301
|
Santiard-Baron D, Langui D, Delehedde M, Delatour B, Schombert B, Touchet N, Tremp G, Paul MF, Blanchard V, Sergeant N, Delacourte A, Duyckaerts C, Pradier L, Mercken L. Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in beta-amyloid load. J Neurochem 2005; 93:330-8. [PMID: 15816856 DOI: 10.1111/j.1471-4159.2005.03026.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FE65 is an adaptor protein that interacts with the cytoplasmic tail of the amyloid precursor protein (APP). In cultured non-neuronal cells, the formation of the FE65-APP complex is a key element for the modulation of APP processing, signalling and beta-amyloid (Abeta) production. The functions of FE65 in vivo, including its role in the metabolism of neuronal APP, remain to be investigated. In this study, transgenic mice expressing human FE65 were generated and crossbred with APP transgenic mice, known to develop Abeta deposits at 6 months of age. Compared with APP mice, APP/FE65 double transgenic mice exhibited a lower Abeta accumulation in the cerebral cortex as demonstrated by immunohistochemistry and immunoassay, and a lower level of APP-CTFs. The reduced accumulation of Abeta in APP/FE65 double transgenics, compared with APP mice, could be linked to the low Abeta42 level observed at 4 months of age and to the lower APP-CTFs levels. The present work provides evidence that FE65 plays a role in the regulation of APP processing in an in vivo model.
Collapse
|
302
|
Wang YP, Wang ZF, Zhang YC, Tian Q, Wang JZ. Effect of amyloid peptides on serum withdrawal-induced cell differentiation and cell viability. Cell Res 2005; 14:467-72. [PMID: 15625013 DOI: 10.1038/sj.cr.7290249] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abnormal deposition of amyloid-beta(A beta) peptides and formation of neuritic plaques are recognized as pathological processes in Alzheimer's disease (AD) brain. By using amyloid precursor protein (APP) transfected cells, this study aims to investigate the effect of overproduction of A beta on cell differentiation and cell viability. It was shown that after serum withdrawal, untransfected cell (N2a/Wt) and vector transfected cells (N2a/vector) extended long and branched cell processes, whereas no neurites was induced in wild type APP (N2a/APP695) and Swedish mutant APP (N2a/APPswe) transfected N2a cells. After differentiation by serum withdrawal, the localization of APP/A beta and neurofilament was extended to neurites, whereas those of APP-transfected cells were still restricted within the cell body. Levels of both APP and A beta were significantly higher in N2a/APP695 and N2a/APPswe than in N2a/Wt, as determined by Western blot and Sandwich ELISA, respectively. To further investigate the effect of A beta on the inhibition of cell differentiation, we added exogenously the similar level or about 10-times of the A beta level produced by N2a/APP695 and N2a/APPswe to the culture medium and co-cultured with N2a/Wt for 12 h, and we found that the inhibition of serum withdrawal-induced differentiation observed in N2a/APP695 and N2a/APPswe could not be reproduced by exogenous administration of A beta into N2a/Wt. We also observed that neither endogenous production nor exogenous addition of A beta 1-40 or A beta 1- 42, even to hundreds fold of the physiological concentration, affected obviously the cell viability. These results suggest that the overproduction of A beta could not arrest cell differentiation induced by serum deprivation and that, at least to a certain degree and in a limited time period, is not toxic to cell viability.
Collapse
Affiliation(s)
- Yi Peng Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
303
|
Bernardos RL, Lentz SI, Wolfe MS, Raymond PA. Notch-Delta signaling is required for spatial patterning and Müller glia differentiation in the zebrafish retina. Dev Biol 2005; 278:381-95. [PMID: 15680358 DOI: 10.1016/j.ydbio.2004.11.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 10/26/2022]
Abstract
Notch-Delta signaling has been implicated in several alternative modes of function in the vertebrate retina. To further investigate these functions, we examined retinas from zebrafish embryos in which bidirectional Notch-Delta signaling was inactivated either by the mind bomb (mib) mutation, which disrupts E3 ubiquitin ligase activity, or by treatment with gamma-secretase inhibitors, which prevent intramembrane proteolysis of Notch and Delta. We found that inactivating Notch-Delta signaling did not prevent differentiation of retinal neurons, but it did disrupt spatial patterning in both the apical-basal and planar dimensions of the retinal epithelium. Retinal neurons differentiated, but their laminar arrangement was disrupted. Photoreceptor differentiation was initiated normally, but its progression was slowed. Although confined to the apical retinal surface as in normal retinas, the planar organization of cone photoreceptors was disrupted: cones of the same spectral subtype were clumped rather than regularly spaced. In contrast to neurons, Müller glia failed to differentiate suggesting an instructive role for Notch-Delta signaling in gliogenesis.
Collapse
Affiliation(s)
- R L Bernardos
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-0616, USA
| | | | | | | |
Collapse
|
304
|
Russo C, Venezia V, Repetto E, Nizzari M, Violani E, Carlo P, Schettini G. The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications. ACTA ACUST UNITED AC 2005; 48:257-64. [PMID: 15850665 DOI: 10.1016/j.brainresrev.2004.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 11/18/2022]
Abstract
The amyloid precursor protein (APP) is an ubiquitous receptor-like molecule involved in the pathogenesis of Alzheimer's disease that generates beta-amyloid peptides and causes plaque formation. APP and some of its C-terminal proteolytic fragments (CTFs) have also been shown to be in the center of a complex protein-protein network, where selective phosphorylation of APP C-terminus may regulate the interaction with cytosolic phosphotyrosine binding (PTB) domain or Src homology 2 (SH2) domain containing proteins involved in cell signaling. We have recently described an interaction between tyrosine-phosphorylated CTFs and ShcA adaptor protein which is highly enhanced in AD brain, and a new interaction between APP and the adaptor protein Grb2 both in human brain and in neuroblastoma cultured cells. These data suggest a possible role in cell signaling for APP and its CTFs, in a manner similar to that previously reported for other receptors, through a tightly regulated coupling with intracellular adaptors to control the signaling of the cell. In this review, we discuss the significance of these novel findings for AD development.
Collapse
Affiliation(s)
- Claudio Russo
- Section of Pharmacology and Neuroscience, Department of Oncology, Biology and Genetics, University of Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
305
|
Lahdo R, de LA FOURNIèRE-BESSUEILLE L. Insertion of the amyloid precursor protein into lipid monolayers: effects of cholesterol and apolipoprotein E. Biochem J 2005; 382:987-94. [PMID: 15202933 PMCID: PMC1133975 DOI: 10.1042/bj20040777] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 06/15/2004] [Indexed: 11/17/2022]
Abstract
APP (amyloid precursor protein), together with Chol (cholesterol) and ApoE (apolipoprotein E), has been linked to Alzheimer's disease. We have examined the hypothesis that interaction of APP with the lipid membranes is modulated by Chol and ApoE. Insertion of APP into lipid monolayers was first evidenced as an increase in the surface pressure. APP injected into a subphase induced a substantial increase in the surface pressure of monolayers prepared from PC (L-alpha-phosphatidylcholine), Chol, SPM (sphingomyelin) and PS (L-alpha-phosphatidylserine), the major lipids present in the plasma membranes of brain cells. At a given initial pressure, the insertion of APP into expanded monolayers is higher than that in condensed monolayers, in the order Chol>PC>SPM>PS. The membrane insertion capacity of APP was also measured from surface pressure versus area (pi-A) isotherms of APP-lipid monolayers. The increase in the mean area per molecule in protein-lipid monolayers, in the order PC>Chol>PS>SPM, provides further evidence for protein-lipid interactions. These interactions occurred at optimum salt levels and optimum pH values close to physiological conditions (150 mM NaCl and pH 7.4). In addition, ApoE4 affected the insertion of APP into lipid films. APP-ApoE complexes showed a decreased ability to penetrate lipid monolayers at a constant area. APP-ApoE complexes expanded the pi-A isotherm of a Chol monolayer to a lesser extent than APP alone. These experiments demonstrate the roles of Chol and ApoE in the modulation of membrane insertion of APP.
Collapse
Affiliation(s)
- Raghda Lahdo
- Laboratoire ‘Organisation et Dynamique des Membranes Biologiques’, UMR CNRS 5013, Université Claude Bernard – Lyon I, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
| | - Laurence de LA FOURNIèRE-BESSUEILLE
- Laboratoire ‘Organisation et Dynamique des Membranes Biologiques’, UMR CNRS 5013, Université Claude Bernard – Lyon I, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
306
|
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in North America and Europe. The incidence of the disease rises dramatically with age. AD is a complex multifactorial disorder that involves numerous susceptibility genes, but the exact pathogenesis and biochemical basis of AD is not well understood Cholesterol is receiving a great deal of attention as a potentially crucial factor in the etiology of AD. Almost all cholesterol in the brain is synthesized in the brain. Cholesterol exits the brain through the blood-brain barrier (BBB) in the form of apolipoprotein E (ApoE) or by first being converted to a more polar compound, 24(S)-hydroxycholesterol, which is elevated in individuals with AD. The key event leading to AD appears to be the formation and aggregation in the brain of amyloid beta (Abeta) peptide, a proteolytically derived product of amyloid precursor protein (APP). Cholesterol has been demonstrated to modulate processing of APP to Abeta. High levels of cholesterol are associated with increased risk of AD. Patients taking cholesterol-lowering statins have a lower prevalence of AD. ApoE, which transports cholesterol throughout the brain, exhibits an isoform-specific association with AD such that the E4 isoform, by unknown mechanisms, shifts the onset curve toward an earlier age.
