MeSATP) activated Erk and its upstream activator MAP/Erk kinase (Mek). cRaf-1, the first kinase in the Erk cascade, was activated by 2MeSATP, ADP and UTP but, surprisingly, cRaf-1 was not stimulated by ATP. Furthermore, ATP did not activate B-Raf, the major isoform of Raf in the brain, nor other Mek activators such as Mek kinase 1 (MekK1) and MekK2/3. Reverse transcriptase-polymerase chain reaction (RT - PCR) studies using primer pairs for cloned rat P(2Y) receptors revealed that rat cortical astrocytes express P(2Y(1)), a receptor subtype stimulated by ATP and ADP and their 2MeS analogues, as well as P(2Y(2)) and P(2Y(4)), subtypes in rats for which ATP and UTP are equipotent. Transcripts for P(2Y(6)), a pyrimidine-preferring receptor, were not detected. ATP did not increase cyclic AMP levels, suggesting that P(2Y(11)), an ATP-preferring receptor, is not expressed or is not linked to adenylyl cyclase in rat cortical astrocytes. These signal transduction and RT - PCR experiments reveal differences in the activation of cRaf-1 by P(2Y) receptor agonists that are inconsistent with properties of the P(2Y(1)), P(2Y(2)) and P(2Y(4)) receptors shown to be expressed in astrocytes, i.e. ATP=UTP; ATP=2MeSATP, ADP. This suggests that the properties of the native P(2Y) receptors coupled to the Erk cascade differ from the recombinant P(2Y) receptors or that astrocytes express novel purine-preferring and pyrimidine-preferring receptors coupled to the ERK cascade.
Collapse
Affiliation(s)
- Guido Lenz
- Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmem Gottfried
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Zhijun Luo
- Diabetes Unit Medical Services, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Joseph Avruch
- Diabetes Unit Medical Services, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Richard Rodnight
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wie-Jia Nie
- Research Service, Veterans Affairs Medical Center, Miami, Florida, U.S.A
| | - Yuan Kang
- Research Service, Veterans Affairs Medical Center, Miami, Florida, U.S.A
| | - Joseph T Neary
- Research Service, Veterans Affairs Medical Center, Miami, Florida, U.S.A
- Department of Pathology, University of Miami, School of Medicine, Miami, Florida, U.S.A
- Department of Biochemistry & Molecular Biology, University of Miami, School of Medicine, Miami, Florida, U.S.A
| |
Collapse
|
310
|
Fahsold R, Hoffmeyer S, Mischung C, Gille C, Ehlers C, Kücükceylan N, Abdel-Nour M, Gewies A, Peters H, Kaufmann D, Buske A, Tinschert S, Nürnberg P. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 2000; 66:790-818. [PMID: 10712197 PMCID: PMC1288164 DOI: 10.1086/302809] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Accepted: 10/14/1999] [Indexed: 11/03/2022] Open
Abstract
More than 500 unrelated patients with neurofibromatosis type 1 (NF1) were screened for mutations in the NF1 gene. For each patient, the whole coding sequence and all splice sites were studied for aberrations, either by the protein truncation test (PTT), temperature-gradient gel electrophoresis (TGGE) of genomic PCR products, or, most often, by direct genomic sequencing (DGS) of all individual exons. A total of 301 sequence variants, including 278 bona fide pathogenic mutations, were identified. As many as 216 or 183 of the genuine mutations, comprising 179 or 161 different ones, can be considered novel when compared to the recent findings of Upadhyaya and Cooper, or to the NNFF mutation database. Mutation-detection efficiencies of the various screening methods were similar: 47.1% for PTT, 53.7% for TGGE, and 54.9% for DGS. Some 224 mutations (80.2%) yielded directly or indirectly premature termination codons. These mutations showed even distribution over the whole gene from exon 1 to exon 47. Of all sequence variants determined in our study, <20% represent C-->T or G-->A transitions within a CpG dinucleotide, and only six different mutations also occur in NF1 pseudogenes, with five being typical C-->T transitions in a CpG. Thus, neither frequent deamination of 5-methylcytosines nor interchromosomal gene conversion may account for the high mutation rate of the NF1 gene. As opposed to the truncating mutations, the 28 (10.1%) missense or single-amino-acid-deletion mutations identified clustered in two distinct regions, the GAP-related domain (GRD) and an upstream gene segment comprising exons 11-17. The latter forms a so-called cysteine/serine-rich domain with three cysteine pairs suggestive of ATP binding, as well as three potential cAMP-dependent protein kinase (PKA) recognition sites obviously phosphorylated by PKA. Coincidence of mutated amino acids and those conserved between human and Drosophila strongly suggest significant functional relevance of this region, with major roles played by exons 12a and 15 and part of exon 16.
Collapse
Affiliation(s)
- Raimund Fahsold
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Sven Hoffmeyer
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Claudia Mischung
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Christoph Gille
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Christian Ehlers
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Nazan Kücükceylan
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Maher Abdel-Nour
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Andreas Gewies
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Hartmut Peters
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Dieter Kaufmann
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Annegret Buske
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Sigrid Tinschert
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Peter Nürnberg
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| |
Collapse
|
311
|
Brunetti A, Chiefari E, Filetti S, Russo D. The 3',5'-cyclic adenosine monophosphate response element binding protein (CREB) is functionally reduced in human toxic thyroid adenomas. Endocrinology 2000; 141:722-30. [PMID: 10650954 DOI: 10.1210/endo.141.2.7331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In human normal thyrocytes, the cAMP-responsive signaling pathway plays a central role in gene regulation, cell proliferation, and differentiation. Constitutive activation of the cAMP signal transduction system has been documented in thyroid autonomously hyperfunctioning adenomas in which activating mutations in either the TSH receptor gene or the Gsalpha protein gene (gsp oncogene) have been described. The molecular mechanism whereby cAMP induces thyrocyte proliferation is unknown, but recent evidence suggests that the transcription factor cAMP response element binding protein (CREB) may serve as an important biochemical intermediate in this proliferative response. Herein we have investigated the expression of CREB in normal and tumoral thyroid tissues from a series of ten unrelated patients with autonomously hyperfunctioning adenomas, previously screened for mutations in the TSH receptor and Gsalpha genes. In all tumors examined, the expression of the activated, phosphorylated form of CREB was markedly reduced compared with that of the corresponding paired normal thyroid tissue, and this reduction was independent of the presence of mutations in the TSH receptor gene and Gsalpha gene. Moreover, no correlation was observed in these tissues between CREB phosphorylation and either protein kinase A activity or protein phosphatase expression. Thus, these data suggest that in human hyperfunctioning thyroid adenomas, the PKA/CREB system does not play a role in cell proliferation.
Collapse
Affiliation(s)
- A Brunetti
- Cattedra di Endocrinologia, Dipartimento di Medicina Sperimentale e Clinica, Facolta di Medicina e Chirurgia, Universita degli Studi di Catanzaro, Italy
| | | | | | | |
Collapse
|
312
|
Lederer ED, Sohi SS, McLeish KR. Parathyroid hormone stimulates extracellular signal-regulated kinase (ERK) activity through two independent signal transduction pathways: role of ERK in sodium-phosphate cotransport. J Am Soc Nephrol 2000; 11:222-231. [PMID: 10665929 DOI: 10.1681/asn.v112222] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parathyroid hormone (PTH), a major physiologic regulator of proximal renal tubule cell sodium-phosphate cotransport, stimulates several signal transduction pathways including extracellular signal-regulated kinases (ERK). The physiologic role of PTH-stimulated ERK is unknown. The purpose of the present study was to identify signaling components involved in PTH-stimulated ERK activity and to determine the role of PTH-stimulated ERK activity in regulation of phosphate transport. PTH-stimulated ERK activity was measured in opossum kidney (OK) cell lysates as phosphorylation of myelin basic protein by an in vitro kinase assay. PTH stimulated a dose-dependent increase in ERK activity with a peak at 10(-7) M. The time course was biphasic with an early peak at 10 min and a later peak at 20 min. Pretreatment of OK cells with the nonreceptor tyrosine kinase inhibitors genistein and herbimycin A or with the phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY294002 blocked the early and late peaks of PTH-stimulated ERK activity. Pretreatment with the protein kinase C inhibitor calphostin C blocked only the later phase of PTH-stimulated ERK. To determine the role of ERK in regulation of phosphate transport, PTH inhibition of phosphate uptake and PTH regulation of sodium-phosphate cotransporter (NaPi-4) expression were measured in OK cells pretreated with the MEK inhibitor PD098059. PD098059 significantly attenuated PTH inhibition of phosphate uptake but did not prevent PTH downregulation of NaPi-4. It is concluded that PTH stimulates ERK through two signal transduction pathways: an early pathway dependent on tyrosine kinase and PI-3K and a late pathway dependent on protein kinase C. PTH-stimulated ERK regulates phosphate transport by a mechanism other than downregulation of NaPi-4 expression.
