301
|
Batra JS, Chi TY, Huang MF, Zhu D, Chen Z, Lee DF, Kameoka J. Wearable Biosensor with Molecularly Imprinted Conductive Polymer Structure to Detect Lentivirus in Aerosol. BIOSENSORS 2023; 13:861. [PMID: 37754095 PMCID: PMC10527467 DOI: 10.3390/bios13090861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
The coronavirus disease (COVID-19) pandemic has increased pressure to develop low-cost, compact, user-friendly, and ubiquitous virus sensors for monitoring infection outbreaks in communities and preventing economic damage resulting from city lockdowns. As proof of concept, we developed a wearable paper-based virus sensor based on a molecular imprinting technique, using a conductive polyaniline (PANI) polymer to detect the lentivirus as a test sample. This sensor detected the lentivirus with a 4181 TU/mL detection limit in liquid and 0.33% to 2.90% detection efficiency in aerosols at distances ranging from 30 cm to 60 cm. For fabrication, a mixture of a PANI monomer solution and virus were polymerized together to form a conductive PANI sensing element on a polyethylene terephthalate (PET) paper substrate. The sensing element exhibited formation of virus recognition sites after the removal of the virus via ultrasound sonication. A dry measurement technique was established that showed aerosol virus detection by the molecularly imprinted sensors within 1.5 h of virus spraying. This was based on the mechanism via which dispensing virus droplets on the PANI sensing element induced hybridization of the virus and molecularly imprinted virus recognition templates in PANI, influencing the conductivity of the PANI film upon drying. Interestingly, the paper-based virus sensor was easily integrated with a wearable face mask for the detection of viruses in aerosols. Since the paper sensor with molecular imprinting of virus recognition sites showed excellent stability in dry conditions for long periods of time, unlike biological reagents, this wearable biosensor will offer an alternative approach to monitoring virus infections in communities.
Collapse
Affiliation(s)
- Jaskirat Singh Batra
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77840, USA; (J.S.B.); (T.-Y.C.)
| | - Ting-Yen Chi
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77840, USA; (J.S.B.); (T.-Y.C.)
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (D.Z.); (D.-F.L.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX 77030, USA
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (D.Z.); (D.-F.L.)
| | - Zheyuan Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (D.Z.); (D.-F.L.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston TX 77030, USA
| | - Jun Kameoka
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA;
- Graduate School of Information, Production and System Research, Waseda University, Fukuoka 808-0135, Japan
| |
Collapse
|
302
|
Kanda K, Nishimura H, Koiso T, Takemoto K, Nakagoe K, Yamada T, Takahashi M, Hanafusa M, Kawahara T, Yanagida Y, Kuramochi J, Fujiwara T. Applying negative ions and an electric field to countermeasure droplets/aerosol transmission without hindering communication. Sci Rep 2023; 13:13965. [PMID: 37634041 PMCID: PMC10460439 DOI: 10.1038/s41598-023-40303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023] Open
Abstract
In the COVID-19 pandemic, lockdown and acryl partitions were adopted as countermeasures against droplets/aerosol infections; however, these countermeasures restrict communication. In this study, a blocking device was developed using negative ions and an electric field. The device blocks mists simulating droplets/aerosol by a maximum of 89% but transmits light and sound, which is important for communication. The device demonstrated effective blocking performance for aerosol, including the COVID-19 virus spread from patients in a clinic. Our device can help prevent infections without disrupting communication.
Collapse
Affiliation(s)
- Kaito Kanda
- Laboratory for Future, Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Hisaaki Nishimura
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Koiso
- Department of Aeronautics and Astronautics, The University of Tokyo, Tokyo, Japan
| | - Kousuke Takemoto
- Research Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Kazuma Nakagoe
- Laboratory for Future, Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Tetsuya Yamada
- Laboratory for Future, Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
| | - Masaharu Takahashi
- Research Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Mariko Hanafusa
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Kawahara
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuko Yanagida
- Laboratory for Future, Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | | | - Takeo Fujiwara
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
303
|
Ghumra D, Shetty N, McBrearty KR, Puthussery JV, Sumlin BJ, Gardiner WD, Doherty BM, Magrecki JP, Brody DL, Esparza TJ, O’Halloran JA, Presti RM, Bricker TL, Boon ACM, Yuede CM, Cirrito JR, Chakrabarty RK. Rapid Direct Detection of SARS-CoV-2 Aerosols in Exhaled Breath at the Point of Care. ACS Sens 2023; 8:3023-3031. [PMID: 37498298 PMCID: PMC10463275 DOI: 10.1021/acssensors.3c00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Airborne transmission via virus-laden aerosols is a dominant route for the transmission of respiratory diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Direct, non-invasive screening of respiratory virus aerosols in patients has been a long-standing technical challenge. Here, we introduce a point-of-care testing platform that directly detects SARS-CoV-2 aerosols in as little as two exhaled breaths of patients and provides results in under 60 s. It integrates a hand-held breath aerosol collector and a llama-derived, SARS-CoV-2 spike-protein specific nanobody bound to an ultrasensitive micro-immunoelectrode biosensor, which detects the oxidation of tyrosine amino acids present in SARS-CoV-2 viral particles. Laboratory and clinical trial results were within 20% of those obtained using standard testing methods. Importantly, the electrochemical biosensor directly detects the virus itself, as opposed to a surrogate or signature of the virus, and is sensitive to as little as 10 viral particles in a sample. Our platform holds the potential to be adapted for multiplexed detection of different respiratory viruses. It provides a rapid and non-invasive alternative to conventional viral diagnostics.
Collapse
Affiliation(s)
- Dishit
P. Ghumra
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Nishit Shetty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin R. McBrearty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Joseph V. Puthussery
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin J. Sumlin
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Woodrow D. Gardiner
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Brookelyn M. Doherty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Jordan P. Magrecki
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - David L. Brody
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
- Department
of Neurology, Uniformed Services University
of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Thomas J. Esparza
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
| | - Jane A. O’Halloran
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Rachel M. Presti
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Traci L. Bricker
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Adrianus C. M. Boon
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carla M. Yuede
- Department
of Psychiatry, Washington University School
of Medicine, Campus Box
8134, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - John R. Cirrito
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Rajan K. Chakrabarty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
304
|
French AJ, Rockey NC, Le Sage V, Mueller Brown K, Shephard MJ, Frizzell S, Myerburg MM, Hiller NL, Lakdawala SS. Detection of influenza virus and Streptococcus pneumoniae in air sampled from co-infected ferrets and analysis of their influence on pathogen stability. mSphere 2023; 8:e0003923. [PMID: 37255295 PMCID: PMC10449498 DOI: 10.1128/msphere.00039-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Secondary infection with Streptococcus pneumoniae has contributed significantly to morbidity and mortality during multiple influenza virus pandemics and remains a common threat today. During a concurrent infection, both pathogens can influence the transmission of each other, but the mechanisms behind this are unclear. In this study, condensation air sampling and cyclone bioaerosol sampling were performed using ferrets first infected with the 2009 H1N1 pandemic influenza virus (H1N1pdm09) and secondarily infected with S. pneumoniae strain D39 (Spn). We detected viable pathogens and microbial nucleic acid in expelled aerosols from co-infected ferrets, suggesting that these microbes could be present in the same respiratory expulsions. To assess whether microbial communities impact pathogen stability within an expelled droplet, we performed experiments measuring viral and bacterial persistence in 1 µL droplets. We observed that H1N1pdm09 stability was unchanged in the presence of Spn. Further, Spn stability was moderately increased in the presence of H1N1pdm09, although the degree of stabilization differed between airway surface liquid collected from individual patient cultures. These findings are the first to collect both pathogens from the air and in doing so, they provide insight into the interplay between these pathogens and their hosts.IMPORTANCEThe impact of microbial communities on transmission fitness and environmental persistence is under-studied. Environmental stability of microbes is crucial to identifying transmission risks and mitigation strategies, such as removal of contaminated aerosols and decontamination of surfaces. Co-infection with S. pneumoniae is very common during influenza virus infection, but little work has been done to understand whether S. pneumoniae alters stability of influenza virus, or vice versa, in a relevant system. Here, we demonstrate that influenza virus and S. pneumoniae are expelled by co-infected hosts. Our stability assays did not reveal any impact of S. pneumoniae on influenza virus stability, but did show a trend towards increased stability of S. pneumoniae in the presence of influenza viruses. Future work characterizing environmental persistence of viruses and bacteria should include microbially complex solutions to better mimic physiologically relevant conditions.
Collapse
Affiliation(s)
- Andrea J. French
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicole C. Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Karina Mueller Brown
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Meredith J. Shephard
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sheila Frizzell
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mike M. Myerburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
305
|
Ferreira T, Vale AC, Pinto AC, Costa RV, Pais V, Sousa D, Gomes F, Pinto G, Dias JG, Moreira IP, Mota C, Bessa J, Antunes JC, Henriques M, Cunha F, Fangueiro R. Comparison of Zinc Oxide Nanoparticle Integration into Non-Woven Fabrics Using Different Functionalisation Methods for Prospective Application as Active Facemasks. Polymers (Basel) 2023; 15:3499. [PMID: 37688127 PMCID: PMC10489795 DOI: 10.3390/polym15173499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
The development of advanced facemasks stands out as a paramount priority in enhancing healthcare preparedness. In this work, different polypropylene non-woven fabrics (NWF) were characterised regarding their structural, physicochemical and comfort-related properties. The selected NWF for the intermediate layer was functionalised with zinc oxide nanoparticles (ZnO NPs) 0.3 and 1.2wt% using three different methods: electrospinning, dip-pad-dry and exhaustion. After the confirmation of ZnO NP content and distribution within the textile fibres by morphological and chemical analysis, the samples were evaluated regarding their antimicrobial properties. The functionalised fabrics obtained via dip-pad-dry unveiled the most promising data, with 0.017 ± 0.013wt% ZnO NPs being mostly located at the fibre's surface and capable of total eradication of Staphylococcus aureus and Escherichia coli colonies within the tested 24 h (ISO 22196 standard), as well as significantly contributing (**** p < 0.0001) to the growth inhibition of the bacteriophage MS2, a surrogate of the SARS-CoV-2 virus (ISO 18184 standard). A three-layered structure was assembled and thermoformed to obtain facemasks combining the previously chosen NWF, and its resulting antimicrobial capacity, filtration efficiency and breathability (NP EN ISO 149) were assessed. The developed three-layered and multiscaled fibrous structures with antimicrobial capacities hold immense potential as active individual protection facemasks.
Collapse
Affiliation(s)
- Tânia Ferreira
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Alexandra C. Pinto
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
| | - Rita V. Costa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Diana Sousa
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Graça Pinto
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - José Guilherme Dias
- Poleva—Termoconformados, S.A. Rua da Estrada 1939, 4610-744 Felgueiras, Portugal;
| | - Inês P. Moreira
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Carlos Mota
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Joana C. Antunes
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| |
Collapse
|
306
|
Qu F, Weschler LB, Zhang Y, Spengler JD. Childhood pneumonia in Beijing: Associations and interactions among selected demographic and environmental factors. ENVIRONMENTAL RESEARCH 2023; 231:116211. [PMID: 37257739 DOI: 10.1016/j.envres.2023.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Among infectious diseases, pneumonia is the greatest cause of mortality in children less than 5 years old. Approximately 27% of Beijing's 3-8 year-old children have had pneumonia at least once. The sole reservoir of pneumonia pathogens is the human nasopharynx. We investigated associations and interactions among two kinds of environmental risk factors: i) airborne pathogens, namely closed bedroom window and shared bedroom and ii) pollutants, namely traffic pollution and environmental tobacco smoke (ETS). We evaluated breastfeeding's (BF) protective value against childhood pneumonia. The database consists of responses to a questionnaire in a cross-sectional study. Crude and adjusted Odds Ratios were assessed independently for each risk factor. Combinations of the studied risk factors were analyzed using multivariate logistic regression. Risk factors were evaluated for interactions on the additive scale using the metrics Relative Excess Risk due to Interaction (RERI), Attributable Proportion (AP) and Synergy Index (S). All independent risk factors were significant for children's pneumonia. We also found evidence of possible synergistic interaction between pairs of risk factors that was stronger when one of the risk factors was a closed bedroom window. Remarkably, window opening was associated with reduced risk of pneumonia for children living near heavy traffic pollution. Longer duration BF was more protective than shorter, and exclusive BF was more protective than partial BF against childhood pneumonia. In conclusion, low ventilation (closed bedroom windows), shared bedroom, ETS, and traffic exposure were associated with increased risk of pneumonia. Exclusive BF for more than six months had the greatest protective value against pneumonia.