Collapse
Affiliation(s)
- Allison B Reiss
- Vascular Biology Institute, Department of Medicine, Winthrop-University Hospital, Mineola, New York, USA
| |
Collapse
|
307
|
Sodhi CP, Rampalli S, Perez RG, Koo EH, Quinn B, Gottardi-Littell NR. The endocytotic pathway is required for increased A beta 42 secretion during apoptosis. ACTA ACUST UNITED AC 2005; 128:201-11. [PMID: 15363895 DOI: 10.1016/j.molbrainres.2004.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
Secretion and progressive cerebral accumulation of beta-amyloid peptides (A beta), which derive by endoproteolytic ('amyloidogenic') processing of beta-amyloid precursor protein (APP), are felt to represent collectively an early and necessary event in the pathogenesis of Alzheimer's disease. APP amyloidogenic processing can occur via secretory or endocytotic pathways, but the relative contribution of these pathways to A beta secretion remains to be established. The effect of apoptosis on amyloidogenic processing and A beta secretion similarly is incompletely understood. We tested the hypothesis that APP processing by the endocytotic pathway represents a stress-related neural cell response, by comparing A beta secretion after induction of apoptosis in PC12 cells transfected either for endocytosis-competent or -deficient APP. Newly prepared adenoviral vectors encompassing targeted mutagenesis of the cytoplasmic tail YENP tetrapeptide sequence, which serves as the principal APP internalization signal, were used to express endocytosis-deficient holoprotein. We report that the endocytotic pathway is required for the generation and secretion of A beta 42, and that secretion of this neurotoxic peptide increases significantly during apoptosis. We demonstrate additionally that more A beta 40 apparently is generated in secretory compartments during apoptosis when APP processing by the endocytotic pathway is impaired.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
308
|
Forman MS, Trojanowski JQ, Lee VMY. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 2005; 10:1055-63. [PMID: 15459709 DOI: 10.1038/nm1113] [Citation(s) in RCA: 494] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A wide variety of neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates. More recently, the genetic identification of mutations in familial counterparts to the sporadic disorders, leading to the development of in vitro and in vivo model systems, has provided insights into disease pathogenesis. The effect of many of these mutations is the abnormal processing of misfolded proteins that overwhelms the quality-control systems of the cell, resulting in the deposition of protein aggregates in the nucleus, cytosol and/or extracellular space. Further understanding of mechanisms regulating protein processing and aggregation, as well as of the toxic effects of misfolded neurodegenerative disease proteins, will facilitate development of rationally designed therapies to treat and prevent these disorders.
Collapse
Affiliation(s)
- Mark S Forman
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Institute on Aging, University of Pennsylvania, 36th and Spruce Streets, Maloney Building, 3rd Floor, Philadelphia, Pennsylvania 19104-4283, USA
| | | | | |
Collapse
|
309
|
Zimmermann M, Gardoni F, Di Luca M. Molecular Rationale for the Pharmacological Treatment of Alzheimer??s Disease. Drugs Aging 2005; 22 Suppl 1:27-37. [PMID: 16506440 DOI: 10.2165/00002512-200522001-00003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cerebral deposition of amyloid plaques containing amyloid beta-peptide (Abeta) has traditionally been considered the central feature of Alzheimer's disease (AD). Abeta is derived from amyloid precursor protein (APP), which is cleaved by several different proteases: alpha-, beta- and gamma-secretase. In the past decade, however, the molecular pathogenesis of AD has been shown to involve alterations in several neurotransmitter, inflammatory, oxidative, and hormonal pathways that represent potential targets for AD prevention and treatment. Much research has shown a direct link between cholinergic impairment and altered APP processing as a major pathogenetic event in AD. Three highly probable mechanisms of APP regulation through inhibition of acetylcholinesterase are thus current topics of investigation. Indeed, acetylcholinesterase inhibitors appear to cause selective muscarinic activation of alpha-secretase and to induce the translation of APP mRNA; they may also restrict amyloid fibre assembly. Activation of N-methyl-D-aspartate receptors is considered a probable cause of chronic neurodegeneration in AD, and memantine has been widely used in some countries in AD patients to block cerebral N-methyl-D-aspartate receptors that normally respond to glutamate. Further studies are needed to determine whether antioxidants such as vitamins C and E are effective, through various mechanisms, in patients with mild-to-moderate AD. Additional data are also required for non-steroidal anti-inflammatory drugs, some of which appear to possess experimental effects that may ultimately prove favourable in AD patients. Statins also warrant further investigation, since they have activated alpha-secretase and they reduced Abeta generation and amyloid accumulation in a transgenic mouse model. beta-Secretase would seem to be an ideal target for anti-amyloid therapy in AD, but potential clinical and pharmacological issues, such as ensuring selectivity of inhibition, stability, and ease of blood-brain barrier penetration and cellular uptake, remain to be addressed for beta-secretase inhibitors. gamma-Secretase is not an easy candidate for pharmacological manipulation. Immunotherapeutic strategies have targeted Abeta directly; however, intensive investigation of indirect approaches to the management of AD with immunotherapy is now underway.
Collapse
Affiliation(s)
- Martina Zimmermann
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, Italy
| | | | | |
Collapse
|
310
|
Venezia V, Russo C, Repetto E, Nizzari M, Violani E, Carlo P, Marchetti B, Schettini G. Apoptotic Cell Death and Amyloid Precursor Protein Signaling in Neuroblastoma SH-SY5Y Cells. Ann N Y Acad Sci 2004; 1030:339-47. [PMID: 15659815 DOI: 10.1196/annals.1329.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have recently shown that the amyloid precursor protein (APP) and a subset of its C-terminal fragments (CTFs) are tyrosine phosphorylated in human brain and in cultured cells. Tyrosine phosphorylation generates a substrate that is sequentially bound by the adaptor proteins ShcA and Grb2, and this interaction is significantly enhanced in Alzheimer's disease brains. Here we have studied the APP/CTFs phosphorylation and ShcA activation in a human neuroblastoma cell line, SH-SY5Y, under basal and apoptotic conditions. To commit these cells to apoptosis, we used staurosporin, a well-known apoptotic inducer and protein kinase C blocker. Our data suggest the following: (1) in normally proliferating SH-SY5Y cells, full-length APP is complexed with Grb2[Q3], likely through its SH2 domain; (2) upon induction of apoptosis, APP is degraded and ShcA-Grb2 coimmunoprecipitates with CTFs recognized by anti-APP antibodies; and (3) caspase inhibitors partially block the degradation of APP and the coprecipitation of CTFs with ShcA-Grb2 adaptors. In summary, our data suggest that in SH-SY5Y cells, tyrosine-phosphorylated APP is involved in a complex with ShcA-Grb2 adaptors that is disrupted during apoptosis. The abnormal degradation of APP and consequent increased levels of CTFs (as has been observed in Alzheimer's disease and Down's syndrome) generate a complex between tyrosine-phosphorylated CTFs and intracellular adaptors. The signaling through APP and its CTFs may have significant relevance for apoptotic cell death in Alzheimer's disease.
Collapse
Affiliation(s)
- Valentina Venezia
- Sezione di Farmacologia, Dipartimento Oncologia Biologia e Genetica, Università degli Studi di Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Webster NJ, Green KN, Settle VJ, Peers C, Vaughan PFT. Altered processing of the amyloid precursor protein and decreased expression of ADAM 10 by chronic hypoxia in SH-SY5Y: no role for the stress-activated JNK and p38 signalling pathways. ACTA ACUST UNITED AC 2004; 130:161-9. [PMID: 15519686 DOI: 10.1016/j.molbrainres.2004.06.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2004] [Indexed: 12/17/2022]
Abstract
Clinical studies suggest that the incidence of Alzheimer's disease (AD) is increased following an ischaemic or hypoxic episode, such as stroke. Furthermore, levels of the AD-associated amyloid beta-peptides (Abeta) and the amyloid precursor protein (APP) are enhanced in experimental ischaemia. In our previous study [Webster, N.J., Green, K.N., Peers, C., Vaughan, P.F., Altered processing of amyloid precursor protein in the human neuroblastoma SH-SY5Y by chronic hypoxia, J. Neurochem., 83 (2002) 1262-1271] we reported that exposing cells of neuronal origin to a period of chronic hypoxia (CH; 2.5% O(2), 24 h) led to a decrease in processing of the amyloid precursor protein (APP) by the alternative and neuroprotective alpha-secretase pathway. In SH-SY5Y cells, the most likely mechanism was that CH inhibits the protein level of ADAM 10, a disintegrin metalloprotease widely believed to be the alpha-secretase. One effect of CH is to alter the activity of the stress-activated protein kinases (SAPKs) c-Jun amino terminal kinase (JNK) and p38. Thus, the main aims of this study were to investigate the effect of CH on (1) the activity of these SAPKs in SH-SY5Y and (2) whether changes in the activity of these kinases may account for the CH-induced decreases in ADAM 10 expression and sAPPalpha secretion. We demonstrated that the phosphorylation (activity) of JNK was decreased approximately 50% following a period of CH. An inhibitor of JNK did not mimic the effects of CH on either ADAM 10 expression or sAPPalpha secretion under conditions in which the phosphorylation of c-Jun was inhibited by approximately 80%. Thus the loss of JNK activity does not appear to be linked to the decrease in expression of ADAM 10 and secretion of sAPPalpha. In contrast, phosphorylation (activity) of p38 was enhanced approximately 300% following a period of CH. However, inhibitors of p38 were unable to reverse the loss of sAPPalpha in CH cells, indicating that this increase in activity was not linked to the altered processing of APP.
