301
|
Yang Y, Wang X. Effects of coarse cereals on dough and Chinese steamed bread - a review. Front Nutr 2023; 10:1186860. [PMID: 37599688 PMCID: PMC10434817 DOI: 10.3389/fnut.2023.1186860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Chinese steamed breads (CSBs) are long-established staple foods in China. To enhance the nutritional value, coarse cereals such as oats, buckwheat, and quinoa have been added to the formulation for making CSBs. This review presents the nutritional value of various coarse cereals and analyses the interactions between the functional components of coarse cereals in the dough. The addition of coarse cereals leads to changes in the rheological, fermentation, and pasting aging properties of the dough, which further deteriorates the appearance and texture of CSBs. This review can provide some suggestions and guidelines for the production of staple and nutritious staple foods.
Collapse
Affiliation(s)
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
302
|
Routy B, Lenehan JG, Miller WH, Jamal R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L, Punčochář M, Ernst S, Logan D, Belanger K, Esfahani K, Richard C, Ninkov M, Piccinno G, Armanini F, Pinto F, Krishnamoorthy M, Figueredo R, Thebault P, Takis P, Magrill J, Ramsay L, Derosa L, Marchesi JR, Parvathy SN, Elkrief A, Watson IR, Lapointe R, Segata N, Haeryfar SMM, Mullish BH, Silverman MS, Burton JP, Maleki Vareki S. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat Med 2023; 29:2121-2132. [PMID: 37414899 DOI: 10.1038/s41591-023-02453-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023]
Abstract
Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .
Collapse
Affiliation(s)
- Bertrand Routy
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - John G Lenehan
- Department of Oncology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Wilson H Miller
- Lady Davis Institute of the Jewish General Hospital, Segal Cancer Centre, Montreal, Quebec, Canada
- Departments of Oncology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Rahima Jamal
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Meriem Messaoudene
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Brendan A Daisley
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Cecilia Hes
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Peter Brojde Lung Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Kait F Al
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Laura Martinez-Gili
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Michal Punčochář
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Scott Ernst
- Department of Oncology, Western University, London, Ontario, Canada
| | - Diane Logan
- Department of Oncology, Western University, London, Ontario, Canada
| | - Karl Belanger
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Khashayar Esfahani
- Lady Davis Institute of the Jewish General Hospital, Segal Cancer Centre, Montreal, Quebec, Canada
- Departments of Oncology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Corentin Richard
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marina Ninkov
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
| | - Gianmarco Piccinno
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Mithunah Krishnamoorthy
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Rene Figueredo
- Department of Oncology, Western University, London, Ontario, Canada
| | - Pamela Thebault
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Panteleimon Takis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, National Phenome Centre, Imperial College London, London, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jamie Magrill
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada
| | - LeeAnn Ramsay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, Villejuif, France
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Institut National de la Santé Et et de la Recherche Médicale (INSERM) U1015, ClinicObiome, Equipe Labellisée-28 Ligue Nationale contre le Cancer, Villejuif, France
- Université Paris-Saclay, Ile-de-France, France
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
| | - Seema Nair Parvathy
- Department of Medicine, Division of Infectious Diseases, Western University, London, Ontario, Canada
- Division of Infectious Diseases, St Joseph's Health Care, London, Ontario, Canada
| | - Arielle Elkrief
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Ian R Watson
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Rejean Lapointe
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - S M Mansour Haeryfar
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology and Allergy, Western University, London, Ontario, Canada
- Department of Surgery, Division of General Surgery, Western University, London, Ontario, Canada
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Michael S Silverman
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Infectious Diseases, Western University, London, Ontario, Canada
- Division of Infectious Diseases, St Joseph's Health Care, London, Ontario, Canada
| | - Jeremy P Burton
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Oncology, Western University, London, Ontario, Canada.
- Lawson Health Research Institute, London, Ontario, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
- Department of Medical Biophysics, Western University, London, Ontario, Canada.
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
303
|
Chelvanambi M, Wargo JA. MAdCAM-1: a newly identified microbial 'gut check' for T cells. Trends Immunol 2023; 44:568-570. [PMID: 37451906 DOI: 10.1016/j.it.2023.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
The gut microbiome influences the response, resistance, and toxicity of cancer immunotherapy, but the underlying mechanisms remain unknown. Fidelle et al. identify intestinal MAdCAM-1 as a mechanistic target through which gut dysbiosis blunts antitumor immunity, with opportunities for putative therapeutic intervention.
Collapse
Affiliation(s)
- Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
304
|
Seo YD, Ajami N, Wargo JA. Using gut microorganisms to treat cancer. Nat Med 2023; 29:1910-1911. [PMID: 37420098 DOI: 10.1038/s41591-023-02460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Affiliation(s)
- Y David Seo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim Ajami
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
305
|
Ren P, Yu X, Tang Q, Huan Y, Xu J, Wang Y, Xue C. Astaxanthin Supplementation Assists Sorafenib in Slowing Skeletal Muscle Atrophy in H22 Tumor-Bearing Mice via Reversing Abnormal Glucose Metabolism. Mol Nutr Food Res 2023; 67:e2300076. [PMID: 37177891 DOI: 10.1002/mnfr.202300076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Indexed: 05/15/2023]
Abstract
SCOPE Cachexia, which is often marked by skeletal muscular atrophy, is one of the leading causes of death in cancer patients. Astaxanthin, a carotenoid obtained from marine organisms that can aid in the prevention and treatment of a variety of disorders. In this study, to assess whether astaxanthin ameliorates weight loss and skeletal muscle atrophy in sorafenib-treated hepatocellular carcinoma mice is aimed. METHODS AND RESULTS H22 mice are treated with 30 mg kg-1 day-1 of sorafenib and 60 mg kg-1 day-1 of astaxanthin by gavage lasted for 18 days. Sorafenib does not delay skeletal muscle atrophy and weight loss, although it does not reduce tumor burden. Astaxanthin dramatically delays weight loss and skeletal muscle atrophy in sorafenib-treating mice, without affecting the food intake. Astaxanthin inhibits the tumor glycolysis, slows down gluconeogenesis, and improves insulin resistance in tumor-bearing mice. Astaxanthin increases glucose competition in skeletal muscle by targeting the PI3K/Akt/GLUT4 signaling pathway, and enhances glucose utilization efficiency in skeletal muscle, thereby slowing skeletal muscle atrophy. CONCLUSION The findings show the significant potential of astaxanthin as nutritional supplements for cancer patients, as well as the notion that nutritional interventions should be implemented at the initiation of cancer treatment, as instead of waiting until cachexia sets in.
Collapse
Affiliation(s)
- Pengfei Ren
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Xinyue Yu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yuchen Huan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jie Xu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yuming Wang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266235, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266235, China
| |
Collapse
|
306
|
Queen J, Shaikh F, Sears CL. Understanding the mechanisms and translational implications of the microbiome for cancer therapy innovation. NATURE CANCER 2023; 4:1083-1094. [PMID: 37525016 DOI: 10.1038/s43018-023-00602-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
The intersection of the microbiota and cancer and the mechanisms that define these interactions are a fascinating, rapidly evolving area of cancer biology and therapeutics. Here we present recent insights into the mechanisms by which specific bacteria or their communities contribute to carcinogenesis and discuss the bidirectional interplay between microbiota and host gene or epigenome signaling. We conclude with comments on manipulation of the microbiota for the therapeutic benefit of patients with cancer.
