301
|
Leppig KA, Sybert VP, Ross JL, Cunniff C, Trejo T, Raskind WH, Disteche CM. Phenotype and X inactivation in 45,X/46,X,r(X) cases. Am J Med Genet A 2005; 128A:276-84. [PMID: 15216549 DOI: 10.1002/ajmg.a.30002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We studied a new series of 21 individuals mosaic for a ring X chromosome [r(X)]. Of nine individuals with mental retardation, only one had a r(X) that lacked XIST (X-inactive-specific transcript) and was not subject to X inactivation, which would explain the abnormal phenotype; the remaining eight cases had XIST on their r(X). The majority of cases (five of seven) with mental retardation had an apparently early replicating r(X); but the androgen receptor gene (AR) was methylated on one allele in five of six informative cases, including two cases with an early replicating r(X). These conflicting results on two indicators of X inactivation suggest a potential dissociation between late replication and DNA methylation in these r(X) chromosomes, which may fail to become completely silenced. Of the twelve subjects who were not mentally retarded, all had XIST present on their r(X) and most (8/10) showed a late replicating r(X), together with AR methylation in all five informative cases, indicating r(X) inactivation. Thus, the unusual phenotypic features and mental retardation associated with the presence of a r(X) cannot be explained solely on the basis of presence or absence of XIST. The r(X) in cases with mental retardation were consistently smaller than those in individuals with normal intelligence, perhaps indicating inability for small rings to undergo structural changes associated with complete X inactivation or lethality in cases with a large non-inactivated r(X). Of the Turner syndrome features present in the r(X) cases, only edema was present in a lesser frequency than in 45,X individuals. Our cases generally had a less severe phenotype than those previously reported, suggesting that reported incidences of abnormalities may be influenced by ascertainment bias, with mental retardation potentially unrelated to the presence of the r(X) in some cases.
Collapse
MESH Headings
- Adolescent
- Adult
- Cells, Cultured
- Child
- Child, Preschool
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/metabolism
- DNA Methylation
- DNA Replication/genetics
- Dosage Compensation, Genetic
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Infant
- Intellectual Disability/genetics
- Karyotyping
- Lymphocytes/chemistry
- Middle Aged
- Phenotype
- RNA, Long Noncoding
- RNA, Messenger/analysis
- RNA, Untranslated/genetics
- Receptors, Androgen/genetics
- Ring Chromosomes
Collapse
Affiliation(s)
- Kathleen A Leppig
- Genetic Services, Group Health Permanente, Seattle, Washington 98112, USA.
| | | | | | | | | | | | | |
Collapse
|
302
|
Cohen HR, Royce-Tolland ME, Worringer KA, Panning B. Chromatin modifications on the inactive X chromosome. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:91-122. [PMID: 15881892 DOI: 10.1007/3-540-27310-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In female mammals, one X chromosome is transcriptionally silenced to achieve dosage compensation between XX females and XY males. This process, known as X-inactivation, occurs early in development, such that one X chromosome is silenced in every cell. Once X-inactivation has occurred, the inactive X chromosome is marked by a unique set of epigenetic features that distinguishes it from the active X chromosome and autosomes. These modifications appear sequentially during the transition from a transcriptionally active to an inactive state and, once established, act redundantly to maintain transcriptional silencing. In this review, we survey the unique epigenetic features that characterize the inactive X chromosome, describe the mechanisms by which these marks are established and maintained, and discuss how each contributes to silencing the inactive X chromosome.
Collapse
Affiliation(s)
- Hannah R Cohen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
303
|
Filippova GN, Cheng MK, Moore JM, Truong JP, Hu YJ, Nguyen DK, Tsuchiya KD, Disteche CM. Boundaries between Chromosomal Domains of X Inactivation and Escape Bind CTCF and Lack CpG Methylation during Early Development. Dev Cell 2005; 8:31-42. [PMID: 15669143 DOI: 10.1016/j.devcel.2004.10.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Escape from X inactivation results in expression of genes embedded within inactive chromatin, suggesting the existence of boundary elements between domains. We report that the 5' end of Jarid1c, a mouse escape gene adjacent to an inactivated gene, binds CTCF, displays high levels of histone H3 acetylation, and functions as a CTCF-dependent chromatin insulator. CpG island methylation at Jarid1c was very low during development and virtually absent at the CTCF sites, signifying that CTCF may influence DNA methylation and chromatin modifications. CTCF binding sites were also present at the 5' end of two other escape genes, mouse Eif2s3x and human EIF2S3, each adjacent to an inactivated gene, but not at genes embedded within large escape domains. Thus, CTCF was specifically bound to transition regions, suggesting a role in maintaining both X inactivation and escape domains. Furthermore, the evolution of X chromosome domains appears to be associated with repositioning of chromatin boundary elements.
Collapse
|
304
|
Fackelmayer FO. A Stable Proteinaceous Structure in the Territory of Inactive X Chromosomes. J Biol Chem 2005; 280:1720-3. [PMID: 15563465 DOI: 10.1074/jbc.c400531200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcriptional inactivation of one copy of the X chromosome in female cells equalizes expression of X-linked genes between males and females. This "dosage compensation" is a multistep process that involves epigenetic modifications of chromatin and is induced by the expression of a large non-coding RNA termed Xist. In contrast to protein-coding mRNA molecules, which are free to diffuse and roam the entire nuclear interior, Xist is locally constrained to the territory of inactive X chromosomes by as yet unclear mechanisms. Recent results have suggested a contribution of scaffold attachment factor A (SAF-A) in the silencing of X-linked genes, maybe by inducing a local change in nuclear architecture. Here, in vivo mobility experiments demonstrate that SAF-A is a component of a highly stable proteinaceous structure in the territory of inactive X chromosomes, which might act as a platform for immobilizing Xist RNA during the maintenance phase of X inactivation.