Collapse
Affiliation(s)
- Nicola J Webster
- Institute for Cardiovascular Research, Worsley Medical and Dental Building, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | |
Collapse
|
312
|
Scheper W, Zwart R, Baas F. Alternative splicing in the N-terminus of Alzheimer's presenilin 1. Neurogenetics 2004; 5:223-7. [PMID: 15480879 DOI: 10.1007/s10048-004-0195-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 08/27/2004] [Indexed: 12/17/2022]
Abstract
Presenilin 1 (PS1) is mutated in the majority of familial cases of Alzheimer disease (AD). Although it is clear that PS1 is involved in the processing of the amyloid precursor protein (APP), the exact function of PS1 is still elusive. Human presenilin 1 (PS1) is alternatively spliced, resulting in the presence or absence of a four-amino acid motif, VRSQ, in the PS1 N-terminus. In human tissues, both isoforms are expressed. Here we report that mouse and rat only express the longer PS1 isoform. The presence of this motif introduces a potential phosphorylation site for protein kinase C. Because the splice occurs in the region of PS1 that we have previously shown to bind to rabGDI, this might provide a regulatory mechanism for this interaction. Our data show that the -VRSQ isoform binds rabGDI, but the +VRSQ does not. Moreover, mutation of the putatively phosphorylated threonine in PS1 disrupts the binding to rabGDI, showing its importance for the interaction. To our knowledge this is the first study showing a functional difference between PS1 splice variants. The possible consequences for APP processing and the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Wiep Scheper
- Neurogenetics Laboratory, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
313
|
Mazur-Kolecka B, Kowal D, Sukontasup T, Dickson D, Frackowiak J. The effect of oxidative stress on amyloid precursor protein processing in cells engaged in beta-amyloidosis is related to apolipoprotein E genotype. Acta Neuropathol 2004; 108:287-94. [PMID: 15221339 DOI: 10.1007/s00401-004-0890-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/11/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
The reduced antioxidative defense in allele epsilon4 carriers is suggested to contribute to beta-amyloidosis in Alzheimer's disease and Down's syndrome. We studied the effect of oxidative stress on accumulation of amyloid-beta peptide (Abeta) in vascular smooth muscle cells (SMCs) that are engaged in production of amyloid-beta in vivo. Previously, we found that oxidative stress caused by ferrous ions induced accumulation of Abeta-apolipoprotein E deposits in lysosomes and was associated with a greater oxidative protein damage in epsilon4 carriers. Here, we demonstrate that ferrous ions induce formation of Abeta deposits also in vascular tunica media in organotypic cultures of whole brain vessels, suggesting the role of oxidative stress in development of vascular beta-amyloidosis. Cellular accumulation of Abeta in SMCs treated with ferrous ions was associated with a greater accumulation of C-terminal amyloid precursor protein (APP) fragments in epsilon4/epsilon4 than in epsilon3/epsilon3 myocytes and reduced the amount of soluble APPalpha in epsilon3/epsilon3, but not epsilon4/epsilon4, cultures. Antioxidant vitamin E prevented these effects, and, when applied alone, diminished the amount of APP C-terminal fragments and increased the amount of secreted APP in epsilon3/epsilon3, but not epsilon4/epsilon4, cells. C-terminal APP-immunoreactive material was accumulated in lysosomes partly with Abeta- and N-terminal APP immunoreactivities. These results suggest that the increased accumulation of APP and its fragments in lysosomes may yield additional amounts of cellular Abeta, particularly in epsilon4 carriers. We hypothesize that the altered processing of APP in SMCs locally exposed to oxidative stress facilitates cellular deposition of Abeta and contribute to the increased risk of development of beta-amyloidosis in epsilon4/epsilon4 carriers.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- New York State Institute for Basic Research in Developmental Disabilities, Department of Developmental Neurobiology, 1050 Forest Hill Rd., Staten Island, NY 10314, USA.
| | | | | | | | | |
Collapse
|
314
|
Abstract
The amyloid-beta precursor protein is proteolytically cleaved by secretases, resulting in a series of fragments, including the amyloid-beta peptide of Alzheimer's disease. The amyloid precursor protein, when membrane anchored, could operate as a receptor. After cleavage, the soluble ectodomain exerts a trophic function in the subventricular zone. The amyloid-beta peptide itself has a depressant role in synaptic transmission, with both physiological and pathological implications. During the past two years, much time has been invested in determining the molecular pathways that regulate the processing and the signal transduction of the amyloid precursor protein. However, the absence of consistent and informative phenotypes in different loss of function animal models make elucidating the molecular actions of the amyloid-beta precursor protein an ongoing challenge.
Collapse
Affiliation(s)
- Valérie Wilquet
- Laboratory for Neuronal Cell Biology and Gene Transfer, K.U. Leuven and VIB, Department of Human Genetics, Herestraat 49, 3000 Leuven, Belgium.
| | | |
Collapse
|
315
|
Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, Sisodia S, Müller U. Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 2004; 23:4106-15. [PMID: 15385965 PMCID: PMC524337 DOI: 10.1038/sj.emboj.7600390] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 08/09/2004] [Indexed: 11/09/2022] Open
Abstract
The Alzheimer's disease beta-amyloid precursor protein (APP) is a member of a larger gene family that includes the amyloid precursor-like proteins, termed APLP1 and APLP2. We previously documented that APLP2-/-APLP1-/- and APLP2-/-APP-/- mice die postnatally, while APLP1-/-APP-/- mice and single mutants were viable. We now report that mice lacking all three APP/APLP family members survive through embryonic development, and die shortly after birth. In contrast to double-mutant animals with perinatal lethality, 81% of triple mutants showed cranial abnormalities. In 68% of triple mutants, we observed cortical dysplasias characterized by focal ectopic neuroblasts that had migrated through the basal lamina and pial membrane, a phenotype that resembles human type II lissencephaly. Moreover, at E18.5 triple mutants showed a partial loss of cortical Cajal Retzius (CR) cells, suggesting that APP/APLPs play a crucial role in the survival of CR cells and neuronal adhesion. Collectively, our data reveal an essential role for APP family members in normal brain development and early postnatal survival.
Collapse
Affiliation(s)
- Jochen Herms
- Zentrum für Neuropathologie und Prionforschung, Universität München, München, Germany
| | - Brigitte Anliker
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Sabine Heber
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Sabine Ring
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Martin Fuhrmann
- Zentrum für Neuropathologie und Prionforschung, Universität München, München, Germany
| | - Hans Kretzschmar
- Zentrum für Neuropathologie und Prionforschung, Universität München, München, Germany
| | - Sangram Sisodia
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL, USA
| | - Ulrike Müller
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Germany
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstr. 46, 60528 Frankfurt, Germany. Tel.: +49 69 96769 317; Fax: +49 69 96769 441; E-mail:
| |
Collapse
|
316
|
Siemes C, Quast T, Klein E, Bieber T, Hooper NM, Herzog V. Normalized proliferation of normal and psoriatic keratinocytes by suppression of sAPPalpha-release. J Invest Dermatol 2004; 123:556-63. [PMID: 15304096 DOI: 10.1111/j.0022-202x.2004.23320.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The soluble form of the beta-amyloid precursor protein (sAPPalpha) is known to function in the autocrine regulation of epidermal growth and repair. Here we show that its proteolytic release by alpha-secretase in normal human keratinocytes is susceptible to hydroxamic-acid-based zinc metalloproteinase inhibitors and suppressed by these inhibitors by 80%-90%. As various other growth factors participate in regulating epidermal growth we investigated whether the inhibitor-induced sAPPalpha-deficiency would affect keratinocyte proliferation. At optimal inhibitor concentrations the suppression of sAPPalpha-release was followed by a decline in proliferation by 50%-60%, indicating that sAPPalpha is a major growth factor that cannot be compensated for by other growth factors. This finding was the basis for the treatment of human lesional psoriatic keratinocytes with these inhibitors, which resulted in the normalization of their increased proliferation rates. The reversibility of these effects and the lack of toxicity underline the value of these inhibitors and suggest their therapeutic application in psoriatic skin diseases.
Collapse
Affiliation(s)
- Christina Siemes
- Institute of Cell Biology and Bonner Forum Biomedizin, University of Bonn, Ulrich-Haberland-Strasse 61A, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
317
|
Lee JH, Lau KF, Perkinton MS, Standen CL, Rogelj B, Falinska A, McLoughlin DM, Miller CCJ. The neuronal adaptor protein X11beta reduces amyloid beta-protein levels and amyloid plaque formation in the brains of transgenic mice. J Biol Chem 2004; 279:49099-104. [PMID: 15347685 DOI: 10.1074/jbc.m405602200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulation of cerebral amyloid beta-protein (Abeta) is believed to be part of the pathogenic process in Alzheimer's disease. Abeta is derived by proteolytic cleavage from a precursor protein, the amyloid precursor protein (APP). APP is a type-1 membrane-spanning protein, and its carboxyl-terminal intracellular domain binds to X11beta, a neuronal adaptor protein. X11beta has been shown to inhibit the production of Abeta in transfected non-neuronal cells in culture. However, whether this is also the case in vivo in the brain and whether X11beta can also inhibit the deposition of Abeta as amyloid plaques is not known. Here we show that transgenic overexpression of X11beta in neurons leads to a decrease in cerebral Abeta levels in transgenic APPswe Tg2576 mice that are a model of the amyloid pathology of Alzheimer's disease. Moreover, overexpression of X11beta retards amyloid plaque formation in these APPswe mice. Our findings suggest that modulation of X11beta function may represent a novel therapeutic approach for preventing the amyloid pathology of Alzheimer's disease.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Neuroscience and Section of Old Age Psychiatry, The Institute of Psychiatry, King's College London SE5 8AF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Jia H, Jiang Y, Ruan Y, Zhang Y, Ma X, Zhang J, Beyreuther K, Tu P, Zhang D. Tenuigenin treatment decreases secretion of the Alzheimer’s disease amyloid β-protein in cultured cells. Neurosci Lett 2004; 367:123-8. [PMID: 15308312 DOI: 10.1016/j.neulet.2004.05.093] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 05/14/2004] [Accepted: 05/27/2004] [Indexed: 12/16/2022]
Abstract
Amyloid beta-protein (A beta) is a pivotal pathological factor in Alzheimer's disease (AD). Tenuigenin, extracted from the Chinese herb Polygala tenuifolia, seems to ameliorate the reduction in cholinergic function on rat models induced by A beta. To examine this therapeutic effect, we tested whether Tenuigenin could inhibit secretion of A beta in neuroblastoma cells stably transfected with two amyloid precursor protein (APP) constructs: the APP695 cDNA (SH-SY5Y APP695) and the C-terminal 99 amino acid residues of APP plus the signal peptide (SH-SY5Y SPA4CT). Tenuigenin inhibited the secretion of A beta and the C-terminal 99 amino acids of APP (C99) in SH-SY5Y APP695 cells, but did not change the A beta and C99 levels in SH-SY5Y SPA4CT cells. Fluorescence Resonance Energy Transfer (FRET) assays showed that Tenuigenin inhibited the proteolytic activities of BACE1 (beta-secretase) on its substrate in vitro. In addition, Tenuigenin did not demonstrate any cytotoxic effects, nor did it affect APP mRNA expression, holoAPP synthesis or sAPP alpha secretion. Our data suggest that Tenuigenin can inhibit the secretion of A beta in SH-SY5Y APP 695 cells via BACE1 inhibition. Taken together, these results suggest that Tenuigenin may be worthy of future study as an anti-AD drug.