Collapse
Affiliation(s)
- Eleanor D Lederer
- Department of Medicine University of Louisville School of Medicine, Louisville, Kentucky
- Veterans Affairs Medical Center, Louisville, Kentucky
| | - Sameet S Sohi
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R McLeish
- Department of Medicine University of Louisville School of Medicine, Louisville, Kentucky
- Department of Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky
- Veterans Affairs Medical Center, Louisville, Kentucky
| |
Collapse
|
313
|
Rhoads JM, Argenzio RA, Chen W, Graves LM, Licato LL, Blikslager AT, Smith J, Gatzy J, Brenner DA. Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, Raf-independent mechanism. Gastroenterology 2000; 118:90-100. [PMID: 10611157 DOI: 10.1016/s0016-5085(00)70417-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Infectious diarrhea caused by viruses plus enterotoxigenic bacteria is often more severe than diarrhea induced by either pathogen alone. We postulated that the increased cell adenosine 3',5'-cyclic monophosphate (cAMP) concentration observed during infection by enterotoxigenic organisms retards the intestinal repair process by blocking activation of mitogen-activated protein kinases (MAPKs) in proliferating intestinal cells. METHODS We evaluated the effects of glutamine on MAPK activity, thymidine incorporation, and cell number in glutamine-starved and -sufficient rat intestinal crypt cells (IEC-6). RESULTS In glutamine-starved cells, 10 mmol/L glutamine in the absence of serum stimulated [(3)H]thymidine incorporation 8-fold. This effect was inhibited by 60% with 8-(4-chlorophenylthio) (8-CPT)-cAMP (100 micromol/L) + isobutyl methylxanthine (100 micromol/L). In cells not starved of glutamine, glutamine stimulated thymidine incorporation by 3-fold, and 8-CPT-cAMP completely blocked the mitogenic effect. Inhibition of proliferation by cAMP persisted for at least 68 hours after cAMP removal. In vitro kinase assays showed that glutamine signaling requires an intact ERK (extracellular signal-related kinase) pathway in unstarved cells. In starved cells, at least one other pathway (JNK) was activated by glutamine, and the mitogenic inhibition by 8-CPT-cAMP was incomplete. Other intestinal fuels (glucose and acetate) were not mitogenic. CONCLUSIONS Increased levels of intracellular cAMP inhibit ERKs but only partially reduce glutamine-stimulated proliferation in enterocytes adapted to low glutamine.
Collapse
Affiliation(s)
- J M Rhoads
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC27599-7220, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Reeves HL, Thompson MG, Dack CL, Burt AD, Day CP. The role of phosphatidic acid in platelet-derived growth factor-induced proliferation of rat hepatic stellate cells. Hepatology 2000; 31:95-100. [PMID: 10613733 DOI: 10.1002/hep.510310116] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platelet-derived growth factor (PDGF) is the most potent mitogen for hepatic stellate cells (HSCs) in vitro. The aim of this study was to investigate the role of the lipid-derived second messenger phosphatidic acid (PA) in mediating this effect and, in particular, to determine its interaction with the extracellular signal-regulated kinase (ERK) cascade. HSCs were isolated from rat livers. PA production was determined by lipid extraction and thin-layer chromatography (TLC) after prelabeling cells with [(3)H]myristate. ERK activity was measured by an in vitro kinase assay after immunoprecipitation. Mitogenic concentrations of PDGF, but not those of the relatively less potent mitogen, transforming growth factor alpha (TGF-alpha), stimulated the sustained production of PA from HSCs. Exogenous PA stimulated HSC proliferation and a sustained increase in ERK activity, and proliferation was completely blocked by the inhibition of ERK activation with PD98059. The stimulation of ERK by PDGF was of a similar magnitude but more sustained than that caused by TGF-alpha. These results suggest that the potent mitogenic effect of PDGF in HSCs may be caused, in part, by the generation of PA and subsequently by a more sustained activation of ERK than occurs with less potent mitogens that do not induce the production of this lipid second messenger.
Collapse
Affiliation(s)
- H L Reeves
- Center for Liver Research, University of Newcastle-upon-Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
315
|
Distinct Roles of JNKs/p38 MAP Kinase and ERKs in Apoptosis and Survival of HCD-57 Cells Induced by Withdrawal or Addition of Erythropoietin. Blood 1999. [DOI: 10.1182/blood.v94.12.4067.424k12_4067_4076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO), a major regulator of erythroid progenitor cells, is essential for the survival, proliferation, and differentiation of immature erythroid cells. To gain insight into the molecular mechanism by which EPO functions, we analyzed the activation of Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs) in HCD-57 cells, a murine erythroid progenitor cell line that requires EPO for survival and proliferation. Withdrawal of EPO from the cell culture medium resulted in sustained activation of JNKs plus p38 MAP kinase, and inactivation of ERKs, preceding apoptosis of the cells. Addition of EPO to the EPO-deprived cells caused activation of ERKs accompanied by inactivation of JNKs and p38 MAP kinase and rescued the cells from apoptosis. Phorbol 12-myristate 13-acetate, which activated ERKs by a different mechanism, also suppressed the activation of JNKs and significantly retarded apoptosis of the cells caused by withdrawal of EPO. Furthermore, MEK inhibitor PD98059, which inhibited activation of ERKs, caused activation of JNKs, whereas suppression of JNK expression by antisense oligonucleotides and inhibition of p38 MAP kinase by SB203580 caused attenuation of the apoptosis that occurs upon withdrawal of EPO. Finally, the activation of JNKs and p38 MAP kinase and concurrent inactivation of ERKs upon withdrawal of EPO were also observed in primary human erythroid colony-forming cells. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to apoptosis and EPO functions by controlling the dynamic balance between ERKs and JNKs.
Collapse
|
316
|
Distinct Roles of JNKs/p38 MAP Kinase and ERKs in Apoptosis and Survival of HCD-57 Cells Induced by Withdrawal or Addition of Erythropoietin. Blood 1999. [DOI: 10.1182/blood.v94.12.4067] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractErythropoietin (EPO), a major regulator of erythroid progenitor cells, is essential for the survival, proliferation, and differentiation of immature erythroid cells. To gain insight into the molecular mechanism by which EPO functions, we analyzed the activation of Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs) in HCD-57 cells, a murine erythroid progenitor cell line that requires EPO for survival and proliferation. Withdrawal of EPO from the cell culture medium resulted in sustained activation of JNKs plus p38 MAP kinase, and inactivation of ERKs, preceding apoptosis of the cells. Addition of EPO to the EPO-deprived cells caused activation of ERKs accompanied by inactivation of JNKs and p38 MAP kinase and rescued the cells from apoptosis. Phorbol 12-myristate 13-acetate, which activated ERKs by a different mechanism, also suppressed the activation of JNKs and significantly retarded apoptosis of the cells caused by withdrawal of EPO. Furthermore, MEK inhibitor PD98059, which inhibited activation of ERKs, caused activation of JNKs, whereas suppression of JNK expression by antisense oligonucleotides and inhibition of p38 MAP kinase by SB203580 caused attenuation of the apoptosis that occurs upon withdrawal of EPO. Finally, the activation of JNKs and p38 MAP kinase and concurrent inactivation of ERKs upon withdrawal of EPO were also observed in primary human erythroid colony-forming cells. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to apoptosis and EPO functions by controlling the dynamic balance between ERKs and JNKs.
Collapse
|
317
|
Blanco-Aparicio C, Torres J, Pulido R. A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J Cell Biol 1999; 147:1129-36. [PMID: 10601328 PMCID: PMC2168101 DOI: 10.1083/jcb.147.6.1129] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser(231) residue, located within the KIM. Upon phosphorylation of Ser(231), PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal-regulated kinase (ERK)1/2 and p38alpha were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Calpha catalytic subunit of PKA, inhibited the cytoplasmic retention of ERK2 and p38alpha by wild-type PTP-SL, but not by a PTP-SL S231A mutant. These findings support the existence of a novel mechanism by which PKA may regulate the activation and translocation to the nucleus of MAP kinases.
Collapse
Affiliation(s)
| | - Josema Torres
- Instituto de Investigaciones Citológicas, 46010 Valencia, Spain
| | - Rafael Pulido
- Instituto de Investigaciones Citológicas, 46010 Valencia, Spain
| |
Collapse
|
318
|
Harada Y, Miyatake S, Arai K, Watanabe S. Cyclic AMP inhibits the activity of c-Jun N-terminal kinase (JNKp46) but not JNKp55 and ERK2 in human helper T lymphocytes. Biochem Biophys Res Commun 1999; 266:129-34. [PMID: 10581177 DOI: 10.1006/bbrc.1999.1783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyclic AMP (cAMP) elevating agent PGE(2) and dibutyryl cyclic AMP (dBcAMP) affect T cell functions. Using human helper T cell clones, we examined effects of cAMP on c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), which are assumed to play a role in T cell regulation. When we analyzed the effects of dBcAMP on activities of mitogen-activated protein kinase (MAPK) family members ERK2, JNKp55 and JNKp46, dBcAMP did not inhibit the activities of ERK2 and JNKp55 induced by PMA/A23187 stimulation. JNKp46 activity was, however, inhibited by dBcAMP. JNK phosphorylates c-Jun on Ser-63 and Ser-73, the result being induction of its transcriptional activity. We found that dBcAMP inhibited the phosphorylation of c-Jun Ser-63 induced by PMA/A23187 stimulation. We suggest a different mechanism of regulation of JNKp55 and JNKp46 activities and that JNKp46 is a specific c-Jun kinase by which the activity of c-Jun is regulated in T lymphocytes.