Collapse
Affiliation(s)
- Frank O Fackelmayer
- Department of Molecular Cell Biology, Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany.
| |
Collapse
|
305
|
Wolach B, Scharf Y, Gavrieli R, de Boer M, Roos D. Unusual late presentation of X-linked chronic granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB. Blood 2005; 105:61-6. [PMID: 15308575 DOI: 10.1182/blood-2004-02-0675] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Most patients with chronic granulomatous disease (CGD) have mutations in the X-linked CYBB gene that encodes gp91phox, a component of the phagocyte NADPH oxidase. The resulting X-linked form of CGD is usually manifested in boys. Rarely, X-CGD is encountered in female carriers with extreme expression of the mutated gene. Here, we report on a woman with a novel mutation in CYBB (CCG[90-92] → GGT), predicting Tyr30Arg31 → stop, Val in gp91phox, who presented with clinical symptoms at the age of 66. The mutation was present in heterozygous form in genomic DNA from her leukocytes but was fully expressed in mRNA from these cells, indicating that in her leukocytes the X chromosome carrying the nonmutated CYBB allele had been inactivated. Indeed, only 0.4% to 2% of her neutrophils showed NADPH oxidase activity. This extreme skewing of her X-chromosome inactivation was not found in her cheek mucosal cells and is thus not due to a general defect in gene methylation on one X chromosome. Moreover, the CYBB mutation was not present in the DNA from her cheek cells and was barely detectable in the DNA from her memory T lymphocytes. Thus, this patient shows a somatic mosaic for the CYBB mutation, which probably originated during her lifetime in her bone marrow.
Collapse
Affiliation(s)
- Baruch Wolach
- Department of Pediatrics and Laboratory for Leukocyte Function, Meir General Hospital, Kfar Saba, Israel.
| | | | | | | | | |
Collapse
|
306
|
Chadwick BP, Willard HF. Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci U S A 2004; 101:17450-5. [PMID: 15574503 PMCID: PMC534659 DOI: 10.1073/pnas.0408021101] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin is defined classically by condensation throughout the cell cycle, replication in late S phase and gene inactivity. Facultative heterochromatin is of particular interest, because its formation is developmentally regulated as a result of cellular differentiation. The most extensive example of facultative heterochromatin is the mammalian inactive X chromosome (Xi). A variety of histone variants and covalent histone modifications have been implicated in defining the organization of the Xi heterochromatic state, and the features of Xi heterochromatin have been widely interpreted as reflecting a redundant system of gene silencing. However, here we demonstrate that the human Xi is packaged into at least two nonoverlapping heterochromatin types, each characterized by specific Xi features: one defined by the presence of Xi-specific transcript RNA, the histone variant macroH2A, and histone H3 trimethylated at lysine 27 and the other defined by H3 trimethylated at lysine 9, heterochromatin protein 1, and histone H4 trimethylated at lysine 20. Furthermore, regions of the Xi packaged in different heterochromatin types are characterized by different patterns of replication in late S phase. The arrangement of facultative heterochromatin into spatially and temporally distinct domains has implications for both the establishment and maintenance of the Xi and adds a previously unsuspected degree of epigenetic complexity.
Collapse
Affiliation(s)
- Brian P Chadwick
- Institute for Genome Sciences and Policy, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
307
|
Abstract
Epigenetics is comprised of the stable and heritable (or potentially heritable) changes in gene expression that do not entail a change in DNA sequence. The role of epigenetics in the etiology of human disease is increasingly recognized with the most obvious evidence found for genes subject to genomic imprinting. Mutations and epimutations in imprinted genes can give rise to genetic and epigenetic phenotypes, respectively; uniparental disomy and imprinting defects represent epigenetic disease phenotypes. There are also genetic disorders that affect chromatin structure and remodeling. These disorders can affect chromatin in trans or in cis, as well as expression of both imprinted and nonimprinted genes. Data from Angelman and Beckwith-Wiedemann syndromes and other disorders indicate that a monogenic or oligogenic phenotype can be caused by a mixed epigenetic and genetic and mixed de novo and inherited (MEGDI) model. The MEGDI model may apply to some complex disease traits and could explain negative results in genome-wide genetic scans.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
308
|
Abstract
Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development. This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Anders H Lund
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.
| | | |
Collapse
|
309
|
Khalil AM, Boyar FZ, Driscoll DJ. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci U S A 2004; 101:16583-7. [PMID: 15536132 PMCID: PMC534513 DOI: 10.1073/pnas.0406325101] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the formation of the XY body at pachytene and expression studies of a few X-linked genes, the X and Y chromosomes seem to undergo transcriptional inactivation during mammalian spermatogenesis. However, the extent and the mechanism of X and Y inactivation are not known. Here, we show that both the X and Y chromosomes undergo sequential changes in their histone modifications beginning at the pachytene stage of meiosis. These changes usually are associated with transcriptional inactivation in somatic cells, and they coincide with the exclusion of the phosphorylated (active) form of RNA polymerase II from the XY body. Both sex chromosomes undergo extensive deacetylation at histones H3 and H4 and (di)methylation of lysine (K)9 on histone H3; however, there are no changes in H3-K4 methylation. These changes persist even when the XY body disappears in late pachytene, and the X and Y chromosomes segregate from one another after the first meiotic division. By the spermatid stage, histone modifications of the X and Y chromosomes revert to those of active chromatin and RNA polymerase II reengages with both chromosomes. Our observations indicate that X and Y inactivation is extensive and persists even when the X and Y chromosomes are separated in secondary spermatocytes. These findings provide insights into epigenetic programming and chromatin dynamics in the male germ line.
Collapse
Affiliation(s)
- Ahmad M Khalil
- Division of Pediatrics Genetics and Center for Mammalian Genetics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
310
|
Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 2004; 14:155-64. [PMID: 15196462 DOI: 10.1016/j.gde.2004.02.001] [Citation(s) in RCA: 691] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polycomb group (PcG) proteins are important for maintaining the silenced state of homeotic genes. Biochemical and genetic studies in Drosophila and mammalian cells indicate that PcG proteins function in at least two distinct protein complexes: the ESC-E(Z) or EED-EZH2 complex, and the PRC1 complex. Recent work has shown that at least part of the silencing function of the ESC-E(Z) complex is mediated by its intrinsic activity for methylating histone H3 on lysine 27. In addition to being involved in Hox gene silencing, the complex and its associated histone methyltransferase activity are important in other biological processes including X-inactivation, germline development, stem cell pluripotency and cancer metastasis.
Collapse
Affiliation(s)
- Ru Cao
- Department of Biochemistry & Biophysics, Curriculum in Genetics & Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
311
|
Fang J, Chen T, Chadwick B, Li E, Zhang Y. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 2004; 279:52812-5. [PMID: 15509584 DOI: 10.1074/jbc.c400493200] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone modifications are thought to serve as epigenetic markers that mediate dynamic changes in chromatin structure and regulation of gene expression. As a model system for understanding epigenetic silencing, X chromosome inactivation has been previously linked to a number of histone modifications including methylation and hypoacetylation. In this study, we provide evidence that supports H2A ubiquitination as a novel epigenetic marker for the inactive X chromosome (Xi) and links H2A ubiquitination to initiation of X inactivation. We found that the H2A-K119 ubiquitin E3 ligase Ring1b, a Polycomb group protein, is enriched on Xi in female trophoblast stem (TS) cells as well as differentiating embryonic stem (ES) cells. Consistent with Ring1b mediating H2A ubiquitination, ubiquitinated H2A (ubH2A) is also enriched on the Xi of both TS and ES cells. We demonstrate that the enrichment of Ring1b and ubH2A on Xi is transient during TS and ES cell differentiation, suggesting that the Ring1b and ubH2A are involved in the initiation of both imprinted and random X inactivation. Furthermore, we showed that the association of Ring1b and ubH2A with Xi is mitotically stable in non-differentiated TS cells.