Collapse
Affiliation(s)
- Jessica Queen
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fyza Shaikh
- Cancer Immunology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cancer Immunology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Molecular Immunology, Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
307
|
Ascierto PA, Agarwala SS, Warner AB, Ernstoff MS, Fox BA, Gajewski TF, Galon J, Garbe C, Gastman BR, Gershenwald JE, Kalinski P, Krogsgaard M, Leidner RS, Lo RS, Menzies AM, Michielin O, Poulikakos PI, Weber JS, Caracò C, Osman I, Puzanov I, Thurin M. Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 1st-3rd, 2022-Naples, Italy). J Transl Med 2023; 21:508. [PMID: 37507765 PMCID: PMC10375730 DOI: 10.1186/s12967-023-04325-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Outcomes for patients with melanoma have improved over the past decade with the clinical development and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treatment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immunotherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new combinations treatment under development for melanoma provides options for the number of patients to achieve a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, the Melanoma Bridge Congress (Dec 1st-3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included sessions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, and combination treatment strategies.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | | | | | - Marc S Ernstoff
- ImmunoOncology Branch (IOB), Developmental Therapeutics Program, Cancer Therapy and Diagnosis Division, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bernard A Fox
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Thomas F Gajewski
- Department of Pathology and Department of Medicine (Section of Hematology/Oncology), University of Chicago, Chicago, IL, USA
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006, Paris, France
- Centre de Recherche Des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Brian R Gastman
- Department of Surgery, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rom S Leidner
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Roger S Lo
- Jonsson Comprehensive Cancer Center David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Olivier Michielin
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Poulikos I Poulikakos
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, a NCI-Funded Comprehensive Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Corrado Caracò
- Division of Surgery of Melanoma and Skin Cancer, Istituto Nazionale Tumori "Fondazione Pascale" IRCCS, Naples, Italy
| | - Iman Osman
- Rudolf L, Baer, New York University Langone Medical Center, New York, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Magdalena Thurin
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
308
|
Limeta A, Gatto F, Herrgård MJ, Ji B, Nielsen J. Leveraging high-resolution omics data for predicting responses and adverse events to immune checkpoint inhibitors. Comput Struct Biotechnol J 2023; 21:3912-3919. [PMID: 37602228 PMCID: PMC10432706 DOI: 10.1016/j.csbj.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/22/2023] Open
Abstract
A long-standing goal of personalized and precision medicine is to enable accurate prediction of the outcomes of a given treatment regimen for patients harboring a disease. Currently, many clinical trials fail to meet their endpoints due to underlying factors in the patient population that contribute to either poor responses to the drug of interest or to treatment-related adverse events. Identifying these factors beforehand and correcting for them can lead to an increased success of clinical trials. Comprehensive and large-scale data gathering efforts in biomedicine by omics profiling of the healthy and diseased individuals has led to a treasure-trove of host, disease and environmental factors that contribute to the effectiveness of drugs aiming to treat disease. With increasing omics data, artificial intelligence allows an in-depth analysis of big data and offers a wide range of applications for real-world clinical use, including improved patient selection and identification of actionable targets for companion therapeutics for improved translatability across more patients. As a blueprint for complex drug-disease-host interactions, we here discuss the challenges of utilizing omics data for predicting responses and adverse events in cancer immunotherapy with immune checkpoint inhibitors (ICIs). The omics-based methodologies for improving patient outcomes as in the ICI case have also been applied across a wide-range of complex disease settings, exemplifying the use of omics for in-depth disease profiling and clinical use.
Collapse
Affiliation(s)
- Angelo Limeta
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 64 Stockholm, Sweden
| | | | - Boyang Ji
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| |
Collapse
|
309
|
Thomas S, Dilbarov N, Kelly J, Mercogliano G, Prendergast GC. Diet effects on colonic health influence the efficacy of Bin1 mAb immunotherapy for ulcerative colitis. Sci Rep 2023; 13:11802. [PMID: 37479833 PMCID: PMC10361997 DOI: 10.1038/s41598-023-38830-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
Ulcerative colitis (UC) is an idiopathic disease of the large intestine linked to high fat-high protein diets, a dysbiotic microbiome, and a metabolome linked to diet and/or aberrant circadian rhythms associated with poor sleeping patterns. Understanding diet-affected factors that negatively influence colonic health may offer new insights into how to prevent UC and enhance the efficacy of UC immunotherapy. In this preclinical study, we found that standard or high fiber diets in mice positively influenced their colonic health, whereas a high fat-high protein diet negatively influenced colonic health, consistent with clinical findings. Animals fed a high fat/high protein diet experienced obesity and a reduced colon length, illustrating a phenotype we suggest calling peinosis [hunger-like-condition; Greek, peina: hunger; osis: condition], as marked by a lack of nutrient energy remaining in fecal pellets. Notably, a high fat/high protein diet also led to signs of muscle weakness that could not be explained fully by weight gain. In contrast, mice on a high fiber diet ranked highest compared to other diets in terms of colon length and lack of muscle weakness. That said, mice on a high fiber diet were more prone to UC and toxic responses to immunotherapy, consistent with clinical observations. Recent studies have suggested that a standard diet may be needed to support the efficacy of immunotherapeutic drugs used to prevent and treat UC. Here we observed that protection against UC by Bin1 mAb, a passive UC immunotherapy that acts by coordinately enforcing intestinal barrier function, protecting enteric neurons, and normalizing the microbiome, was associated with increased colonic levels of healthful short-chain fatty acids (SCFA), particularly butyric acid and propionic acid, which help enforce intestinal barrier function. This work offers a preclinical platform to investigate how diet affects UC immunotherapy and the potential of dietary SCFA supplements to enhance it. Further, it suggests that the beneficial effects of passive immunotherapy by Bin1 mAb in UC treatment may be mediated to some extent by promoting increased levels of healthful SCFA.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA.
| | - Nickey Dilbarov
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - Joseph Kelly
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | - George C Prendergast
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA
| |
Collapse
|
310
|
Henderson EA, Lukomski S, Boone BA. Emerging applications of cancer bacteriotherapy towards treatment of pancreatic cancer. Front Oncol 2023; 13:1217095. [PMID: 37588093 PMCID: PMC10425600 DOI: 10.3389/fonc.2023.1217095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Pancreatic cancer is a highly aggressive form of cancer with a five-year survival rate of only ten percent. Pancreatic ductal adenocarcinoma (PDAC) accounts for ninety percent of those cases. PDAC is associated with a dense stroma that confers resistance to current treatment modalities. Increasing resistance to cancer treatments poses a challenge and a need for alternative therapies. Bacterial mediated cancer therapies were proposed in the late 1800s by Dr. William Coley when he injected osteosarcoma patients with live streptococci or a fabrication of heat-killed Streptococcus pyogenes and Serratia marcescens known as Coley's toxin. Since then, several bacteria have gained recognition for possible roles in potentiating treatment response, enhancing anti-tumor immunity, and alleviating adverse effects to standard treatment options. This review highlights key bacterial mechanisms and structures that promote anti-tumor immunity, challenges and risks associated with bacterial mediated cancer therapies, and applications and opportunities for use in PDAC management.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
311
|
Vandoni G, D’Amico F, Fabbrini M, Mariani L, Sieri S, Casirati A, Di Guardo L, Del Vecchio M, Anichini A, Mortarini R, Sgambelluri F, Celano G, Serale N, De Angelis M, Brigidi P, Gavazzi C, Turroni S. Gut Microbiota, Metabolome, and Body Composition Signatures of Response to Therapy in Patients with Advanced Melanoma. Int J Mol Sci 2023; 24:11611. [PMID: 37511376 PMCID: PMC10380337 DOI: 10.3390/ijms241411611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the recent breakthroughs in targeted and immunotherapy for melanoma, the overall survival rate remains low. In recent years, considerable attention has been paid to the gut microbiota and other modifiable patient factors (e.g., diet and body composition), though their role in influencing therapeutic responses has yet to be defined. Here, we characterized a cohort of 31 patients with unresectable IIIC-IV-stage cutaneous melanoma prior to initiation of targeted or first-line immunotherapy via the following methods: (i) fecal microbiome and metabolome via 16S rRNA amplicon sequencing and gas chromatography/mass spectrometry, respectively, and (ii) anthropometry, body composition, nutritional status, physical activity, biochemical parameters, and immunoprofiling. According to our data, patients subsequently classified as responders were obese (i.e., with high body mass index and high levels of total, visceral, subcutaneous, and intramuscular adipose tissue), non-sarcopenic, and enriched in certain fecal taxa (e.g., Phascolarctobacterium) and metabolites (e.g., anethole), which were potentially endowed with immunostimulatory and oncoprotective activities. On the other hand, non-response was associated with increased proportions of Streptococcus, Actinomyces, Veillonella, Dorea, Fusobacterium, higher neutrophil levels (and a higher neutrophil-to-lymphocyte ratio), and higher fecal levels of butyric acid and its esters, which also correlated with decreased survival. This exploratory study provides an integrated list of potential early prognostic biomarkers that could improve the clinical management of patients with advanced melanoma, in particular by guiding the design of adjuvant therapeutic strategies to improve treatment response and support long-term health improvement.
Collapse
Affiliation(s)
- Giulia Vandoni
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Luigi Mariani
- Data Science Unit, Fondazione IRCCS Istituito Nazionale dei Tumori, 20133 Milan, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lorenza Di Guardo
- Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Michele Del Vecchio
- Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy (R.M.)
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy (R.M.)
| | - Francesco Sgambelluri
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy (R.M.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nadia Serale
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cecilia Gavazzi
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
312
|
Pizzutilo EG, Romanò R, Roazzi L, Agostara AG, Oresti S, Zeppellini A, Giannetta L, Cerea G, Signorelli D, Siena S, Sartore-Bianchi A. Immune Checkpoint Inhibitors and the Exposome: Host-Extrinsic Factors Determine Response, Survival, and Toxicity. Cancer Res 2023; 83:2283-2296. [PMID: 37205627 PMCID: PMC10345966 DOI: 10.1158/0008-5472.can-23-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Cancer immunotherapy, largely represented by immune checkpoint inhibitors (ICI), has led to substantial changes in preclinical cancer research and clinical oncology practice over the past decade. However, the efficacy and toxicity profiles of ICIs remain highly variable among patients, with only a fraction achieving a significant benefit. New combination therapeutic strategies are being investigated, and the search for novel predictive biomarkers is ongoing, mainly focusing on tumor- and host-intrinsic components. Less attention has been directed to all the external, potentially modifiable factors that compose the exposome, including diet and lifestyle, infections, vaccinations, and concomitant medications, that could affect the immune system response and its activity against cancer cells. We hereby provide a review of the available clinical evidence elucidating the impact of host-extrinsic factors on ICI response and toxicity.