Collapse
Affiliation(s)
- Hongxiao Jia
- Department of Biochemistry, Institute of Mental Health, Peking University, No. 51 Hua Yuan Bai Road, 100083 Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Cervantes S, Saura CA, Pomares E, Gonzàlez-Duarte R, Marfany G. Functional Implications of the Presenilin Dimerization. J Biol Chem 2004; 279:36519-29. [PMID: 15220354 DOI: 10.1074/jbc.m404832200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilins are the catalytic components of gamma-secretase, an intramembrane-cleaving protease whose substrates include beta-amyloid precursor protein (betaAPP) and the Notch receptors. These type I transmembrane proteins undergo two distinct presenilin-dependent cleavages within the transmembrane region, which result in the production of Abeta and APP intracellular domain (from betaAPP) and the Notch intracellular domain signaling peptide. Most cases of familial Alzheimer's disease are caused by presenilin mutations, which are scattered throughout the coding sequence. Although the underlying molecular mechanism is not yet known, the familial Alzheimer's disease mutations produce a shift in the ratio of the long and short forms of the Abeta peptide generated by the gamma-secretase. We and others have previously shown that presenilin homodimerizes and suggested that a presenilin dimer is at the catalytic core of gamma-secretase. Here, we demonstrate that presenilin transmembrane domains contribute to the formation of the dimer. In-frame substitution of the hydrophilic loop 1, located between transmembranes I and II, which modulates the interactions within the N-terminal fragment/N-terminal fragment dimer, abolishes both presenilinase and gamma-secretase activities. In addition, by reconstituting gamma-secretase activity from two catalytically inactive presenilin aspartic mutants, we provide evidence of an active diaspartyl group assembled at the interface between two presenilin monomers. Under our conditions, this catalytic group mediates the generation of APP intracellular domain and Abeta but not Notch intracellular domain, therefore suggesting that specific diaspartyl groups within the presenilin catalytic core of gamma-secretase mediate the cleavage of different substrates.
Collapse
Affiliation(s)
- Sara Cervantes
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
320
|
Perkinton MS, Standen CL, Lau KF, Kesavapany S, Byers HL, Ward M, McLoughlin DM, Miller CCJ. The c-Abl Tyrosine Kinase Phosphorylates the Fe65 Adaptor Protein to Stimulate Fe65/Amyloid Precursor Protein Nuclear Signaling. J Biol Chem 2004; 279:22084-91. [PMID: 15031292 DOI: 10.1074/jbc.m311479200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) is proteolytically processed to release a C-terminal domain that signals to the nucleus to regulate transcription of responsive genes. The APP C terminus binds to a number of phosphotyrosine binding (PTB) domain proteins and one of these, Fe65, stimulates APP nuclear signaling. Fe65 is an adaptor protein that contains a number of protein-protein interaction domains. These include two PTB domains, the second of which binds APP, and a WW domain that binds proline-rich ligands. One ligand for the Fe65WW domain is the tyrosine kinase c-Abl. Here, we show that active c-Abl stimulates APP/Fe65-mediated gene transcription and that this effect is mediated by phosphorylation of Fe65 on tyrosine 547 within its second PTB domain. The homologous tyrosine within the motif Tyr-(Leu/Met)-Gly is conserved in a variety of PTB domains, and this suggests that PTB tyrosine phosphorylation occurs in other proteins. As such, PTB domain phosphorylation may represent a novel mechanism for regulating the function of this class of protein.
Collapse
Affiliation(s)
- Michael S Perkinton
- Department of Neuroscience, The Institute of Psychiatry, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Caillé I, Allinquant B, Dupont E, Bouillot C, Langer A, Müller U, Prochiantz A. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 2004; 131:2173-81. [PMID: 15073156 DOI: 10.1242/dev.01103] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid precursor protein (APP) is a type I transmembrane protein of unknown physiological function. Its soluble secreted form (sAPP) shows similarities with growth factors and increases the in vitro proliferation of embryonic neural stem cells. As neurogenesis is an ongoing process in the adult mammalian brain, we have investigated a role for sAPP in adult neurogenesis. We show that the subventricular zone (SVZ) of the lateral ventricle, the largest neurogenic area of the adult brain, is a major sAPP binding site and that binding occurs on progenitor cells expressing the EGF receptor. These EGF-responsive cells can be cultured as neurospheres (NS). In vitro, EGF provokes soluble APP (sAPP) secretion by NS and anti-APP antibodies antagonize the EGF-induced NS proliferation. In vivo, sAPP infusions increase the number of EGF-responsive progenitors through their increased proliferation. Conversely, blocking sAPP secretion or downregulating APP synthesis decreases the proliferation of EGF-responsive cells, which leads to a reduction of the pool of progenitors. These results reveal a new function for sAPP as a regulator of SVZ progenitor proliferation in the adult central nervous system.
Collapse
Affiliation(s)
- Isabelle Caillé
- CNRS UMR 8542, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
322
|
Abstract
Alzheimer disease (AD) is the most common cause of dementia. In the past decade, many advances in the understanding of the etiology of AD have been reported. Familial early onset AD is a heterogeneous disorder that can be caused by mutations in at least three different genes. Current studies are focused on identifying genetic risk factors for late onset AD. In this article, the authors will review the progress in understanding the pathogenic implications of the genes mutated in familial early onset AD and the mapping studies to identify additional genes involved in late-onset AD.
Collapse
Affiliation(s)
- Pau Pastor
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
323
|
Wang J, Brunkan AL, Hecimovic S, Walker E, Goate A. Conserved “PAL” sequence in presenilins is essential for γ-secretase activity, but not required for formation or stabilization of γ-secretase complexes. Neurobiol Dis 2004; 15:654-66. [PMID: 15056474 DOI: 10.1016/j.nbd.2003.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 11/13/2003] [Accepted: 12/09/2003] [Indexed: 11/21/2022] Open
Abstract
Generation of A beta from the beta-amyloid precursor protein (APP) requires a series of proteolytic processes, including an intramembranous cleavage catalyzed by an aspartyl protease, gamma-secretase. Two aspartates in presenilins (PS) are required for gamma-secretase activity (D257 and D385 of PS1), suggesting that PS may be part of this protease. Little is known concerning the importance of other sequences in PS for activity. We introduced point mutations (P433L, A434D, L435R) into a completely conserved region C-terminal to transmembrane domain eight of PS1. The P433L mutation abolished PS1 endoproteolysis as well as gamma-secretase cleavage of APP and Notch in PS1/2 K/O cells. In HEK cells, expression of PS1/P433L reduced A beta production and caused accumulation of APP C-terminal stubs. When the P433L mutation was introduced into the non-cleavable Delta exon 9 (Delta E9) variant of PS1, it abolished gamma-secretase cleavage of APP and Notch. The P433L holoprotein is stable and incorporated into the high molecular weight gamma-secretase complex, arguing that P433 is not necessary for formation or stabilization of the gamma-secretase complex. Other non-conservative mutations in the invariant P(433)A(434)L(435) sequence also result in a phenotype that is indistinguishable from the aspartate mutants, suggesting a direct involvement of this sequence in gamma-secretase activity.
Collapse
Affiliation(s)
- Jun Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
324
|
Zambrano N, Gianni D, Bruni P, Passaro F, Telese F, Russo T. Fe65 is not involved in the platelet-derived growth factor-induced processing of Alzheimer's amyloid precursor protein, which activates its caspase-directed cleavage. J Biol Chem 2004; 279:16161-9. [PMID: 14766758 DOI: 10.1074/jbc.m311027200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteolytic processing of the precursor of the beta-amyloid peptides (APP) is believed to be a key event in the pathogenesis of Alzheimer's disease. This processing is activated through a pathway involving the PDGF receptor, Src, and Rac1. In this paper, we demonstrate that this pathway specifically acts on APP and requires the YENPTY motif present in the APP cytosolic domain. Considering that several results indicate that the adaptor proteins interacting with this domain affect the processing of APP, we examined their possible involvement in the PDGF-induced pathway. By using an APP-Gal4 reporter system, we observed that the overexpression of Fe65 activates APP-Gal4 cleavage, whereas X11 stabilizes APP. Although mDab1 and Jip1 have no effect, Shc induces a strong activation of APP cleavage, and the contemporary exposure of cells to PDGF causes a dramatic cooperative effect. The analysis of point mutations of the APP YENPTY motif indicates that Fe65 and PDGF function through different mechanisms. In fact, Fe65 requires the integrity of APP695 Tyr682 residue, whereas PDGF effect is dependent upon the integrity of Asn684. Furthermore, the mutation of Asp664 of APP, which is the target site for the caspase-directed APP cleavage, strongly decreases the effect of Fe65. This suggests that Fe65 activates the cleavage of APP by caspases, and in fact, caspase inhibitor Z-VEVD decreases the APP cleavage induced by Fe65. On the contrary, the effects of Shc overexpression, like those of PDGF, are completely absent in the presence of compound X and require the integrity of the Asn684 residue of APP695. The involvement of Shc in the pathway regulating APP processing is confirmed by the effects of constitutively active and dominant negative mutants of Src and Rac1.