Collapse
Affiliation(s)
- Jia Fang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
312
|
Abstract
X chromosome inactivation is the mammalian answer to the dilemma of dosage compensation between males and females. The study of this fascinating form of chromosome-wide gene regulation has yielded surprising insights into early development and cellular memory. In the past few months, three papers reported unexpected findings about the paternal X chromosome (X(p)). All three studies agree that the X(p) is imprinted to become inactive earlier than ever suspected during embryonic development. Although apparently incomplete, this early form of inactivation insures dosage compensation throughout development. Silencing of the X(p) persists in cells of extraembryonic tissues, but it is erased and followed by random X inactivation in cells of the embryo proper. These findings challenge several aspects of the current view of X inactivation during early development and may have profound impact on studies of pluripotency and epigenetics.
Collapse
Affiliation(s)
- Mimi K Cheng
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
313
|
Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004; 68:432-52, table of contents. [PMID: 15353564 PMCID: PMC515255 DOI: 10.1128/mmbr.68.3.432-452.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since double-stranded RNA (dsRNA) has not until recently generally been thought to be deliberately expressed in cells, it has commonly been assumed that the major source of cellular dsRNA is viral infections. In this view, the cellular responses to dsRNA would be natural and perhaps ancient antiviral responses. While the cell may certainly react to some dsRNAs as an antiviral response, this does not represent the only response or even, perhaps, the major one. A number of recent observations have pointed to the possibility that dsRNA molecules are not seen only as evidence of viral infection or recognized for degradation because they cannot be translated. In some instances they may also play important roles in normal cell growth and function. The purpose of this review is to outline our current understanding of the fate of dsRNA in cells, with a focus on the apparent fact that their fates and functions appear to depend critically not only on where in the cell dsRNA molecules are found, but also on how long they are and perhaps on how abundant they are.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
314
|
Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaillé J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 2004; 14:1741-8. [PMID: 15310658 PMCID: PMC515320 DOI: 10.1101/gr.2743304] [Citation(s) in RCA: 419] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
microRNAs (or miRNAs) are small noncoding RNAs (21 to 25 nucleotides) that are processed from longer hairpin RNA precursors and are believed to be involved in a wide range of developmental and cellular processes, by either repressing translation or triggering mRNA degradation (RNA interference). By using a computer-assisted approach, we have identified 46 potential miRNA genes located in the human imprinted 14q32 domain, 40 of which are organized as a large cluster. Although some of these clustered miRNA genes appear to be encoded by a single-copy DNA sequence, most of them are arranged in tandem arrays of closely related sequences. In the mouse, this miRNA gene cluster is conserved at the homologous distal 12 region. In vivo all the miRNAs that we have detected are expressed in the developing embryo (both in the head and in the trunk) and in the placenta, whereas in the adult their expression is mainly restricted to the brain. We also show that the miRNA genes are only expressed from the maternally inherited chromosome and that their imprinted expression is regulated by an intergenic germline-derived differentially methylated region (IG-DMR) located approximately 200 kb upstream from the miRNA cluster. The functions of these miRNAs, which seem only conserved in mammals, are discussed both in terms of epigenetic control and gene regulation during development.
Collapse
Affiliation(s)
- Hervé Seitz
- LBME-CNRS (UMR 5099), IFR-109, Université P. Sabatier, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
315
|
Affiliation(s)
- Alain Spatz
- Institut Gustave-Roussy and UMR 8125 CNRS, 94805 Villejuif, France
| | | | | |
Collapse
|
316
|
Nomura S, Baxter T, Yamaguchi H, Leys C, Vartapetian AB, Fox JG, Lee JR, Wang TC, Goldenring JR. Spasmolytic polypeptide expressing metaplasia to preneoplasia in H. felis-infected mice. Gastroenterology 2004; 127:582-94. [PMID: 15300590 DOI: 10.1053/j.gastro.2004.05.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The emergence of oxyntic atrophy and metaplastic cell lineages in response to chronic Helicobacter pylori infection predisposes to gastric neoplasia. We have described a trefoil factor family 2 (TFF2; spasmolytic polypeptide) expressing metaplasia (SPEM) associated with gastric neoplasia in both rodent and human fundus. To examine the relationship of SPEM to the neoplastic process in the H. felis -infected C57BL/6 mouse, we have now studied the association of SPEM-related transcripts with preneoplasia. METHODS SPEM-related transcripts were identified by microarray analysis of amplified cRNA from SPEM, and surface mucous cells were isolated by laser capture microdissection from the same gastric sections from male C57BL/6 mice infected with H. felis for 6 months. Expression of SPEM-related transcripts was assessed by in situ hybridization and quantitative RT-PCR, as well as immunohistochemistry for prothymosin alpha. RESULTS Eleven SPEM-related transcripts were identified as detectable only in SPEM. The expression of the SPEM-related transcripts was validated by in situ hybridization and quantitative PCR. One transcript, the noncoding RNA Xist, was only identified in SPEM cells from the infected male mice. Ten of the 11 transcripts as well as TFF2 were also expressed in regions of gastritis cystica profunda. Immunocytochemistry for one of the identified proteins, prothymosin alpha, demonstrated prominent nuclear staining in SPEM and gastritis cystica profunda. CONCLUSIONS The expression of SPEM-related transcripts in regions of gastritis cystica profunda suggests that SPEM represents a precursor lineage for the development of dysplasia in this animal model of gastric carcinogenesis.