Collapse
Affiliation(s)
- Elio Gregory Pizzutilo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Rebecca Romanò
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Laura Roazzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Alberto G. Agostara
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Sara Oresti
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Annalisa Zeppellini
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Giannetta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Diego Signorelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| |
Collapse
|
313
|
Wang R, Xiong K, Wang Z, Wu D, Hu B, Ruan J, Sun C, Ma D, Li L, Liao S. Immunodiagnosis - the promise of personalized immunotherapy. Front Immunol 2023; 14:1216901. [PMID: 37520576 PMCID: PMC10372420 DOI: 10.3389/fimmu.2023.1216901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Immunotherapy showed remarkable efficacy in several cancer types. However, the majority of patients do not benefit from immunotherapy. Evaluating tumor heterogeneity and immune status before treatment is key to identifying patients that are more likely to respond to immunotherapy. Demographic characteristics (such as sex, age, and race), immune status, and specific biomarkers all contribute to response to immunotherapy. A comprehensive immunodiagnostic model integrating all these three dimensions by artificial intelligence would provide valuable information for predicting treatment response. Here, we coined the term "immunodiagnosis" to describe the blueprint of the immunodiagnostic model. We illustrated the features that should be included in immunodiagnostic model and the strategy of constructing the immunodiagnostic model. Lastly, we discussed the incorporation of this immunodiagnosis model in clinical practice in hopes of improving the prognosis of tumor immunotherapy.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kairong Xiong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bai Hu
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
314
|
Martín R, Rios-Covian D, Huillet E, Auger S, Khazaal S, Bermúdez-Humarán LG, Sokol H, Chatel JM, Langella P. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol Rev 2023; 47:fuad039. [PMID: 37451743 PMCID: PMC10410495 DOI: 10.1093/femsre/fuad039] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
In humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront. Its representation is also diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is frequently present at reduced levels in individuals with gastrointestinal diseases or disorders. In this review, we first thoroughly describe updates to the taxonomy of Faecalibacterium, which has transformed a single-species taxon to a multispecies taxon over the last decade. We then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were published. Next, we examine current available strategies for modulating Faecalibacterium levels in the gut. Finally, we summarize the mechanisms underlying the beneficial effects that have been attributed to this genus. Together, epidemiological and experimental data strongly support the use of Faecalibacterium as a next-generation probiotic (NGP) or live biotherapeutic product (LBP).
Collapse
Affiliation(s)
- Rebeca Martín
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - David Rios-Covian
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eugénie Huillet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sarah Khazaal
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, F-75012, Paris, France
| | - Jean-Marc Chatel
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
315
|
Garcia MB, Schadler KL, Chandra J, Clinton SK, Courneya KS, Cruz-Monserrate Z, Daniel CR, Dannenberg AJ, Demark-Wahnefried W, Dewhirst MW, Fabian CJ, Hursting SD, Irwin ML, Iyengar NM, McQuade JL, Schmitz KH, Basen-Engquist K. Translating energy balance research from the bench to the clinic to the community: Parallel animal-human studies in cancer. CA Cancer J Clin 2023; 73:425-442. [PMID: 36825928 PMCID: PMC11225601 DOI: 10.3322/caac.21773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Advances in energy balance and cancer research to date have largely occurred in siloed work in rodents or patients. However, substantial benefit can be derived from parallel studies in which animal models inform the design of clinical and population studies or in which clinical observations become the basis for animal studies. The conference Translating Energy Balance from Bench to Communities: Application of Parallel Animal-Human Studies in Cancer, held in July 2021, convened investigators from basic, translational/clinical, and population science research to share knowledge, examples of successful parallel studies, and strong research to move the field of energy balance and cancer toward practice changes. This review summarizes key topics discussed to advance research on the role of energy balance, including physical activity, body composition, and dietary intake, on cancer development, cancer outcomes, and healthy survivorship.
Collapse
Affiliation(s)
- Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keri L. Schadler
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, TexasHouston, USA
| | - Joya Chandra
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, TexasHouston, USA
| | - Steven K. Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kerry S. Courneya
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Carrie R. Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Wendy Demark-Wahnefried
- Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carol J. Fabian
- Department of Medicine, Division of Medical Oncology, The University of Kansas Medical Center, Westwood, Kansas, USA
| | - Stephen D. Hursting
- Department of Nutrition Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda L. Irwin
- Department of Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Neil M. Iyengar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kathryn H. Schmitz
- Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karen Basen-Engquist
- Department of Health Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
316
|
Wang M, Yang G, Tian Y, Zhang Q, Liu Z, Xin Y. The role of the gut microbiota in gastric cancer: the immunoregulation and immunotherapy. Front Immunol 2023; 14:1183331. [PMID: 37457738 PMCID: PMC10348752 DOI: 10.3389/fimmu.2023.1183331] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 07/18/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers, leading to the deaths of millions of people worldwide. Therefore, early detection and effective therapeutic strategies are of great value for decreasing the occurrence of advanced GC. The human microbiota is involved not only in the maintenance of physiological conditions, but also in human diseases such as obesity, diabetes, allergic and atopic diseases, and cancer. Currently, the composition of the bacteria in the host, their functions, and their influence on disease progression and treatment are being discussed. Previous studies on the gut microbiome have mostly focused on Helicobacter pylori (Hp) owing to its significant role in the development of GC. Nevertheless, the enrichment and diversity of other bacteria that can modulate the tumor microenvironment are involved in the progression of GC and the efficacy of immunotherapy. This review provides systematic insight into the components of the gut microbiota and their application in GC, including the specific bacteria of GC, their immunoregulatory effect, and their diagnostic value. Furthermore, we discuss the relationship between the metabolism of microbes and their potential applications, which may serve as a new approach for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ge Yang
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yuan Tian
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Qihe Zhang
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Xin
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
317
|
Fidelle M, Tian AL, Zitvogel L, Kroemer G. Bile acids regulate MAdCAM-1 expression to link the gut microbiota to cancer immunosurveillance. Oncoimmunology 2023; 12:2224672. [PMID: 37405191 PMCID: PMC10316723 DOI: 10.1080/2162402x.2023.2224672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
In a recent paper in Science, Fidelle et al. unravel a gut immune checkpoint that is subverted by antibiotic treatment. Post-antibiotic dysbiosis of the ileum causes an increase in bile acids that downregulate MAdCAM-1, thereby triggering the exodus of immunosuppressive T cells from gut-associated lymphoid tissues toward tumors.
Collapse
Affiliation(s)
- Marine Fidelle
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Equipe Labellisée Par la Ligue Contre le Cancer, Inserm U1015, Villejuif, France
| | - Ai-Ling Tian
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Laurence Zitvogel
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Equipe Labellisée Par la Ligue Contre le Cancer, Inserm U1015, Villejuif, France
- Faculty of Medicine, Université Paris Saclay, France
- Department of Biology, Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Institut du Cancer Paris Carpem, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
318
|
Zhou Y, Li H. Neurological adverse events associated with PD-1/PD-L1 immune checkpoint inhibitors. Front Neurosci 2023; 17:1227049. [PMID: 37456998 PMCID: PMC10339650 DOI: 10.3389/fnins.2023.1227049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy is a promising method for cancer treatment. Among them, immune checkpoint inhibitors targeting PD-1/PD-L1 are increasingly used for certain cancers. However, with the widespread use of such drugs, reports of immune-related adverse events (irAEs) are also increasing. Neurological adverse events (nAEs) are one of the irAEs that affect the peripheral and central nervous systems. They are characterized by low incidence, hard to diagnose, and life-threatening risks, which have a significant impact on the prognosis of patients. Biomarker-based early diagnosis and subsequent treatment strategies are worthy of attention, and comprehensive management of irAEs is important for optimizing patients' quality of life and long-term outcomes. In this review, we summarized the mechanisms, common symptoms, early biomarkers, treatments, and future research directions of nAEs, in order to provide a comprehensive overview of immune checkpoint inhibitor-related nAEs targeting PD-1/PD-L1.