Collapse
Affiliation(s)
- Fang Qu
- China Meteorological Administration Training Center, China Meteorological Administration, Beijing, 100081, China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Louise B Weschler
- Independent Researcher, 161 Richdale Road, Colts Neck, NJ, 07722, United States.
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, 100084, China
| | - John D Spengler
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, United States
| |
Collapse
|
307
|
An overview of SARS-CoV-2 transmission and engineering strategies to mitigate risk. JOURNAL OF BUILDING ENGINEERING 2023; 73:106737. [PMCID: PMC10165872 DOI: 10.1016/j.jobe.2023.106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 10/31/2024]
Abstract
The spread of the COVID-19 pandemic has profoundly affected every aspect of our lives. To date, experts have acknowledged that airborne transmission is a key piece of the SARS-CoV-2 puzzle. Nevertheless, the exact mechanism of airborne transmission of SARS-CoV-2 remains unclear. Recent works have shown the spreading of SARS-CoV-2 through numerical modeling and experimental works, but the successful applications of engineering approaches in reducing the spread of SARS-CoV-2 are lacking. In this review, the environmental factors that influence the transmission risk of SARS-CoV-2, such as ventilation flow rates, humidity, and temperature, are discussed. Besides, additional macro and micro weather factors, regional and global transmission, and the variants of the spread of SARS-CoV-2 are also reviewed. Engineering approaches that practically reduce the risks of SARS-CoV-2 transmissions are reported. Given the complex human behavior, environmental properties, and dynamic nature of the SARS-CoV-2 virus, it is reasonable to summarize that SARS-CoV-2 may not be eradicated even with the timely implementation of interventions. Therefore, more research exploring the potential cost-effective ways to control the transmission rate of SARS-CoV-2 may be a worthwhile pursuit to moderate the current crisis.
Collapse
|
308
|
Zhang Z, Tao W, Cheng D, Qin M, Fu J, Liu D. Deciphering the crosstalk of immune dysregulation between COVID-19 and idiopathic inflammatory myopathy. Front Immunol 2023; 14:1197493. [PMID: 37638007 PMCID: PMC10449257 DOI: 10.3389/fimmu.2023.1197493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background The coronavirus disease (COVID-19) pandemic is a serious threat to public health worldwide. Growing evidence reveals that there are certain links between COVID-19 and autoimmune diseases; in particular, COVID-19 and idiopathic inflammatory myopathies (IIM) have been observed to be clinically comorbid. Hence, this study aimed to elucidate the molecular mechanisms of COVID-19 and IIM from a genomic perspective. Methods We obtained transcriptome data of patients with COVID-19 and IIM separately from the GEO database and identified common differentially expressed genes (DEGs) by intersection. We then performed functional enrichment, PPI, machine learning, gene expression regulatory network, and immune infiltration analyses of co-expressed genes. Results A total of 91 common genes were identified between COVID-19 and IIM. Functional enrichment analysis revealed that these genes were mainly involved in immune dysregulation, response to external stimuli, and MAPK signaling pathways. The MCODE algorithm recognized two densely linked clusters in the common genes, which were related to inflammatory factors and interferon signaling. Subsequently, three key genes (CDKN1A, IFI27, and STAB1) were screened using machine learning to predict the occurrence of COVID-19 related IIM. These key genes exhibited excellent diagnostic performance in both training and validation cohorts. Moreover, we created TF-gene and miRNA-gene networks to reveal the regulation of key genes. Finally, we estimated the relationship between key genes and immune cell infiltration, of which IFI27 was positively associated with M1 macrophages. Conclusion Our work revealed common molecular mechanisms, core genes, potential targets, and therapeutic approaches for COVID-19 and IIM from a genomic perspective. This provides new ideas for the diagnosis and treatment of COVID-19 related IIM in the future.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Weidong Tao
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Debin Cheng
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Marong Qin
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Jun Fu
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Dong Liu
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
309
|
Tomezzoli E, D'Ecclesiis O, Raimondi S, Pravettoni G, Cammarata G, Testa G, Bellerba F, Gnagnarella P, Iannuzzo ML, Sartorio A, Sasso C, Ricci D, Marazzi N, Galli F, Gandini S. Sports activity limitation during the COVID-19 pandemic in young Italian athletes: impact on mental health in children, adolescents, and young adults. Front Public Health 2023; 11:1237443. [PMID: 37637799 PMCID: PMC10448519 DOI: 10.3389/fpubh.2023.1237443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The closure of sports centres was implemented as a preventive measure to mitigate the transmission of SARS-CoV-2. Given the observed global decline in physical activity and concurrent rise in sedentary behaviour, even among younger age groups, a retrospective cross-sectional study was undertaken to evaluate the effects of this measure on mental health in children, adolescents, and young adults during the initial phases of the COVID-19 pandemic. Methods A total of 1,717 non-professional athletes (age range: 6-25; 53.9% males, 44.6% females) completed an online questionnaire including widely used and validated measures for mental health assessment (SDQ and PGWB-S) and questions regarding sociodemographic characteristics (such as gender), physical activity, and screen time. The association between mental health and sociodemographic characteristics, physical activity, and screen time was evaluated by using univariate and multivariable logistic regression models. Results In children and adolescents, the incidence of psychological difficulties was associated with not being physically active (OR = 1.49; 95% CI: 1.09, 2.07; p = 0.015). Engaging in physical activity during the period of closures, particularly if more than twice a week, was significantly associated with less psychological difficulties for children/adolescents (OR = 0.54; 95% CI: 0.35, 0.82; p = 0.004) and psychological symptoms (i.e., psychological well-being lower than the median) for youth/young adults (OR = 0.25; 95% CI: 0.14, 0.45; p < 0.001). More psychological difficulties were also found in males for children and adolescents (OR = 1.37; 95% CI: 1.06, 1.79; p = 0.018). However, young adult males showed less psychological symptoms than females (OR = 0.35; 95% CI: 0.22, 0.55; p = 0.001). Additionally, a greater amount of screen time was associated with a higher incidence of psychological symptoms in the whole sample. Conclusions Our results confirm the positive impact of physical activity on mental health during the COVID-19 pandemic among younger age groups. They also provide valuable insights into the risk-benefit relationship of interrupting sports activities as a preventive measure for infectious diseases.
Collapse
Affiliation(s)
- Elisa Tomezzoli
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Oriana D'Ecclesiis
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giulio Cammarata
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | | | - Federica Bellerba
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Patrizia Gnagnarella
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Maria Luisa Iannuzzo
- AULSS 9 Scaligera, Dipartimento di Prevenzione, UOC Medicina Legale, Verona, Italy
| | - Alessandro Sartorio
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Clementina Sasso
- Istituto Nazionale di Astrofisica (INAF)-Capodimonte Astronomical Observatory, Naples, Italy
| | - Dorotea Ricci
- ARES-ODV Associazione Regionale Emergenza Sanitaria, Ancona, Italy
| | - Nicoletta Marazzi
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Federica Galli
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| |
Collapse
|
310
|
Hung TY, Wen CS, Yu SH, Chen YC, Chen HL, Chen WL, Wu CC, Su YC, Lin CL, Hu SC, Lin T. A comparative analysis of aerosol exposure and prevention strategies in bystander, pre-hospital, and inpatient cardiopulmonary resuscitation using simulation manikins. Sci Rep 2023; 13:12552. [PMID: 37532861 PMCID: PMC10397338 DOI: 10.1038/s41598-023-39726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
To evaluate aerosol exposure risk and prevention strategies during bystander, pre-hospital, and inpatient cardiopulmonary resuscitation (CPR). This study compared hands-only CPR, CPR with a surgical or N95 mask, and CPR with a non-rebreather mask at 15 L/min. 30:2 compression-ventilation ratio CPR was tested with face-mask ventilation (FMV), FMV with a high efficiency particulate air (HEPA) filter; supraglottic airway (SGA), SGA with a surgical mask, SGA with a HEPA filter, or SGA with both. Continuous CPR was tested with an endotracheal tube (ET), ET with a surgical mask, a HEPA filter, or both. Aerosol concentration at the head, trunk, and feet of the mannequin were measured to evaluate exposure to CPR personnel. Hands-only CPR with a surgical or N95 face mask coverings and ET tube ventilation CPR with filters showed the lowest aerosol exposure among all study groups, including CPR with NRM oxygenation, FMV, and SGA ventilation. NRM had a mask effect and reduced aerosol exposure at the head, trunk, and feet of the mannequin. FMV with filters during 30:2 CPR reduced aerosol exposure at the head and trunk, but increased at the feet of the mannequin. A tightly-sealed SGA when used with a HEPA filter, reduced aerosol exposure by 21.00-63.14% compared with a loose-fitting one. Hands-only CPR with a proper fit surgical or N95 face mask coverings is as safe as ET tube ventilation CPR with filters, compared with CPR with NRM, FMV, and SGA. FMV or tight-sealed SGA ventilation with filters prolonged the duration to achieve estimated infective dose of SARS-CoV-2 2.4-2.5 times longer than hands-on CPR only. However, a loose-fitting SGA is not protective at all to chest compressor or health workers standing at the foot side of the victim, so should be used with caution even when using with HEPA filters.
Collapse
Affiliation(s)
- Tzu-Yao Hung
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- CrazyatLAB (Critical Airway Training Laboratory), Taipei City, Taiwan
| | - Chung-Shiung Wen
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei City, Taiwan
| | - Sheng-Han Yu
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei City, Taiwan
| | - Yi-Chang Chen
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-Ling Chen
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei City, Taiwan
| | - Wei-Lun Chen
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei City, Taiwan
| | - Chih-Chieh Wu
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei City, Taiwan
| | - Yung-Cheng Su
- School of Medicine, Tzu Chi University, Hualien County, Taiwan.
- Department of Emergency Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, No.539, Zhongxiao Rd., East Dist., Chiayi City, 600566, Taiwan.
| | - Chun-Lung Lin
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei City, Taiwan
| | - Shih-Cheng Hu
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tee Lin
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
311
|
Andrup L, Krogfelt KA, Hansen KS, Madsen AM. Transmission route of rhinovirus - the causative agent for common cold. A systematic review. Am J Infect Control 2023; 51:938-957. [PMID: 36535318 DOI: 10.1016/j.ajic.2022.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Human rhinoviruses (RVs) are the most common cause of acute respiratory tract illness and upper respiratory tract infections, traditionally defined as 'common colds'. Experimental transmission of RV has been studied for more than 50 years. However, there are divergent results as to whether hands and fomites or aerosols constitute the dominant route of transmission in natural settings. METHODS We have systematically reviewed the literature according to the PRISMA 2020 statement. Searches were run in PubMed and Web of Science until August 2022. Inclusion criteria were original studies of relevance for revealing the route of transmission of rhinovirus in humans. RESULTS The search yielded 663 results, and 25 studies met the inclusion criteria and were selected for this review. These articles addressing RV transmission routes were assigned to 1 of 3 groups: (1) indirect transmission by fomites and hands, (2) direct transmission via large aerosols (droplets) or small aerosols, or (3) transmission either direct via large aerosols (droplets) or small aerosols and fomite or hands. CONCLUSIONS We found low evidence, that transmission via hands and fomite followed by self-inoculation is the dominant transmission route in real-life indoor settings. We found moderate evidence, that airborne transmission either via large aerosols or small aerosols is the major transmission route of rhinovirus transmission in real-life indoor settings. This suggests that the major transmission route of RVs in many indoor settings is through the air (airborne transmission).