Collapse
Affiliation(s)
- Sachiyo Nomura
- Nashville VA Medical Center and the Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Mann MRW, Lee SS, Doherty AS, Verona RI, Nolen LD, Schultz RM, Bartolomei MS. Selective loss of imprinting in the placenta following preimplantation development in culture. Development 2004; 131:3727-35. [PMID: 15240554 DOI: 10.1242/dev.01241] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preimplantation development is a period of dynamic epigenetic change that begins with remodeling of egg and sperm genomes, and ends with implantation. During this time, parental-specific imprinting marks are maintained to direct appropriate imprinted gene expression. We previously demonstrated that H19 imprinting could be lost during preimplantation development under certain culture conditions. To define the lability of genomic imprints during this dynamic period and to determine whether loss of imprinting continues at later stages of development, imprinted gene expression and methylation were examined after in vitro preimplantation culture. Following culture in Whitten's medium, the normally silent paternal H19 allele was aberrantly expressed and undermethylated. However, only a subset of individual cultured blastocysts (∼65%) exhibited biallelic expression, while others maintained imprinted H19 expression. Loss of H19 imprinting persisted in mid-gestation conceptuses. Placental tissues displayed activation of the normally silent allele for H19, Ascl2, Snrpn, Peg3 and Xist while in the embryo proper imprinted expression for the most part was preserved. Loss of imprinted expression was associated with a decrease in methylation at the H19 and Snrpn imprinting control regions. These results indicate that tissues of trophectoderm origin are unable to restore genomic imprints and suggest that mechanisms that safeguard imprinting might be more robust in the embryo than in the placenta.
Collapse
Affiliation(s)
- Mellissa R W Mann
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
318
|
Abstract
There are two forms of X chromosome inactivation (XCI) in the laboratory mouse, random XCI in the fetus and imprinted paternal XCI limited to the extraembryonic tissues supporting the fetal life in utero. Imprinted XCI has been studied extensively because it takes place first in embryogenesis and it may hold clues to the mechanism of control of XCI in general and to the evolution of random' XCI. Classical microscopic and biochemical studies of embryos in vivo provide a basis for interpreting the multifaceted information yielded by various inventive approaches and for planning further experiments.
Collapse
Affiliation(s)
- Nobuo Takagi
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
319
|
Abstract
X-chromosome inactivation (XCI) was first suggested as an explanation for the variegated phenotypes in mice heterozygous for X-linked colour genes or for X-autosome translocations involving autosomal coat colour genes. The effects seen in X-autosome translocations led to the suggestion of an X-inactivation centre (Xic) from which the inactivation was initiated, and this suggestion has led to major advances in understanding. Another feature of X-autosome translocations is incomplete inactivation of the attached autosomal segment, implying that the X-chromosome is enriched in features favouring inactivation. Interspersed repeat elements, and in particular long interspersed elements (LINEs), have been suggested as the relevant enriching features. Recent evidence concerning this hypothesis is discussed.
Collapse
Affiliation(s)
- Mary F Lyon
- MRC Mammalian Genetics Unit, Harwell, Didcot, Oxfordshire OX11 ORD, UK.
| |
Collapse
|
320
|
Dhara SK, Benvenisty N. Gene trap as a tool for genome annotation and analysis of X chromosome inactivation in human embryonic stem cells. Nucleic Acids Res 2004; 32:3995-4002. [PMID: 15284332 PMCID: PMC506821 DOI: 10.1093/nar/gkh746] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem (ES) cells were suggested to be an important tool in transplantation medicine. However, they also play a major role in human genetics. Using the gene trap strategy, we have created a bank of clones with insertion mutations in human ES cells. These insertions occurred within known, predicted and unknown genes, and thus assist us in annotating the genes in the human genome. The insertions into the genome occurred in multiple chromosomes with a preference to larger chromosomes. Utilizing a clone where the integration occurred in the X chromosome, we have studied X-chromosome inactivation in human cells. We thus show that in undifferentiated female human ES cells both X chromosomes remain active and upon differentiation one chromosome undergoes inactivation. In the differentiated embryonic cells the inactivation is random, while in the extra-embryonic cells it is non-random. In addition, using a selection methodology, we demonstrate that in a minority of the cells partial inactivation and XIST expression occur even in the undifferentiated cells. We suggest that X chromosome inactivation during human embryogenesis, which coincides with differentiation, may be separated from the differentiation process. The genetic manipulation of human ES cells now opens new ways of analyzing chromosome status and gene expression in humans.
Collapse
Affiliation(s)
- Sujoy K Dhara
- Department of Genetics, The Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|
321
|
Affiliation(s)
- Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| |
Collapse
|
322
|
Kohtz JD, Fishell G. Developmental regulation of EVF-1, a novel non-coding RNA transcribed upstream of the mouse Dlx6 gene. Gene Expr Patterns 2004; 4:407-12. [PMID: 15183307 DOI: 10.1016/j.modgep.2004.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 01/09/2004] [Accepted: 01/11/2004] [Indexed: 10/26/2022]
Abstract
We previously reported that sonic hedgehog (Shh) induces the differentiation of rat ventral forebrain neurons expressing a novel marker, EVF-1 [Development 125 (1998) 5079]. In this report, we show that EVF-1 is a novel, developmentally regulated, non-coding RNA, with no homology to other known non-coding RNA sequences. Sequence analysis, in vitro translation, and comparison of the rat and mouse EVF-1 sequences suggest that EVF-1 contains no protein coding regions. Chromosomal location indicates that EVF-1 maps adjacent to the Dlx6 gene on mouse chromosome 6. RNA in situ hybridization of the embryonic rat forebrain shows that EVF-1 is expressed by immature neurons in the subventricular zone and its expression decreases during forebrain development. Whole mount in situ hybridization shows that EVF-1 is expressed at high levels in the branchial arches, ventral forebrain, olfactory bulb, and limbs. EVF-1 expression is linked to Shh and the Dlx family of proteins, genes with a demonstrated importance to ventral forebrain and craniofacial development.
Collapse
Affiliation(s)
- Jhumku D Kohtz
- Program in Neurobiology, Department of Pediatrics, Children's Memorial Institute for Education and Research, Feinberg School of Medicine, Northwestern University, Box No. 209, 2430 North Halsted, Chicago, IL 60614, USA.
| | | |
Collapse
|
323
|
Rattner BP, Meller VH. Worm chromosomes call for recognition! Bioessays 2004; 26:707-10. [PMID: 15221851 DOI: 10.1002/bies.20079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many organisms face a dilemma rooted in the unequal numbers of X chromosomes carried by the two sexes and the need to maintain equivalent expression of X-linked genes. Several strategies have arisen to cope with this problem. All rely on accurately targeting epigenetic modifications to entire chromosomes. Targeting results from the action of recognition elements that attract modification and may rely on spreading of modification in cis along the affected chromosome. A recent report describing the first X chromosome recognition element from C. elegans opens the way to defining the relative contributions of these factors to the compensation of X-linked gene expression in worms.1 Extrachromosomal arrays composed of a C. elegans recognition element attract proteins that modify the C. elegans X chromosomes and interact genetically with mutations disrupting compensation. Moreover, examination of X:A translocations provides the first evidence for spreading of modification along C. elegans X chromosomes.