Collapse
|
319
|
Tan Z, Meng Y, Li L, Wu Y, Liu C, Dong W, Chen C. Association of Dietary Fiber, Composite Dietary Antioxidant Index and Risk of Death in Tumor Survivors: National Health and Nutrition Examination Survey 2001-2018. Nutrients 2023; 15:2968. [PMID: 37447293 DOI: 10.3390/nu15132968] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Dietary fiber is a functional substance with strong antioxidant activity that plays an important role in human health. Dietary fiber has been shown to reduce the risks of many types of cancers, but whether it can reduce the risk of death in cancer survivors remains undetermined. METHODS This study included the dietary data of cancer survivors who participated in the National Health and Nutrition Examination Surveys from 2001 to 2018. Firstly, the relationship between fiber intake and composite dietary antioxidant index (CDAI) was explored by weighted multiple regression and smooth curve. Subsequently, multivariable Cox proportional hazards regression models were used to explore the effects of dietary fiber intake and CDAI level on the risks of all-cause, tumor, and cardiovascular death among cancer survivors. RESULTS A total of 2077 participants were included in the study, representing approximately 11,854,509 cancer survivors in the United States. The dietary fiber intake of tumor survivors had a nonlinear positive relationship with CDAI levels (β = 0.24, 95% CI: 0.08-0.40, p = 0.004). Multivariable Cox proportional hazards regression models showed that high dietary fiber intake and CDAI levels were associated with reduced risks of all-cause and tumor death in tumor survivors, but were not associated with the risk of cardiovascular death. CONCLUSION An increased dietary fiber intake can enhance the body's antioxidant capacity. A higher dietary fiber intake and CDAI level may reduce the risk of all-cause and tumor death in tumor survivors.
Collapse
Affiliation(s)
- Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Yang Meng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Lu Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Yanrui Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Changzheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| |
Collapse
|
320
|
Robinson I, Hochmair MJ, Schmidinger M, Absenger G, Pichler M, Nguyen VA, Richtig E, Rainer BM, Ay L, Jansen C, Pacífico C, Knabl A, Sladek B, Gasche N, Valipour A. Assessing the Performance of a Novel Stool-Based Microbiome Test That Predicts Response to First Line Immune Checkpoint Inhibitors in Multiple Cancer Types. Cancers (Basel) 2023; 15:3268. [PMID: 37444378 DOI: 10.3390/cancers15133268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The intestinal microbiome is by now an undebatable key player in the clinical outcome of ICI therapies. However, no microbiome profiling method to aid therapy decision is yet validated. We conducted a multi-centric study in patients with stage III/IV melanoma, NSCLC, or RCC receiving ICI treatment. The stool microbiome profile of 63 patients was analyzed with BiomeOne®, a microbiome-based algorithm that anticipates whether a patient will achieve clinical benefit with ICIs prior to therapy initiation. Classification of patient samples as Rs and NRs was achieved with a sensitivity of 81% and a specificity of 50% in this validation cohort. An ICI-favorable response was characterized by an intestinal microbiome rich in bacteria such as Oscillospira sp., Clostridia UCG-014, Lachnospiraceae UCG-010 sp., Prevotella copri, and a decrease in Sutterella sp., Lactobacillales, and Streptococcus sp. Patients who developed immune-related adverse events (irAEs) had an overall increased microbial diversity and richness, and a stool microbiome depleted in Agathobacter. When compared with the programmed death-ligand 1 (PD-L1) expression test in the subcohort of NSCLC patients (n = 38), BiomeOne® exhibited a numerically higher sensitivity (78.6%) in identifying responders when compared with the PD-L1 test (67.9%). This study provides an evaluation of BiomeOne®, the first microbiome-based test for prediction of ICI response, to achieve market authorization. Validation with further indications and expansion to other microbiome-based interventions will be essential to bring microbiome-based diagnostics into standard clinical practice.
Collapse
Affiliation(s)
- Irina Robinson
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna Healthcare Group, 1210 Vienna, Austria
| | - Maximilian Johannes Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna Healthcare Group, 1210 Vienna, Austria
| | - Manuela Schmidinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Gudrun Absenger
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, 8036 Graz, Austria
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, 8036 Graz, Austria
| | - Van Anh Nguyen
- Department of Dermatology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, 8036 Graz, Austria
| | | | - Leyla Ay
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna Healthcare Group, 1210 Vienna, Austria
| | | | | | | | | | | | - Arschang Valipour
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna Healthcare Group, 1210 Vienna, Austria
| |
Collapse
|
321
|
Cheng Y, Ling F, Li J, Chen Y, Xu M, Li S, Zhu L. An updated review of gastrointestinal toxicity induced by PD-1 inhibitors: from mechanisms to management. Front Immunol 2023; 14:1190850. [PMID: 37404814 PMCID: PMC10315615 DOI: 10.3389/fimmu.2023.1190850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
PD-1 inhibitors, as one of commonly used immune checkpoint inhibitors, enable T-cell activation and prevent immune escape by blocking the PD-1/PD-L1 signaling pathway. They have transformed the treatment landscape for cancer in recent years, due to the advantages of significantly prolonging patients' survival and improving their life quality. However, the ensuing unpredictable immune-related adverse effects (irAEs) plague clinicians, such as colitis and even potentially fatal events like intestinal perforation and obstruction. Therefore, understanding the clinical manifestations and grading criteria, underlying mechanisms, available diverse therapies, accessible biomarkers, and basis for risk stratification is of great importance for the management. Current evidence suggests that irAEs may be a marker of clinical benefit to immunotherapy in patients, so whether to discontinue PD-1 inhibitors after the onset of irAEs and rechallenge after remission of irAEs requires further evaluation of potential risk-reward ratios as well as more data from large-scale prospective studies to fully validate. At the end, the rare gastrointestinal toxicity events caused by PD-1 inhibitors are also sorted out. This review provides a summary of available data on the gastrointestinal toxicity profile caused by PD-1 inhibitors, with the aim of raising clinicians' awareness in daily practice, so that patients can safely benefit from therapy.
Collapse
|
322
|
Brevi A, Zarrinpar A. Live Biotherapeutic Products as Cancer Treatments. Cancer Res 2023; 83:1929-1932. [PMID: 37317784 PMCID: PMC10275495 DOI: 10.1158/0008-5472.can-22-2626] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
Almost every aspect of cancer can be influenced by microbiota including tumor onset, progression, and response to therapy. The increasing evidence of the role of microbiota in human health and disease has reinvigorated the interest in designing microbial products that can affect cancer outcomes. Researchers have made numerous attempts to develop safe, engineered biotherapeutic products for cancer treatment using synthetic biology tools. Despite the progress, only Bacillus Calmette-Guérin is approved for human use. Here, we highlight the recent advances and current challenges in using live bacteria as cancer therapeutics.
Collapse
Affiliation(s)
- Arianna Brevi
- – Division of Gastroenterology, University of California, San Diego, La Jolla, CA
- – Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Amir Zarrinpar
- – Division of Gastroenterology, University of California, San Diego, La Jolla, CA
- – Moores Cancer Center, University of California, San Diego, La Jolla, CA
- – VA Health Sciences San Diego, La Jolla, CA
- – Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| |
Collapse
|
323
|
Lin M, Sun X, Lv L. New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer. Mol Ther Oncolytics 2023; 29:91-106. [PMID: 37215386 PMCID: PMC10199166 DOI: 10.1016/j.omto.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.
Collapse
Affiliation(s)
- Mingen Lin
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Xue Sun
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Lei Lv
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai 201103, China
| |
Collapse
|
324
|
Halsey TM, Thomas AS, Hayase T, Ma W, Abu-Sbeih H, Sun B, Parra ER, Jiang ZD, DuPont HL, Sanchez C, El-Himri R, Brown A, Flores I, McDaniel L, Turrubiates MO, Hensel M, Pham D, Watowich SS, Hayase E, Chang CC, Jenq RR, Wang Y. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor-induced colitis. Sci Transl Med 2023; 15:eabq4006. [PMID: 37315113 PMCID: PMC10759507 DOI: 10.1126/scitranslmed.abq4006] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Immune checkpoint inhibitors (ICIs) target advanced malignancies with high efficacy but also predispose patients to immune-related adverse events like immune-mediated colitis (IMC). Given the association between gut bacteria with response to ICI therapy and subsequent IMC, fecal microbiota transplantation (FMT) represents a feasible way to manipulate microbial composition in patients, with a potential benefit for IMC. Here, we present a large case series of 12 patients with refractory IMC who underwent FMT from healthy donors as salvage therapy. All 12 patients had grade 3 or 4 ICI-related diarrhea or colitis that failed to respond to standard first-line (corticosteroids) and second-line immunosuppression (infliximab or vedolizumab). Ten patients (83%) achieved symptom improvement after FMT, and three patients (25%) required repeat FMT, two of whom had no subsequent response. At the end of the study, 92% achieved IMC clinical remission. 16S rRNA sequencing of patient stool samples revealed that compositional differences between FMT donors and patients with IMC before FMT were associated with a complete response after FMT. Comparison of pre- and post-FMT stool samples in patients with complete responses showed significant increases in alpha diversity and increases in the abundances of Collinsella and Bifidobacterium, which were depleted in FMT responders before FMT. Histologically evaluable complete response patients also had decreases in select immune cells , including CD8+ T cells, in the colon after FMT when compared with non-complete response patients (n = 4). This study validates FMT as an effective treatment strategy for IMC and gives insights into the microbial signatures that may play a critical role in FMT response.