Collapse
Affiliation(s)
- Nicola Zambrano
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Ceinge Biotecnologie Avanzate I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
325
|
Angulo E, Casadó V, Mallol J, Canela EI, Viñals F, Ferrer I, Lluis C, Franco R. A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 2004; 13:440-51. [PMID: 14655750 PMCID: PMC8095992 DOI: 10.1111/j.1750-3639.2003.tb00475.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Immunostaining of adenosine receptors in the hippocampus and cerebral cortex from necropsies of Alzheimer disease (AD) patients shows that there is a change in the pattern of expression and a redistribution of receptors in these brain areas when compared with samples from controls. Adenosine A1 receptor (A1R) immunoreactivity was found in degenerating neurons with neurofibrillary tangles and in dystrophic neurites of senile plaques. A high degree of colocalization for A1R and betaA4 amyloid in senile plaques and for A1R and tau in neurons with tau deposition, but without tangles, was seen. Additionally, adenosine A2A receptors, located mainly in striatal neurons in controls, appeared in glial cells in the hippocampus and cerebral cortex of patients. On comparing similar samples from controls and patients, no significant change was evident for metabotropic glutamate receptors. In the human neuroblastoma SH-SY5Y cell line, agonists for A1R led to a dose-dependent increase in the production of soluble forms of amyloid precursor protein in a process mediated by PKC. A1R agonist induced p21 Ras activation and ERK1/2 phosphorylation. Furthermore, activation of A1R led to and ERK-dependent increase of tau phosphorylation and translocation towards the cytoskeleton. These results indicate that adenosine receptors are potential targets for AD.
Collapse
Affiliation(s)
- Ester Angulo
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Vicent Casadó
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Josefa Mallol
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Enric I. Canela
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Francesc Viñals
- Departament de Ciències Fisiològiques II, University of Barcelona, Campus de Bellvitge, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patológica, Hospital Princeps d'Espanya, Hospitalet del Llobregat, Spain
| | - Carmen Lluis
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Rafael Franco
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| |
Collapse
|
326
|
Sawamura N, Ko M, Yu W, Zou K, Hanada K, Suzuki T, Gong JS, Yanagisawa K, Michikawa M. Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J Biol Chem 2004; 279:11984-91. [PMID: 14715666 DOI: 10.1074/jbc.m309832200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid rafts and their component, cholesterol, modulate the processing of beta-amyloid precursor protein (APP). However, the role of sphingolipids, another major component of lipid rafts, in APP processing remains undetermined. Here we report the effect of sphingolipid deficiency on APP processing in Chinese hamster ovary cells treated with a specific inhibitor of serine palmitoyltransferase, which catalyzes the first step of sphingolipid biosynthesis, and in a mutant LY-B strain defective in the LCB1 subunit of serine palmitoyltransferase. We found that in sphingolipid-deficient cells, the secretion of soluble APPalpha (sAPPalpha) and the generation of C-terminal fragment cleaved at alpha-site dramatically increased, whereas beta-cleavage activity remained unchanged, and the epsilon-cleavage activity decreased without alteration of the total APP level. The secretion of amyloid beta-protein 42 increased in sphingolipid-deficient cells, whereas that of amyloid beta-protein 40 did not. All of these alterations were restored in sphingolipid-deficient cells by adding exogenous sphingosine and in LY-B cells by transfection with cLCB1. Sphingolipid deficiency increased MAPK/ERK activity and a specific inhibitor of MAPK kinase, PD98059, restored sAPPalpha level, indicating that sphingolipid deficiency enhances sAPPalpha secretion via activation of MAPK/ERK pathway. These results suggest that not only the cellular level of cholesterol but also that of sphingolipids may be involved in the pathological process of Alzheimer's disease by modulating APP cleavage.
Collapse
Affiliation(s)
- Naoya Sawamura
- Department of Dementia Research, National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Tashima Y, Oe R, Lee S, Sugihara G, Chambers EJ, Takahashi M, Yamada T. The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid beta-peptide from liposomes prepared from brain membrane-like lipids. J Biol Chem 2004; 279:17587-95. [PMID: 14709559 DOI: 10.1074/jbc.m308622200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order to investigate the influence of cholesterol (Ch) and monosialoganglioside (GM1) on the release and subsequent deposition/aggregation of amyloid beta peptide (Abeta)-(1-40) and Abeta-(1-42), we have examined Abeta peptide model membrane interactions by circular dichroism, turbidity measurements, and transmission electron microscopy (TEM). Model liposomes containing Abeta peptide and a lipid mixture composition similar to that found in the cerebral cortex membranes (CCM-lipid) have been prepared. In all, four Abeta-containing liposomes were investigated: CCM-lipid; liposomes with no GM1 (GM1-free lipid); those with no cholesterol (Ch-free lipid); liposomes with neither cholesterol nor GM1 (Ch-GM1-free lipid). In CCM liposomes, Abeta was rapidly released from membranes to form a well defined fibril structure. However, for the GM1-free lipid, Abeta was first released to yield a fibril structure about the membrane surface, then the membrane became disrupted resulting in the formation of small vesicles. In Ch-free lipid, a fibril structure with a phospholipid membrane-like shadow formed, but this differed from the well defined fibril structure seen for CCM-lipid. In Ch-GM1-free lipid, no fibril structure formed, possibly because of membrane solubilization by Abeta. The absence of fibril structure was noted at physiological extracellular pH (7.4) and also at liposomal/endosomal pH (5.5). Our results suggest a possible role for both Ch and GM1 in the membrane release of Abeta from brain lipid bilayers.
Collapse
Affiliation(s)
- Yoshihiko Tashima
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | |
Collapse
|
328
|
Choi SI, Vidal R, Frangione B, Levy E. Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB J 2003; 18:373-5. [PMID: 14656991 DOI: 10.1096/fj.03-0730fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ABri and ADan amyloid peptides deposited in familial British and Danish neurodegenerative disorders are generated by processing mutant forms of the precursor protein BRI2. Although the pathogenic process that leads to deposition of amyloid in the brains of patients has been studied extensively, the cellular processes and normal function of the precursor protein did not receive much attention. We observed in a variety of transfected cell lines the presence of two independent proteolytic processing events. In addition to the previously described cleavage, which results in the production of carboxyl-terminal approximately 3 kDa wild-type peptide or approximately 4 kDa ABri or ADan peptides, we describe a novel amino-terminal cleavage site within BRI2. Both cleavages occur within the cis- or medial-Golgi. Following cleavage, the BRI2-derived carboxyl-terminal peptides are transported via a regulated secretory pathway into secretory vesicles in neuronal cells. Worth noting is that expression of wild-type British or Danish mutants of BRI2, in mouse neuroblastoma N2a cells that do not express endogenous BRI2, induces elongation of neurites, which suggests a role for this protein in differentiation of neuronal cells.
Collapse
Affiliation(s)
- Seung-Il Choi
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
329
|
Standen CL, Perkinton MS, Byers HL, Kesavapany S, Lau KF, Ward M, McLoughlin D, Miller CCJ. The neuronal adaptor protein Fe65 is phosphorylated by mitogen-activated protein kinase (ERK1/2). Mol Cell Neurosci 2003; 24:851-7. [PMID: 14697653 DOI: 10.1016/j.mcn.2003.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fe65 is a neuronal adaptor protein that binds a number of ligands and which functions in both gene transcription/nuclear signalling and in the regulation of cell migration and motility. These different functions within the nucleus and at the cell surface are mediated via Fe65's different binding partners. An Fe65/APP/TIP60 complex is transcriptionally active within the nucleus and an Fe65/APP/Mena complex probably regulates actin dynamics in lamellipodia. The mechanisms that regulate these different Fe65 functions are unclear. Here, we demonstrate that Fe65 is a phosphoprotein and, using mass spectrometry sequencing, identify for the first time in vivo phosphorylation sites in Fe65. We also show that Fe65 is a substrate for phosphorylation by the mitogen-activated protein kinases ERK1/2. Our results provide a mechanism by which Fe65 function may be modulated to fulfil its various roles.
Collapse
Affiliation(s)
- Claire L Standen
- Department of Neuroscience, The Institute of Psychiatry, Kings College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
330
|
Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH. APP processing is regulated by cytoplasmic phosphorylation. ACTA ACUST UNITED AC 2003; 163:83-95. [PMID: 14557249 PMCID: PMC2173445 DOI: 10.1083/jcb.200301115] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid-β peptide (Aβ) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers and the β-secretase, BACE1. Western blot analysis reveals increased levels of T668-phosphorylated APP COOH-terminal fragments in hippocampal lysates from many AD but not control subjects. Importantly, P-APP cofractionates with endosome markers and BACE1 in an iodixanol gradient and displays extensive colocalization with BACE1 in rat primary cortical neurons. Furthermore, APP COOH-terminal fragments generated by BACE1 are preferentially phosphorylated on T668 verses those produced by α-secretase. The production of Aβ is significantly reduced when phosphorylation of T668 is either abolished by mutation or inhibited by T668 kinase inhibitors. Together, these results suggest that T668 phosphorylation may facilitate the BACE1 cleavage of APP to increase Aβ generation.
Collapse
Affiliation(s)
- Ming-Sum Lee
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Tesco G, Koh YH, Tanzi RE. Caspase activation increases beta-amyloid generation independently of caspase cleavage of the beta-amyloid precursor protein (APP). J Biol Chem 2003; 278:46074-80. [PMID: 12960154 DOI: 10.1074/jbc.m307809200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) undergoes "alternative" proteolysis mediated by caspases. Three major caspase recognition sites have been identified in the APP, i.e. one at the C terminus (Asp720) and two at the N terminus (Asp197 and Asp219). Caspase cleavage at Asp720 has been suggested as leading to increased production of Abeta. Thus, we set out to determine which putative caspase sites in APP, if any, are cleaved in Chinese hamster ovary cell lines concurrently with the increased Abeta production that occurs during apoptosis. We found that cleavage at Asp720 occurred concurrently with caspase 3 activation and the increased production of total secreted Abeta and Abeta1-42 in association with staurosporine- and etoposide-induced apoptosis. To investigate the contribution of caspase cleavage of APP to Abeta generation, we expressed an APP mutant truncated at Asp720 that mimics APP caspase cleavage at the C-terminal site. This did not increase Abeta generation but, in contrast, dramatically decreased Abeta production in Chinese hamster ovary cells. Furthermore, the ablation of caspase-dependent cleavage at Asp720, Asp197, and Asp219 (by site-directed mutagenesis) did not prevent enhanced Abeta production following etoposide-induced apoptosis. These findings indicate that the enhanced Abeta generation associated with apoptosis does not require cleavage of APP at its C-terminal (Asp720) and/or N-terminal caspase sites.