Collapse
Affiliation(s)
- Y Harada
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
319
|
Budillon A, Di Gennaro E, Caraglia M, Barbarulo D, Abbruzzese A, Tagliaferri P. 8-Cl-cAMP antagonizes mitogen-activated protein kinase activation and cell growth stimulation induced by epidermal growth factor. Br J Cancer 1999; 81:1134-41. [PMID: 10584873 PMCID: PMC2374321 DOI: 10.1038/sj.bjc.6690820] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The growth factor-activated mitogenic pathways are often disregulated in tumour cells and, therefore, they can provide specific molecular targets for novel anti-tumour approaches. 8-Chloro-cAMP (8-Cl-cAMP), a synthetic cAMP analogue, is a novel anti-tumour agent that has recently undergone clinical evaluation. We investigated the effects of 8-Cl-cAMP on the epidermal growth factor (EGF)/EGF receptor (EGF-R) signalling in human epidermoid cancer KB cells, which are responsive to the mitogenic stimulus of EGF. We found that the growth-promoting activity of EGF was completely abolished when EGF treatment was performed in combination with 8-Cl-cAMP. The inhibition of the EGF-induced proliferation by 8-Cl-cAMP was paralleled by the blockade of the EGF-stimulated activation of mitogen-activated protein kinases (MAPK), ERK-1 and ERK-2. Conversely, we found an increase of EGF-R expression and EGF-R tyrosine phosphorylation when KB cells were growth inhibited by 8-Cl-cAMP. Moreover, the activity of Raf-1 and MEK-1 protein kinases, the activators upstream MAPK in the phosphorylation cascade induced by EGF, was not modified in 8-Cl-cAMP-treated cells. We concluded that the impairment of KB cell response to EGF, induced by 8-Cl-cAMP, resides in the specific inhibition of MAPK/ERKs activity while the function of the upstream elements in the EGF-R signalling is preserved.
Collapse
Affiliation(s)
- A Budillon
- Istituto Nazionale dei Tumori, Fondazione G Pascale, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
320
|
De La Fuente R, O'Brien MJ, Eppig JJ. Epidermal growth factor enhances preimplantation developmental competence of maturing mouse oocytes. Hum Reprod 1999; 14:3060-8. [PMID: 10601097 DOI: 10.1093/humrep/14.12.3060] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to determine whether epidermal growth factor (EGF) promotes nuclear and cytoplasmic maturation of mouse oocytes grown in vivo or in vitro. In-vivo-grown oocytes were isolated at the germinal vesicle (GV) stage from gonadotrophin-primed (PR) or -unprimed (UPR) 22-day-old mice before in-vitro maturation (IVM). In-vitro-grown (IVG) oocytes were isolated from preantral follicles of 12-day-old mice and grown in vitro without gonadotrophins for 10 days before maturation (IVG/IVM oocytes). IVM and IVG/IVM oocytes were matured in medium supplemented with either EGF (10 ng/ml), follicle stimulating hormone (FSH) (100 ng/ml), EGF plus FSH, or with neither ligand (control). When oocyte-cumulus cell complexes were isolated from PR and UPR mice, IVM with EGF (10 ng/ml), alone or in combination with FSH (100 ng/ml), increased (P < 0.05) the incidence of nuclear maturation to metaphase II. Cytoplasmic maturation of oocytes from PR females, manifested as increased frequency of cleavage to the 2-cell stage and development to the blastocyst stage, was also enhanced with EGF (P < 0.05). Moreover, EGF increased the number of cells per blastocyst, but only in the absence of FSH (P < 0.01). In contrast, EGF, FSH, or EGF plus FSH did not affect the percentage of oocytes from UPR mice completing preimplantation development, but did increase the number of cells per blastocyst. These ligands also increased the proportion of IVG oocytes reaching metaphase II (53-57%) compared with controls (25%; P < 0.05). EGF alone or in combination with FSH increased (P < 0.05) the frequency of blastocyst formation (23% and 28%, respectively) compared with controls (13%). EGF treatment of maturing IVG oocytes produced blastocysts with more cells than other IVG groups (P < 0.05). It is concluded that gonadotrophins in vivo increase the sensitivity or responsiveness of cumulus cell-enclosed oocytes to EGF, thereby promoting both nuclear and cytoplasmic maturation. However, oocyte-granulosa cell complexes grown in vitro become responsive to EGF without gonadotrophin treatment. Thus, nuclear and cytoplasmic maturation of IVG oocytes is promoted by EGF treatment during meiotic maturation.
Collapse
|
321
|
Communal C, Singh K, Sawyer DB, Colucci WS. Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. Circulation 1999; 100:2210-2. [PMID: 10577992 DOI: 10.1161/01.cir.100.22.2210] [Citation(s) in RCA: 390] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND beta-Adrenergic receptor (beta-AR) stimulation increases apoptosis in adult rat cardiac (ventricular) myocytes (ARVMs) via activation of adenylyl cyclase. beta(2)-ARs may couple to a G(i)-mediated signaling pathway that can oppose the actions of adenylyl cyclase. METHODS AND RESULTS In ARVMs, beta-AR stimulation for 24 hours increased the number of apoptotic cells as measured by flow cytometry. beta-AR-stimulated apoptosis was abolished by the beta(1)-AR-selective antagonist CGP 20712A (P<0.05 versus beta-AR stimulation alone) but was potentiated by the beta(2)-AR-selective antagonist ICI 118,551 (P<0.05 versus beta-AR stimulation alone). The muscarinic agonist carbachol also prevented beta-AR-stimulated apoptosis (P<0.05 versus beta-AR stimulation alone), whereas pertussis toxin potentiated the apoptotic action of beta-AR stimulation (P<0.05 versus beta-AR stimulation alone) and prevented the antiapoptotic action of carbachol. CONCLUSIONS In ARVMs, stimulation of beta(1)-ARs increases apoptosis via a cAMP-dependent mechanism, whereas stimulation of beta(2)-ARs inhibits apoptosis via a G(i)-coupled pathway. These findings have implications for the pathophysiology and treatment of myocardial failure.
Collapse
MESH Headings
- Adenylate Cyclase Toxin
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Apoptosis/drug effects
- Carbachol/pharmacology
- Cardiotonic Agents/pharmacology
- Cyclic AMP/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- Heart/drug effects
- Imidazoles/pharmacology
- Isoproterenol/pharmacology
- Male
- Muscarinic Agonists/pharmacology
- Myocardium/cytology
- Pertussis Toxin
- Prazosin/pharmacology
- Propanolamines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/physiology
- Second Messenger Systems/drug effects
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- C Communal
- Myocardial Biology Unit and Cardiovascular Division, Boston University Medical Center, Boston Veterans Affairs Medical Center and Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
322
|
Komalavilas P, Shah PK, Jo H, Lincoln TM. Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. J Biol Chem 1999; 274:34301-9. [PMID: 10567406 DOI: 10.1074/jbc.274.48.34301] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC.
Collapse
Affiliation(s)
- P Komalavilas
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA.
| | | | | | | |
Collapse
|
323
|
Fukumoto S, Koyama H, Hosoi M, Yamakawa K, Tanaka S, Morii H, Nishizawa Y. Distinct role of cAMP and cGMP in the cell cycle control of vascular smooth muscle cells: cGMP delays cell cycle transition through suppression of cyclin D1 and cyclin-dependent kinase 4 activation. Circ Res 1999; 85:985-91. [PMID: 10571528 DOI: 10.1161/01.res.85.11.985] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
cAMP and cGMP are known to suppress vascular smooth muscle cell (SMC) proliferation. In this study, our aim was to delineate the molecular mechanism underlying cAMP and cGMP suppression of cell cycle transition in human SMCs. cAMP inhibits both platelet-derived growth factor-stimulated cyclin-dependent kinase (cdk) 2 and cdk4 activation through upregulation of the cdk2 inhibitor p27(Kip1) and downregulation of cyclin D1 expression, which leads to a complete arrest of the cells in phase G(1). In contrast, cGMP inhibits cyclin D1 expression, inhibits cdk4 activation, and delays platelet-derived growth factor-mediated cdk2 activation, resulting in a delay in G(1)/S transition. A transient increase in p27(Kip1) in cdk2 immunoprecipitates, without changes in total cellular p27(Kip1) levels, correlates with the delay in cdk2 activation caused by cGMP. Thus, cAMP and cGMP differentially affect cell cycle through distinct regulation of cell cycle molecules in human SMCs.
Collapse
Affiliation(s)
- S Fukumoto
- Second Department of Internal Medicine, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
324
|
Roger F, Martin PY, Rousselot M, Favre H, Féraille E. Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle's loop. Requirement of p38 kinase for the regulatory volume increase response. J Biol Chem 1999; 274:34103-10. [PMID: 10567379 DOI: 10.1074/jbc.274.48.34103] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kidney medulla is exposed to very high interstitial osmolarity leading to the activation of mitogen-activated protein kinases (MAPK). However, the respective roles of increased intracellular osmolality and of cell shrinkage in MAPK activation are not known. Similarly, the participation of MAPK in the regulatory volume increase (RVI) following cell shrinkage remains to be investigated. In the rat medullary thick ascending limb of Henle (MTAL), extracellular hypertonicity produced by addition of NaCl or sucrose increased the phosphorylation level of extracellular signal-regulated kinase (ERK) and p38 kinase and to a lesser extent c-Jun NH(2)-terminal kinase with sucrose only. Both hypertonic solutions decreased the MTAL cellular volume in a dose- and time-dependent manner. In contrast, hypertonic urea had no effect. The extent of MAPK activation was correlated with the extent of MTAL cellular volume decrease. Increasing intracellular osmolality without modifying cellular volume did not activate MAPK, whereas cell shrinkage without variation in osmolality activated both ERK and p38. In the presence of 600 mosmol/liter NaCl, the maximal cell shrinkage was observed after 10 min at 37 degrees C and the MTAL cellular volume was reduced to 70% of its initial value. Then, RVI occurred and the cellular volume progressively recovered to reach about 90% of its initial value after 30 min. SB203580, a specific inhibitor of p38, almost completely inhibited the cellular volume recovery, whereas inhibition of ERK did not alter RVI. In conclusion, in rat MTAL: 1) cell shrinkage, but not intracellular hyperosmolality, triggers the activation of both ERK and p38 kinase in response to extracellular hypertonicity; and 2) RVI is dependent on p38 kinase activation.