Collapse
Affiliation(s)
- Taylor M. Halsey
- Graduate School of Biomedical Sciences, Microbiology and Infectious Diseases, The University of Texas MD Anderson Cancer Center UTHealth Houston; Houston, Texas, USA
| | - Anusha S. Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Weijie Ma
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University; Wuhan, Hubei Province, People’s Republic of China
| | - Hamzah Abu-Sbeih
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Internal Medicine, University of Missouri; Kansas City, Missouri, USA
| | - Baohua Sun
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, School of Public Health, The University of Texas; Houston, Texas, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, School of Public Health, The University of Texas; Houston, Texas, USA
- Kelsey Research Foundation; Houston, Texas, USA
| | - Christopher Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Rawan El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Alexandria Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Miriam Ortega Turrubiates
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | | | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| |
Collapse
|
325
|
Nguyen CL, Markey KA, Miltiadous O, Dai A, Waters N, Sadeghi K, Fei T, Shouval R, Taylor BP, Liao C, Slingerland JB, Slingerland AE, Clurman AG, Maloy MA, Bohannon L, Giardina PA, Brereton DG, Armijo GK, Fontana E, Gradissimo A, Gyurkocza B, Sung AD, Chao NJ, Devlin SM, Taur Y, Giralt SA, Perales MA, Xavier JB, Pamer EG, Peled JU, Gomes ALC, van den Brink MRM. High-resolution analyses of associations between medications, microbiome, and mortality in cancer patients. Cell 2023; 186:2705-2718.e17. [PMID: 37295406 PMCID: PMC10390075 DOI: 10.1016/j.cell.2023.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Discerning the effect of pharmacological exposures on intestinal bacterial communities in cancer patients is challenging. Here, we deconvoluted the relationship between drug exposures and changes in microbial composition by developing and applying a new computational method, PARADIGM (parameters associated with dynamics of gut microbiota), to a large set of longitudinal fecal microbiome profiles with detailed medication-administration records from patients undergoing allogeneic hematopoietic cell transplantation. We observed that several non-antibiotic drugs, including laxatives, antiemetics, and opioids, are associated with increased Enterococcus relative abundance and decreased alpha diversity. Shotgun metagenomic sequencing further demonstrated subspecies competition, leading to increased dominant-strain genetic convergence during allo-HCT that is significantly associated with antibiotic exposures. We integrated drug-microbiome associations to predict clinical outcomes in two validation cohorts on the basis of drug exposures alone, suggesting that this approach can generate biologically and clinically relevant insights into how pharmacological exposures can perturb or preserve microbiota composition. The application of a computational method called PARADIGM to a large dataset of cancer patients' longitudinal fecal specimens and detailed daily medication records reveals associations between drug exposures and the intestinal microbiota that recapitulate in vitro findings and are also predictive of clinical outcomes.
Collapse
Affiliation(s)
- Chi L Nguyen
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kate A Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Oriana Miltiadous
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anqi Dai
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicholas Waters
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Keimya Sadeghi
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roni Shouval
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bradford P Taylor
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John B Slingerland
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ann E Slingerland
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Annelie G Clurman
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Molly A Maloy
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lauren Bohannon
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul A Giardina
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel G Brereton
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriel K Armijo
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily Fontana
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ana Gradissimo
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Boglarka Gyurkocza
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sean M Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying Taur
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sergio A Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joao B Xavier
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Antonio L C Gomes
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marcel R M van den Brink
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
326
|
Golčić M, Simetić L, Herceg D, Blažičević K, Kenđel Jovanović G, Dražić I, Belančić A, Skočibušić N, Palčevski D, Rubinić I, Vlahović-Palčevski V, Majnarić T, Dobrila-Dintinjana R, Pleština S. Analysis of the Gut Microbiome and Dietary Habits in Metastatic Melanoma Patients with a Complete and Sustained Response to Immunotherapy. Cancers (Basel) 2023; 15:cancers15113052. [PMID: 37297014 DOI: 10.3390/cancers15113052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy has improved the prognosis of metastatic melanoma patients, although most patients do not achieve a complete response. While specific gut microbiome and dietary habits might influence treatment success, there is a lack of concordance between the studies, potentially due to dichotomizing patients only into responders and non-responders. The aim of this study was to elucidate whether metastatic melanoma patients with complete and sustained response to immunotherapy exhibit differences in gut microbiome composition among themselves, and whether those differences were associated with specific dietary habits. Shotgun metagenomic sequencing revealed that patients who exhibited a complete response after more than 9 months of treatment (late responders) exhibited a significantly higher beta-diversity (p = 0.02), with a higher abundance of Coprococcus comes (LDA 3.548, p = 0.010), Bifidobacterium pseudocatenulatum (LDA 3.392, p = 0.024), and lower abundance of Prevotellaceae (p = 0.04) compared to early responders. Furthermore, late responders exhibited a different diet profile, with a significantly lower intake of proteins and sweets and a higher intake of flavones (p < 0.05). The research showed that metastatic melanoma patients with a complete and sustained response to immunotherapy were a heterogeneous group. Patients with a late complete response exhibited microbiome and dietary habits which were previously associated with an improved response to immunotherapy.
Collapse
Affiliation(s)
- Marin Golčić
- Department of Radiotherapy and Oncology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Luka Simetić
- Department of Oncology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Davorin Herceg
- Department of Oncology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Krešimir Blažičević
- Department of Oncology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Gordana Kenđel Jovanović
- Department of Health Ecology, Teaching Institute of Public Health of Primorsko-Goranska County, 51000 Rijeka, Croatia
| | - Ivan Dražić
- Department of Mathematics, Physics and Foreign Languages, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia
| | - Andrej Belančić
- Department of Clinical Pharmacology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Nataša Skočibušić
- Department of Clinical Pharmacology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Dora Palčevski
- Department of Internal Medicine, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Igor Rubinić
- Department of Clinical Pharmacology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Vera Vlahović-Palčevski
- Department of Clinical Pharmacology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Tea Majnarić
- Community Health Center of Primorsko-Goranska County, 51000 Rijeka, Croatia
| | | | - Stjepko Pleština
- Department of Oncology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
327
|
Cohen Y, Elinav E. Dietary fibers & immunity-more than meets the eye. Cell Res 2023; 33:411-412. [PMID: 36646763 PMCID: PMC10235049 DOI: 10.1038/s41422-022-00770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
328
|
Anderson KG, Braun DA, Buqué A, Gitto SB, Guerriero JL, Horton B, Keenan BP, Kim TS, Overacre-Delgoffe A, Ruella M, Triplett TA, Veeranki O, Verma V, Zhang F. Leveraging immune resistance archetypes in solid cancer to inform next-generation anticancer therapies. J Immunother Cancer 2023; 11:e006533. [PMID: 37399356 PMCID: PMC10314654 DOI: 10.1136/jitc-2022-006533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.
Collapse
Affiliation(s)
- Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Obstetrics and Gynecology, Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sarah B Gitto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marco Ruella
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd A Triplett
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Omkara Veeranki
- Medical Affairs and Clinical Development, Caris Life Sciences Inc, Irving, Texas, USA
| | - Vivek Verma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Fan Zhang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
329
|
Spreafico A, Heirali AA, Araujo DV, Tan TJ, Oliva M, Schneeberger PHH, Chen B, Wong MK, Stayner LA, Hansen AR, Saibil SD, Wang BX, Cochrane K, Sherriff K, Allen-Vercoe E, Xu W, Siu LL, Coburn B. First-in-class Microbial Ecosystem Therapeutic 4 (MET4) in combination with immune checkpoint inhibitors in patients with advanced solid tumors (MET4-IO trial). Ann Oncol 2023; 34:520-530. [PMID: 36863483 DOI: 10.1016/j.annonc.2023.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The intestinal microbiome has been associated with response to immune checkpoint inhibitors (ICIs) in humans and causally implicated in ICI responsiveness in animal models. Two recent human trials demonstrated that fecal microbiota transplant (FMT) from ICI responders can rescue ICI responses in refractory melanoma, but FMT has specific limitations to scaled use. PATIENTS AND METHODS We conducted an early-phase clinical trial of a cultivated, orally delivered 30-species microbial consortium (Microbial Ecosystem Therapeutic 4, MET4) designed for co-administration with ICIs as an alternative to FMT and assessed safety, tolerability and ecological responses in patients with advanced solid tumors. RESULTS The trial achieved its primary safety and tolerability outcomes. There were no statistically significant differences in the primary ecological outcomes; however, differences in MET4 species relative abundance were evident after randomization that varied by patient and species. Increases in the relative abundance of several MET4 taxa, including Enterococcus and Bifidobacterium, taxa previously associated with ICI responsiveness, were observed and MET4 engraftment was associated with decreases in plasma and stool primary bile acids. CONCLUSIONS This trial is the first report of the use of a microbial consortium as an alternative to FMT in advanced cancer patients receiving ICI and the results justify the further development of microbial consortia as a therapeutic co-intervention for ICI treatment in cancer.