Collapse
Affiliation(s)
- Giuseppina Tesco
- Genetics and Aging Research Unit, Center for Aging, Genetics and Neurodegeneration, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachussetts 02129, USA
| | | | | |
Collapse
|
332
|
Rangan SK, Liu R, Brune D, Planque S, Paul S, Sierks MR. Degradation of β-Amyloid by Proteolytic Antibody Light Chains. Biochemistry 2003; 42:14328-34. [PMID: 14640701 DOI: 10.1021/bi035038d] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deposition of beta-amyloid (Abeta) is considered an important early event in the pathogenesis of Alzheimer's disease (AD). Clearance of Abeta thus represents a potential therapeutic approach. Antibody-mediated clearance of Abeta by vaccination inhibited and cleared Abeta deposition in animal models; however, inflammatory side effects were observed in humans. An alternative potentially noninflammatory approach to facilitate clearance is to proteolytically cleave Abeta. We screened 12 proteolytic recombinant antibody fragments for potential alpha-secretase activity, a naturally occurring enzyme that cleaves between the Lys16 and Leu17 residues of the amyloid precursor protein (APP). We utilized the synthetic alpha-secretase substrate, benzyloxycarbonyl-l-lysine o-nitrophenyl ester (Z-lys-o-Np) as a preliminary screen for alpha-secretase activity. Two antibody light chain fragments that hydrolyzed Z-lys-o-Np were identified. Abeta hydrolysis was studied using mass spectrometry to identify the cleavage patterns of the antibodies. The recombinant antibody light chain antibody fragment, c23.5, showed alpha-secretase-like activity, producing the 1-16 and 17-40 amino acid fragments of Abeta. The second light chain antibody fragment, hk14, demonstrated carboxypeptidase-like activity, cleaving sequentially from the carboxyl terminal of Abeta. These antibody light chains provide a novel route toward engineering efficient therapeutic antibodies capable of cleaving Abeta in vivo.
Collapse
Affiliation(s)
- Srinath Kasturi Rangan
- Department of Chemical and Materials Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | |
Collapse
|
333
|
Abstract
A number of approaches have been taken to recreate and to study the role of genes associated with human neurodegenerative diseases in the model organism Drosophila. These studies encompass the polyglutamine diseases, Parkinson's disease, Alzheimer's disease, and tau-associated pathologies. The findings highlight Drosophila as an important model system in which to study the fundamental pathways influenced by these genes and have led to new insights into aspects of pathogenesis and modifier mechanisms.
Collapse
Affiliation(s)
- Nancy M Bonini
- Department of Biology, Howard Hughes Medical Institute, University of Pennsylvania, 415 S. University Avenue, Philadelphia, PA 19104-6018, USA.
| | | |
Collapse
|
334
|
Affiliation(s)
- Olav M Andersen
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | |
Collapse
|
335
|
Schroeter EH, Ilagan MXG, Brunkan AL, Hecimovic S, Li YM, Xu M, Lewis HD, Saxena MT, De Strooper B, Coonrod A, Tomita T, Iwatsubo T, Moore CL, Goate A, Wolfe MS, Shearman M, Kopan R. A presenilin dimer at the core of the gamma-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis. Proc Natl Acad Sci U S A 2003; 100:13075-80. [PMID: 14566063 PMCID: PMC240747 DOI: 10.1073/pnas.1735338100] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch receptors and the amyloid precursor protein are type I membrane proteins that are proteolytically cleaved within their transmembrane domains by a presenilin (PS)-dependent gamma-secretase activity. In both proteins, two peptide bonds are hydrolyzed: one near the inner leaflet and the other in the middle of the transmembrane domain. Under saturating conditions the substrates compete with each other for proteolysis, but not for binding to PS. At least some Alzheimer's disease-causing PS mutations reside in proteins possessing low catalytic activity. We demonstrate (i) that differentially tagged PS molecules coimmunoprecipitate, and (ii) that PS N-terminal fragment dimers exist by using a photoaffinity probe based on a transition state analog gamma-secretase inhibitor. We propose that gamma-secretase contains a PS dimer in its catalytic core, that binding of substrate is at a site separate from the active site, and that substrate is cleaved at the interface of two PS molecules.
Collapse
Affiliation(s)
- Eric H. Schroeter
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Ma. Xenia G. Ilagan
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Anne L. Brunkan
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Silva Hecimovic
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Yue-ming Li
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Min Xu
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Huw D. Lewis
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Meera T. Saxena
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Bart De Strooper
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Archie Coonrod
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Taisuke Tomita
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Takeshi Iwatsubo
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Chad L. Moore
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Alison Goate
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Michael S. Wolfe
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Mark Shearman
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Raphael Kopan
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
336
|
Ribaut-Barassin C, Dupont JL, Haeberlé AM, Bombarde G, Huber G, Moussaoui S, Mariani J, Bailly Y. Alzheimer's disease proteins in cerebellar and hippocampal synapses during postnatal development and aging of the rat. Neuroscience 2003; 120:405-23. [PMID: 12890511 DOI: 10.1016/s0306-4522(03)00332-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's dementia may be considered a synaptic disease of central neurons: the loss of synapses, reflected by early cognitive impairments, precedes the appearance of extra cellular focal deposits of beta-amyloid peptide in the brain of patients. Distinct immunocytochemical patterns of amyloid precursor proteins (APPs) have previously been demonstrated in the synapses by ultrastructural analysis in the cerebellum and hippocampus of adult rats and mice. Now we show that during postnatal development and during aging in these structures, the immunocytochemical expression of APPs increases in the synapses in parallel with the known up-regulation of total APPs brain levels. Interestingly, as shown previously in the adult rodents, the presenilins (PSs) 1 and 2, which intervene in APPs metabolism, exhibit a synaptic distribution pattern similar to that of APPs with parallel quantitative changes throughout life. In the brain tissue, single and double immunocytochemistry at the ultrastructural level shows co-localisation of APPs and PSs in axonal and dendritic synaptic compartments during postnatal synaptogenesis, adulthood and aging. In addition, double-labelling immunocytofluorescence detects these proteins close to synaptophysin at the growth cones of developing cultured neurons. Thusly, the brain expression of APPs and PSs appears to be regulated synchronously during lifespan in the synaptic compartments where the proteins are colocated. This suggests that PS-dependent processing of important synaptic proteins such as APPs could intervene in age-induced adjustments of synaptic relationships between specific types of neurons.
Collapse
Affiliation(s)
- C Ribaut-Barassin
- Neurotransmission et Sécrétion Neuroendocrine, UPR 2356 CNRS et IFR 37 des Neurosciences, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
337
|
Mazur-Kolecka B, Kowal D, Sukontasup T, Dickson D, Frackowiak J. The effect of oxidative stress on accumulation of apolipoprotein E3 and E4 in a cell culture model of beta-amyloid angiopathy (CAA). Brain Res 2003; 983:48-57. [PMID: 12914965 DOI: 10.1016/s0006-8993(03)03026-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apolipoprotein E (apoE) is a multifunctional molecule that is active during brain development, maintenance, and injury. Allele epsilon 4 of apoE is recognized as a risk factor for beta-amyloidosis, but the responsible mechanisms are not clear. Recently, we showed that vascular smooth muscle cells (SMCs) from epsilon 4/ epsilon 4 carriers are the most susceptible to oxidative protein damage that was associated with the appearance of apoE-Abeta-immunoreactive granules in cells. Here, we demonstrate that apoE4 is more readily accumulated in SMCs treated with ferrous ions than is apoE3. ApoE accumulated in lysosomes in the form of monomers, dimers, apoE-containing complexes, and apoE fragments. ApoE4 and apoE4-containing complexes persisted in SMCs longer than apoE3 and its complexes. Both isoforms of apoE stimulated formation of apoE-Abeta deposits and increased immobilization of iron in cultures treated with ferrous ions. The accumulation of apoE-Abeta deposits in lysosomes was associated with the appearance of lipid peroxidation products such as malondialdehyde and 4-hydroxynonenal-2-nonenal. The higher cellular accumulation of apoE4 than apoE3 in SMCs exposed to oxidative stress may facilitate development of beta-amyloid angiopathy that is more frequent in epsilon 4/ epsilon 4 carriers.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- Department of Pathological Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Rd., Staten Island, NY 10314, USA.
| | | | | | | | | |
Collapse
|
338
|
Botelho MG, Gralle M, Oliveira CLP, Torriani I, Ferreira ST. Folding and stability of the extracellular domain of the human amyloid precursor protein. J Biol Chem 2003; 278:34259-67. [PMID: 12796495 DOI: 10.1074/jbc.m303189200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-amyloid peptide (A beta), the major component of the senile plaques found in the brains of Alzheimer's disease patients, is derived from proteolytic processing of a transmembrane glycoprotein known as the amyloid precursor protein (APP). Human APP exists in various isoforms, of which the major ones contain 695, 751, and 770 amino acids. Proteolytic cleavage of APP by alpha- or beta-secretases releases the extracellular soluble fragments sAPP alpha or sAPP beta, respectively. Despite the fact that sAPP alpha plays important roles in both physiological and pathological processes in the brain, very little is known about its structure and stability. We have recently presented a structural model of sAPP alpha 695 obtained from small-angle x-ray scattering measurements (Gralle, M., Botelho, M. M., Oliveira, C. L. P., Torriani, I., and Ferreira, S. T. (2002) Biophys. J. 83, 3513-3524). We now report studies on the folding and stabilities of sAPP alpha 695 and sAPP alpha 770. The combined use of intrinsic fluorescence, 4-4'-Dianilino-1,1'binaphthyl-5,5'-disulfonic acid (bis-ANS) fluorescence, circular dichroism, differential ultraviolet absorption, and small-angle x-ray scattering measurements of the equilibrium unfolding of sAPP alpha 695 and sAPP alpha 770 by GdnHCl and urea revealed multistep folding pathways for both sAPP alpha isoforms. Such stepwise folding processes may be related to the identification of distinct structural domains in the three-dimensional model of sAPP alpha. Furthermore, the relatively low stability of the native state of sAPP alpha suggests that conformational plasticity may play a role in allowing APP to interact with a number of distinct physiological ligands.