Collapse
Affiliation(s)
- Barbara P Rattner
- Section of Molecular Biology, University of California, San Diego, USA
| | | |
Collapse
|
324
|
Larsson J, Svensson MJ, Stenberg P, Mäkitalo M. Painting of fourth in genus Drosophila suggests autosome-specific gene regulation. Proc Natl Acad Sci U S A 2004; 101:9728-33. [PMID: 15210994 PMCID: PMC470743 DOI: 10.1073/pnas.0400978101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Painting of fourth (POF) is a chromosome-specific protein in Drosophila and represents the first example of an autosome-specific protein. POF binds to chromosome 4 in Drosophila melanogaster, initiating at the proximal region, followed by a spreading dependent on chromosome 4-specific sequences or structures. Chromosome-specific gene regulation is known thus far only as a mechanism to equalize the transcriptional activity of the single male X chromosome with that of the two female X chromosomes. In Drosophila, a complex including the male-specific lethal proteins, "paints" the male X chromosome, mediating its hypertranscription, explained to some extent by the acetylation of lysine 16 on histone H4. Here, we show that Pof is essential for viability in both sexes and for female fertility. POF binding to an autosome, the F element, is conserved in genus Drosophila, indicating functional conservation of the autosome specificity. In three of nine studied species, POF binds to the male X chromosome. When bound to the male X, it also colocalizes with the dosage compensation protein male-specific lethal 3, suggesting a relationship to dosage compensation. The chromosome specificity is determined at the species level and not by the amino acid sequence. We argue that POF is involved in a chromosome-specific regulatory function.
Collapse
Affiliation(s)
- Jan Larsson
- Umeå Centrum för Molekylär Patogenes, Umeå University, SE-901 87 Umea, Sweden.
| | | | | | | |
Collapse
|
325
|
Tsuchiya KD, Greally JM, Yi Y, Noel KP, Truong JP, Disteche CM. Comparative sequence and x-inactivation analyses of a domain of escape in human xp11.2 and the conserved segment in mouse. Genome Res 2004; 14:1275-84. [PMID: 15197169 PMCID: PMC442142 DOI: 10.1101/gr.2575904] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have performed X-inactivation and sequence analyses on 350 kb of sequence from human Xp11.2, a region shown previously to contain a cluster of genes that escape X inactivation, and we compared this region with the region of conserved synteny in mouse. We identified several new transcripts from this region in human and in mouse, which defined the full extent of the domain escaping X inactivation in both species. In human, escape from X inactivation involves an uninterrupted 235-kb domain of multiple genes. Despite highly conserved gene content and order between the two species, Smcx is the only mouse gene from the conserved segment that escapes inactivation. As repetitive sequences are believed to facilitate spreading of X inactivation along the chromosome, we compared the repetitive sequence composition of this region between the two species. We found that long terminal repeats (LTRs) were decreased in the human domain of escape, but not in the majority of the conserved mouse region adjacent to Smcx in which genes were subject to X inactivation, suggesting that these repeats might be excluded from escape domains to prevent spreading of silencing. Our findings indicate that genomic context, as well as gene-specific regulatory elements, interact to determine expression of a gene from the inactive X-chromosome.
Collapse
Affiliation(s)
- Karen D Tsuchiya
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | |
Collapse
|
326
|
Abstract
X inactivation is the silencing one of the two X chromosomes in XX female mammals. Initiation of this process during early development is controlled by the X-inactivation centre, a complex locus that determines how many, and which, X chromosomes will be inactivated. It also produces the Xist transcript, a remarkable RNA that coats the X chromosome in cis and triggers its silencing. Xist RNA coating induces a cascade of chromatin changes on the X chromosome, including the recruitment of Polycomb group proteins. This results in an inactive state that is initially labile, but may be further locked in by epigenetic marks such as DNA methylation. In mice, X inactivation has recently been found to be much more dynamic than previously thought during early pre-implantation development. The paternal X chromosome is initially inactivated in all cells of cleavage-stage embryos and then selectively reactivated in the subset of cells that will form the embryo, with random X inactivation occurring thereafter.
Collapse
Affiliation(s)
- Edith Heard
- CNRS UMR 218, Curie Institute, 26 rue d'Ulm, Paris 75005, France.
| |
Collapse
|
327
|
Kelley RL. Path to equality strewn with roX. Dev Biol 2004; 269:18-25. [PMID: 15081354 DOI: 10.1016/j.ydbio.2004.01.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 01/12/2004] [Accepted: 01/26/2004] [Indexed: 11/29/2022]
Abstract
Male flies hypertranscribe most genes along their single X chromosome to match the output of females with two X chromosomes. This is mediated by chromatin modifications carried out by the MSL complex composed of noncoding roX RNA and at least five MSL proteins. New results indicate that one of these subunits, the MOF acetyltransferase, not only acts on histone H4, but on itself and MSL3. Cycles of covalent modifications of the MSL subunits may determine the proper level of hypertranscription or control cis spreading along the chromosome. The MSL complex binds to the roX genes, the very source of the RNA component of the complex. New details of how this interaction occurs hint at a possible autoregulatory function. Finally, despite intensive efforts, the molecular mechanism by which the MSL complex distinguishes the X from the autosomes remains a mystery. The MSL complex is able to spread epigenetically from the site of roX transcription, and recent work has defined the conditions that control local cis spreading. However, it is equally clear that soluble MSL complex can distinguish the X chromosome from autosomes. Reconciling all these findings into a unified model presents a challenge.
Collapse
Affiliation(s)
- Richard L Kelley
- Department of Molecular, Cellular Biology and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
328
|
Gómez M, Brockdorff N. Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage. Proc Natl Acad Sci U S A 2004; 101:6923-8. [PMID: 15105447 PMCID: PMC406443 DOI: 10.1073/pnas.0401854101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA replication origins (ORIs) map close to promoter regions in many organisms, including mammals. However, the relationship between initiation of replication and transcription is not well understood. To address this issue, we have analyzed replication timing and activity of several CpG island-associated ORIs on the transcriptionally active and silent X chromosomes. We find equivalent ORI usage and efficiency of both alleles at sites that are replicated late on the inactive X chromosome. Thus, in contrast to its repressive effect on transcription, heterochromatin does not influence ORI activity. These findings suggest that the relationship between sites of transcription and replication initiation at CpG island regions is restricted to early development, and that subsequent gene silencing and heterochromatin formation influence only the timing of ORI activation.