Collapse
Affiliation(s)
- F Roger
- Division de Néphrologie, Fondation pour Recherches Médicales, 64 Ave de la Roseraie, CH-1211 Genève 4, Switzerland
| | | | | | | | | |
Collapse
|
325
|
Abstract
The family of Raf-protein kinases consisting of A-Raf, B-Raf, and c-Raf-1 is involved in cellular processes which regulate proliferation, differentiation, and apoptosis. Cell-culture experiments and the knockout of individual Raf genes suggested that the three Raf isoforms have overlapping and unique regulatory functions. However, it is not known how these isotype-specific functions of Raf kinases occur in the cell. Published data suggest that Raf proteins might differ in the regulation of their activation as well as in their ability to connect to downstream signaling pathways. Since Raf is part of a multiprotein complex and protein-protein interactions are important for Raf signaling, we propose that isotype-specific functions can be achieved by isotype-restricted protein binding. Recently we were able to identify candidates for such Raf-isoform-specific interaction partners.
Collapse
Affiliation(s)
- C Hagemann
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Versbacher Strasse 5, Würzburg, D-97078, Germany
| | | |
Collapse
|
326
|
Huang YT, Lin JK, Lee MT. Inhibition of 12-O-tetradecanoylphorbol-13-acetate induction of c-fos mRNA by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide. Biochem Pharmacol 1999; 58:1639-47. [PMID: 10535756 DOI: 10.1016/s0006-2952(99)00238-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) can induce expression of many immediate-early genes, such as c-fos and c-jun. In this study, TPA increased c-fos mRNA, cellular cyclic AMP, and protein kinase A (PKA) activity in the first 30 min with similar inductive time courses. Treatment of NIH 3T3 cells with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H-89), a PKA specific inhibitor, suppressed TPA induction of PKA activity and c-fos mRNA in a concentration-dependent manner, but did not inhibit serum-induced transcription. H-89 did not inhibit TPA and serum induction of c-jun mRNA. H-89 interfered with TPA-stimulated serum-responsive element-binding activity in a concentration-dependent manner, but did not inhibit TPA-induced mitogen-activated protein kinase 1/2 activity or Elk-1 phosphorylation. TPA stimulation of a c-fos promoter reporter construct was inhibited by overexpression of the dominant negative regulatory protein of PKA. In deletion studies, the H-89 inhibitory element was found to be localized between -563 and -379 in the c-fos promoter region. These results suggest that H-89 will be very useful for investigating the molecular mechanism of TPA induction of c-fos.
Collapse
Affiliation(s)
- Y T Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
327
|
Abstract
Hyperfunctioning thyroid adenomas are benign tumors characterized by their autonomous growth and functional activity, which frequently cause clinical hyperthyroidism and show a predominant radioactive iodine uptake in the nodule. Activating mutations in the gene encoding the alpha subunit of the stimulatory G protein (Gs alpha), as well as activating mutations in the gene encoding thyrotropin receptor in hyperfunctioning thyroid adenomas, have been reported. The mutations in Gs alpha involved the replacement of either arginine 201 with cysteine or histidine, or glutamine 227 with arginine or leucine. These residues are involved in GDP/GTP binding of Gs alpha and these mutations inhibit intrinsic GTPase activity that results in constitutive activation of adenylyl cyclase. The pathophysiological roles of these mutations in the formation of hyperfunctioning thyroid adenoma have been suggested.
Collapse
Affiliation(s)
- M Murakami
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | |
Collapse
|
328
|
Pedron T, Girard R, Chaby R. Exogenous cyclic AMP, cholera toxin, and endotoxin induce expression of the lipopolysaccharide receptor CD14 in murine bone marrow cells: role of purinoreceptors. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:885-90. [PMID: 10548581 PMCID: PMC95793 DOI: 10.1128/cdli.6.6.885-890.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/1999] [Accepted: 09/14/1999] [Indexed: 11/20/2022]
Abstract
Little is known about the mechanisms of lipopolysaccharide (LPS) signaling in immature cells that do not express the LPS receptor CD14 yet. Bone marrow granulocytes do not constitutively express CD14 but can be stimulated by low doses of LPS in the absence of serum and then express an inducible form of LPS receptor (iLpsR). We show that in addition to LPS, cholera toxin (CT) and various cyclic AMP (cAMP) analogs can also induce the expression of iLpsR, which was identified as CD14. Induction was independent of intracellular cAMP. The hypothesis that cAMP analogs act via a cell surface receptor was suggested by the unresponsiveness of trypsin-treated cells to these inducers and by the specific binding of [(3)H]cAMP to the cells. This binding was not inhibited by LPS or CT but was inhibited by various purine derivatives. However, the receptor involved is not a conventional purinoreceptor since both an agonist and an antagonist of such receptors were able to induce iLpsR expression. The results suggest that cAMP analogs and other purine derivatives induce iLpsR after interaction with an unconventional, trypsin-sensitive, purinoreceptor distinct from LPS and CT receptors.
Collapse
Affiliation(s)
- T Pedron
- Molecular Immunophysiology Unit, URA-1961, National Center for Scientific Research, Pasteur Institute, Paris, France
| | | | | |
Collapse
|
329
|
Grant MB, Tarnuzzer RW, Caballero S, Ozeck MJ, Davis MI, Spoerri PE, Feoktistov I, Biaggioni I, Shryock JC, Belardinelli L. Adenosine receptor activation induces vascular endothelial growth factor in human retinal endothelial cells. Circ Res 1999; 85:699-706. [PMID: 10521243 DOI: 10.1161/01.res.85.8.699] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine, released in increased amounts by hypoxic tissues, is thought to be an angiogenic factor that links altered cellular metabolism caused by oxygen deprivation to compensatory angiogenesis. Adenosine interacts with 4 subtypes of G protein-coupled receptors, termed A(1), A(2A), A(2B), and A(3). We investigated whether adenosine causes proliferation of human retinal endothelial cells (HRECs) and synthesis of vascular endothelial growth factor (VEGF) and, if so, which adenosine receptor subtype mediates these effects. The nonselective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), in a concentration-dependent manner, increased both VEGF mRNA and protein expression by HRECs, as well as proliferation. This proliferative effect of NECA was inhibited by the addition of anti-human VEGF antibody. NECA also increased insulin-like growth factor-I and basic fibroblast growth factor mRNA expression in a time-dependent manner and cAMP accumulation in these cells. In contrast, neither the A(1) agonist N(6)-cyclopentyladenosine nor the A(2A) agonist 2-p-(2-carboxyethyl) phenethylamino-NECA caused any of the above effects of NECA. The effects of NECA were not significantly attenuated by either the A(2A) antagonist SCH58261 or the A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine. However, the nonselective adenosine receptor antagonist xanthine amine congener completely inhibited the effects of NECA. Addition of antisense oligonucleotide complementary to A(2B) adenosine receptor mRNA inhibited VEGF protein production by HRECs after NECA stimulation. Thus, the A(2B) adenosine receptor subtype appears to mediate the actions of adenosine to increase growth factor production, cAMP content, and cell proliferation of HRECs. Adenosine activates the A(2B) adenosine receptor in HRECs, which may lead to neovascularization by a mechanism involving increased angiogenic growth factor expression.