Collapse
Affiliation(s)
- Lars Andrup
- The National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, PandemiX Center Roskilde University, Roskilde, Denmark
| | | | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
312
|
Liu T, Li G, Liu Z, Xi L, Ma W, Gao X. Characteristics of aerosols from swine farms: A review of the past two-decade progress. ENVIRONMENT INTERNATIONAL 2023; 178:108074. [PMID: 37441818 DOI: 10.1016/j.envint.2023.108074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of large-scale and intensive swine production, the emission of aerosols from swine farms has become a growing concern, attracting extensive attention. While aerosols are found in various environments, those from swine farms are distinguished from human habitats, such as residential, suburban, and urban areas. In order to gain a comprehensive understanding of aerosols from swine farms, this paper reviewed relevant studies conducted between 2000 and 2022. The main components, concentrations, and size distribution of the aerosols were systematically reviewed. The differences between aerosols from swine farms and human living and working environments were compared. Finally, the sources, influencing factors, and reduction technologies for aerosols from swine farms were thoroughly elucidated. The results demonstrated that the concentrations of aerosols inside swine farms varied considerably, and most exceeded safety thresholds. However, further exploration is needed to fully understand the difference in airborne microorganism community structure and particles with small sizes (<1 μm) between swine farms and human living and working environments. More airborne bacterial and viruses were adhered to large particles in swine houses, while the proportion of airborne fungi in the respirable fraction was similar to that of human living and working environments. In addition, swine farms have a higher abundance and diversity of potential pathogens, airborne resistant microorganisms and resistant genes compared to the human living and working environments. The aerosols of swine farms mainly originated from sources such as manure, feed, swine hair and skin, secondary production, and waste treatment. According to the source analysis and factors influencing aerosols in swine farms, various technologies could be employed to mitigate aerosol emissions, and some end-of-pipe technologies need to be further improved before they are widely applied. Swine farms are advised not to increase aerosol concentration in human living and working environments, in order to decrease the impact of aerosols from swine farms on human health and restrain the spread of airborne potential pathogens. This review provides critical insights into aerosols of swine farms, offering guidance for taking appropriate measures to enhance air quality inside and surrounding swine farms.
Collapse
Affiliation(s)
- Tongshuai Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Guoming Li
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia, Athens, GA 30602, USA.
| | - Zhilong Liu
- Henan University of Animal Husbandry and Economy Library, Zhengzhou, Henan 450046, China
| | - Lei Xi
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Wei Ma
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Xuan Gao
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| |
Collapse
|
313
|
Li HH, Su MP, Wu SC, Tsou HH, Chang MC, Cheng YC, Tsai KN, Wang HW, Chen GH, Tang CK, Chung PJ, Tsai WT, Huang LR, Yueh YA, Chen HW, Pan CY, Akbari OS, Chang HH, Yu GY, Marshall JM, Chen CH. Mechanical transmission of dengue virus by Aedes aegypti may influence disease transmission dynamics during outbreaks. EBioMedicine 2023; 94:104723. [PMID: 37487418 PMCID: PMC10382859 DOI: 10.1016/j.ebiom.2023.104723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Dengue virus outbreaks are increasing in number and severity worldwide. Viral transmission is assumed to require a minimum time period of viral replication within the mosquito midgut. It is unknown if alternative transmission periods not requiring replication are possible. METHODS We used a mouse model of dengue virus transmission to investigate the potential of mechanical transmission of dengue virus. We investigated minimal viral titres necessary for development of symptoms in bitten mice and used resulting parameters to inform a new model of dengue virus transmission within a susceptible population. FINDINGS Naïve mice bitten by mosquitoes immediately after they took partial blood meals from dengue infected mice showed symptoms of dengue virus, followed by mortality. Incorporation of mechanical transmission into mathematical models of dengue virus transmission suggest that this supplemental transmission route could result in larger outbreaks which peak sooner. INTERPRETATION The potential of dengue transmission routes independent of midgut viral replication has implications for vector control strategies that target mosquito lifespan and suggest the possibility of similar mechanical transmission routes in other disease-carrying mosquitoes. FUNDING This study was funded by grants from the National Health Research Institutes, Taiwan (04D2-MMMOST02), the Human Frontier Science Program (RGP0033/2021), the National Institutes of Health (1R01AI143698-01A1, R01AI151004 and DP2AI152071) and the Ministry of Science and Technology, Taiwan (MOST104-2321-B-400-016).
Collapse
Affiliation(s)
- Hsing-Han Li
- National Mosquito-Borne Disease Control Research Center, NHRI, Miaoli, 350401, Taiwan; National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan; Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Matthew P Su
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Institute for Advanced Research, Nagoya University, Nagoya, 464-8601, Japan
| | - Shih-Cheng Wu
- National Mosquito-Borne Disease Control Research Center, NHRI, Miaoli, 350401, Taiwan; National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10021, Taiwan
| | - Hsiao-Hui Tsou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 350401, Taiwan; Graduate Institute of Biostatistics, College of Public Health, China Medical University, Taichung, 40402, Taiwan
| | - Meng-Chun Chang
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chieh Cheng
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 350401, Taiwan
| | - Kuen-Nan Tsai
- Institute of Molecular and Genomic Medicine, NHRI, Miaoli, 350401, Taiwan
| | - Hsin-Wei Wang
- National Mosquito-Borne Disease Control Research Center, NHRI, Miaoli, 350401, Taiwan; National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Guan-Hua Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Cheng-Kang Tang
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan; Program of Plant Protection and Health, Academy of Circular Economy, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Pei-Jung Chung
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Wan-Ting Tsai
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, NHRI, Miaoli, 350401, Taiwan
| | - Yueh Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, NHRI, Miaoli, 350401, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Chao-Ying Pan
- Department of Health, Kaohsiung City Government, Kaohsiung, 800852, Taiwan
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hsiao-Han Chang
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Chun-Hong Chen
- National Mosquito-Borne Disease Control Research Center, NHRI, Miaoli, 350401, Taiwan; National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan.
| |
Collapse
|
314
|
Zhou J, Singanayagam A, Goonawardane N, Moshe M, Sweeney FP, Sukhova K, Killingley B, Kalinova M, Mann AJ, Catchpole AP, Barer MR, Ferguson NM, Chiu C, Barclay WS. Viral emissions into the air and environment after SARS-CoV-2 human challenge: a phase 1, open label, first-in-human study. THE LANCET. MICROBE 2023; 4:e579-e590. [PMID: 37307844 PMCID: PMC10256269 DOI: 10.1016/s2666-5247(23)00101-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2. METHODS In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18-30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis μ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237. FINDINGS Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%). INTERPRETATION After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions. FUNDING UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government.
Collapse
Affiliation(s)
- Jie Zhou
- Section of Virology, Imperial College London, London, UK
| | - Anika Singanayagam
- Section of Adult Infectious Disease, Imperial College London, London, UK
| | | | - Maya Moshe
- Section of Virology, Imperial College London, London, UK
| | | | - Ksenia Sukhova
- Section of Virology, Imperial College London, London, UK
| | - Ben Killingley
- Department of Infectious Diseases, University College London Hospital, London, UK
| | | | | | | | - Michael R Barer
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Neil M Ferguson
- Department of Infectious Disease, and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Christopher Chiu
- Section of Adult Infectious Disease, Imperial College London, London, UK
| | | |
Collapse
|
315
|
Jiang X, Zhao C, Chen Y, Gao X, Zhang Q, Chen Z, Li C, Zhao X, Liu Z, Huang W, Xie W, Yue Y. Probable Evidence of Aerosol Transmission of SARS-COV-2 in a COVID-19 Outbreak of a High-Rise Building. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231188269. [PMID: 37522029 PMCID: PMC10372516 DOI: 10.1177/11786302231188269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
Although it is well established that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be transmitted through aerosols, the mode of long-range aerosol transmission in high-rise buildings remains unclear. In this study, we analyzed an outbreak of coronavirus disease 2019 (COVID-19) that occurred in a high-rise building in China. Our objective was to investigate the plausibility of aerosol transmission of SARS-CoV-2 by testing relevant environmental variables and measuring the dispersion of a tracer gas in the drainage system of the building. The outbreak involved 7 infected families, of which 6 were from vertically aligned flats on different floors. Environmenìtal data revealed that 3 families' bathrooms were contaminated by SARS-CoV-2. In our tracer experiment, we injected tracer gas (CO2) into the dry floor drains and into water-filled toilets in the index case' s bathroom. Our findings showed that the gas could travel through vertical pipes by the dry floor drains, but not through the water of the toilets. This indicates that dry floor drains might facilitate the transmission of viral aerosols through the sewage system. On the basis of circumstantial evidence, long-range aerosol transmission may have contributed to the community outbreak of COVID-19 in this high-rise building. The vertical transmission of diseases through aerosols in high-rise buildings demands urgent attention.
Collapse
Affiliation(s)
- Xiaoman Jiang
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Science, Chengdu, China
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Chenlu Zhao
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Science, Chengdu, China
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Yuezhu Chen
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Science, Chengdu, China
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Xufang Gao
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Qinlong Zhang
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Zhenhua Chen
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Changxiong Li
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Xiaoyan Zhao
- Chenghua Center for Disease Control and Prevention, Chengdu, China
| | - Zhijian Liu
- Chenghua Center for Disease Control and Prevention, Chengdu, China
| | - Weiwei Huang
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Wenjun Xie
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Science, Chengdu, China
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Yong Yue
- Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Science, Chengdu, China
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| |
Collapse
|
316
|
Sun K, Loria V, Aparicio A, Porras C, Vanegas JC, Zúñiga M, Morera M, Avila C, Abdelnour A, Gail MH, Pfeiffer R, Cohen JI, Burbelo PD, Abed MA, Viboud C, Hildesheim A, Herrero R, Prevots DR. Behavioral factors and SARS-CoV-2 transmission heterogeneity within a household cohort in Costa Rica. COMMUNICATIONS MEDICINE 2023; 3:102. [PMID: 37481623 PMCID: PMC10363136 DOI: 10.1038/s43856-023-00325-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/21/2023] [Indexed: 07/24/2023] Open
Abstract
INTRODUCTION Variability in household secondary attack rates and transmission risks factors of SARS-CoV-2 remain poorly understood. METHODS We conducted a household transmission study of SARS-CoV-2 in Costa Rica, with SARS-CoV-2 index cases selected from a larger prospective cohort study and their household contacts were enrolled. A total of 719 household contacts of 304 household index cases were enrolled from November 21, 2020, through July 31, 2021. Blood specimens were collected from contacts within 30-60 days of index case diagnosis; and serum was tested for presence of spike and nucleocapsid SARS-CoV-2 IgG antibodies. Evidence of SARS-CoV-2 prior infections among household contacts was defined based on the presence of both spike and nucleocapsid antibodies. We fitted a chain binomial model to the serologic data, to account for exogenous community infection risk and potential multi-generational transmissions within the household. RESULTS Overall seroprevalence was 53% (95% confidence interval (CI) 48-58%) among household contacts. The estimated household secondary attack rate is 34% (95% CI 5-75%). Mask wearing by the index case is associated with the household transmission risk reduction by 67% (adjusted odds ratio = 0.33 with 95% CI: 0.09-0.75) and not sharing bedroom with the index case is associated with the risk reduction of household transmission by 78% (adjusted odds ratio = 0.22 with 95% CI 0.10-0.41). The estimated distribution of household secondary attack rates is highly heterogeneous across index cases, with 30% of index cases being the source for 80% of secondary cases. CONCLUSIONS Modeling analysis suggests that behavioral factors are important drivers of the observed SARS-CoV-2 transmission heterogeneity within the household.
Collapse
Affiliation(s)
- Kaiyuan Sun
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Viviana Loria
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) - Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Amada Aparicio
- Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) - Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Juan Carlos Vanegas
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) - Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Michael Zúñiga
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) - Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Melvin Morera
- Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Carlos Avila
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) - Fundación INCIENSA (FUNIN), San José, Costa Rica
| | | | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ruth Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Mehdi A Abed
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) - Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - D Rebecca Prevots
- Epidemiology and Population Studies Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
317
|
Yanagi U, Kaihara N, Simazaki D, Bekki K, Homma Y, Iba C, Asai A, Hayashi M. Bacterial Flora on Mist Outlet Surfaces in 4D Theaters and Suspended Particle Concentration Characteristics during 4D Movie Screenings. Microorganisms 2023; 11:1856. [PMID: 37513027 PMCID: PMC10383669 DOI: 10.3390/microorganisms11071856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we measured suspended particle concentrations during the screening of 4D movies (3 screens and 15 movies) and 2D movies (9 screens and 9 movies) in 3 movie theaters to obtain a more detailed understanding of the situation of suspended particle concentrations and adherent bacterial flora in 4D movie theaters, which have been introduced in increasing numbers in recent years. The adherent bacterial flora on the floor and mist outlet surfaces in the 4D movie theaters were collected and analyzed. During the movie showings, the concentrations of suspended particles in 4D movie theaters were significantly higher than those in 2D movie theaters (p < 0.001). A significant increase in suspended particle concentrations due to 4D movie effects was also observed. The results of the α-diversity and β-diversity analyses indicate that the bacterial flora on the surfaces of mist outlets in 4D movie theaters are similar. Moreover, there are many closely related species, and the bacterial flora are rich and contain rare bacterial species. Many of the bacterial genera that are dominant in 4D theaters are suited to aqueous environments, and bacteria in the water supply system may have an impact on the indoor environment.