Collapse
Affiliation(s)
- A Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto; Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto.
| | - A A Heirali
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - D V Araujo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto; Department of Medical Oncology, Hospital de Base, Sao Paulo, Brazil
| | - T J Tan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - M Oliva
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto; Department of Medical Oncology, Institut Catala d' Oncologia, L'Hospitalet de Llobregat, Barcelona; Universitat de Barcelona, Barcelona, Spain
| | - P H H Schneeberger
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Allschwil; University of Basel, Basel, Switzerland
| | - B Chen
- Biostatistics Department, Princess Margaret Cancer Centre, University Health Network, Toronto
| | - M K Wong
- Department of Immunology, University of Toronto, Toronto
| | - L-A Stayner
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto
| | - A R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto
| | - S D Saibil
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto
| | - B X Wang
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto
| | | | | | | | - W Xu
- Biostatistics Department, Princess Margaret Cancer Centre, University Health Network, Toronto
| | - L L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto; Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto
| | - B Coburn
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
330
|
Drommi F, Calabrò A, Vento G, Pezzino G, Cavaliere R, Omero F, Muscolino P, Granata B, D'Anna F, Silvestris N, De Pasquale C, Ferlazzo G, Campana S. Crosstalk between ILC3s and Microbiota: Implications for Colon Cancer Development and Treatment with Immune Check Point Inhibitors. Cancers (Basel) 2023; 15:cancers15112893. [PMID: 37296855 DOI: 10.3390/cancers15112893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type 3 innate lymphoid cells (ILC3s) are primarily tissue-resident cells strategically localized at the intestinal barrier that exhibit the fast-acting responsiveness of classic innate immune cells. Populations of these lymphocytes depend on the transcription factor RAR-related orphan receptor and play a key role in maintaining intestinal homeostasis, keeping host-microbial mutualism in check. Current evidence has indicated a bidirectional relationship between microbiota and ILC3s. While ILC3 function and maintenance in the gut are influenced by commensal microbiota, ILC3s themselves can control immune responses to intestinal microbiota by providing host defense against extracellular bacteria, helping to maintain a diverse microbiota and inducing immune tolerance for commensal bacteria. Thus, ILC3s have been linked to host-microbiota interactions and the loss of their normal activity promotes dysbiosis, chronic inflammation and colon cancer. Furthermore, recent evidence has suggested that a healthy dialog between ILC3s and gut microbes is necessary to support antitumor immunity and response to immune checkpoint inhibitor (ICI) therapy. In this review, we summarize the functional interactions occurring between microbiota and ILC3s in homeostasis, providing an overview of the molecular mechanisms orchestrating these interactions. We focus on how alterations in this interplay promote gut inflammation, colorectal cancer and resistance to therapies with immune check point inhibitors.
Collapse
Affiliation(s)
- Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| | - Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| | - Grazia Vento
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genova, Italy
| | - Gaetana Pezzino
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| | - Fausto Omero
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Paola Muscolino
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Barbara Granata
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Federica D'Anna
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genova, Italy
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| |
Collapse
|
331
|
Seo YD, Wargo JA. From bugs to drugs: Bacterial 3-IAA enhances efficacy of chemotherapy in pancreatic cancer. Cell Rep Med 2023; 4:101039. [PMID: 37196631 DOI: 10.1016/j.xcrm.2023.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023]
Abstract
Tintelnot et al.1 identified enrichment of indole-3-acetic acid (3-IAA), a tryptophan metabolite produced by gut microbiota, as a predictor of chemotherapy response in pancreatic adenocarcinoma. Recapitulated in mouse models, 3-IAA represents a novel potential therapeutic approach for chemotherapy sensitization.
Collapse
Affiliation(s)
- Y David Seo
- Departments of Surgical Oncology and Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Departments of Surgical Oncology and Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
332
|
Singh A, Alexander SG, Martin S. Gut microbiome homeostasis and the future of probiotics in cancer immunotherapy. Front Immunol 2023; 14:1114499. [PMID: 37261348 PMCID: PMC10228691 DOI: 10.3389/fimmu.2023.1114499] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
The gut microbiome has an impact on cancer immune surveillance and immunotherapy, with recent studies showing categorical differences between immunotherapy-sensitive and immunotherapy-resistant cancer patient cohorts. Although probiotics are traditionally being supplemented to promote treatments or sustain therapeutic benefits; the FDA has not approved any for use with immunotherapy. The first step in developing probiotics for immunotherapy is identifying helpful or harmful bacteria down to the strain level. The gut microbiome's heterogeneity before and during treatment is also being investigated to determine microbial strains that are important for immunotherapy. Moreover, Dietary fiber intake, prebiotic supplementation and fecal microbiota transplantation (FMT) were found to enhance intratumoral CD8+ T cell to T-reg ratio in the clinics. The possibility of probiotic immunotherapy as a "living adjuvant" to CAR treatment and checkpoint blockade resistance is actively being investigated.
Collapse
|
333
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
334
|
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00766-x. [PMID: 37169888 DOI: 10.1038/s41571-023-00766-x] [Citation(s) in RCA: 252] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
335
|
Grigorievskaya ZV, Petukhova IN, Bagirova NS, Aginova VV, Kononets PV. Role of the microbiota in oncogenesis. SIBERIAN JOURNAL OF ONCOLOGY 2023; 22:129-142. [DOI: 10.21294/1814-4861-2023-22-2-129-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Objective. To conduct a systematic analysis of data on the results of studies published in scientific journals on the pro-carcinogenic and anticarcinogenic role of microbiota, as well as on the therapeutic potential of microorganisms in oncogenesis.Material and Methods. The articles were searched using the Web of Science, Scopus, PubMed, Medline, and eLIBRARY databases. More than 150 sources dedicated to the study of the carcinogenic function of the microbiota and the possible influence of its species and quantitative composition on the efficacy and toxicity of antitumor therapy were found. Data from 71 articles were included in the review.Results. The relationship between the gut microbiota and cancer is multifactorial and bilateral: pro-carcinogenic on the one hand and anti-carcinogenic on the other hand. Microorganisms can induce tumor growth and cancer development through DNA damage and induction of mutagenesis, trigger oncogenic signals, disruption of barrier function, as well as immune response system disruption. Depletion of microbiota, the development of dysbiosis and induction of chronic inflammatory state are negative factors in the development of cancer. The anticancer effect of microorganisms is presumably based on the production of tumor-suppressive metabolites that function through multiple immune reactions. Maintenance of barrier function, competitive exclusion of pathogenic bacteria, and direct action on immune cells to prevent inflammation are also important protective factors. The presence of intratumor microorganisms in various tumors has been noted. Changes in species and quantitative composition of cancer patients’ microbiota are influenced by diet, taking antibacterial drugs, chemo-, immuno- and radiation therapy. In turn, the microbiota can affect the ongoing treatment. Numerous studies on the influence of the gut microbiota on the efficacy of immunotherapy, particularly in disseminated melanoma, have been conducted. It has been suggested that primary resistance to immunotherapy may be related to the abnormal composition of the gut microbiota. The level of gut microfora composition diversity and the number of Faecalibacterium or Bacteroidales in the fecal microbiota have been suggested to be the predictor of response to anti-PD-1 therapy. To change the composition and activity of the gut microbiota, several therapeutic methods, such as the administration of prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, as well as the change in the microbiota composition through a specific diet, are available.