Collapse
Affiliation(s)
- M B Grant
- Department of Medicine, Ophthalmology and Pharmacology, University of Florida, Gainesville, Fla 32610-0226, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Reduction in apolipoprotein-mediated removal of cellular lipids by immortalization of human fibroblasts and its reversion by cAMP: lack of effect with Tangier disease cells. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)34893-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
331
|
Saragovi HU, Rebai N, Di Guglielmo GM, Macleod R, Sheng J, Rubin DH, Greene MI. A G1 cell cycle arrest induced by ligands of the reovirus type 3 receptor is secondary to inactivation of p21ras and mitogen-activated protein kinase. DNA Cell Biol 1999; 18:763-70. [PMID: 10541435 DOI: 10.1089/104454999314908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reovirus type 3 S1 gene product (type 3 hemagglutinin; HA3) is the viral protein responsible for binding to a mammalian cell-surface receptor. It has been shown that HA3 binding to its receptor inhibits cell growth, even in the continuous presence of serum mitogens. Here, receptor-mediated signal transduction leading to growth arrest was studied after binding with synthetic or recombinant ligands in the absence of viral infection. Receptor ligation caused rapid inactivation of p21(ras), a decrease in Raf phosphorylation and in mitogen-activated protein kinase (MAPK) enzymatic activity, and G1 cell cycle arrest. Transfection and expression of constitutively active v-Has-ras prevented the G1 arrest, indicating that inactivation of p21(ras) is causative. Interestingly, v-Has-ras expression also decreased the efficiency of reoviridae replication, suggesting that inactivation of p21(ras) signals is required at some step of the viral cycle. This study may define new mechanisms regulating cell growth and support the approach of using viral proteins to identify and study cellular receptors. Synthetic receptor ligands with antiproliferative properties may be useful in drug development with the aim of blocking mitosis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Capsid Proteins
- Cell Cycle Proteins
- Cell Division/drug effects
- Cytopathogenic Effect, Viral
- G1 Phase/drug effects
- Genes, ras
- Growth Inhibitors/chemistry
- Growth Inhibitors/pharmacology
- Guanosine Diphosphate/metabolism
- Guanosine Triphosphate/metabolism
- Humans
- Ligands
- MAP Kinase Signaling System/drug effects
- Mammalian orthoreovirus 3/physiology
- Mice
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Oncogene Protein p21(ras)/antagonists & inhibitors
- Oncogene Protein p21(ras)/physiology
- Peptides, Cyclic/pharmacology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-raf/metabolism
- Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors
- Proto-Oncogene Proteins p21(ras)/physiology
- Receptors, Virus/agonists
- Receptors, Virus/physiology
- Recombinant Fusion Proteins/physiology
- Transfection
- Tumor Cells, Cultured
- Viral Proteins/chemistry
- Viral Proteins/immunology
- Viral Proteins/physiology
- Virus Replication/drug effects
Collapse
Affiliation(s)
- H U Saragovi
- Department of Pharmacology, McGill Cancer Center, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
332
|
Ekholm D, Mulloy JC, Gao G, Degerman E, Franchini G, Manganiello VC. Cyclic nucleotide phosphodiesterases (PDE) 3 and 4 in normal, malignant, and HTLV-I transformed human lymphocytes. Biochem Pharmacol 1999; 58:935-50. [PMID: 10509746 DOI: 10.1016/s0006-2952(99)00188-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular cyclic AMP, determined in part by cyclic nucleotide phosphodiesterases (PDEs), regulates proliferation and immune functions in lymphoid cells. Total PDE, PDE3, and PDE4 activities were measured in phytohemagglutinin (PHA)-activated peripheral blood mononuclear cells (PBMC-PHA), normal natural killer (NK) cells, Jurkat and Kit225-K6 leukemic T-cells, T-cell lines transformed with human T-lymphotropic virus (HTLV)-I (a retrovirus that causes adult T-cell leukemia/lymphoma) and HTLV-II (a nonpathogenic retrovirus), normal B-cells, and B-cells transformed with Epstein-Barr virus (EBV). All cells exhibited PDE3 and PDE4 activities but in different proportions. In EBV-transformed B cells, PDE4 was much higher than PDE3. HTLV-I+ T-cells differed significantly from other T-lymphocyte-derived cells in also having a higher proportion of PDE4 activities, which apparently were not related to selective induction of any one PDE4 mRNA (judged by reverse transcription-polymerase chain reaction) or expression of the HTLV-I regulatory protein Tax. In MJ cells (an HTLV-I+ T-cell line), Jurkat cells, and PBMC-PHA cells, the tyrosine kinase inhibitor herbimycin A strongly inhibited PDE activity. Growth of MJ cells was inhibited by herbimycin A and a protein kinase C (PKC) inhibitor, and was arrested in G1 by rolipram, a specific PDE4 inhibitor. Proliferation of several HTLV-I+ T-cell lines, PBMC-PHA, and Jurkat cells was inhibited differentially by forskolin (which activates adenylyl cyclase), the selective PDE inhibitors cilostamide and rolipram, and the nonselective PDE inhibitors pentoxifylline and isobutyl methylxanthine. These results suggest that PDE4 isoforms may be functionally up-regulated in HTLV-I+ T-cells and may contribute to the virus-induced proliferation, and that PDEs could be therapeutic targets in immune/inflammatory and neoplastic diseases.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adult
- B-Lymphocytes/enzymology
- Benzoquinones
- Cell Division/drug effects
- Cell Line, Transformed/enzymology
- Cell Transformation, Viral
- Colforsin/pharmacology
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Enzyme Inhibitors/pharmacology
- Gene Products, tax/biosynthesis
- Gene Products, tax/metabolism
- Human T-lymphotropic virus 1/physiology
- Humans
- Interleukin-2/metabolism
- Jurkat Cells/enzymology
- Killer Cells, Natural/enzymology
- Lactams, Macrocyclic
- Leukocytes, Mononuclear/enzymology
- Lymphocytes/enzymology
- Lymphocytes/virology
- Protein Kinase Inhibitors
- Quinones/pharmacology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rifabutin/analogs & derivatives
- T-Lymphocytes/enzymology
Collapse
Affiliation(s)
- D Ekholm
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1434, USA
| | | | | | | | | | | |
Collapse
|
333
|
Davis MI, Szarowski D, Turner JN, Morrisett RA, Shain W. In vivo activation and in situ BDNF-stimulated nuclear translocation of mitogen-activated/extracellular signal-regulated protein kinase is inhibited by ethanol in the developing rat hippocampus. Neurosci Lett 1999; 272:95-8. [PMID: 10507550 DOI: 10.1016/s0304-3940(99)00572-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to test the hypothesis that ethanol (EtOH)-induced changes in growth factor signal transduction contribute to the teratogenic effects of EtOH in the developing brain, neonatal rat pups were administered a single dose of EtOH during the brain growth spurt (5 days of age, PN5). Hippocampal mitogen-activated/extracellular signal-regulated protein kinase (MAPK/ERK) activation was analyzed one to 6 h after exposure by electrophoretic-mobility shift assay combined with western blot. Brain-Derived Neurotrophic Factor (BDNF) was used to stimulate ERK in hippocampal slices prepared from PN5 pups and activation and cellular localization was determined with immunofluorescence combined with confocal microscopy. EtOH decreased ERK activation in vivo and decreased nuclear translocation of BDNF-stimulated ERK in situ. These data suggest EtOH-induced inhibition of growth factor signaling may contribute to the development of fetal alcohol syndrome and alcohol-related birth defects.
Collapse
Affiliation(s)
- M I Davis
- Department of Biomedical Sciences, School of Public Health at the University at Albany, NY, USA.
| | | | | | | | | |
Collapse
|
334
|
Seidel MG, Klinger M, Freissmuth M, Höller C. Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. J Biol Chem 1999; 274:25833-41. [PMID: 10464324 DOI: 10.1074/jbc.274.36.25833] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The A(2A)-adenosine receptor, a prototypical G(s)-coupled receptor, activates mitogen-activated protein (MAP) kinase in a manner independent of cAMP in primary human endothelial cells. In order to delineate signaling pathways that link the receptor to the regulation of MAP kinase, the human A(2A) receptor was heterologously expressed in Chinese hamster ovary (CHO) and HEK293 cells. In both cell lines, A(2A) agonist-mediated cAMP accumulation was accompanied by activation of the small G protein rap1. However, rap1 mediates A(2A) receptor-dependent activation of MAP kinase only in CHO cells, the signaling cascade being composed of G(s), adenylyl cyclase, rap1, and the p68 isoform of B-raf. This isoform was absent in HEK293 cells. Contrary to CHO cells, in HEK293 cells activation of MAP kinase by A(2A) agonists was not mimicked by 8-bromo-cAMP, was independent of Galpha(s), and was associated with activation of p21(ras). Accordingly, overexpression of the inactive S17N mutant of p21(ras) and of a dominant negative version of mSos (the exchange factor of p21(ras)) blocked MAP kinase stimulation by the A(2A) receptor in HEK 293 but not in CHO cells. In spite of the close homology between p21(ras) and rap1, the S17N mutant of rap1 was not dominant negative because (i) overexpression of rap1(S17N) failed to inhibit A(2A) receptor-dependent MAP kinase activation, (ii) rap1(S17N) was recovered in the active form with a GST fusion protein comprising the rap1-binding domain of ralGDS after A(2A) receptor activation, and (iii) A(2A) agonists promoted the association of rap1(S17N) with the 68-kDa isoform of B-raf in CHO cells. We conclude that the A(2A) receptor has the capacity two activate MAP kinase via at least two signaling pathways, which depend on two distinct small G proteins, namely p21(ras) and rap1. Our observations also show that the S17N version of rap1 cannot be assumed a priori to act as a dominant negative interfering mutant.