Collapse
Affiliation(s)
- U Yanagi
- School of Architecture, Kogakuin University, Tokyo 163-8677, Japan
| | - Noriko Kaihara
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Dai Simazaki
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Kanae Bekki
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Yoshinori Homma
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Chiemi Iba
- Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Atsuto Asai
- Graduate School of Engineering, Kogakuin University, Tokyo 163-8677, Japan
| | - Motoya Hayashi
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
318
|
Saravanan P, Broccolo F, Ali N, Toh A, Mulyana S, Beng GL, Imperi E, Picano A. A new aerodynamic endonasal filtration technology for protection against pollutants and respiratory infectious agents: evaluation of the particle filtration efficacy. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1219996. [PMID: 37546386 PMCID: PMC10401429 DOI: 10.3389/fmedt.2023.1219996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
An innovative nasal filter was tested, based on aerodynamic air filtration and not on conventional air filtration by means of mesh filters. A custom testing system was designed and three sizes of the filter have been tested vs. monodispersed SiO2 particles sized 5 μm, 1 μm, and 0.5 μm under cycling flow of 6 liters per minute, provided by an artificial lung breather simulating spontaneous breathing. Accelerated testing was implemented, challenging filters with a maximum load of 200 mg per cubic meter. All three filters' sizes showed initial filtration efficiencies above 90% vs. all particles' sizes, decreased to not less than 80% after 30 min of accelerated testing, corresponding to 4.5 days of continuous use at 2 mg challenge, this value being associated with hazardous air conditions in the PSI scale. Results in this study indicate that nasal filters based on aerodynamic air filtration can provide fine and ultrafine filtration, offering protection in day-to-day life from risks associated with pollens, mites, PM, pollutants, and respiratory infectious agents, introducing acceptable respiratory resistance.
Collapse
Affiliation(s)
| | - Francesco Broccolo
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Nurshahidah Ali
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Alden Toh
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Sakinah Mulyana
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Goh Lay Beng
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | | | | |
Collapse
|
319
|
Zeng L, Li J, Lv M, Li Z, Yao L, Gao J, Wu Q, Wang Z, Yang X, Tang G, Qu G, Jiang G. Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:15-31. [PMID: 37552709 PMCID: PMC11504606 DOI: 10.1021/envhealth.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 08/10/2023]
Abstract
Enveloped viruses have been the leading causative agents of viral epidemics in the past decade, including the ongoing coronavirus disease 2019 outbreak. In epidemics caused by enveloped viruses, direct contact is a common route of infection, while indirect transmissions through the environment also contribute to the spread of the disease, although their significance remains controversial. Bridging the knowledge gap regarding the influence of interfacial interactions on the persistence of enveloped viruses in the environment reveals the transmission mechanisms when the virus undergoes mutations and prevents excessive disinfection during viral epidemics. Herein, from the perspective of the driving force, partition efficiency, and viral survivability at interfaces, we summarize the viral and environmental characteristics that affect the environmental transmission of viruses. We expect to provide insights for virus detection, environmental surveillance, and disinfection to limit the spread of severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junya Li
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Meilin Lv
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Zikang Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Qi Wu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Ziniu Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
320
|
Kleynhans J, Dall'Amico L, Gauvin L, Tizzoni M, Maloma L, Walaza S, Martinson NA, von Gottberg A, Wolter N, Makhasi M, Cohen C, Cattuto C, Tempia S. Association of close-range contact patterns with SARS-CoV-2: a household transmission study. eLife 2023; 12:e84753. [PMID: 37461328 DOI: 10.7554/elife.84753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Background Households are an important location for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, especially during periods when travel and work was restricted to essential services. We aimed to assess the association of close-range contact patterns with SARS-CoV-2 transmission. Methods We deployed proximity sensors for two weeks to measure face-to-face interactions between household members after SARS-CoV-2 was identified in the household, in South Africa, 2020-2021. We calculated the duration, frequency, and average duration of close-range proximity events with SARS-CoV-2 index cases. We assessed the association of contact parameters with SARS-CoV-2 transmission using mixed effects logistic regression accounting for index and household member characteristics. Results We included 340 individuals (88 SARS-CoV-2 index cases and 252 household members). On multivariable analysis, factors associated with SARS-CoV-2 acquisition were index cases with minimum Ct value <30 (aOR 16.8 95% CI 3.1-93.1) vs >35, and female contacts (aOR 2.5 95% CI 1.3-5.0). No contact parameters were associated with acquisition (aOR 1.0-1.1) for any of the duration, frequency, cumulative time in contact, or average duration parameters. Conclusions We did not find an association between close-range proximity events and SARS-CoV-2 household transmission. Our findings may be due to study limitations, that droplet-mediated transmission during close-proximity contacts plays a smaller role than airborne transmission of SARS-CoV-2 in the household, or due to high contact rates in households. Funding Wellcome Trust (Grant number 221003/Z/20/Z) in collaboration with the Foreign, Commonwealth, and Development Office, United Kingdom.
Collapse
Affiliation(s)
- Jackie Kleynhans
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Laetitia Gauvin
- ISI Foundation, Turin, Italy
- Institute for Research on Sustainable Development, Aubervilliers, France
| | - Michele Tizzoni
- ISI Foundation, Turin, Italy
- Department of Sociology and Social Research, University of Trento, Trento, Italy
| | - Lucia Maloma
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil A Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Center for TB Research, Baltimore, United States
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mvuyo Makhasi
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ciro Cattuto
- ISI Foundation, Turin, Italy
- Department of Informatics, University of Turin, Turin, Italy
| | - Stefano Tempia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
321
|
Li LX, Nissly RH, Swaminathan A, Bird IM, Boyle NR, Nair MS, Greenawalt DI, Gontu A, Cavener VS, Sornberger T, Freihaut JD, Kuchipudi SV, Bahnfleth WP. Inactivation of HCoV-NL63 and SARS-CoV-2 in aqueous solution by 254 nm UV-C. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112755. [PMID: 37423001 DOI: 10.1016/j.jphotobiol.2023.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Ultraviolet germicidal irradiation (UVGI) is a highly effective means of inactivating many bacteria, viruses, and fungi. UVGI is an attractive viral mitigation strategy against coronaviruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-2019 (COVID-19) pandemic. This investigation measures the susceptibility of two human coronaviruses to inactivation by 254 nm UV-C radiation. Human coronavirus NL63 and SARS-CoV-2 were irradiated in a collimated, dual-beam, aqueous UV reactor. By measuring fluence and integrating it in real-time, this reactor accounts for the lamp output transients during UVGI exposures. The inactivation rate constants of a one-stage exponential decay model were determined to be 2.050 cm2/mJ and 2.098 cm2/mJ for the NL63 and SARS-CoV-2 viruses, respectively. The inactivation rate constant for SARS-CoV-2 is within 2% of that of NL63, indicating that in identical inactivation environments, very similar UV 254 nm deactivation susceptibilities for these two coronaviruses would be achieved. Given the inactivation rate constant obtained in this study, doses of 1.1 mJ/cm2, 2.2 mJ/cm2, and 3.3 mJ/cm2 would result in a 90%, 99%, and 99.9% inactivation of the SARS-CoV-2 virus, respectively. The inactivation rate constant obtained in this study is significantly higher than values reported from many 254 nm studies, which suggests greater UV susceptibility to the UV-C than what was believed. Overall, results from this study indicate that 254 nm UV-C is effective for inactivation of human coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Lily X Li
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ruth H Nissly
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Anand Swaminathan
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ian M Bird
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Nina R Boyle
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Meera Surendran Nair
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Denver I Greenawalt
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Abhinay Gontu
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Victoria S Cavener
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Ty Sornberger
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - James D Freihaut
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| | - Suresh V Kuchipudi
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America; Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America.
| | - William P Bahnfleth
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| |
Collapse
|
322
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
323
|
Mendez S, Garcia W, Nicolas A. From Microscopic Droplets to Macroscopic Crowds: Crossing the Scales in Models of Short-Range Respiratory Disease Transmission, with Application to COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205255. [PMID: 37132608 PMCID: PMC10323631 DOI: 10.1002/advs.202205255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/14/2023] [Indexed: 05/04/2023]
Abstract
Short-range exposure to airborne virus-laden respiratory droplets is an effective transmission route of respiratory diseases, as exemplified by Coronavirus Disease 2019 (COVID-19). In order to assess the risks associated with this pathway in daily-life settings involving tens to hundreds of individuals, the chasm needs to be bridged between fluid dynamical simulations and population-scale epidemiological models. This is achieved by simulating droplet trajectories at the microscale in numerous ambient flows, coarse-graining their results into spatio-temporal maps of viral concentration around the emitter, and coupling these maps to field-data about pedestrian crowds in different scenarios (streets, train stations, markets, queues, and street cafés). At the individual scale, the results highlight the paramount importance of the velocity of the ambient air flow relative to the emitter's motion. This aerodynamic effect, which disperses infectious aerosols, prevails over all other environmental variables. At the crowd's scale, the method yields a ranking of the scenarios by the risks of new infections, dominated by the street cafés and then the outdoor market. While the effect of light winds on the qualitative ranking is fairly marginal, even the most modest air flows dramatically lower the quantitative rates of new infections.
Collapse
Affiliation(s)
- Simon Mendez
- IMAGUniv. MontpellierCNRSMontpellierF‐34095France
| | - Willy Garcia
- Institut Lumière Matière, CNRSUniv. Claude Bernard Lyon 1VilleurbanneF‐69622France
| | - Alexandre Nicolas
- Institut Lumière Matière, CNRSUniv. Claude Bernard Lyon 1VilleurbanneF‐69622France
| |
Collapse
|
324
|
Zhao X, Zhang X, Liu Y, Pang S, He C. Asymmetrical Methylene-Bridge Linked Fully Iodinated Azoles as Energetic Biocidal Materials with Improved Thermal Stability. Int J Mol Sci 2023; 24:10711. [PMID: 37445889 DOI: 10.3390/ijms241310711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The instability and volatility of iodine is high, however, effective iodine biocidal species can be readily stored in iodinated azoles and then be released upon decomposition or detonation. Iodine azoles with high iodine content and high thermal stability are highly desired. In this work, the strategy of methylene bridging with asymmetric structures of 3,4,5-triiodo-1-H-pyrazole (TIP), 2,4,5-triiodo-1H-imidazol (TIM), and tetraiodo-1H-pyrrole (TIPL) are proposed. Two highly stable fully iodinated methylene-bridged azole compounds 3,4,5-triiodo-1-((2,4,5-triiodo-1H-imidazol-1-yl)methyl)-1H-pyrazole (3) and 3,4,5-triiodo-1-((tetraiodo-1H-pyrrol-1-yl)methyl)-1H-pyrazole (4) were obtained with high iodine content and excellent thermal stability (iodine content: 84.27% for compound 3 and 86.48% for compound 4; Td: 3: 285 °C, 4: 260 °C). Furthermore, their composites with high-energy oxidant ammonium perchlorate (AP) were designed. The combustion behavior and thermal decomposition properties of the formulations were tested and evaluated. This work may open a new avenue to develop advanced energetic biocidal materials with well-balanced energetic and biocidal properties and versatile functionality.
Collapse
Affiliation(s)
- Xinyuan Zhao
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xun Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Yan Liu
- Research Institute of Chemical Defense, Beijing 102205, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chunlin He
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| |
Collapse
|
325
|
Hirama Y, Onishi S, Shibata R, Ishida H, Mori T, Ota N. Antiviral Effect of Propylene Glycol against Envelope Viruses in Spray and Volatilized Forms. Viruses 2023; 15:1421. [PMID: 37515109 PMCID: PMC10385749 DOI: 10.3390/v15071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and continues to spread worldwide. To avoid the spread of infection, it is important to control its transmission routes. However, as methods to prevent airborne infections are lacking, people are forced to take measures such as keeping distance from others or wearing masks. Here, we evaluate the antiviral activity of propylene glycol (PG), which is safe, odorless, and volatile. PG showed pronounced antiviral activity against the influenza virus (IAV) at concentrations above 55% in the liquid phase. Given its IAV inactivation mechanism, which involves increasing the fluidity of the viral membrane, PG is expected to have a broad effect on enveloped viruses. PG showed antiviral activity against SARS-CoV-2. We also developed a system to evaluate the antiviral effect of PG in spray and volatilized forms. PG was found to be effective against aerosol IAV in both forms; the effective PG concentration against IAV in the vapor phase was 87 ppmv (0.27 mg/L). These results demonstrate that PG is an effective means for viral inactivation in various situations for infection control. This technology is expected to control the spread of current and future infectious diseases capable of causing outbreaks and pandemics.