Collapse
Affiliation(s)
- María Gómez
- X Inactivation Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College for Science, Technology, and Medicine, Hammersmith Hospital, DuCane Road, London W12 0NN, United Kingdom
| | | |
Collapse
|
329
|
Chang CF, Wai KM, Patterton HG. Calculating the statistical significance of physical clusters of co-regulated genes in the genome: the role of chromatin in domain-wide gene regulation. Nucleic Acids Res 2004; 32:1798-807. [PMID: 15034148 PMCID: PMC390345 DOI: 10.1093/nar/gkh507] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Physical clusters of co-regulated, but apparently functionally unrelated, genes are present in many genomes. Despite the important implication that the genomic environment contributes appreciably to the regulation of gene expression, no simple statistical method has been described to identify physical clusters of co-regulated genes. Here we report the development of a model that allows the direct calculation of the significance of such clusters. We have implemented the derived statistical relation in a software program, Pyxis, and have analyzed a selection of Saccharomyces cerevisiae gene expression microarray data sets. We have identified many gene clusters where constituent genes exhibited a regulatory dependence on proteins previously implicated in chromatin structure. Specifically, we found that Tup1p-dependent gene domains were enriched close to telomeres, which suggested a new role for Tup1p in telomere silencing. In addition, we identified Sir2p-, Sir3p- and Sir4p-dependent clusters, which suggested the presence of Sir-mediated heterochromatin in previously unidentified regions of the yeast genome. We also showed the presence of Sir4p-dependent gene clusters bordering the HMRa heterothallic locus, which suggested leaky termination of the heterochromatin by the boundary elements. These results demonstrate the utility of Pyxis in identifying possible higher order genomic features that may contribute to gene regulation in extended domains.
Collapse
Affiliation(s)
- Cheng-Fu Chang
- Department of Molecular and Cell Biology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, University Private Bag, Rondebosch 7701, South Africa
| | | | | |
Collapse
|
330
|
Csankovszki G, McDonel P, Meyer BJ. Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science 2004; 303:1182-5. [PMID: 14976312 DOI: 10.1126/science.1092938] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To achieve X-chromosome dosage compensation, organisms must distinguish X chromosomes from autosomes. We identified multiple, cis-acting regions that recruit the Caenorhabditis elegans dosage compensation complex (DCC) through a search for regions of X that bind the complex when detached from X. The DCC normally assembles along the entire X chromosome, but not all detached regions recruit the complex, despite having genes known to be dosage compensated on the native X. Thus, the DCC binds first to recruitment sites, then spreads to neighboring X regions to accomplish chromosome-wide gene repression. From a large chromosomal domain, we defined a 793-base pair fragment that functions in vivo as an X-recognition element to recruit the DCC.
Collapse
Affiliation(s)
- Györgyi Csankovszki
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
331
|
Young JI, Zoghbi HY. X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of rett syndrome. Am J Hum Genet 2004; 74:511-20. [PMID: 14973779 PMCID: PMC1182264 DOI: 10.1086/382228] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 12/11/2003] [Indexed: 11/04/2022] Open
Abstract
Rett syndrome (RTT), a neurodevelopmental disorder affecting mostly females, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Although the majority of girls with classic RTT have a random pattern of X-chromosome inactivation (XCI), nonbalanced patterns have been observed in patients carrying mutant MECP2 and, in some cases, account for variability of phenotypic manifestations. We have generated an RTT mouse model that recapitulates all major aspects of the human disease, but we found that females exhibit a high degree of phenotypic variability beyond what is observed in human patients with similar mutations. To evaluate whether XCI influences the phenotypic outcome of Mecp2 mutation in the mouse, we studied the pattern of XCI at the single-cell level in brains of heterozygous females. We found that XCI patterns were unbalanced, favoring expression of the wild-type allele, in most mutant females. It is notable that none of the animals had nonrandom XCI favoring the mutant allele. To explore why the XCI patterns favored expression of the wild-type allele, we studied primary neuronal cultures from Mecp2-mutant mice and found selective survival of neurons in which the wild-type X chromosome was active. Quantitative analysis indicated that fewer phenotypes are observed when a large percentage of neurons have the mutant X chromosome inactivated. The study of neuronal XCI patterns in a large number of female mice carrying a mutant Mecp2 allele highlights the importance of MeCP2 for neuronal viability. These findings also raise the possibility that there are human females who carry mutant MECP2 alleles but are not recognized because their phenotypes are subdued owing to favorable XCI patterns.
Collapse
Affiliation(s)
- Juan I. Young
- Departments of Molecular and Human Genetics, and Pediatrics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston
| | - Huda Y. Zoghbi
- Departments of Molecular and Human Genetics, and Pediatrics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston
| |
Collapse
|
332
|
Abstract
Retrogenes originate from their progenitor genes by retroposition. Several retrogenes reported in recent studies are autosomal, originating from X-linked progenitor genes, and have evolved a testis-specific expression pattern. During male meiosis, sex chromosomes are segregated into a so-called 'XY' body and are silenced transcriptionally. It has been widely hypothesized that the silencing of the X chromosome during male meiosis is the driving force behind the retroposition of X-linked genes to autosomes during evolution. With the advent of sequenced genomes of many species, many retrogenes can be identified and characterized. The testis-specific retrogenes might be associated with human male infertility. My goal here is to integrate recent findings, highlight controversies in the field and identify areas for further study.
Collapse
Affiliation(s)
- P Jeremy Wang
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
333
|
Diaz-Meyer N, Day CD, Khatod K, Maher ER, Cooper W, Reik W, Junien C, Graham G, Algar E, Der Kaloustian VM, Higgins MJ. Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome. J Med Genet 2004; 40:797-801. [PMID: 14627666 PMCID: PMC1735305 DOI: 10.1136/jmg.40.11.797] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Beckwith-Wiedemann syndrome (BWS) arises by several genetic and epigenetic mechanisms affecting the balance of imprinted gene expression in chromosome 11p15.5. The most frequent alteration associated with BWS is the absence of methylation at the maternal allele of KvDMR1, an intronic CpG island within the KCNQ1 gene. Targeted deletion of KvDMR1 suggests that this locus is an imprinting control region (ICR) that regulates multiple genes in 11p15.5. Cell culture based enhancer blocking assays indicate that KvDMR1 may function as a methylation modulated chromatin insulator and/or silencer. OBJECTIVE To determine the potential consequence of loss of methylation (LOM) at KvDMR1 in the development of BWS. METHODS The steady state levels of CDKN1C gene expression in fibroblast cells from normal individuals, and from persons with BWS who have LOM at KvDMR1, was determined by both real time quantitative polymerase chain reaction (qPCR) and ribonuclease protection assay (RPA). Methylation of the CDKN1C promoter region was assessed by Southern hybridisation using a methylation sensitive restriction endonuclease. RESULTS Both qPCR and RPA clearly demonstrated a marked decrease (86-93%) in the expression level of the CDKN1C gene in cells derived from patients with BWS, who had LOM at KvDMR1. Southern analysis indicated that downregulation of CDKN1C in these patients was not associated with hypermethylation at the presumptive CDKN1C promoter. CONCLUSIONS An epimutation at KvDMR1, the absence of maternal methylation, causes the aberrant silencing of CDKN1C, some 180 kb away on the maternal chromosome. Similar to mutations at this locus, this silencing may give rise to BWS.