Collapse
Affiliation(s)
- Michelle G Botelho
- Department of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | | | |
Collapse
|
339
|
Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP, Nixon RA, Cataldo AM. Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. J Biol Chem 2003; 278:31261-8. [PMID: 12761223 DOI: 10.1074/jbc.m304122200] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified abnormalities of the endocytic pathway in neurons as the earliest known pathology in sporadic Alzheimer's disease (AD) and Down's syndrome brain. In this study, we modeled aspects of these AD-related endocytic changes in murine L cells by overexpressing Rab5, a positive regulator of endocytosis. Rab5-transfected cells exhibited abnormally large endosomes immunoreactive for Rab5 and early endosomal antigen 1, resembling the endosome morphology seen in affected neurons from AD brain. The levels of both Abeta40 and Abeta42 in conditioned medium were increased more than 2.5-fold following Rab5 overexpression. In Rab5 overexpressing cells, the levels of beta-cleaved amyloid precursor protein (APP) carboxyl-terminal fragments (betaCTF), the rate-limiting proteolytic intermediate in Abeta generation, were increased up to 2-fold relative to APP holoprotein levels. An increase in beta-cleaved soluble APP relative to alpha-cleaved soluble APP was also observed following Rab5 overexpression. BetaCTFs were co-localized by immunolabeling to vesicular compartments, including the early endosome and the trans-Golgi network. These results demonstrate a relationship between endosomal pathway activity, betaCTF generation, and Abeta production. Our findings in this model system suggest that the endosomal pathology seen at the earliest stage of sporadic AD may contribute to APP proteolysis along a beta-amyloidogenic pathway.
Collapse
Affiliation(s)
- Olivera M Grbovic
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT. Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 2003; 116:3339-46. [PMID: 12829747 DOI: 10.1242/jcs.00643] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amyloid-beta peptide, which accumulates in senile plaques in Alzheimer's disease, is derived from the amyloid precursor protein (APP) by proteolytic processing. beta-secretase (Asp2), which cleaves APP at the N-terminus of amyloid-beta, has recently been identified to be the protease BACE. In the present study, we examined the subcellular localization of interactions between APP and BACE by using both double immunofluorescence and a fluorescence resonance energy transfer (FRET) approach. Cell surface APP and BACE, studied by using antibodies directed against their ectodomains in living H4 neuroglioma cells co-transfected with APP and BACE, showed exquisite co-localization and demonstrated a very close interaction by FRET analysis. The majority of cell surface APP and BACE were internalized after 15 minutes, but they remained strongly co-localized together in the early endosomal compartment, where FRET analysis demonstrated a continued close interaction. By contrast, at later timepoints, almost no co-localization or FRET was observed in lysosomal compartments. To determine whether the APP-BACE interaction on cell surface and endosomes contributed to amyloid-beta synthesis, we labeled cell surface APP and demonstrated detectable levels of labeled amyloid-beta within 30 minutes. APP-Swedish mutant protein enhanced amyloid-beta synthesis from cell surface APP, consistent with the observation that it is a better BACE substrate than wild-type APP. Taken together, these data confirm a close APP-BACE interaction in early endosomes, and highlight the cell surface as an additional potential site of APP-BACE interaction.
Collapse
Affiliation(s)
- Ayae Kinoshita
- Alzheimer Disease Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
341
|
Abstract
The amyloid precursor protein and the proteases cleaving this protein are important players in the pathogenesis of Alzheimer's disease via the generation of the amyloid peptide. Physiologically, the amyloid precursor protein is implied in axonal vesicular trafficking and the proteases are implicated in developmentally important signaling pathways, most significantly those involving regulated intramembrane proteolysis or RIP. We discuss the cell biology behind the amyloid and tangle hypothesis for Alzheimer's disease, drawing on the many links to the fields of cell biology and developmental biology that have been established in the recent years.
Collapse
Affiliation(s)
- Wim Annaert
- Neuronal Cell Biology Laboratory, Flanders Interuniversity Institute for Biotechnology (VIB) and Catholic University of Leuven, Center for Human Genetics Herestraat 49, Belgium
| | | |
Collapse
|
342
|
Turner PR, O'Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003; 70:1-32. [PMID: 12927332 DOI: 10.1016/s0301-0082(03)00089-3] [Citation(s) in RCA: 498] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amyloid-beta precursor protein (APP) is a membrane-spanning protein with a large extracellular domain and a much smaller intracellular domain. It is the source of the amyloid-beta (Abeta) peptide found in neuritic plaques of Alzheimer's disease (AD) patients. Because Abeta shows neurotoxic properties, and because familial forms of AD promote Abeta accumulation, a massive international research effort has been aimed at understanding the mechanisms of Abeta generation, catabolism and toxicity. APP, however, is an extremely complex molecule that may be a functionally important molecule in its full-length configuration, as well as being the source of numerous fragments with varying effects on neural function. For example, one fragment derived from the non-amyloidogenic processing pathway, secreted APPalpha (sAPPalpha), is neuroprotective, neurotrophic and regulates cell excitability and synaptic plasticity, while Abeta appears to exert opposing effects. Less is known about the neural functions of other fragments, but there is a growing interest in understanding the basic biology of APP as it has become recognized that alterations in the functional activity of the APP fragments during disease states will have complex effects on cell function. Indeed, it has been proposed that reductions in the level or activity of certain APP fragments, in addition to accumulation of Abeta, may play a critical role in the cognitive dysfunction associated with AD, particularly early in the course of the disease. To test and modify this hypothesis, it is important to understand the roles that full-length APP and its fragments normally play in neuronal structure and function. Here we review evidence addressing these fundamental questions, paying particular attention to the contributions that APP fragments play in synaptic transmission and neural plasticity, as these may be key to understanding their effects on learning and memory. It is clear from this literature that APP fragments, including Abeta, can exert a powerful regulation of key neural functions including cell excitability, synaptic transmission and long-term potentiation, both acutely and over the long-term. Furthermore, there is a small but growing literature confirming that these fragments correspondingly regulate behavioral learning and memory. These data indicate that a full account of cognitive dysfunction in AD will need to incorporate the actions of the full complement of APP fragments. To this end, there is an urgent need for a dedicated research effort aimed at understanding the behavioral consequences of altered levels and activity of the different APP fragments as a result of experience and disease.
Collapse
Affiliation(s)
- Paul R Turner
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
343
|
Koldamova RP, Lefterov IM, Ikonomovic MD, Skoko J, Lefterov PI, Isanski BA, DeKosky ST, Lazo JS. 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid beta secretion. J Biol Chem 2003; 278:13244-56. [PMID: 12547833 DOI: 10.1074/jbc.m300044200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of peripheral cholesterol efflux and plasma high density lipoprotein metabolism. In adult rat brain we found high expression of ABCA1 in neurons in the hypothalamus, thalamus, amygdala, cholinergic basal forebrain, and hippocampus. Large neurons of the cholinergic nucleus basalis together with CA1 and CA3 pyramidal neurons were among the most abundantly immunolabeled neurons. Glia cells were largely negative. Because cholesterol homeostasis may have an essential role in central nervous system function and neurodegeneration, we examined ABCA1 expression and function in different brain cell types using cultures of primary neurons, astrocytes, and microglia isolated from embryonic rat brain. The basal ABCA1 mRNA and protein levels detected in these cell types were increased markedly after exposure to oxysterols and 9-cis-retinoic acid, which are ligands for the nuclear hormone liver X receptors and retinoic X receptors, respectively. Functionally, the increased ABCA1 expression caused by these ligands was followed by elevated apoA-I- and apoE-specific cholesterol efflux in neurons and glia. In non-neuronal and neuronal cells overexpressing a human Swedish variant of amyloid precursor protein, 22R-hydroxycholesterol and 9-cis-retinoic acid induced ABCA1 expression and increased apoA-I-mediated cholesterol efflux consequently decreasing cellular cholesterol content. More importantly, we demonstrated that these ligands alone or in combination with apoA-I caused a substantial reduction in the stability of amyloid precursor protein C-terminal fragments and decreased amyloid beta production. These effects of 22R-hydroxycholesterol may provide a novel strategy to decrease amyloid beta secretion and consequently reduce the amyloid burden in the brain.
Collapse
Affiliation(s)
- Radosveta P Koldamova
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
344
|
Grimm HS, Beher D, Lichtenthaler SF, Shearman MS, Beyreuther K, Hartmann T. gamma-Secretase cleavage site specificity differs for intracellular and secretory amyloid beta. J Biol Chem 2003; 278:13077-85. [PMID: 12556458 DOI: 10.1074/jbc.m210380200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The final step in A beta generation is the cleavage of the C-terminal 99 amino acid residues of the amyloid precursor protein by gamma-secretase. gamma-Secretase activity is closely linked to the multi-transmembrane-spanning proteins presenilin 1 and presenilin 2. To elucidate whether the cleavage site specificities of gamma-secretase leading to the formation of secreted and intracellular A beta are identical, we made use of point mutations close to the gamma-cleavage site, known to have a dramatic effect on the 42/40 ratio of secreted A beta. We found that the selected point mutations only marginally influenced the 42/40 ratio of intracellular A beta, suggesting differences in the gamma-secretase cleavage site specificity for the generation of secreted and intracellular A beta. The analysis of the subcellular compartments involved in the generation of intracellular A beta revealed that A beta is not generated in the early secretory pathway in the human SH-SY5Y neuroblastoma cell line. In this study we identified late Golgi compartments to be involved in the generation of intracellular A beta. Moreover, we demonstrate that the presence of processed PS1 is not sufficient to obtain gamma-secretase processing of the truncated amyloid precursor protein construct C99, proposing the existence of an additional factor downstream of the endoplasmic reticulum and early Golgi required for the formation of an active gamma-secretase complex.