Collapse
Affiliation(s)
- Yui Hirama
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tokyo 321-3497, Japan
| | - Shintaro Onishi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tokyo 321-3497, Japan
| | - Ryunosuke Shibata
- Sensory Science Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Hirohiko Ishida
- Sensory Science Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Takuya Mori
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tokyo 321-3497, Japan
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tokyo 321-3497, Japan
| |
Collapse
|
326
|
Alotaibi BS, Tantry BA, Bandy A, Ahmad R, Khursheed SQ, Ahmad A, Hakami MA, Shah NN. Simultaneous Detection of Influenza A/B, Respiratory Syncytial Virus, and SARS-CoV-2 in Nasopharyngeal Swabs by One-Tube Multiplex Reverse Transcription Polymerase Chain Reaction. Trop Med Infect Dis 2023; 8:326. [PMID: 37368744 DOI: 10.3390/tropicalmed8060326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The treatment and outcome of respiratory virus infections differ. SARS-CoV-2, as well as other respiratory viruses such as influenza virus (A and B) and respiratory syncytial virus (RSV), require simultaneous, cost-effective, and rapid differential detection. We used a gold standard five-target single-step RT-PCR to detect influenza viruses, RSV, and SARS-CoV-2, and this method can be extended to detect influenza virus subtypes. As a result, this five-target single-step RT-PCR method is ideal for differentiating respiratory viruses. The 5' nuclease activity of Taq DNA polymerase is used in the real-time reverse transcription PCR assay. The Taq man fast viral 1-step enzyme is a 4× Master mix and five-target primer probe mix that detects influenza A, influenza B, SARS-CoV-2 ORF1ab, respiratory syncytial viruses A/B and actin. When compared with TaqMan TM and Invitrogen superscript TM III Platinum and the Meril Kit for SARS-CoV-2, the assay demonstrated 100% sensitivity, specificity, and amplification efficiency of 90.1% for target genes. In conclusion, our one-tube multiplex RT-PCR assay offers a rapid and reliable method for the simultaneous detection of influenza A/B, RSV, and SARS-CoV-2 from nasopharyngeal swabs. This assay has the potential to enhance diagnostic capabilities and improve public health responses during respiratory outbreaks, enabling timely interventions and informed decision making.
Collapse
Affiliation(s)
- Bader S Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 19257, Saudi Arabia
| | - Bilal Ahmad Tantry
- Department of Microbiology, Government Medical College, Srinagar 190010, India
| | - Altaf Bandy
- Department of Community Medicine, College of Medicine, Shaqra University, Shaqra 15273, Saudi Arabia
| | - Reyaz Ahmad
- Department of Microbiology, Government Medical College, Srinagar 190010, India
| | | | - Arshid Ahmad
- Department of Pulmonary Medicine, Government Medical College, Srinagar 190001, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 19257, Saudi Arabia
| | - Naveed Nazir Shah
- Department of Pulmonary Medicine, Government Medical College, Srinagar 190001, India
| |
Collapse
|
327
|
Silva Borborema T, Moreira Brito JC, Lima Batista EM, Siqueira Batista R. Case Fatality Rate and Severity of COVID-19 among Patients with Sickle Cell Disease: A Systematic Review and Meta-Analysis. Hemoglobin 2023:1-12. [PMID: 37325879 DOI: 10.1080/03630269.2023.2219847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
The sickle cell disease (SCD) population has been considered particularly vulnerable to viral pandemics since the emergence of H1N1 in 2009. In this sense, the advance of the COVID-19 pandemic from 2020 has brought this group of patients to the center of concern. However, scientific knowledge about the susceptibility of patients with SCD to a severe COVID-19 pandemic is still insufficient, and efforts to establish a general profile of the disease in these patients, remain inadequate. The present study, therefore, sought to characterize the case fatality rate and severity of COVID-19 in patients with SCD throughout the world. A systematic review of Pubmed/MEDLINE, Scopus, Cochrane Library, and Virtual Health Library databases through December 2021 was then performed. Subsequently, the primary and secondary outcomes were used in the meta-analysis in RStudio® software. Seventy-two studies were included with 6,011 SCD patients confirmed to have SARS-CoV-2 infection between mid-2020 and early 2022. The mean age of patients was 27 years. During this period, 218 deaths caused by COVID-19 were reported in the studied population, corresponding to an overall case fatality rate of 3%. In addition, 10% of patients with SCD were admitted to the ICU after complications caused by COVID-19, and 4% of them required invasive ventilatory support. In conclusion, the high fatality rate, intensive care unit admission and need for mechanical ventilation due to COVID-19 in young patients with SCD indicate that this population is at high risk for severe disease progression.
Collapse
Affiliation(s)
- Tarcísio Silva Borborema
- Faculdade Dinâmica do Vale do Piranga, Ponte Nova, Minas Gerais, Brazil
- Hospital Infantil João Paulo II, Belo Horizonte, MG, Brazil
| | | | | | - Rodrigo Siqueira Batista
- Faculdade Dinâmica do Vale do Piranga, Ponte Nova, Minas Gerais, Brazil
- Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
328
|
Moschovis PP, Lombay J, Rooney J, Schenkel SR, Singh D, Rezaei SJ, Salo N, Gong A, Yonker LM, Shah J, Hayden D, Hibberd PL, Demokritou P, Kinane TB. The effect of activity and face masks on exhaled particles in children. Pediatr Investig 2023; 7:75-85. [PMID: 37324601 PMCID: PMC10262878 DOI: 10.1002/ped4.12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/29/2023] [Indexed: 06/17/2023] Open
Abstract
Importance Despite the high burden of respiratory infections among children, the production of exhaled particles during common activities and the efficacy of face masks in children have not been sufficiently studied. Objective To determine the effect of type of activity and mask usage on exhaled particle production in children. Methods Healthy children were asked to perform activities that ranged in intensity (breathing quietly, speaking, singing, coughing, and sneezing) while wearing no mask, a cloth mask, or a surgical mask. The concentration and size of exhaled particles were assessed during each activity. Results Twenty-three children were enrolled in the study. Average exhaled particle concentration increased by intensity of activity, with the lowest particle concentration during tidal breathing (1.285 particles/cm3 [95% CI 0.943, 1.627]) and highest particle concentration during sneezing (5.183 particles/cm3 [95% CI 1.911, 8.455]). High-intensity activities were associated with an increase primarily in the respirable size (≤ 5 µm) particle fraction. Surgical and cloth masks were associated with lower average particle concentration compared to no mask (P = 0.026 for sneezing). Surgical masks outperformed cloth masks across all activities, especially within the respirable size fraction. In a multivariable linear regression model, we observed significant effect modification of activity by age and by mask type. Interpretation Similar to adults, children produce exhaled particles that vary in size and concentration across a range of activities. Production of respirable size fraction particles (≤ 5 µm), the dominant mode of transmission of many respiratory viruses, increases significantly with coughing and sneezing and is most effectively reduced by wearing surgical face masks.
Collapse
Affiliation(s)
- Peter P. Moschovis
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jesiel Lombay
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer Rooney
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sara R. Schenkel
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Dilpreet Singh
- Department of Environmental HealthHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Mechanical and Aerospace EngineeringRutgers University School of Public HealthNew BrunswickNew JerseyUSA
| | - Shawheen J. Rezaei
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Nora Salo
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Amanda Gong
- David Geffen School of Medicinethe University of California Los AngelesLos AngelesCaliforniaUSA
| | - Lael M. Yonker
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jhill Shah
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Douglas Hayden
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Patricia L. Hibberd
- Department of Global HealthBoston University School of Public HealthBostonMassachusettsUSA
| | - Philip Demokritou
- Department of Environmental HealthHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Mechanical and Aerospace EngineeringRutgers University School of Public HealthNew BrunswickNew JerseyUSA
| | - T. Bernard Kinane
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
329
|
Li F, Xu K, Pan Y, Liu P, Zhang J, Yang M, Lei W, Feng Z, Liang Z, Zhang D, Wu G, Wang Q. Stability of SARS-CoV-2 and persistence of viral nucleic acids on common foods and widely used packaging material surfaces. J Med Virol 2023; 95:e28871. [PMID: 37314009 DOI: 10.1002/jmv.28871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 is still spreading globally. Studies have reported the stability of SARS-CoV-2 in aerosols and on surfaces under different conditions. However, studies on the stability of SARS-CoV-2 and viral nucleic acids on common food and packaging material surfaces are insufficient. The study evaluated the stability of SARS-CoV-2 using TCID50 assays and the persistence of SARS-CoV-2 nucleic acids using droplet digital polymerase chain reaction on various food and packaging material surfaces. Viral nucleic acids were stable on food and material surfaces under different conditions. The viability of SARS-CoV-2 varied among different surfaces. SARS-CoV-2 was inactivated on most food and packaging material surfaces within 1 day at room temperature but was more stable at lower temperatures. Viruses survived for at least 1 week on pork and plastic at 4°C, while no viable viruses were detected on hairtail, orange, or carton after 3 days. There were viable viruses and a slight titer decrease after 8 weeks on pork and plastic, but titers decreased rapidly on hairtail and carton at -20°C. These results highlight the need for targeted preventive and disinfection measures based on different types of foods, packaging materials, and environmental conditions, particularly in the cold-chain food trade, to combat the ongoing pandemic.
Collapse
Affiliation(s)
- Fu Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Ke Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Peipei Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengjie Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenwen Lei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaomin Feng
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhichao Liang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
330
|
Everett C, Darquenne C, Niles R, Seifert M, Tumminello PR, Slade JH. Aerosols, airflow, and more: examining the interaction of speech and the physical environment. Front Psychol 2023; 14:1184054. [PMID: 37255523 PMCID: PMC10225543 DOI: 10.3389/fpsyg.2023.1184054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
We describe ongoing efforts to better understand the interaction of spoken languages and their physical environments. We begin by briefly surveying research suggesting that languages evolve in ways that are influenced by the physical characteristics of their environments, however the primary focus is on the converse issue: how speech affects the physical environment. We discuss the speech-based production of airflow and aerosol particles that are buoyant in ambient air, based on some of the results in the literature. Most critically, we demonstrate a novel method used to capture aerosol, airflow, and acoustic data simultaneously. This method captures airflow data via a pneumotachograph and aerosol data via an electrical particle impactor. The data are collected underneath a laminar flow hood while participants breathe pure air, thereby eliminating background aerosol particles and isolating those produced during speech. Given the capabilities of the electrical particle impactor, which has not previously been used to analyze speech-based aerosols, the method allows for the detection of aerosol particles at temporal and physical resolutions exceeding those evident in the literature, even enabling the isolation of the role of individual sound types in the production of aerosols. The aerosols detected via this method range in size from 70 nanometers to 10 micrometers in diameter. Such aerosol particles are capable of hosting airborne pathogens. We discuss how this approach could ultimately yield data that are relevant to airborne disease transmission and offer preliminary results that illustrate such relevance. The method described can help uncover the actual articulatory gestures that generate aerosol emissions, as exemplified here through a discussion focused on plosive aspiration and vocal cord vibration. The results we describe illustrate in new ways the unseen and unheard ways in which spoken languages interact with their physical environments.