Collapse
Affiliation(s)
- M G Seidel
- Institute of Pharmacology, University of Vienna, Währinger Strasse 13a, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
335
|
Alper O, Hacker NF, Cho-Chung YS. Protein kinase A-Ialpha subunit-directed antisense inhibition of ovarian cancer cell growth: crosstalk with tyrosine kinase signaling pathway. Oncogene 1999; 18:4999-5004. [PMID: 10490835 DOI: 10.1038/sj.onc.1202830] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of the RIalpha subunit of cAMP-dependent protein kinase type I is increased in human cancers in which an autocrine pathway for epidermal growth factor-related growth factors is activated. We have investigated the effect of sequence-specific inhibition of RIalpha gene expression on ovarian cancer cell growth. We report that RIalpha antisense treatment results in a reduction in RIalpha expression and protein kinase A type I, and inhibition of cell growth. The growth inhibition was accompanied by changes in cell morphology and appearance of apoptotic nuclei. In addition, EGF receptor, c-erbB-2 and c-erbB-3 levels were reduced, and the basal and EGF-stimulated mitogen-activated protein kinase activities were reduced. Protein kinase A type I and EGF receptor levels were also reduced in cells overexpressing EGF receptor antisense cDNA. These results suggest that the antisense depletion of RIalpha leads to blockade of both the serine-threonine kinase and the tyrosine kinase signaling pathways resulting in arrest of ovarian cancer cell growth.
Collapse
Affiliation(s)
- O Alper
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892-1750, USA
| | | | | |
Collapse
|
336
|
Reardon DB, Contessa JN, Mikkelsen RB, Valerie K, Amir C, Dent P, Schmidt-Ullrich RK. Dominant negative EGFR-CD533 and inhibition of MAPK modify JNK1 activation and enhance radiation toxicity of human mammary carcinoma cells. Oncogene 1999; 18:4756-66. [PMID: 10467423 DOI: 10.1038/sj.onc.1202849] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exposure of MDA-MB-231 human mammary carcinoma cells to an ionizing radiation dose of 2 Gy results in immediate activation and Tyr phosphorylation of the epidermal growth factor receptor (EGFR). Doxycycline induced expression of a dominant negative EGFR-CD533 mutant, lacking the COOH-terminal 533 amino acids, in MDA-TR15-EGFR-CD533 cells was used to characterize intracellular signaling responses following irradiation. Within 10 min, radiation exposure caused an immediate, transient activation of mitogen activated protein kinase (MAPK) which was completely blocked by expression of EGFR-CD533. The same radiation treatment also induced an immediate activation of the c-Jun-NH2-terminal kinase 1 (JNK1) pathway that was followed by an extended rise in kinase activity after 30 min. Expression of EGFR-CD533 did not block the immediate JNK1 response but completely inhibited the later activation. Treatment of MDA-TR15-EGFR-CD533 cells with the MEK1/2 inhibitor, PD98059, resulted in approximately 70% inhibition of radiation-induced MAPK activity, and potentiated the radiation-induced increase of immediate JNK1 activation twofold. Inhibition of Ras farnesylation with a concomitant inhibition of Ras function completely blocked radiation-induced MAPK and JNK1 activation. Modulation of EGFR and MAPK functions also altered overall cellular responses of growth and apoptosis. Induction of EGFR-CD533 or treatment with PD98059 caused a 3-5-fold increase in radiation toxicity in a novel repeated radiation exposure growth assay by interfering with cell proliferation and potentiating apoptosis. In summary, this data demonstrates that both MAPK and JNK1 activation in response to radiation occur through EGFR-dependent and -independent mechanisms, and are mediated by signaling through Ras. Furthermore, we have demonstrated that radiation-induced activation of EGFR results in downstream activation of MAPK which may affect the radiosensitivity of carcinoma cells.
Collapse
Affiliation(s)
- D B Reardon
- Department of Radiation Oncology, Massey Cancer Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
337
|
Ho AK, Hashimoto K, Chik CL. 3',5'-cyclic guanosine monophosphate activates mitogen-activated protein kinase in rat pinealocytes. J Neurochem 1999; 73:598-604. [PMID: 10428055 DOI: 10.1046/j.1471-4159.1999.0730598.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of 3',5'-cyclic guanosine monophosphate (cGMP) in the activation of mitogen-activated protein kinases (MAPKs) was investigated in rat pinealocytes. Treatment with dibutyryl cGMP (DBcGMP) dose-dependently increased the phosphorylation of both p44 and p42 isoforms of MAPK. This effect of DBcGMP was abolished by PD98059 (a MAPK kinase inhibitor), H7 (a nonspecific protein kinase inhibitor), and KT5823 [a selective cGMP-dependent protein kinase (PKG) inhibitor]. Elevation of cellular cGMP content by treatment with norepinephrine, zaprinast (a cGMP phosphodiesterase inhibitor), or nitroprusside was effective in activating MAPK. Natriuretic peptides that were effective in elevating cGMP levels in this tissue were also effective in activating MAPK. Our results indicate that, in this neuroendocrine tissue, the cGMP/PKG signaling pathway is an important mechanism used by hormones and neurotransmitters in activating MAPK.
Collapse
Affiliation(s)
- A K Ho
- Department of Physiology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
338
|
Zúñiga A, Torres J, Ubeda J, Pulido R. Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm. J Biol Chem 1999; 274:21900-7. [PMID: 10419510 DOI: 10.1074/jbc.274.31.21900] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK1 and ERK2 associate with the tyrosine phosphatase PTP-SL through a kinase interaction motif (KIM) located in the juxtamembrane region of PTP-SL. A glutathione S-transferase (GST)-PTP-SL fusion protein containing the KIM associated with ERK1 and ERK2 as well as with p38/HOG, but not with the related JNK1 kinase or with protein kinase A or C. Accordingly, ERK2 showed in vitro substrate specificity to phosphorylate GST-PTP-SL in comparison with GST-c-Jun. Furthermore, tyrosine dephosphorylation of ERK2 by the PTP-SLDeltaKIM mutant was impaired. The in vitro association of ERK1/2 with GST-PTP-SL was highly stable; however, low concentrations of nucleotides partially dissociated the ERK1/2.PTP-SL complex. Partial deletions of the KIM abrogated the association of PTP-SL with ERK1/2, indicating that KIM integrity is required for interaction. Amino acid substitution analysis revealed that Arg and Leu residues within the KIM are essential for the interaction and suggested a regulatory role for Ser(231). Finally, coexpression of PTP-SL and ERK2 in COS-7 cells resulted in the retention of ERK2 in the cytoplasm in a KIM-dependent manner. Our results demonstrate that the noncatalytic region of PTP-SL associates with mitogen-activated protein kinases with high affinity and specificity, providing a mechanism for substrate specificity, and suggest a role for PTP-SL in the regulation of mitogen-activated protein kinase translocation to the nucleus upon activation.
Collapse
Affiliation(s)
- A Zúñiga
- Instituto de Investigaciones Citológicas, Amadeo de Saboya 4, 46010 Valencia, Spain
| | | | | | | |
Collapse
|
339
|
Yoshimata T, Yoneyama A, Jin-no Y, Tamai N, Kamiya Y. Effects of dehydroepiandrosterone on mitogen-activated protein kinase in human aortic smooth muscle cells. Life Sci 1999; 65:431-40. [PMID: 10421429 DOI: 10.1016/s0024-3205(99)00264-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of the present study was to determine whether dehydroepiandrosterone (DHEA) modifies growth factor-induced mitogen-activated protein kinase (MAPK) activation, based on our previous study demonstrating that DHEA attenuates fetal calf serum-induced proliferation in human male aortic smooth muscle cells (human male aortic SMCs). Human male aortic SMCs were used for this study. Platelet-derived growth factor-BB (PDGF-BB), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF), but not insulin-like growth factor-1 (IGF-1), stimulated MAPK activity. Only MAPK activation induced by PDGF-BB was reduced by pretreatment with DHEA, although DHEA did not affect the MAPK activation induced by EGF or bFGF. The basal and PDGF-stimulated MAPK activity were decreased by two types of cyclic AMP (cAMP) elevating agents and increased by cAMP-dependent protein kinase (PKA) inhibitor in human male aortic SMCs, suggesting that cAMP regulates MAPK negatively. The intracellular cAMP was increased by PDGF-BB. The increase of cAMP by PDGF-BB was augmented by pretreatment with DHEA, although DHEA alone did not affect cAMP. Neither EGF nor bFGF affected cAMP with and without DHEA pretreatment. Secretion of PGE2 induced by PDGF was augmented by pretreatment with DHEA. Stimulatory effects of DHEA on the production of PGE2 and cAMP were partially canceled by aromatase inhibitor and completely canceled by indomethacin or selective inhibitor of cyclooxygenase-2. These results suggest that DHEA inhibited MAPK activation induced by PDGF-BB via PGE2 overproduction and subsequent cAMP-dependent pathway in human male aortic SMCs.