Collapse
Affiliation(s)
- Heike S Grimm
- Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
345
|
Auerbach ID, Sung SH, Wang Z, Vinters HV. Smooth muscle cells and the pathogenesis of cerebral microvascular disease ("angiomyopathies"). Exp Mol Pathol 2003; 74:148-59. [PMID: 12710946 DOI: 10.1016/s0014-4800(03)00013-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many forms of human cerebral microvascular disease result from abnormal proliferation and/or degeneration of smooth muscle cells (SMC) in the vessel wall of arteries and arterioles. Human cerebral microvessel-derived smooth muscle cells (MV-SMC) in culture can be used to study the pathogenesis of microvascular disease. Primary cultures were established from nonneoplastic human brain specimens surgically resected and characterized as to their growth properties and phenotype. The cultures have been used to study various factors that may be relevant in the pathogenesis of microangiopathies, in particular cerebral amyloid angiopathy (CAA), to help determine mechanisms of SMC degeneration in these disorders. Factors investigated have included cellular growth rate, response to hypoxia and amyloidogenic peptides, and telomerase activity. MV-SMC appear to behave differently than aortic SMC with regard to proliferation and telomerase activity. These differences may play a role in the responses to MV-SMC in the evolution of CAA and other microangiopathies (cerebral arteriosclerosis/lipohyalinosis) and provide insight into mechanisms of degeneration of these cells within vessel walls.
Collapse
Affiliation(s)
- Ilene D Auerbach
- Department of Pathology & Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
346
|
Grziwa B, Grimm MOW, Masters CL, Beyreuther K, Hartmann T, Lichtenthaler SF. The transmembrane domain of the amyloid precursor protein in microsomal membranes is on both sides shorter than predicted. J Biol Chem 2003; 278:6803-8. [PMID: 12454010 DOI: 10.1074/jbc.m210047200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein is cleaved within its ectodomain by beta-amyloid-converting enzyme (BACE) yielding C99, which is further cleaved by gamma-secretase within its putative transmembrane domain (TMD). Because it is difficult to envisage how a protease may cleave within the membrane, alternative mechanisms have been proposed for gamma-cleavage in which the TMD is shorter than predicted or positioned such that the gamma-cleavage site is accessible to cytosolic proteases. Here, we have biochemically determined the length of the TMD of C99 in microsomal membranes. Using a single cysteine mutagenesis scan of C99 combined with cysteine modification with a membrane-impermeable labeling reagent, we identified which residues are accessible to modification and thus located outside of the membrane. We find that in endoplasmic reticulum-derived microsomes the TMD of C99 consists of 12 residues that span from residues 37 to 48, which is N- and C-terminally shorter than predicted. Thus, the gamma-cleavage sites are positioned around the middle of the lipid bilayer and are unlikely to be accessible to cytosolic proteases. Moreover, the center of the TMD is positioned at the gamma-cleavage site at residue 42. Our data are consistent with a model in which gamma-secretase is a membrane protein that cleaves at the center of the membrane.
Collapse
Affiliation(s)
- Beate Grziwa
- Center for Molecular Biology Heidelberg, University of Heidelberg, INF 282, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
347
|
Vattemi G, Engel WK, McFerrin J, Pastorino L, Buxbaum JD, Askanas V. BACE1 and BACE2 in pathologic and normal human muscle. Exp Neurol 2003; 179:150-8. [PMID: 12618121 DOI: 10.1016/s0014-4886(02)00025-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACE1 and BACE2 are recently discovered enzymes participating in processing of amyloid beta precursor protein (AbetaPP). Their discovery is contributing importantly to understanding the mechanism of amyloid-beta generation, and hence the pathogenesis of Alzheimer's disease (AD). Sporadic inclusion-body myositis (s-IBM) and hereditary inclusion-body myopathy (h-IBM) are progressive muscle diseases in which overproduction of AbetaPP and accumulation of its presumably toxic proteolytic product amyloid-beta (Abeta) in abnormal muscle fibers appear to play an important upstream role in the pathogenic cascade. In normal human muscle AbetaPP was also shown to be present and presumably playing a role (a) at neuromuscular junctions and (b) during muscle development. To investigate whether BACE1 and BACE2 play a role in normal and diseased human muscle, we have now studied them by immunocytochemistry and immunoblotting in 35 human muscle biopsies, including: 5 s-IBM; 5 chromosome-9p1-linked quadriceps-sparing h-IBM; and 25 control muscle biopsies. In addition, expression of BACE1 and BACE2 was studied in normal cultured human muscle. Our studies demonstrate that BACE1 and BACE2 (a) are expressed in normal adult muscle at the postsynaptic domain of neuromuscular junctions, and in cultured human muscle; (b) are accumulated in the form of plaque-like inclusions in both s-IBM and h-IBM vacuolated muscle fibers; and (c) are immunoreactive in necrotizing muscle fibers. Accordingly, BACE1 and BACE2 participate in normal and abnormal processes of human muscle, suggesting that their functions are broader than previously thought.
Collapse
Affiliation(s)
- Gaetano Vattemi
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles 90017-1912, USA
| | | | | | | | | | | |
Collapse
|
348
|
Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I. Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J Neurochem 2003; 84:864-77. [PMID: 12562529 DOI: 10.1046/j.1471-4159.2003.01585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloid precursor protein (APP), the precursor of Abeta, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti-APP antibody. The c-Jun N-terminal kinase (JNK) can mediate various neurotoxic signals, including Abeta neurotoxicity. However, the relationship of APP-mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Abeta independent. Here we examined whether JNK is involved in APP-mediated neuronal cell death and found that: (i) neuronal cell death by antibody-bound APP was inhibited by dominant-negative JNK, JIP-1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK-mediated cell death closely coincided with that of APP-mediated cell death. Pertussis toxin (PTX) suppressed APP-mediated cell death but not caJNK-induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP-mediated cytotoxicity. In the presence of PTX, the PTX-resistant mutant of Galphao, but not that of Galphai, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP-mediated neuronal cell death as a downstream signal transducer of Go.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Hartlage-Rübsamen M, Zeitschel U, Apelt J, Gärtner U, Franke H, Stahl T, Günther A, Schliebs R, Penkowa M, Bigl V, Rossner S. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent. Glia 2003; 41:169-79. [PMID: 12509807 DOI: 10.1002/glia.10178] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental animals such as mice and rats. In addition, we have recently shown that BACE1 protein is expressed by reactive astrocytes in close proximity to beta-amyloid plaques in the brains of aged transgenic Tg2576 mice that overexpress human amyloid precursor protein carrying the double mutation K670N-M671L. To address the question whether astrocytic BACE1 expression is an event specifically triggered by beta-amyloid plaques or whether glial cell activation by other mechanisms also induces BACE1 expression, we used six different experimental strategies to activate brain glial cells acutely or chronically. Brain sections were processed for the expression of BACE1 and glial markers by double immunofluorescence labeling and evaluated by confocal laser scanning microscopy. There was no detectable expression of BACE1 protein by activated microglial cells of the ameboid or ramified phenotype in any of the lesion paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients.
Collapse
MESH Headings
- Aging/metabolism
- Alzheimer Disease/enzymology
- Alzheimer Disease/pathology
- Alzheimer Disease/physiopathology
- Amyloid Precursor Protein Secretases
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Animals, Newborn
- Aspartic Acid Endopeptidases/metabolism
- Astrocytes/cytology
- Astrocytes/enzymology
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Brain Ischemia/enzymology
- Brain Ischemia/pathology
- Brain Ischemia/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endopeptidases
- Female
- Gliosis/enzymology
- Gliosis/pathology
- Gliosis/physiopathology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Rats
- Rats, Inbred Lew
- Rats, Inbred SHR
Collapse
Affiliation(s)
- Maike Hartlage-Rübsamen
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 2003; 160:113-23. [PMID: 12515826 PMCID: PMC2172747 DOI: 10.1083/jcb.200207113] [Citation(s) in RCA: 831] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formation of senile plaques containing the beta-amyloid peptide (A beta) derived from the amyloid precursor protein (APP) is an invariant feature of Alzheimer's disease (AD). APP is cleaved either by beta-secretase or by alpha-secretase to initiate amyloidogenic (release of A beta) or nonamyloidogenic processing of APP, respectively. A key to understanding AD is to unravel how access of these enzymes to APP is regulated. Here, we demonstrate that lipid rafts are critically involved in regulating A beta generation. Reducing cholesterol levels in N2a cells decreased A beta production. APP and the beta-site APP cleavage enzyme (BACE1) could be induced to copatch at the plasma membrane upon cross-linking with antibodies and to segregate away from nonraft markers. Antibody cross-linking dramatically increased production of A beta in a cholesterol-dependent manner. A beta generation was dependent on endocytosis and was reduced after expression of the dynamin mutant K44A and the Rab5 GTPase-activating protein, RN-tre. This inhibition could be overcome by antibody cross-linking. These observations suggest the existence of two APP pools. Although APP inside raft clusters seems to be cleaved by beta-secretase, APP outside rafts undergoes cleavage by alpha-secretase. Thus, access of alpha- and beta-secretase to APP, and therefore A beta generation, may be determined by dynamic interactions of APP with lipid rafts.
Collapse
Affiliation(s)
- Robert Ehehalt
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|