Collapse
Affiliation(s)
- N Diaz-Meyer
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Rougeulle C, Avner P. The Role of Antisense Transcription in the Regulation of X-Inactivation. Curr Top Dev Biol 2004; 63:61-89. [PMID: 15536014 DOI: 10.1016/s0070-2153(04)63003-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Claire Rougeulle
- Unité de Génétique Moléculaire Murine, Institut Pasteur, 75015 Paris, France
| | | |
Collapse
|
335
|
Jiang J, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. TRENDS IN PLANT SCIENCE 2003; 8:570-5. [PMID: 14659705 DOI: 10.1016/j.tplants.2003.10.011] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although plants were the organisms of choice in several classical centromere studies, molecular and biochemical studies of plant centromeres have lagged behind those in model animal species. However, in the past several years, several centromeric repetitive DNA elements have been isolated in plant species and their roles in centromere function have been demonstrated. Most significantly, a Ty3/gypsy class of centromere-specific retrotransposons, the CR family, was discovered in the grass species. The CR elements are highly enriched in chromatin domains associated with CENH3, the centromere-specific histone H3 variant. CR elements as well as their flanking centromeric satellite DNA are actively transcribed in maize. These data suggest that the deposition of centromeric histones might be a transcription-coupled event.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
336
|
Chadwick BP, Willard HF. Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Semin Cell Dev Biol 2003; 14:359-67. [PMID: 15015743 DOI: 10.1016/j.semcdb.2003.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X chromosome inactivation refers to the developmentally regulated process of silencing gene expression from all but one X chromosome per cell in female mammals in order to equalize the levels of X chromosome derived gene expression between the sexes. While much attention has focused on the genetic and epigenetic events early in development that initiate the inactivation process, it is also important to understand the events that ensure maintenance of the inactive state through subsequent cell divisions. Gene silencing at the inactive X chromosome is irreversible in somatic cells and is achieved through the formation of facultative heterochromatin (visible as the Barr body) that is remarkably stable and faithfully preserved. Here we review the many features of inactive X chromatin in terminally differentiated cells and address the highly redundant mechanisms of maintaining the inactive X chromatin.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Molecular Genetics & Microbiology, Institute for Genome Sciences and Policy, 103 Research Drive, Box 3382, Duke University Medical Center Durham, NC 27710, USA.
| | | |
Collapse
|
337
|
Abstract
In eukaryotes, motifs such as silencers, enhancers and locus control regions act over thousands of base pairs to regulate adjacent genes; insulators limit such effects, and barriers confine repressive heterochromatin to particular chromosomal segments. Recent results show that many of these motifs are nongenic transcription units, and two of them directly contact their targets lying further down the chromosome to loop the intervening DNA: the barriers (scs and scs') flanking the 87A7 heat-shock locus in the fly contact each other, and a locus control region touches the β-globin gene in the mouse. I hypothesize that the act of transcription underlies the function of these regulators; active polymerizing complexes tend to cluster into `factories' and this facilitates molecular contact between the transcribed regulator and its distant (and transcribed) target.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
338
|
Rasmussen TP. Embryonic stem cell differentiation: a chromatin perspective. Reprod Biol Endocrinol 2003; 1:100. [PMID: 14614777 PMCID: PMC293417 DOI: 10.1186/1477-7827-1-100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 11/13/2003] [Indexed: 12/23/2022] Open
Abstract
Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.
Collapse
Affiliation(s)
- Theodore P Rasmussen
- Center for Regenerative Biology and Department of Animal Science, University of Connecticut, 1392 Storrs Road, Unit 4243, Storrs, CT 06269-4243, USA.
| |
Collapse
|
339
|
Helbig R, Fackelmayer FO. Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma 2003; 112:173-82. [PMID: 14608463 DOI: 10.1007/s00412-003-0258-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 10/02/2003] [Indexed: 11/26/2022]
Abstract
Female mammalian cells inactivate transcription from one of their X chromosomes to equalize gene expression of X-linked genes between males and females. Inactivation is a multistep process that involves a large non-coding RNA termed XIST, a variety of epigenetic modifications of chromatin, and alterations in protein composition such as enrichment of the histone variant macroH2A. We show here that inactive X chromosomes are also enriched in a well-characterized protein component of the nuclear scaffold, SAF-A. This protein has been implicated in chromatin organization, owing to its high specificity for scaffold-associated region (SAR)-DNA, in transcriptional regulation, e.g. of hormone-regulated genes, owing to its functional interaction with steroid receptors, and in RNA processing, owing to its interaction with RNA and heterogeneous nuclear ribonucleoprotein (hnRNP) particles. After near complete removal of DNA and associated chromatin proteins such as macroH2A, SAF-A remains with the "nuclear matrix", still highlighting the former position of inactive X chromosomes. Interestingly, the enrichment of SAF-A in the inactive X chromosome depends on the RNA binding domain of the protein, the RGG box, raising the possibility that interaction of SAF-A with XIST RNA may contribute to the silencing of X-linked genes by local changes in nuclear architecture.
Collapse
Affiliation(s)
- Roger Helbig
- Department of Molecular Cell Biology, Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany
| | | |
Collapse
|
340
|
Abstract
An intriguing characteristic of imprinted genes is that they often cluster in large chromosomal domains, raising the possibility that gene-specific and domain-specific mechanisms regulate imprinting. Several common features emerged from comparative analysis of four imprinted domains in mice and humans: (a) Certain genes appear to be imprinted by secondary events, possibly indicating a lack of gene-specific imprinting marks; (b) some genes appear to resist silencing, predicting the presence of cis-elements that oppose domain-specific imprinting control; (c) the nature of the imprinting mark remains incompletely understood. In addition, common silencing mechanisms are employed by the various imprinting domains, including silencer elements that nucleate and propagate a silent chromatin state, insulator elements that prevent promoter-enhancer interactions when hypomethylated on one parental allele, and antisense RNAs that function in silencing the overlapping sense gene and more distantly located genes. These commonalities are reminiscent of the behavior of genes subjected to, and the mechanisms employed in, dosage compensation.