Collapse
Affiliation(s)
- Z. V. Grigorievskaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
| | - I. N. Petukhova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
| | - N. S. Bagirova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
| | - V. V. Aginova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
| | - P. V. Kononets
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
| |
Collapse
|
336
|
Li Y, Zhang D, Wang M, Jiang H, Feng C, Li Y. Intratumoral microbiota is associated with prognosis in patients with adrenocortical carcinoma. IMETA 2023; 2:e102. [PMID: 38868430 PMCID: PMC10989844 DOI: 10.1002/imt2.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/14/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare but aggressive malignancy. Recent studies have discovered a pivotal role of the intratumoral microbiota in various cancers, yet it remains elusive in ACC. Here, we explored the intratumoral microbiome data derived from in silico identification, further validated in an in-house cohort by bacterial 16S rRNA fluorescence in situ hybridization and lipopolysaccharide staining. Unsupervised clustering determined two naturally distinct clusters of the intratumoral microbiome in ACC, which was associated with overall survival. The incorporation of microbial signatures enhanced the prognostic performance of the clinical stage in an immunity-dependent manner. Genetic and transcriptomic association analyses identified significant upregulation of the cell cycle and p53 signaling pathways associated with microbial signatures for worsened prognosis. Our study not only supports the presence of intratumoral bacteria but also implies a prognostic and biological role of intratumoral microbiota in ACC, which can advance a better understanding of the biology of ACC.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Urology, Huashan HospitalFudan UniversityShanghaiChina
| | - Dengwei Zhang
- Department of Chemistry and The Swire Institute of Marine ScienceThe University of Hong KongHong KongChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Minghua Wang
- Department of Urology, Huashan HospitalFudan UniversityShanghaiChina
| | - Haowen Jiang
- Department of Urology, Huashan HospitalFudan UniversityShanghaiChina
| | - Chenchen Feng
- Department of Urology, Huashan HospitalFudan UniversityShanghaiChina
| | - Yong‐Xin Li
- Department of Chemistry and The Swire Institute of Marine ScienceThe University of Hong KongHong KongChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
337
|
Shah UA, Parikh R, Castro F, Bellone M, Lesokhin AM. Dietary and microbiome evidence in multiple myeloma and other plasma cell disorders. Leukemia 2023; 37:964-980. [PMID: 36997677 PMCID: PMC10443185 DOI: 10.1038/s41375-023-01874-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/11/2023]
Abstract
Multiple Myeloma (MM) remains an incurable plasma cell neoplasm. Although little is known about the etiology of MM, several metabolic risk factors such as obesity, diabetes mellitus, diet, and the human intestinal microbiome have been linked to the pathogenesis of MM. In this article, we provide a detailed review of dietary and microbiome factors involved in the pathogenesis of MM and their impact on outcomes. Concurrent with treatment advancements that have improved survival in MM, focused efforts are needed to reduce the burden of MM as well as improve MM specific and overall outcomes once MM is diagnosed. The findings presented in this review will provide a comprehensive guide on the evidence available to date of the impact of dietary and other lifestyle interventions on the gut microbiome and on MM incidence, outcomes, and quality of life. Data generated from such studies can help formulate evidence-based guidelines for healthcare providers to counsel individuals at risk such as those with Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM) as well as MM survivors with respect to their dietary habits.
Collapse
Affiliation(s)
- Urvi A Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Richa Parikh
- Department of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Francesca Castro
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Bellone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alexander M Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
338
|
Jamal R, Messaoudene M, de Figuieredo M, Routy B. Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Semin Immunol 2023; 67:101754. [PMID: 37003055 DOI: 10.1016/j.smim.2023.101754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 04/01/2023]
Abstract
The gut microbiota has rapidly emerged as one of the "hallmarks of cancers" and a key contributor to cancer immunotherapy. Metagenomics profiling has established the link between microbiota compositions and immune checkpoint inhibitors response and toxicity, while murine experiments demonstrating the synergistic benefits of microbiota modification with immune checkpoint inhibitors (ICIs) pave a clear path for translation. Fecal microbiota transplantation (FMT) is one of the most effective treatments for patients with Clostridioides difficile, but its utility in other disease contexts has been limited. Nonetheless, promising data from the first trials combining FMT with ICIs have provided strong clinical rationale to pursue this strategy as a novel therapeutic avenue. In addition to the safety considerations surrounding new and emerging pathogens potentially transmissible by FMT, several other challenges must be overcome in order to validate the use of FMT as a therapeutic option in oncology. In this review, we will explore how the lessons learned from FMT in other specialties will help shape the design and development of FMT in the immuno-oncology arena.
Collapse
|
339
|
Heirali A, Moossavi S, Arrieta MC, Coburn B. Principles and Terminology for Host-Microbiome-Drug Interactions. Open Forum Infect Dis 2023; 10:ofad195. [PMID: 37180590 PMCID: PMC10167991 DOI: 10.1093/ofid/ofad195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Interactions between the microbiome and medical therapies are distinct and bidirectional. The existing term "pharmacomicrobiomics" describes the effects of the microbiome on drug distribution, metabolism, efficacy, and toxicity. We propose that the term "pharmacoecology" be used to describe the effects that drugs and other medical interventions such as probiotics have on microbiome composition and function. We suggest that the terms are complementary but distinct and that both are potentially important when assessing drug safety and efficacy as well as drug-microbiome interactions. As a proof of principle, we describe the ways in which these concepts apply to antimicrobial and non-antimicrobial medications.
Collapse
Affiliation(s)
- Alya Heirali
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shirin Moossavi
- Departments of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Marie Claire Arrieta
- Departments of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Bryan Coburn
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
340
|
Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207366. [PMID: 36951547 PMCID: PMC10214247 DOI: 10.1002/advs.202207366] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Indexed: 05/27/2023]
Abstract
Gut microbiota-derived metabolites are key hubs connecting the gut microbiome and cancer progression, primarily by remodeling the tumor microenvironment and regulating key signaling pathways in cancer cells and multiple immune cells. The use of microbial metabolites in radiotherapy and chemotherapy mitigates the severe side effects from treatment and improves the efficacy of treatment. Immunotherapy combined with microbial metabolites effectively activates the immune system to kill tumors and overcomes drug resistance. Consequently, various novel strategies have been developed to modulate microbial metabolites. Manipulation of genes involved in microbial metabolism using synthetic biology approaches directly affects levels of microbial metabolites, while fecal microbial transplantation and phage strategies affect levels of microbial metabolites by altering the composition of the microbiome. However, some microbial metabolites harbor paradoxical functions depending on the context (e.g., type of cancer). Furthermore, the metabolic effects of microorganisms on certain anticancer drugs such as irinotecan and gemcitabine, render the drugs ineffective or exacerbate their adverse effects. Therefore, a personalized and comprehensive consideration of the patient's condition is required when employing microbial metabolites to treat cancer. The purpose of this review is to summarize the correlation between gut microbiota-derived metabolites and cancer, and to provide fresh ideas for future scientific research.
Collapse
Affiliation(s)
- Qiqing Yang
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qinghui Zheng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Xuli Meng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
- Center for Infection & Immunity of International Institutes of Medicine The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
- Cancer CenterZhejiang UniversityHangzhou310058China
| |
Collapse
|
341
|
Roelands J, Kuppen PJK, Ahmed EI, Mall R, Masoodi T, Singh P, Monaco G, Raynaud C, de Miranda NFCC, Ferraro L, Carneiro-Lobo TC, Syed N, Rawat A, Awad A, Decock J, Mifsud W, Miller LD, Sherif S, Mohamed MG, Rinchai D, Van den Eynde M, Sayaman RW, Ziv E, Bertucci F, Petkar MA, Lorenz S, Mathew LS, Wang K, Murugesan S, Chaussabel D, Vahrmeijer AL, Wang E, Ceccarelli A, Fakhro KA, Zoppoli G, Ballestrero A, Tollenaar RAEM, Marincola FM, Galon J, Khodor SA, Ceccarelli M, Hendrickx W, Bedognetti D. An integrated tumor, immune and microbiome atlas of colon cancer. Nat Med 2023; 29:1273-1286. [PMID: 37202560 PMCID: PMC10202816 DOI: 10.1038/s41591-023-02324-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
The lack of multi-omics cancer datasets with extensive follow-up information hinders the identification of accurate biomarkers of clinical outcome. In this cohort study, we performed comprehensive genomic analyses on fresh-frozen samples from 348 patients affected by primary colon cancer, encompassing RNA, whole-exome, deep T cell receptor and 16S bacterial rRNA gene sequencing on tumor and matched healthy colon tissue, complemented with tumor whole-genome sequencing for further microbiome characterization. A type 1 helper T cell, cytotoxic, gene expression signature, called Immunologic Constant of Rejection, captured the presence of clonally expanded, tumor-enriched T cell clones and outperformed conventional prognostic molecular biomarkers, such as the consensus molecular subtype and the microsatellite instability classifications. Quantification of genetic immunoediting, defined as a lower number of neoantigens than expected, further refined its prognostic value. We identified a microbiome signature, driven by Ruminococcus bromii, associated with a favorable outcome. By combining microbiome signature and Immunologic Constant of Rejection, we developed and validated a composite score (mICRoScore), which identifies a group of patients with excellent survival probability. The publicly available multi-omics dataset provides a resource for better understanding colon cancer biology that could facilitate the discovery of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Jessica Roelands
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Eiman I Ahmed
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Tariq Masoodi
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Gianni Monaco
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Christophe Raynaud
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Luigi Ferraro
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Naples, Italy
| | | | - Najeeb Syed
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Arun Rawat
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Amany Awad
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - William Mifsud
- Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill-Cornell Medicine Qatar, Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shimaa Sherif
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mahmoud G Mohamed
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Darawan Rinchai
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Marc Van den Eynde
- Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Rosalyn W Sayaman
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Francois Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Mahir Abdulla Petkar
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Stephan Lorenz
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Lisa Sara Mathew
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Kun Wang
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Damien Chaussabel
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Computational Sciences Department, The Jackson Laboratory, Farmington, CT, USA
| | | | - Ena Wang
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Nurix Therapeutics, San Francisco, CA, USA
| | - Anna Ceccarelli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Khalid A Fakhro
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Weill-Cornell Medicine Qatar, Doha, Qatar
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco M Marincola
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Sonata Therapeutics, Watertown, MA, USA
| | - Jérôme Galon
- Inserm, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre Le Cancer, Centre de Recherche de Cordeliers, Université de Paris, Sorbonne Université, Paris, France
| | - Souhaila Al Khodor
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Michele Ceccarelli
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Naples, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Wouter Hendrickx
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Davide Bedognetti
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
342
|
Park JS, Gazzaniga FS, Wu M, Luthens AK, Gillis J, Zheng W, LaFleur MW, Johnson SB, Morad G, Park EM, Zhou Y, Watowich SS, Wargo JA, Freeman GJ, Kasper DL, Sharpe AH. Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance. Nature 2023; 617:377-385. [PMID: 37138075 PMCID: PMC10219577 DOI: 10.1038/s41586-023-06026-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.