Collapse
Affiliation(s)
- Caleb Everett
- Departments of Anthropology and Psychology, University of Miami, Coral Gables, FL, United States
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Renee Niles
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Marva Seifert
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Paul R. Tumminello
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan H. Slade
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
331
|
Virues-Ortega J, Pérez-Bustamante Pereira A, Martin N, Moeyaert M, Krause PA, Tarifa-Rodriguez A, Trujillo C, Sivaraman M. Reducing face touching through haptic feedback: A treatment evaluation against fomite-mediated self-infection. J Appl Behav Anal 2023. [PMID: 37179496 DOI: 10.1002/jaba.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Fomite-mediated self-infection via face touching is an understudied transmission pathway for infectious diseases. We evaluated the effect of computer-mediated vibrotactile cues (presented through experimental bracelets located on one or both hands of the participant) on the frequency of face touching among eight healthy adults in the community. We conducted a treatment evaluation totaling over 25,000 min of video observation. The treatment was evaluated through a multiple-treatment design and hierarchical linear modeling. The one-bracelet intervention did not produce significantly lower levels of face touching across both hands, whereas the two-bracelet intervention did result in significantly lower face touching. The effect increased over repeated presentations of the two-bracelet intervention, with the second implementation producing, on average, 31 fewer face-touching percentual points relative to baseline levels. Dependent on the dynamics of fomite-mediated self-infection via face touching, treatment effects could be of public health significance. The implications for research and practice are discussed.
Collapse
Affiliation(s)
| | - Agustín Pérez-Bustamante Pereira
- School of Psychology, The University of Auckland, New Zealand
- Servicio de Psiquiatría, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Neil Martin
- Behavior Analyst Certification Board, Littleton, Colorado, USA
| | | | - Peter A Krause
- Department of Psychology, California State University, Channel Islands
| | | | | | | |
Collapse
|
332
|
Hou J, Fujiyoshi S, Perera IU, Nishiuchi Y, Nakajima M, Ogura D, Yarimizu K, Maruyama F. Perspectives on Sampling and New Generation Sequencing Methods for Low-Biomass Bioaerosols in Atmospheric Environments. J Indian Inst Sci 2023; 103:1-11. [PMID: 37362849 PMCID: PMC10176311 DOI: 10.1007/s41745-023-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Bioaerosols play essential roles in the atmospheric environment and can affect human health. With a few exceptions (e.g., farm or rainforest environments), bioaerosol samples from wide-ranging environments typically have a low biomass, including bioaerosols from indoor environments (e.g., residential homes, offices, or hospitals), outdoor environments (e.g., urban or rural air). Some specialized environments (e.g., clean rooms, the Earth's upper atmosphere, or the international space station) have an ultra-low-biomass. This review discusses the primary sources of bioaerosols and influencing factors, the recent advances in air sampling techniques and the new generation sequencing (NGS) methods used for the characterization of low-biomass bioaerosol communities, and challenges in terms of the bias introduced by different air samplers when samples are subjected to NGS analysis with a focus on ultra-low biomass. High-volume filter-based or liquid-based air samplers compatible with NGS analysis are required to improve the bioaerosol detection limits for microorganisms. A thorough understanding of the performance and outcomes of bioaerosol sampling using NGS methods and a robust protocol for aerosol sample treatment for NGS analysis are needed. Advances in NGS techniques and bioinformatic tools will contribute toward the precise high-throughput identification of the taxonomic profiles of bioaerosol communities and the determination of their functional and ecological attributes in the atmospheric environment. In particular, long-read amplicon sequencing, viability PCR, and meta-transcriptomics are promising techniques for discriminating and detecting pathogenic microorganisms that may be active and infectious in bioaerosols and, therefore, pose a threat to human health. Supplementary Information The online version contains supplementary material available at 10.1007/s41745-023-00380-x.
Collapse
Affiliation(s)
- Jianjian Hou
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - So Fujiyoshi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| | - Ishara Uhanie Perera
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Yukiko Nishiuchi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Makiko Nakajima
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architectural Engineering, Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima, 731-5193 Japan
| | - Daisuke Ogura
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540 Japan
| | - Kyoko Yarimizu
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Fumito Maruyama
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| |
Collapse
|
333
|
He Y, Liu WJ, Jia N, Richardson S, Huang C. Viral respiratory infections in a rapidly changing climate: the need to prepare for the next pandemic. EBioMedicine 2023:104593. [PMID: 37169688 PMCID: PMC10363434 DOI: 10.1016/j.ebiom.2023.104593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Viral respiratory infections (VRIs) cause seasonal epidemics and pandemics, with their transmission influenced by climate conditions. Despite the risks posed by novel VRIs, the relationships between climate change and VRIs remain poorly understood. In this review, we synthesized existing literature to explore the connections between changes in meteorological conditions, extreme weather events, long-term climate warming, and seasonal outbreaks, epidemics, and pandemics of VRIs from an interdisciplinary perspective. We proposed a comprehensive conceptual framework highlighting the potential biological, socioeconomic, and ecological mechanisms underlying the impact of climate change on VRIs. Our findings suggested that climate change increases the risk of VRI emergence and transmission by affecting the biology of viruses, host susceptibility, human behavior, and environmental conditions of both society and ecosystems. Further interdisciplinary research is needed to address the dual challenge of climate change and pandemics.
Collapse
Affiliation(s)
- Yucong He
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute of Healthy China, Tsinghua University, Beijing 100084, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Sol Richardson
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute of Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
334
|
Peng Y, Yao M. Quantitatively Visualizing Airborne Disease Transmission Risks of Different Exhalation Activities through CO 2 Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6865-6875. [PMID: 37074044 PMCID: PMC10124748 DOI: 10.1021/acs.est.2c08503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Aerosol transmission has played a leading role in COVID-19 pandemic. However, there is still a poor understanding about how it is transmitted. This work was designed to study the exhaled breath flow dynamics and transmission risks under different exhaling modes. Using an infrared photography device, exhaled flow characteristics of different breathing activities, such as deep breathing, dry coughing, and laughing, together with the roles of mouth and nose were characterized by imaging CO2 flow morphologies. Both mouth and nose played an important role in the disease transmission though in the downward direction for the nose. In contrast to the trajectory commonly modeled, the exhaled airflows appeared with turbulent entrainments and obvious irregular movements, particularly the exhalations involving mouth were directed horizontal and had a higher propagation capacity and transmission risk. While the cumulative risk was high for deep breathing, those transient ones from dry coughing, yawning, and laughing were also shown to be significant. Various protective measures including masks, canteen table shields, and wearable devices were visually demonstrated to be effective for altering the exhaled flow directions. This work is useful to understanding the risk of aerosol infection and guiding the formulation of its prevention and control strategies. Experimental data also provide important information for refining model boundary conditions.
Collapse
Affiliation(s)
- Yijiao Peng
- State Key Joint Laboratory of Environmental Simulation and
Pollution Control, College of Environmental Sciences and Engineering, Peking
University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and
Pollution Control, College of Environmental Sciences and Engineering, Peking
University, Beijing 100871, China
| |
Collapse
|
335
|
Butler MJ, Sloof D, Peters C, Conway Morris A, Gouliouris T, Thaxter R, Keevil VL, Beggs CB. Impact of supplementary air filtration on aerosols and particulate matter in a UK hospital ward: a case study. J Hosp Infect 2023; 135:81-89. [PMID: 36842537 PMCID: PMC9957342 DOI: 10.1016/j.jhin.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Aerosol spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a major problem in hospitals, leading to an increase in supplementary high-efficiency particulate air filtration aimed at reducing nosocomial transmission. This article reports a natural experiment that occurred when an air cleaning unit (ACU) on a medicine for older people ward was switched off accidentally while being commissioned. AIM To assess aerosol transport within the ward and determine whether the ACU reduced airborne particulate matter (PM) levels. METHODS An ACU was placed in a ward comprising two six-bedded bays plus three single-bed isolation rooms which had previously experienced several outbreaks of coronavirus disease 2019. During commissioning, real-time measurements of key indoor air quality parameters (PM1-10, CO2, temperature and humidity) were collected from multiple sensors over 2 days. During this period, the ACU was switched off accidentally for approximately 7 h, allowing the impact of the intervention on PM to be assessed. FINDINGS The ACU reduced the PM counts considerably (e.g. PM1 65.5-78.2%) throughout the ward (P<0.001 all sizes), with positive correlation found for all PM fractions and CO2 (r=0.343-0.817; all P<0.001). PM counts rose/fell simultaneously when the ACU was off, with correlation of PM signals from multiple locations (e.g. r=0.343-0.868; all P<0.001) for particulates <1 μm). CONCLUSION Aerosols migrated rapidly between the various ward subcompartments, suggesting that social distancing alone cannot prevent nosocomial transmission of SARS-CoV-2 as this fails to mitigate longer-range (>2 m) transmission. The ACU reduced PM levels considerably throughout the ward space, indicating its potential as an effective intervention to reduce the risk posed by infectious airborne particles.
Collapse
Affiliation(s)
- M J Butler
- Department of Medicine for the Elderly, Cambridge University Hospitals, Cambridge, UK
| | - D Sloof
- AirPurity UK, Ltd, Cambridge, UK
| | - C Peters
- Department of Microbiology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - A Conway Morris
- John V Farman Intensive Care Unit, Cambridge University Hospitals, Cambridge, UK; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - T Gouliouris
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - R Thaxter
- Infection Prevention and Control, Cambridge University Hospitals, Cambridge, UK
| | - V L Keevil
- Department of Medicine for the Elderly, Cambridge University Hospitals, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - C B Beggs
- Department of Medicine for the Elderly, Cambridge University Hospitals, Cambridge, UK; Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
| |
Collapse
|
336
|
Ruis C, Peacock TP, Polo LM, Masone D, Alvarez MS, Hinrichs AS, Turakhia Y, Cheng Y, McBroome J, Corbett-Detig R, Parkhill J, Floto RA. A lung-specific mutational signature enables inference of viral and bacterial respiratory niche. Microb Genom 2023; 9. [PMID: 37185044 DOI: 10.1099/mgen.0.001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Exposure to different mutagens leaves distinct mutational patterns that can allow inference of pathogen replication niches. We therefore investigated whether SARS-CoV-2 mutational spectra might show lineage-specific differences, dependent on the dominant site(s) of replication and onwards transmission, and could therefore rapidly infer virulence of emergent variants of concern (VOCs). Through mutational spectrum analysis, we found a significant reduction in G>T mutations in the Omicron variant, which replicates in the upper respiratory tract (URT), compared to other lineages, which replicate in both the URT and lower respiratory tract (LRT). Mutational analysis of other viruses and bacteria indicates a robust, generalizable association of high G>T mutations with replication within the LRT. Monitoring G>T mutation rates over time, we found early separation of Omicron from Beta, Gamma and Delta, while mutational patterns in Alpha varied consistent with changes in transmission source as social restrictions were lifted. Mutational spectra may be a powerful tool to infer niches of established and emergent pathogens.
Collapse
Affiliation(s)
- Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Luis M Polo
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Maria Soledad Alvarez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Angie S Hinrichs
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA, USA
| | - Ye Cheng
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA, USA
| | - Jakob McBroome
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
337
|
Parhizkar H, Fretz M, Laguerre A, Stenson J, Corsi RL, Van Den Wymelenberg KG, Gall ET. A novel VOC breath tracer method to evaluate indoor respiratory exposures in the near- and far-fields; implications for the spread of respiratory viruses. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:339-346. [PMID: 36424424 PMCID: PMC9686220 DOI: 10.1038/s41370-022-00499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Several studies suggest that far-field transmission (>6 ft) explains a significant number of COVID-19 superspreading outbreaks. OBJECTIVE Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. METHODS In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. RESULTS We observed that 0.76 m (2.5 ft) trials had ~36-44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. SIGNIFICANCE This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20-25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations. IMPACT STATEMENT We offer a novel methodology for studying the fate and transport of airborne bioaerosols in indoor spaces using VOCs as unique proxies for bioaerosols. We provide evidence that real-time measurement of VOCs can be applied in settings with human subjects to estimate the concentration of bioaerosol at different distances from the emitter. We also improve upon the conventional assumption that a well-mixed room exhibits instantaneous and perfect mixing by addressing spatial distances and mixing over time. We quantitatively assessed the exposure levels to breath tracers at alternate distances and provided more insights into the changes on "near-field to far-field" ratios over time. This method can be used in future to estimate the benefits of alternate environmental conditions and occupant behaviors.
Collapse
Affiliation(s)
- Hooman Parhizkar
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Fretz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Aurélie Laguerre
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, 97201, USA
| | - Jason Stenson
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Richard L Corsi
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Kevin G Van Den Wymelenberg
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA.
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA.