Collapse
Affiliation(s)
- T Yoshimata
- The Third Department of Internal Medicine, Nagoya City University Medical School, Nagoya, Japan
| | | | | | | | | |
Collapse
|
340
|
Tsuchikane E, Fukuhara A, Kobayashi T, Kirino M, Yamasaki K, Kobayashi T, Izumi M, Otsuji S, Tateyama H, Sakurai M, Awata N. Impact of cilostazol on restenosis after percutaneous coronary balloon angioplasty. Circulation 1999; 100:21-6. [PMID: 10393676 DOI: 10.1161/01.cir.100.1.21] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Restenosis after percutaneous transluminal coronary (balloon) angioplasty (PTCA) remains a major drawback of the procedure. We previously reported that cilostazol, a platelet aggregation inhibitor, inhibited intimal proliferation after directional coronary atherectomy and reduced the restenosis rate in humans. The present study aimed to determine the effect of cilostazol on restenosis after PTCA. METHODS AND RESULTS Two hundred eleven patients with 273 lesions who underwent successful PTCA were randomly assigned to the cilostazol (200 mg/d) group or the aspirin (250 mg/d) control group. Administration of cilostazol was initiated immediately after PTCA and continued for 3 months of follow-up. Quantitative coronary angiography was performed before PTCA and after PTCA and at follow-up. Reference diameter, minimal lumen diameter, and percent diameter stenosis (DS) were measured by quantitative coronary angiography. Angiographic restenosis was defined as DS at follow-up >50%. Eligible follow-up angiography was performed in 94 patients with 123 lesions in the cilostazol group and in 99 patients with 129 lesions in the control group. The baseline characteristics and results of PTCA showed no significant difference between the 2 groups. However, minimal lumen diameter at follow-up was significantly larger (1.65+/-0.55 vs 1.37+/-0.58 mm; P<0.0001) and DS was significantly lower (34.1+/-17.8% vs 45.6+/-19. 3%; P<0.0001) in the cilostazol group. Restenosis and target lesion revascularization rates were also significantly lower in the cilostazol group (17.9% vs 39.5%; P<0.001 and 11.4% vs 28.7%; P<0. 001). CONCLUSIONS Cilostazol significantly reduces restenosis and target lesion revascularization rates after successful PTCA.
Collapse
Affiliation(s)
- E Tsuchikane
- Department of Cardiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Kanasaki H, Fukunaga K, Takahashi K, Miyazaki K, Miyamoto E. Mitogen-activated protein kinase activation by stimulation with thyrotropin-releasing hormone in rat pituitary GH3 cells. Biol Reprod 1999; 61:319-25. [PMID: 10377065 DOI: 10.1095/biolreprod61.1.319] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We examined whether mitogen-activated protein (MAP) kinase is activated by thyrotropin-releasing hormone (TRH) in GH3 cells, and whether MAP kinase activation is involved in secretion of prolactin from these cells. Protein kinase inhibitors--such as PD098059, calphostin C, and genistein--and removal of extracellular Ca2+ inhibited MAP kinase activation by TRH. A cAMP analogue activated MAP kinase in these cells. Effects of cAMP on MAP kinase activation were inhibited by PD098059. TRH-induced prolactin secretion was not inhibited by levels of PD098059 sufficient to i activation but was inhibited by wortmannin (1 microM) and KN93. Treatment of GH3 cells with either TRH or cAMP significantly inhibited DNA synthesis and induced morphological changes. The effects stimulated by TRH were reversed by PD098059 treatment, but the same effects stimulated by cAMP were not. Treatment of GH3 cells with TRH for 48 h significantly increased the prolactin content in GH3 cells and decreased growth hormone content. The increase in prolactin was completely abolished by PD098059, but the decrease in growth hormone was not. These results suggest that TRH-induced MAP kinase activation is involved in prolactin synthesis and differentiation of GH3 cells, but not in prolactin secretion.
Collapse
Affiliation(s)
- H Kanasaki
- Department of Pharmacology, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan Department of Obstetrics and Gynecology, Shimane Medical University, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
342
|
Filippa N, Sable CL, Filloux C, Hemmings B, Van Obberghen E. Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 1999; 19:4989-5000. [PMID: 10373549 PMCID: PMC84322 DOI: 10.1128/mcb.19.7.4989] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of protein kinase B (PKB) by growth factors and hormones has been demonstrated to proceed via phosphatidylinositol 3-kinase (PI3-kinase). In this report, we show that PKB can also be activated by PKA (cyclic AMP [cAMP]-dependent protein kinase) through a PI3-kinase-independent pathway. Although this activation required phosphorylation of PKB, PKB is not likely to be a physiological substrate of PKA since a mutation in the sole PKA consensus phosphorylation site of PKB did not abolish PKA-induced activation of PKB. In addition, mechanistically, this activation was different from that of growth factors since it did not require phosphorylation of the S473 residue, which is essential for full PKB activation induced by insulin. These data were supported by the fact that mutation of residue S473 of PKB to alanine did not prevent it from being activated by forskolin. Moreover, phosphopeptide maps of overexpressed PKB from COS cells showed differences between insulin- and forskolin-stimulated cells that pointed to distinct activation mechanisms of PKB depending on whether insulin or cAMP was used. We looked at events downstream of PKB and found that PKA activation of PKB led to the phosphorylation and inhibition of glycogen synthase kinase-3 (GSK-3) activity, a known in vivo substrate of PKB. Overexpression of a dominant negative PKB led to the loss of inhibition of GSK-3 in both insulin- and forskolin-treated cells, demonstrating that PKB was responsible for this inhibition in both cases. Finally, we show by confocal microscopy that forskolin, similar to insulin, was able to induce translocation of PKB to the plasma membrane. This process was inhibited by high concentrations of wortmannin (300 nM), suggesting that forskolin-induced PKB movement may require phospholipids, which are probably not generated by class I or class III PI3-kinase. However, high concentrations of wortmannin did not abolish PKB activation, which demonstrates that translocation per se is not important for PKA-induced PKB activation.
Collapse
Affiliation(s)
- N Filippa
- Institut National de la Santé et de la Recherche Médicale Faculté de Médecine, 06107 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
343
|
Bornfeldt KE, Krebs EG. Crosstalk between protein kinase A and growth factor receptor signaling pathways in arterial smooth muscle. Cell Signal 1999; 11:465-77. [PMID: 10405757 DOI: 10.1016/s0898-6568(99)00020-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Crosstalk between the cyclic AMP-dependent protein kinase (PKA) and growth factor receptor signaling is one of many emerging concepts of crosstalk in signal transduction. Understanding of PKA crosstalk may have important implications for studies of crosstalk between other, less well known, signaling pathways. This review focuses on PKA crosstalk in arterial smooth muscle. Proliferation and migration of arterial smooth muscle cells (SMCs) contribute to the thickening of the blood vessel wall that occurs in many types of cardiovascular disease. PKA potently inhibits SMC proliferation by antagonizing the major mitogenic signaling pathways induced by growth factors in SMCs. PKA also inhibits growth factor-induced SMC migration. An intricate crosstalk between PKA and the mitogen-activated protein kinase (MAPK/ERK) pathway, the p70 S6 kinase pathway and cyclin-dependent kinases has been described. Further, PKA regulates expression of growth regulatory molecules. The result of PKA activation in SMCs is the potent inhibition of cell cycle traverse and SMC migration. In this review, we discuss recent advances in our understanding of the crosstalk between PKA and signaling pathways induced by growth factor receptors in SMCs, and where relevant, in other cell types in which interesting examples of PKA crosstalk have been described.
Collapse
Affiliation(s)
- K E Bornfeldt
- Department of Pathology, University of Washington, Seattle 98195-7470, USA.
| | | |
Collapse
|
344
|
Abstract
MAP kinases help to mediate diverse processes ranging from transcription of protooncogenes to programmed cell death. More than a dozen mammalian MAP kinase family members have been discovered and include, among others, the well studied ERKs and several stress-sensitive enzymes. MAP kinases lie within protein kinase cascades. Each cascade consists of no fewer than three enzymes that are activated in series. Cascades convey information to effectors, coordinates incoming information from other signaling pathways, amplify signals, and allow for a variety of response patterns. Subcellular localization of enzymes in the cascades is an important aspect of their mechanisms of action and contributes to cell-type and ligand-specific responses. Recent findings on these properties of MAP kinase cascades are the major focus of this review.
Collapse
Affiliation(s)
- M H Cobb
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX 75235-9041, USA
| |
Collapse
|
345
|
Suzuki S, Yamamoto I, Arita J. Mitogen-activated protein kinase-dependent stimulation of proliferation of rat lactotrophs in culture by 3',5'-cyclic adenosine monophosphate. Endocrinology 1999; 140:2850-8. [PMID: 10342877 DOI: 10.1210/endo.140.6.6775] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intracellular cAMP regulates cell proliferation as a second messenger of extracellular signals in a number of cell types. We investigated, by pharmacological means, whether an increase in intracellular cAMP levels changes proliferation rates of lactotrophs in primary culture, whether there are interactions between signal transduction pathways of cAMP and the growth factor insulin, and where the dopamine receptor agonist bromocriptine acts in the cAMP pathway to inhibit lactotroph proliferation. Rat anterior pituitary cells, cultured in serum-free medium, were treated with cAMP-increasing agents, followed by 5-bromo-2'-deoxyuridine (BrdU) to label proliferating pituitary cells. BrdU-labeling indices indicative of the proliferation rate of lactotrophs were determined by double immunofluorescence staining for PRL and BrdU. Treatment with forskolin (an adenylate cyclase activator) or (Bu)2cAMP (a membrane-permeable cAMP analog) increased BrdU-labeling indices of lactotrophs in a dose- and incubation time-dependent manner. The cAMP-increasing agents were also effective in increasing BrdU-labeling indices in populations enriched for lactotrophs by differential sedimentation. The stimulatory action of forskolin was observed, regardless of concentrations of insulin that were added in combination with forskolin. Inhibition of the action of endogenous cAMP by H89 or KT5720, a protein kinase A inhibitor, attenuated an increase in BrdU-labeling indices by insulin treatment. On the other hand, the specific mitogen-activated protein kinase inhibitor PD98059, which was effective in blocking the mitogenic action of insulin, markedly suppressed the forskolin-induced increase in BrdU-labeling indices. (Bu)2cAMP antagonized not only inhibition of BrdU labeling indices but also changes in cell shape induced by bromocriptine treatment, although forskolin did not have such an antagonizing effect. These results suggest that: 1) intracellular cAMP plays a stimulatory role in the regulation of lactotroph proliferation; 2) cAMP and insulin/mitogen-activated protein kinase signalings require each other for their mitogenic actions; and 3) the antimitogenic action of bromocriptine is, at least in part, caused by inhibition of cAMP production.