Collapse
Affiliation(s)
- Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca S Gazzaniga
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Meng Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Amalia K Luthens
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jacob Gillis
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wen Zheng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Martin W LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah B Johnson
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Golnaz Morad
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Zhou
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S Watowich
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
343
|
Liu N, Chen L, Yan M, Tao Q, Wu J, Chen J, Chen X, Zhang W, Peng C. Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0127. [PMID: 37223471 PMCID: PMC10202379 DOI: 10.34133/research.0127] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Natural killer (NK) cells, as key immune cells, play essential roles in tumor cell immune escape and immunotherapy. Accumulating evidence has demonstrated that the gut microbiota community affects the efficacy of anti-PD1 immunotherapy and that remodeling the gut microbiota is a promising strategy to enhance anti-PD1 immunotherapy responsiveness in advanced melanoma patients; however, the details of the mechanism remain elusive. In this study, we found that Eubacterium rectale was significantly enriched in melanoma patients who responded to anti-PD1 immunotherapy and that a high E. rectale abundance was related to longer survival in melanoma patients. Furthermore, administration of E. rectale remarkably improved the efficacy of anti-PD1 therapy and increased the overall survival of tumor-bearing mice; moreover, application of E. rectale led to a significant accumulation of NK cells in the tumor microenvironment. Interestingly, conditioned medium isolated from an E. rectale culture system dramatically enhanced NK cell function. Gas chromatography-mass spectrometry/ultrahigh performance liquid chromatography-tandem mass spectrometry-based metabolomic analysis showed that l-serine production was significantly decreased in the E. rectale group; moreover, administration of an l-serine synthesis inhibitor dramatically increased NK cell activation, which enhanced anti-PD1 immunotherapy effects. Mechanistically, supplementation with l-serine or application of an l-serine synthesis inhibitor affected NK cell activation through Fos/Fosl. In summary, our findings reveal the role of bacteria-modulated serine metabolic signaling in NK cell activation and provide a novel therapeutic strategy to improve the efficacy of anti-PD1 immunotherapy in melanoma.
Collapse
Affiliation(s)
- Nian Liu
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Lihui Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Mingjie Yan
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Jie Wu
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Jing Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| |
Collapse
|
344
|
Bender MJ, McPherson AC, Phelps CM, Pandey SP, Laughlin CR, Shapira JH, Medina Sanchez L, Rana M, Richie TG, Mims TS, Gocher-Demske AM, Cervantes-Barragan L, Mullett SJ, Gelhaus SL, Bruno TC, Cannon N, McCulloch JA, Vignali DAA, Hinterleitner R, Joglekar AV, Pierre JF, Lee STM, Davar D, Zarour HM, Meisel M. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 2023; 186:1846-1862.e26. [PMID: 37028428 PMCID: PMC10148916 DOI: 10.1016/j.cell.2023.03.011] [Citation(s) in RCA: 288] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/23/2023] [Accepted: 03/09/2023] [Indexed: 04/09/2023]
Abstract
The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.
Collapse
Affiliation(s)
- Mackenzie J Bender
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex C McPherson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Catherine M Phelps
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Surya P Pandey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colin R Laughlin
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jake H Shapira
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luzmariel Medina Sanchez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohit Rana
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanner G Richie
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Tahliyah S Mims
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Angela M Gocher-Demske
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nikki Cannon
- Genetics and Microbiome Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John A McCulloch
- Genetics and Microbiome Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph F Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sonny T M Lee
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Diwakar Davar
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hassane M Zarour
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
345
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
346
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
347
|
Crowder SL, Jim HSL, Hogue S, Carson TL, Byrd DA. Gut microbiome and cancer implications: Potential opportunities for fermented foods. Biochim Biophys Acta Rev Cancer 2023; 1878:188897. [PMID: 37086870 DOI: 10.1016/j.bbcan.2023.188897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
There is a critical opportunity to improve response to immunotherapies and overall cancer survivorship via dietary interventions targeted to modify the gut microbiome, and in turn, potentially enhance anti-cancer immunity. A promising dietary intervention is fermented foods, which may alter gut microbiome composition and, in turn, improve immunity. In this article, we summarize the state of the literature pertaining to the gut microbiome and response to immunotherapy and other cancer treatments, potential clinical implications of utilizing a fermented foods dietary approach to improve cancer treatment outcomes, and existing gaps in the literature regarding the implementation of fermented food interventions among individuals with cancer or with a history of cancer. This review synthesizes a compelling rationale across different disciplines to lay a roadmap for future fermented food dietary intervention research aimed at modulating the gut microbiome to reduce cancer burden.
Collapse
Affiliation(s)
- Sylvia L Crowder
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stephanie Hogue
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tiffany L Carson
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Doratha A Byrd
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
348
|
Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: Current progress and future directions. Cancer Lett 2023; 562:216182. [PMID: 37076040 DOI: 10.1016/j.canlet.2023.216182] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Cancer treatment has been advanced with the advent of immune checkpoint inhibitors (ICIs) exemplified by anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) drugs. Patients have reaped substantial benefit from ICIs in many cancer types. However, few patients benefit from ICIs whereas the vast majority undergoing these treatments do not obtain survival benefit. Even for patients with initial responses, they may encounter drug resistance in their subsequent treatments, which limits the efficacy of ICIs. Therefore, a deepening understanding of drug resistance is critically important for the explorations of approaches to reverse drug resistance and to boost ICI efficacy. In the present review, different mechanisms of ICI resistance have been summarized according to the tumor intrinsic, tumor microenvironment (TME) and host classifications. We further elaborated corresponding strategies to battle against such resistance accordingly, which include targeting defects in antigen presentation, dysregulated interferon-γ (IFN-γ) signaling, neoantigen depletion, upregulation of other T cell checkpoints as well as immunosuppression and exclusion mediated by TME. Moreover, regarding the host, several additional approaches that interfere with diet and gut microbiome have also been described in reversing ICI resistance. Additionally, we provide an overall glimpse into the ongoing clinical trials that utilize these mechanisms to overcome ICI resistance. Finally, we summarize the challenges and opportunities that needs to be addressed in the investigation of ICI resistance mechanisms, with the aim to benefit more patients with cancer.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
349
|
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, Liu J, Subudhi SK, Poon C, Gant KL, Herbrich SM, Anandhan S, Islam S, Amit M, Anandappa G, Allison JP. Immune checkpoint therapy-current perspectives and future directions. Cell 2023; 186:1652-1669. [PMID: 37059068 DOI: 10.1016/j.cell.2023.03.006] [Citation(s) in RCA: 431] [Impact Index Per Article: 215.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/16/2023]
Abstract
Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.
Collapse
Affiliation(s)
- Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratishtha Singh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashwat Nagarajan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jielin Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candice Poon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristal L Gant
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelley M Herbrich
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shajedul Islam
- Department of Head & Neck Surgery Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head & Neck Surgery Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
350
|
Bauer KC, Greten TF. A gut response: Modulating chemotherapy efficacy with microbial metabolites. Immunity 2023; 56:750-752. [PMID: 37044066 DOI: 10.1016/j.immuni.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Despite clinical advances, chemotherapy largely fails in metastatic cancers. Commensal bacteria can indicate chemotherapy efficacy. In a recent issue of Nature, Tintelnot et al.1 demonstrate that bacterial metabolite 3-IAA amplifies chemotherapy outcomes via autophagy pathways in metastatic pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Kylynda C Bauer
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|