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
| | - Elliott T Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, 97201, USA
| |
Collapse
|
338
|
Banholzer N, Zürcher K, Jent P, Bittel P, Furrer L, Egger M, Hascher T, Fenner L. SARS-CoV-2 transmission with and without mask wearing or air cleaners in schools in Switzerland: A modeling study of epidemiological, environmental, and molecular data. PLoS Med 2023; 20:e1004226. [PMID: 37200241 PMCID: PMC10194935 DOI: 10.1371/journal.pmed.1004226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/28/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Growing evidence suggests an important contribution of airborne transmission to the overall spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in particular via smaller particles called aerosols. However, the contribution of school children to SARS-CoV-2 transmission remains uncertain. The aim of this study was to assess transmission of airborne respiratory infections and the association with infection control measures in schools using a multiple-measurement approach. METHODS AND FINDINGS We collected epidemiological (cases of Coronavirus Disease 2019 (COVID-19)), environmental (CO2, aerosol and particle concentrations), and molecular data (bioaerosol and saliva samples) over 7 weeks from January to March 2022 (Omicron wave) in 2 secondary schools (n = 90, average 18 students/classroom) in Switzerland. We analyzed changes in environmental and molecular characteristics between different study conditions (no intervention, mask wearing, air cleaners). Analyses of environmental changes were adjusted for different ventilation, the number of students in class, school and weekday effects. We modeled disease transmission using a semi-mechanistic Bayesian hierarchical model, adjusting for absent students and community transmission. Molecular analysis of saliva (21/262 positive) and airborne samples (10/130) detected SARS-CoV-2 throughout the study (weekly average viral concentration 0.6 copies/L) and occasionally other respiratory viruses. Overall daily average CO2 levels were 1,064 ± 232 ppm (± standard deviation). Daily average aerosol number concentrations without interventions were 177 ± 109 1/cm3 and decreased by 69% (95% CrI 42% to 86%) with mask mandates and 39% (95% CrI 4% to 69%) with air cleaners. Compared to no intervention, the transmission risk was lower with mask mandates (adjusted odds ratio 0.19, 95% CrI 0.09 to 0.38) and comparable with air cleaners (1.00, 95% CrI 0.15 to 6.51). Study limitations include possible confounding by period as the number of susceptible students declined over time. Furthermore, airborne detection of pathogens document exposure but not necessarily transmission. CONCLUSIONS Molecular detection of airborne and human SARS-CoV-2 indicated sustained transmission in schools. Mask mandates were associated with greater reductions in aerosol concentrations than air cleaners and with lower transmission. Our multiple-measurement approach could be used to continuously monitor transmission risk of respiratory infections and the effectiveness of infection control measures in schools and other congregate settings.
Collapse
Affiliation(s)
- Nicolas Banholzer
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Kathrin Zürcher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Philipp Jent
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pascal Bittel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lavinia Furrer
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Tina Hascher
- Institute of Educational Science, University of Bern, Bern, Switzerland
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
339
|
Peng L, Wang H, Li G, Liang Z, Zhang W, Zhao W, An T. Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols. Nat Commun 2023; 14:2412. [PMID: 37106011 PMCID: PMC10134728 DOI: 10.1038/s41467-023-38194-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Bioaerosol can cause the spread of disease, and therefore, capture and inactivation of bioaerosols is desirable. However, filtration systems can easily become blocked, and are often unable to inactivate the bioaerosol once it is captured. Herein, we reported a bioinspired artificial spider silk (ASS) photocatalyst, consisting of a periodic spindle structure of TiO2 on nylon fiber that can efficiently capture and concentrate airborne bacteria, followed by photocatalytic inactivation in situ, without a power-supply exhaust system. The ASS photocatalyst exhibits a higher capture capacity than the nylon fiber substrate and a photocatalytic inactivation efficiency of 99.99% obtained under 4 h irradiation. We found that the capture capacity of the ASS photocatalyst can be mainly attributed to the synergistic effects of hydrophilicity, Laplace pressure differences caused by the size of the spindle knots and surface energy gradients induced by surface roughness. The bacteria captured by the ASS photocatalyst are inactivated by photocatalysis within droplets or at the air/photocatalyst interfaces. This strategy paves the way for constructing materials for bioaerosol purification.
Collapse
Affiliation(s)
- Linghui Peng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiyu Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weina Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
340
|
Flood-Garibay JA, Angulo-Molina A, Méndez-Rojas MÁ. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:704-726. [PMID: 36752881 DOI: 10.1039/d2em00276k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the World Health Organization, both indoor and urban air pollution are responsible for the deaths of around 3.5 million people annually. During the last few decades, the interest in understanding the composition and health consequences of the complex mixture of polluted air has steadily increased. Today, after decades of detailed research, it is well-recognized that polluted air is a complex mixture containing not only gases (CO, NOx, and SO2) and volatile organic compounds but also suspended particles such as particulate matter (PM). PM comprises particles with sizes in the range of 30 to 2.5 μm (PM30, PM10, and PM2.5) and ultrafine particles (UFPs) (less than 0.1 μm, including nanoparticles). All these constituents have different chemical compositions, origins and health consequences. It has been observed that the concentration of PM and UFPs is high in urban areas with moderate traffic and increases in heavy traffic areas. There is evidence that inhaling PM derived from fossil fuel combustion is associated with a wide variety of harmful effects on human health, which are not solely associated with the respiratory system. There is accumulating evidence that the brains of urban inhabitants contain high concentrations of nanoparticles derived from combustion and there is both epidemiological and experimental evidence that this is correlated with the appearance of neurodegenerative human diseases. Neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, and cerebrovascular accidents, are among the main debilitating disorders of our time and their epidemiology can be classified as a public health emergency. Therefore, it is crucial to understand the pathophysiology and molecular mechanisms related to PM exposure, specifically to UFPs, present as pollutants in air, as well as their correlation with the development of neurodegenerative diseases. Furthermore, PM can enhance the transmission of airborne diseases and trigger inflammatory and immune responses, increasing the risk of health complications and mortality. Therefore, understanding the different levels of this issue is important to create and promote preventive actions by both the government and civilians to construct a strategic plan to treat and cope with the current and future epidemic of these types of disorders on a global scale.
Collapse
Affiliation(s)
- Jessica Andrea Flood-Garibay
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| | | | - Miguel Ángel Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
341
|
Stilpeanu RI, Stercu AM, Stancu AL, Tanca A, Bucur O. Monkeypox: a global health emergency. Front Microbiol 2023; 14:1094794. [PMID: 37180247 PMCID: PMC10169603 DOI: 10.3389/fmicb.2023.1094794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Over the past 2 years, the world has faced the impactful Coronavirus Disease-2019 (COVID-19) pandemic, with a visible shift in economy, medicine, and beyond. As of recent times, the emergence of the monkeypox (mpox) virus infections and the growing number of infected cases have raised panic and fear among people, not only due to its resemblance to the now eradicated smallpox virus, but also because another potential pandemic could have catastrophic consequences, globally. However, studies of the smallpox virus performed in the past and wisdom gained from the COVID-19 pandemic are the two most helpful tools for humanity that can prevent major outbreaks of the mpox virus, thus warding off another pandemic. Because smallpox and mpox are part of the same virus genus, the Orthopoxvirus genus, the structure and pathogenesis, as well as the transmission of both these two viruses are highly similar. Because of these similarities, antivirals and vaccines approved and licensed in the past for the smallpox virus are effective and could successfully treat and prevent an mpox virus infection. This review discusses the main components that outline this current global health issue raised by the mpox virus, by presenting it as a whole, and integrating aspects such as its structure, pathogenesis, clinical aspects, prevention, and treatment options, and how this ongoing phenomenon is being globally approached.
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana Maria Stercu
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Lucia Stancu
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA, United States
- Genomics Research and Development Institute, Bucharest, Romania
| |
Collapse
|
342
|
Zhang Y, Liu Y, Li S, Xu R, Yu P, Ramos C, Ebrahimifakhar A, Guo Y. Efficiency of portable air purification on public buses: A pilot study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121696. [PMID: 37088254 DOI: 10.1016/j.envpol.2023.121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
High concentrations of fine particulate matter (PM2.5) have been frequently reported in public transit systems and can cause adverse health effect. The portable air purifier is an inexpensive solution that could potentially clean in-cabin PM2.5. This study aims to find the PM2.5 removal efficiency of portable air purifiers in a public transit bus. In various scenarios, after artificially preloading the in-cabin PM2.5 concentration to 400 μg/m3, the concentrations were measured every 10 s, with and without the intervention of air purifiers. In a test bus with a volume of approximately 62.5 m3, three portable air purifiers were capable of reducing the average concentration of PM2.5 by 42-74%, from 400 μg/m3, to levels below 15 μg/m3, the acceptable short-term exposure concentration recommended by WHO. When high concentrations of outdoor PM2.5 entered the bus, purifiers maintained a relatively low level of in-cabin PM2.5. Air purifiers were more effective in reducing in-cabin PM2.5 than traditional air filtration and ventilation methods (air conditioning system filtration and door opening) in public transit buses. The deployed air purifiers reduced the concentration of particulate matter inside the bus, which may reduce the health risk of PM2.5 exposure and the spreading of airborne infections in public transit, thus, implying the potential to enhance passengers' and drivers' health.
Collapse
Affiliation(s)
- Yuxi Zhang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yanming Liu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | | | | | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia.
| |
Collapse
|
343
|
Zhang J, Yang T, Zou M, Wang L, Sai L. The epidemiological features of respiratory tract infection using the multiplex panels detection during COVID-19 pandemic in Shandong province, China. Sci Rep 2023; 13:6319. [PMID: 37072619 PMCID: PMC10112310 DOI: 10.1038/s41598-023-33627-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/16/2023] [Indexed: 05/03/2023] Open
Abstract
Respiratory tract infection is one of the most common reasons for both morbidity and mortality worldwide. High attention has been paid to the etiological tracing of respiratory tract infection since the advent of COVID-19. In this study, we aimed to evaluate the epidemiological features of pathogens in respiratory tract infection, especially during COVID-19 pandemic. A total of 7668 patients with respiratory tract infection who admitted to Qilu Hospital of Shandong University from March 2019 to Dec 2021 were retrospectively included. The respiratory tract specimens were detected using a commercial multiplex PCR-based panel assay for common respiratory pathogens including influenza A virus (Flu-A), influenza A virus H1N1 (H1N1), influenza A virus H3N2 (H3N2), influenza B virus (Flu-B), parainfluenza virus (PIV), respiratory syncytial virus (RSV), adenovirus (ADV), Boca virus (Boca), human Rhinovirus (HRV), Metapneumovirus (MPV), Coronavirus (COV), Mycoplasma pneumoniae (MP), and Chlamydia (Ch). The positive rates were compared using a chi-square test. Compared with 2019, the positive rate of pathogen detection during from January 2020 to December 2021 was significantly lower, especially the detection of Flu-A. The positive rate of respiratory pathogen strains was 40.18% during COVID-19 pandemic, and a total of 297 cases (4.69%) of mixed infection with two or more pathogens were detected. There was no statistical difference in the positive rate between male and female patients. However, the positive rates of infection were different among different age groups, with higher incidence of RSV in infancy and toddler group, and MP infection in children and teenager group. While, HRV was the most common pathogen in the adult patients. Moreover, Flu-A and Flu-B were higher in winter, and MP and RSV were higher in spring, autumn and winter. The pathogens such as ADV, BOCA, PIV, and COV were detected without significant seasonal distribution. In conclusion, respiratory pathogen infection rates may vary by age and season, regardless of gender. During the COVID-19 epidemic, blocking transmission routes could help reduce the incidence of respiratory tract infection. The current prevalence of respiratory tract infection pathogens is of great significance for clinical prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, China
| | - Tao Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Mingjin Zou
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, China.
| | - Lintao Sai
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
344
|
Clements N, Arvelo I, Arnold P, Heredia NJ, Hodges UW, Deresinski S, Cook PW, Hamilton KA. Informing Building Strategies to Reduce Infectious Aerosol Transmission Risk by Integrating DNA Aerosol Tracers with Quantitative Microbial Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5771-5781. [PMID: 37000413 DOI: 10.1021/acs.est.2c08131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Using aerosol-based tracers to estimate risk of infectious aerosol transmission aids in the design of buildings with adequate protection against aerosol transmissible pathogens, such as SARS-CoV-2 and influenza. We propose a method for scaling a SARS-CoV-2 bulk aerosol quantitative microbial risk assessment (QMRA) model for impulse emissions, coughing or sneezing, with aerosolized synthetic DNA tracer concentration measurements. With point-of-emission ratios describing relationships between tracer and respiratory aerosol emission characteristics (i.e., volume and RNA or DNA concentrations) and accounting for aerosolized pathogen loss of infectivity over time, we scale the inhaled pathogen dose and risk of infection with time-integrated tracer concentrations measured with a filter sampler. This tracer-scaled QMRA model is evaluated through scenario testing, comparing the impact of ventilation, occupancy, masking, and layering interventions on infection risk. We apply the tracer-scaled QMRA model to measurement data from an ambulatory care room to estimate the risk reduction resulting from HEPA air cleaner operation. Using DNA tracer measurements to scale a bulk aerosol QMRA model is a relatively simple method of estimating risk in buildings and can be applied to understand the impact of risk mitigation efforts.