Collapse
Affiliation(s)
- S Suzuki
- Department of Physiology, Yamanashi Medical University, Japan
| | | | | |
Collapse
|
346
|
Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE. An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J Biol Chem 1999; 274:15194-202. [PMID: 10329728 DOI: 10.1074/jbc.274.21.15194] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor Sp1 is important for the expression of many cellular genes. Previously, it was shown that reduced O-glycosylation of Sp1 is associated with increased proteasome susceptibility. Sp1 undergoes proteasome-dependent degradation in cells stressed with glucose deprivation and adenylate cyclase activation, and this process is blocked in cells treated with glucosamine. In this study, using a reconstituted in vitro system, we identified the principal structural determinant in Sp1 that targets Sp1 for proteasome-dependent degradation. We found by using deletion analysis that the N-terminal 54 amino acids of Sp1 is required for Sp1 degradation. This element can act as an independent processing signal by directing degradation of an unrelated protein. Recognition of this Sp1 element by the proteasome-dependent system is saturable, and ubiquitination of this element is not required for recognition. Time course experiments revealed that Sp1 degradation is a two-step process. First, a discrete endoproteolytic cleavage occurs downstream of the target region immediately C-terminal to Leu56. The Sp1 sequence C-terminal to the cleavage site is subsequently degraded, whereas the N-terminal peptide remains intact. The identification of this Sp1 degradation-targeting signal will facilitate the identification of the critical proteins involved in the control of Sp1 proteasome-dependent degradation and the role of OGlcNAc in this process.
Collapse
Affiliation(s)
- K Su
- Departments of Medicine and Cell Biology, Division of Endocrinology and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
347
|
El-Mowafy AM, White RE. Resveratrol inhibits MAPK activity and nuclear translocation in coronary artery smooth muscle: reversal of endothelin-1 stimulatory effects. FEBS Lett 1999; 451:63-7. [PMID: 10356984 DOI: 10.1016/s0014-5793(99)00541-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In porcine coronary arteries, short-term treatment with resveratrol (RSVL) substantially inhibited MAPK activity (IC50 = 37 microM); and immunoblot analyses revealed consistent reduction in the phosphorylation of ERK-1/-2, JNK-1 and p38, at active sites. Endothelin-1 (ET-1), a primary antecedent in coronary heart diseases, enhanced MAPK activity, phosphorylation and nuclear translocation in a concentration-responsive but RSVL-sensitive manner. RSVL had no effect on basal or forskolin-stimulated cAMP levels, a known downregulator of the MAPK cascade. Likewise, inhibition of MAPK by RSVL was not reversed by the estrogen receptor blockers tamoxifen and ICI-182,780. Conversely, RSVL remarkably attenuated basal and ET-1-evoked protein tyrosine phosphorylation. Because MAPKs promote smooth muscle proliferation and contraction, their current inhibition may contribute to the putative protection by RSVL against coronary heart diseases. These effects apparently do not involve interaction with estrogen receptors.
Collapse
Affiliation(s)
- A M El-Mowafy
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA.
| | | |
Collapse
|
348
|
Barbier AJ, Poppleton HM, Yigzaw Y, Mullenix JB, Wiepz GJ, Bertics PJ, Patel TB. Transmodulation of epidermal growth factor receptor function by cyclic AMP-dependent protein kinase. J Biol Chem 1999; 274:14067-73. [PMID: 10318821 DOI: 10.1074/jbc.274.20.14067] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of epidermal growth factor (EGF) to its receptor (EGFR) augments the tyrosine kinase activity of the receptor and autophosphorylation. Exposure of some tissues and cells to EGF also stimulates adenylyl cyclase activity and results in an increase in cyclic AMP (cAMP) levels. Because cAMP activates the cAMP-dependent protein kinase A (PKA), we investigated the effect of PKA on the EGFR. The purified catalytic subunit of PKA (PKAc) stoichiometrically phosphorylated the purified full-length wild type (WT) and kinase negative (K721M) forms of the EGFR. PKAc phosphorylated both WT-EGFR as well as a mutant truncated form of EGFR (Delta1022-1186) exclusively on serine residues. Moreover, PKAc also phosphorylated the cytosolic domain of the EGFR (EGFRKD). Phosphorylation of the purified WT as well as EGFRDelta1022-1186 and EGFRKD was accompanied by decreased autophosphorylation and diminished tyrosine kinase activity. Pretreatment of REF-52 cells with the nonhydrolyzable cAMP analog, 8-(4-chlorophenylthio)-cAMP, decreased EGF-induced tyrosine phosphorylation of cellular proteins as well as activation of the WT-EGFR. Similar effects were also observed in B82L cells transfected to express the Delta1022-1186 form of EGFR. Furthermore, activation of PKAc in intact cells resulted in serine phosphorylation of the EGFR. The decreased phosphorylation of cellular proteins and diminished activation of the EGFR in cells treated with the cAMP analog was not the result of altered binding of EGF to its receptors or changes in receptor internalization. Therefore, we conclude that PKA phosphorylates the EGFR on Ser residues and decreases its tyrosine kinase activity and signal transduction both in vitro and in vivo.
Collapse
Affiliation(s)
- A J Barbier
- Department of Pharmacology, University of Tennessee, Memphis, The Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
349
|
Bowler WB, Dixon CJ, Halleux C, Maier R, Bilbe G, Fraser WD, Gallagher JA, Hipskind RA. Signaling in human osteoblasts by extracellular nucleotides. Their weak induction of the c-fos proto-oncogene via Ca2+ mobilization is strongly potentiated by a parathyroid hormone/cAMP-dependent protein kinase pathway independently of mitogen-activated protein kinase. J Biol Chem 1999; 274:14315-24. [PMID: 10318853 DOI: 10.1074/jbc.274.20.14315] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular nucleotides acting through specific P2 receptors activate intracellular signaling cascades. Consistent with the expression of G protein-coupled P2Y receptors in skeletal tissue, the human osteosarcoma cell line SaOS-2 and primary osteoblasts express P2Y1 and P2Y2 receptors, respectively. Their activation by nucleotide agonists (ADP and ATP for P2Y1; ATP and UTP for P2Y2) elevates [Ca2+]i and moderately induces expression of the c-fos proto-oncogene. A synergistic effect on c-fos induction is observed by combining ATP and parathyroid hormone, a key bone cell regulator. Parathyroid hormone elevates intracellular cAMP levels and correspondingly activates a stably integrated reporter gene driven by the Ca2+/cAMP-responsive element of the human c-fos promoter. Nucleotides have little effect on either cAMP levels or this reporter, instead activating luciferase controlled by the full c-fos promoter. This induction is reproduced by a stably integrated serum response element reporter independently of mitogen-activated protein kinase activation and ternary complex factor phosphorylation. This novel example of synergy between the cAMP-dependent protein kinase/CaCRE signaling module and a non-mitogen-activated protein kinase/ternary complex factor pathway that targets the serum response element shows that extracellular ATP, via P2Y receptors, can potentiate strong responses to ubiquitous growth and differentiative factors.
Collapse
Affiliation(s)
- W B Bowler
- Human Bone Cell Research Group, University of Liverpool, Liverpool L69 3GE, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
350
|
MacNicol MC, MacNicol AM. Nerve growth factor-stimulated B-Raf catalytic activity is refractory to inhibition by cAMP-dependent protein kinase. J Biol Chem 1999; 274:13193-7. [PMID: 10224075 DOI: 10.1074/jbc.274.19.13193] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP-dependent protein kinase (PKA) exhibits both inhibitory and stimulatory effects upon growth factor signaling mediated by the mitogen-activated protein kinase signaling pathway. PKA has been demonstrated to inhibit Raf-1-mediated cellular proliferation. PKA can both prevent Ras-dependent Raf-1 activation and directly inhibit Raf-1 catalytic activity. In contrast to the inhibitory effect of PKA on Raf-1-dependent processes, PKA potentiates nerve growth factor-stimulated PC12 cell differentiation, a B-Raf mediated process. This potentiation, rather than inhibition, of PC12 cell differentiation is curious in light of the ability of PKA to inhibit Raf-1 catalytic activity. The kinase domains of Raf-1 and B-Raf are highly conserved, and it has been predicted that B-Raf catalytic activity would also be inhibited by PKA. In this study we examined the ability of PKA to regulate the kinase activity of the B-raf proto-oncogene. We report that nerve growth factor-stimulated B-Raf activity is not inhibited by PKA. By contrast, an N-terminally truncated, constitutively active form of B-Raf is inhibited by PKA both in vitro and in transfected PC12 cells. These results suggest that the N-terminal regulatory domain interferes with the ability of PKA to modulate B-Raf catalytic activity and provide an explanation for the observed resistance of B-Raf-dependent processes to PKA inhibition.
Collapse
Affiliation(s)
- M C MacNicol
- Department of Medicine and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|