Collapse
Affiliation(s)
- Raluca I Verona
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.
| | | | | |
Collapse
|
341
|
Hansen RS. X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 2003; 12:2559-67. [PMID: 12925568 DOI: 10.1093/hmg/ddg268] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lyon has proposed that long interspersed nuclear element 1 (LINE-1 or L1) repeats may be mediators for the spread of X chromosome inactivation. Cells from ICF patients who are deficient in one of the DNA methyltransferases, DNMT3B, provide an opportunity to explore and refine this hypothesis. Southern blot and bisulfite methylation analyses indicate that, in normal somatic cells, X-linked L1s are hypermethylated on both the active and inactive X chromosomes. In contrast, ICF syndrome cells with DNMT3B mutations have L1s that are hypomethylated on the inactive X, but not on the active X or autosomes. The DNMT3B methyltransferase, therefore, is required for methylation of L1 CpG islands on the inactive X, whereas methylation of the corresponding L1 loci on the active X, as well as most autosomal L1s, is accomplished by another DNA methyltransferase. This unique phenomenon of identical allelic modifications by different enzymes has not been previously observed. Apart from CpG island methylation, the ICF inactive X is basically normal in that it forms a Barr body, is associated with XIST RNA, mostly replicates late, and its X-inactivated genes are mostly silent. Because the unmethylated state of the ICF inactive X L1s probably reflects their methylation status at the time of X inactivation, these data suggest that unmethylated L1 elements, but not methylated L1s, may have a role in the spreading of X chromosome inactivation.
Collapse
Affiliation(s)
- R Scott Hansen
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, 98195-7720, USA.
| |
Collapse
|
342
|
Pereira JP, Girard R, Chaby R, Cumano A, Vieira P. Monoallelic expression of the murine gene encoding Toll-like receptor 4. Nat Immunol 2003; 4:464-70. [PMID: 12665857 DOI: 10.1038/ni917] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Accepted: 02/28/2003] [Indexed: 11/08/2022]
Abstract
Defects in the gene encoding Toll-like receptor 4 (Tlr4) result in impaired responses to lipopolysaccharide (LPS), rendering mice sensitive to infections by Gram-negative bacteria. C3H/HeJ mice have a codominant allele with a mutation in Tlr4, which results in an intermediate response to LPS in F1 mice from crosses of responder and C3H/HeJ mice. Here we show that this intermediate response to LPS is due to monoallelic expression of Tlr4. Allele usage is maintained during clonal expansion, a situation that resembles allelic exclusion. In contrast, Tlr4 is deleted on the recessive C57BL/10ScCr allele and all cells from F1 mice from crosses of responder and C57BL/10ScCr mice express TLR4 protein. Thus, Tlr4 is an autosomal gene whose expression is regulated similarly to that of genes on the X chromosome.
Collapse
Affiliation(s)
- João Pedro Pereira
- Unité du Développement des Lymphocytes, CNRS URA 1961, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
343
|
Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y. Role of histone H3 lysine 27 methylation in X inactivation. Science 2003; 300:131-5. [PMID: 12649488 DOI: 10.1126/science.1084274] [Citation(s) in RCA: 906] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27 methylation in imprinted X inactivation. Here we demonstrate that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation. Recruitment of the complex and methylation on the Xi depend on Xist RNA but are independent of its silencing function. Together, our results suggest a role for Eed-Ezh2-mediated H3-K27 methylation during initiation of both imprinted and random X inactivation and demonstrate that H3-K27 methylation is not sufficient for silencing of the Xi.
Collapse
Affiliation(s)
- Kathrin Plath
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 2003; 112:725-36. [PMID: 12628191 DOI: 10.1016/s0092-8674(03)00123-5] [Citation(s) in RCA: 471] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boundary elements hinder the spread of heterochromatin, yet these sites do not fully account for the preservation of adjacent euchromatin. Histone variant H2A.Z (Htz1 in yeast) replaces conventional H2A in many nucleosomes. Microarray analysis revealed that HTZ1-activated genes cluster near telomeres. The reduced expression of most of these genes in htz1Delta cells was reversed by the deletion of SIR2 (sir2Delta) suggesting that H2A.Z antagonizes telomeric silencing. Other Htz1-activated genes flank the silent HMR mating-type locus. Their requirement for Htz1 can be bypassed by sir2Delta or by a deletion encompassing the silencing nucleation sites in HMR. In htz1Delta cells, Sir2 and Sir3 spread into flanking euchromatic regions, producing changes in histone H4 acetylation and H3 4-methylation indicative of ectopic heterochromatin formation. Htz1 is enriched in these euchromatic regions and acts synergistically with a boundary element to prevent the spread of heterochromatin. Thus, euchromatin and heterochromatin each contains components that antagonize switching to the opposite chromatin state.
Collapse
Affiliation(s)
- Marc D Meneghini
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
345
|
Abstract
Human cancers are caused by multiple mechanisms. Research in the last 30 years has firmly established the roles of a group of genes including oncogenes, tumor suppressor genes, and DNA repair genes in human cancers. The activation and inactivation of these cancer genes can be caused by genetic mutations or epigenetic alterations. The epigenetic changes in cancers include methylation of CpG islands, loss of imprinting, and chromatin modification. The completion of the genome sequences of many organisms including the human has transformed the traditional approach to molecular biology research into an era of functional genome research. Traditional research usually involves the study of one or a few genes (proteins) in a particular biological process in normal physiology or disease. Functional genome research takes advantage of newly available genome sequences and high-throughput genome technologies to study genes and/or proteins to inform the perspective of entire biological processes. I will focus on recent progress in the identification of imprinted genes and methylation of CpG islands through genome-wide analysis.
Collapse
Affiliation(s)
- Maxwell P Lee
- Laboratory of Population Genetics, National Cancer Institute, 41 Library Drive D702C, Bethesda, Maryland 20892, USA.
| |
Collapse
|
346
|
Abstract
X-chromosome inactivation equalizes the dosage of X-linked genes in XX females with that in XY males. Recent findings reveal that the BRCA1 breast cancer susceptibility gene has an important function in this epigenetic phenomenon.
Collapse
Affiliation(s)
- Caroline Stone
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, SW3 6JB, London, UK
| | | | | |
Collapse
|