Collapse
Affiliation(s)
- Nicholas Clements
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Ilan Arvelo
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | - Phil Arnold
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | | | - Ulrike W Hodges
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | - Stan Deresinski
- Stanford University School of Medicine, Stanford, California 94305, United States
| | - Peter W Cook
- Independent researcher, Atlanta, Georgia 30333, United States
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
345
|
Chang Y, Wang Y, Li W, Wei Z, Tang S, Chen R. Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5471. [PMID: 37107752 PMCID: PMC10138381 DOI: 10.3390/ijerph20085471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Airborne viruses, such as COVID-19, cause pandemics all over the world. Virus-containing particles produced by infected individuals are suspended in the air for extended periods, actually resulting in viral aerosols and the spread of infectious diseases. Aerosol collection and detection devices are essential for limiting the spread of airborne virus diseases. This review provides an overview of the primary mechanisms and enhancement techniques for collecting and detecting airborne viruses. Indoor virus detection strategies for scenarios with varying ventilations are also summarized based on the excellent performance of existing advanced comprehensive devices. This review provides guidance for the development of future aerosol detection devices and aids in the control of airborne transmission diseases, such as COVID-19, influenza and other airborne transmission viruses.
Collapse
Affiliation(s)
- Yuqing Chang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Wen Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| |
Collapse
|
346
|
Yang J, Liu MQ, Liu L, Li X, Xu M, Lin H, Li M, Yan H, Chen YQ, Shi ZL. The protective nasal boosting of a triple-RBD subunit vaccine against SARS-CoV-2 following inactivated virus vaccination. Signal Transduct Target Ther 2023; 8:151. [PMID: 37037812 PMCID: PMC10086003 DOI: 10.1038/s41392-023-01421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Affiliation(s)
- Jingyi Yang
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Mei-Qin Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xian Li
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Haofeng Lin
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Li
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Huimin Yan
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
347
|
Dahiya S, Simpson PL, Butler T. Rethinking standards on prison cell size in a (post)pandemic world: a scoping review. BMJ Open 2023; 13:e069952. [PMID: 37015783 PMCID: PMC10083520 DOI: 10.1136/bmjopen-2022-069952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/07/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE To describe the current international, regional and national standards on prison cell spatial density and the evidence for the association between COVID-19 transmission and prison crowding measures to provide recommendations on prison cell spatial density standards for a (post) pandemic world. DESIGN Scoping review. DATA SOURCES PubMed, ProQuest, Informit, Criminal Justice Abstracts, Cochrane, Web of Science, Scopus, EMBASE, Google Scholar and Google were searched up to November 2021. ELIGIBILITY CRITERIA Guidelines were included provided they described standards of prison accommodation with respect to prison cells. Studies were included provided they examined an association between COVID-19 cases and a crowding measure. DATA EXTRACTION AND SYNTHESIS Data were extracted by one reviewer and cross-checked by another. Quantitative and qualitative data on prison cell standards and characteristics of studies examining an association between COVID-19 and prison crowding were collected.Findings were synthesised qualitatively. RESULTS Seventeen reports and six studies met eligibility criteria. International and regional standards on cell spatial density were mostly qualitative, with two quantifiable international standards located (3.4 m2 and 3.5 m2 per person for multiple occupancy cells), and two quantifiable regional standards located (4 m2 per person (Europe) and 5.75 m2 or 4 m2 per person (Australia and New Zealand)). Country-based standards varied substantially, ranging from 1.25 m2 per person (Pakistan) to 10 m2 per person (Netherlands). Consideration of airborne transmission of disease in prisons were mostly overlooked or absent to rationalise standards. There was consistent evidence that prison crowding measures were associated with COVID-19 transmission/cases. CONCLUSION Considering the physics of respiratory emissions, we recommend prison cell spatial density standards be updated to reflect graded levels of risk that consider other factors that combine to inform airborne transmission risk. Decarceration strategies should be considered and become vital if standards are not met.
Collapse
Affiliation(s)
- Simran Dahiya
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Leslie Simpson
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Butler
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
348
|
Susswein Z, Rest EC, Bansal S. Disentangling the rhythms of human activity in the built environment for airborne transmission risk: An analysis of large-scale mobility data. eLife 2023; 12:e80466. [PMID: 37014055 PMCID: PMC10118388 DOI: 10.7554/elife.80466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background Since the outset of the COVID-19 pandemic, substantial public attention has focused on the role of seasonality in impacting transmission. Misconceptions have relied on seasonal mediation of respiratory diseases driven solely by environmental variables. However, seasonality is expected to be driven by host social behavior, particularly in highly susceptible populations. A key gap in understanding the role of social behavior in respiratory disease seasonality is our incomplete understanding of the seasonality of indoor human activity. Methods We leverage a novel data stream on human mobility to characterize activity in indoor versus outdoor environments in the United States. We use an observational mobile app-based location dataset encompassing over 5 million locations nationally. We classify locations as primarily indoor (e.g. stores, offices) or outdoor (e.g. playgrounds, farmers markets), disentangling location-specific visits into indoor and outdoor, to arrive at a fine-scale measure of indoor to outdoor human activity across time and space. Results We find the proportion of indoor to outdoor activity during a baseline year is seasonal, peaking in winter months. The measure displays a latitudinal gradient with stronger seasonality at northern latitudes and an additional summer peak in southern latitudes. We statistically fit this baseline indoor-outdoor activity measure to inform the incorporation of this complex empirical pattern into infectious disease dynamic models. However, we find that the disruption of the COVID-19 pandemic caused these patterns to shift significantly from baseline and the empirical patterns are necessary to predict spatiotemporal heterogeneity in disease dynamics. Conclusions Our work empirically characterizes, for the first time, the seasonality of human social behavior at a large scale with a high spatiotemporal resolutio and provides a parsimonious parameterization of seasonal behavior that can be included in infectious disease dynamics models. We provide critical evidence and methods necessary to inform the public health of seasonal and pandemic respiratory pathogens and improve our understanding of the relationship between the physical environment and infection risk in the context of global change. Funding Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM123007.
Collapse
Affiliation(s)
- Zachary Susswein
- Department of Biology, Georgetown UniversityWashington, DCUnited States
| | - Eva C Rest
- Department of Biology, Georgetown UniversityWashington, DCUnited States
| | - Shweta Bansal
- Department of Biology, Georgetown UniversityWashington, DCUnited States
| |
Collapse
|
349
|
Derqui N, Koycheva A, Zhou J, Pillay TD, Crone MA, Hakki S, Fenn J, Kundu R, Varro R, Conibear E, Madon KJ, Barnett JL, Houston H, Singanayagam A, Narean JS, Tolosa-Wright MR, Mosscrop L, Rosadas C, Watber P, Anderson C, Parker E, Freemont PS, Ferguson NM, Zambon M, McClure MO, Tedder R, Barclay WS, Dunning J, Taylor GP, Lalvani A, Cutajar J, Quinn V, Hammett S, McDermott E, Luca C, Timcang K, Samuel J, Bremang S, Evetts S, Wang L, Nevin S, Davies M, Tejpal C, Essoussi M, Ketkar AV, Miserocchi G, Catchpole H, Badhan A, Dustan S, Day Weber IJ, Marchesin F, Whitfield MG, Poh J, Kondratiuk A. Risk factors and vectors for SARS-CoV-2 household transmission: a prospective, longitudinal cohort study. THE LANCET MICROBE 2023:S2666-5247(23)00069-1. [PMID: 37031689 PMCID: PMC10132910 DOI: 10.1016/s2666-5247(23)00069-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission. METHODS In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.1.1.7; December, 2020, to April, 2021) SARS-CoV-2 variant waves, we prospectively recruited contacts from households exposed to newly diagnosed COVID-19 primary cases, in London, UK. To maximally capture transmission events, contacts were recruited regardless of symptom status and serially tested for SARS-CoV-2 infection by RT-PCR on upper respiratory tract (URT) samples and, in a subcohort, by serial serology. Contacts' hands, primary cases' hands, and frequently-touched surface-samples from communal areas were tested for SARS-CoV-2 RNA. SARS-CoV-2 URT isolates from 25 primary case-contact pairs underwent whole-genome sequencing (WGS). FINDINGS From Aug 1, 2020, until March 31, 2021, 620 contacts of PCR-confirmed SARS-CoV-2-infected primary cases were recruited. 414 household contacts (from 279 households) with available serial URT PCR results were analysed in the full household contacts' cohort, and of those, 134 contacts with available longitudinal serology data and not vaccinated pre-enrolment were analysed in the serology subcohort. Household infection rate was 28·4% (95% CI 20·8-37·5) for pre-alpha-exposed contacts and 51·8% (42·5-61·0) for alpha-exposed contacts (p=0·0047). Primary cases' URT RNA viral load did not correlate with transmission, but was associated with detection of SARS-CoV-2 RNA on their hands (p=0·031). SARS-CoV-2 detected on primary cases' hands, in turn, predicted contacts' risk of infection (adjusted relative risk [aRR]=1·70 [95% CI 1·24-2·31]), as did SARS-CoV-2 RNA presence on household surfaces (aRR=1·66 [1·09-2·55]) and contacts' hands (aRR=2·06 [1·57-2·69]). In six contacts with an initial negative URT PCR result, hand-swab (n=3) and household surface-swab (n=3) PCR positivity preceded URT PCR positivity. WGS corroborated household transmission. INTERPRETATION Presence of SARS-CoV-2 RNA on primary cases' and contacts' hands and on frequently-touched household surfaces associates with transmission, identifying these as potential vectors for spread in households. FUNDING National Institute for Health Research Health Protection Research Unit in Respiratory Infections, Medical Research Council.
Collapse
|
350
|
Vita G, Woolf D, Avery-Hickmott T, Rowsell R. A CFD-based framework to assess airborne infection risk in buildings. BUILDING AND ENVIRONMENT 2023; 233:110099. [PMID: 36815961 PMCID: PMC9925846 DOI: 10.1016/j.buildenv.2023.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 pandemic has prompted huge efforts to further the scientific knowledge of indoor ventilation and its relationship to airborne infection risk. Exhaled infectious aerosols are spread and inhaled as a result of room airflow characteristics. Many calculation methods and assertions on risk assume 'well-mixed' flow conditions. However, ventilation in buildings is complex and often not showing well-mixed conditions. Ventilation guidance is typically based on the provision of generic minimum ventilation flow rates for a given space, irrespective of the effectiveness in the delivery of the supply air. Furthermore, the airflow might be heavily affected by the season, the HVAC ventilation, or the opening of windows, which would potentially generate draughts and non-uniform conditions. As a result, fresh air concentration would be variable depending upon a susceptible receptor's position in a room and, therefore, associated airborne infection risk. A computational fluid dynamics (CFD) and dynamic thermal modelling (DTM) framework is proposed to assess the influence of internal airflow characteristics on airborne infection risk. A simple metric is proposed, the hourly airborne infection rate (HAI) which can easily help designers to stress-test the ventilation within a building under several conditions. A case study is presented, and the results clearly demonstrate the importance of understanding detailed indoor airflow characteristics and associated concentration patterns in order to provide detailed design guidance, e.g. occupancy, supply air diffusers and furniture layouts, to reduce airborne infection risk.
Collapse
Affiliation(s)
- Giulio Vita
- Wirth Research Ltd, Charlotte Avenue, Bicester, OX27 8BL, United Kingdom
- University of Birmingham School of Engineering Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Darren Woolf
- Wirth Research Ltd, Charlotte Avenue, Bicester, OX27 8BL, United Kingdom
| | | | - Rob Rowsell
- Wirth Research Ltd, Charlotte Avenue, Bicester, OX27 8BL, United Kingdom
| |
Collapse
|