3451
|
Ananthakrishnan AN, Oxford EC, Nguyen DD, Sauk J, Yajnik V, Xavier RJ. Genetic risk factors for Clostridium difficile infection in ulcerative colitis. Aliment Pharmacol Ther 2013; 38:522-30. [PMID: 23848254 PMCID: PMC3755009 DOI: 10.1111/apt.12425] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/10/2013] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) are at higher risk for Clostridium difficile infection (CDI). Disruption of gut microbiome and interaction with the intestinal immune system are essential mechanisms for pathogenesis of both CDI and IBD. Whether genetic polymorphisms associated with susceptibility to IBD are also associated with risk of CDI is unknown. AIMS To use a well-characterised and genotyped cohort of patients with UC to (i) identify clinical risk factors for CDI; (ii) examine if any of the IBD genetic risk loci were associated with CDI; and (iii) to compare the performance of predictive models using clinical and genetic risk factors in determining risk of CDI. METHODS We used a prospective registry of patients from a tertiary referral hospital. Medical record review was performed to identify all ulcerative colitis (UC) patients within the registry with a history of CDI. All patients were genotyped on the Immunochip. We examined the association between the 163 risk loci for IBD and risk of CDI using a dominant genetic model. Model performance was examined using receiver operating characteristics curves. RESULTS The study included 319 patients of whom 29 developed CDI (9%). Female gender and pancolitis were associated with increased risk, while use of anti-TNF was protective against CDI. Six genetic polymorphisms including those at TNFRSF14 [Odds ratio (OR) 6.0, P-value 0.01] were associated with increased risk while 2 loci were inversely associated. On multivariate analysis, none of the clinical parameters retained significance after adjusting for genetics. Presence of at least one high-risk locus was associated with an increase in risk for CDI (20% vs. 1%) (P = 6 × 10⁻⁹). Compared to 11% for a clinical model, the genetic loci explained 28% of the variance in CDI risk and had a greater AUROC. CONCLUSION Host genetics may influence susceptibility to Clostridium difficile infection in patients with ulcerative colitis.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | | | - Deanna D Nguyen
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | - Jenny Sauk
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | - Vijay Yajnik
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | - Ramnik J Xavier
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Center for Computational and Integrative Biology, MGH, Boston, MA,Broad Institute, Cambridge, MA
| |
Collapse
|
3452
|
Molecular diagnosis of infantile onset inflammatory bowel disease by exome sequencing. Genomics 2013; 102:442-7. [PMID: 24001973 DOI: 10.1016/j.ygeno.2013.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 12/19/2022]
Abstract
Pediatric-onset inflammatory bowel disease (IBD) is known to be associated with severe disease, poor response to therapy, and increased morbidity and mortality. We conducted exome sequencing of two brothers from a non-consanguineous relationship who presented before the age of one with severe infantile-onset IBD, failure to thrive, skin rash, and perirectal abscesses refractory to medical management. We examined the variants discovered in all known IBD-associated and primary immunodeficiency genes in both siblings. The siblings were identified to harbor compound heterozygous mutations in IL10RA (c.784C>T, p.Arg262Cys; c.349C>T, p.Arg117Cys). Upon molecular diagnosis, the proband underwent successful hematopoietic stem cell transplantation and demonstrated marked clinical improvement of all IBD-associated clinical symptoms. Exome sequencing can be an effective tool to aid in the molecular diagnosis of pediatric-onset IBD. We provide additional evidence of the safety and benefit of HSCT for patients with IBD due to mutations in the IL10RA gene.
Collapse
|
3453
|
van Dooren FH, Duijvis NW, te Velde AA. Analysis of cytokines and chemokines produced by whole blood, peripheral mononuclear and polymorphonuclear cells. J Immunol Methods 2013; 396:128-33. [PMID: 23994257 DOI: 10.1016/j.jim.2013.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Cytokines are immunomodulating proteins involved in cellular communication. The levels of different cytokines reflect the immune capabilities of a person. In literature both whole blood and peripheral blood mononuclear cells (PBMCs) are used, which might lead to different results. The choice between these different sources is not always explained. The goal of our experiments is to determine the cytokine response of whole blood, PBMCs and polymorphonuclear cells (PMNs) after stimulation with lipopolysaccharide (LPS). We used a multiplex analysis to determine a difference in cytokine secretion patterns. In general, PBMCs demonstrated the highest cytokine production and PMNs have an overall low cytokine production. CCL11 and interleukin-23 (IL-23) (and IL-12p40) were exclusively expressed in whole blood. IL-20, VEGF and GM-CSF were expressed only by PBMCs. This difference in expression could be explained by the bioactive components in serum, presence and interaction with granulocytes or platelets in whole blood, the anticoagulant heparin in whole blood and others. The expression of cytokines by cells is dependent on the microenvironment. Different conditions lead to different results. We recommend a thorough examination of the conditions before performing experiments.
Collapse
Affiliation(s)
- Faas H van Dooren
- Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
3454
|
Low D, Mizoguchi A, Mizoguchi E. DNA methylation in inflammatory bowel disease and beyond. World J Gastroenterol 2013; 19:5238-5249. [PMID: 23983426 PMCID: PMC3752557 DOI: 10.3748/wjg.v19.i32.5238] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/13/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a consequence of the complex, dysregulated interplay between genetic predisposition, environmental factors, and microbial composition in the intestine. Despite a great advancement in identifying host-susceptibility genes using genome-wide association studies (GWAS), the majority of IBD cases are still underrepresented. The immediate challenge in post-GWAS era is to identify other causative genetic factors of IBD. DNA methylation has received increasing attention for its mechanistical role in IBD pathogenesis. This stable, yet dynamic DNA modification, can directly affect gene expression that have important implications in IBD development. The alterations in DNA methylation associated with IBD are likely to outset as early as embryogenesis all the way until old-age. In this review, we will discuss the recent advancement in understanding how DNA methylation alterations can contribute to the development of IBD.
Collapse
|
3455
|
Cardinale CJ, Wei Z, Panossian S, Wang F, Kim CE, Mentch FD, Chiavacci RM, Kachelries KE, Pandey R, Grant SFA, Baldassano RN, Hakonarson H. Targeted resequencing identifies defective variants of decoy receptor 3 in pediatric-onset inflammatory bowel disease. Genes Immun 2013; 14:447-52. [DOI: 10.1038/gene.2013.43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/19/2013] [Indexed: 12/14/2022]
|
3456
|
Vinkhuyzen AAE, Wray NR, Yang J, Goddard ME, Visscher PM. Estimation and partition of heritability in human populations using whole-genome analysis methods. Annu Rev Genet 2013; 47:75-95. [PMID: 23988118 PMCID: PMC4037293 DOI: 10.1146/annurev-genet-111212-133258] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Understanding genetic variation of complex traits in human populations has moved from the quantification of the resemblance between close relatives to the dissection of genetic variation into the contributions of individual genomic loci. However, major questions remain unanswered: How much phenotypic variation is genetic; how much of the genetic variation is additive and can be explained by fitting all genetic variants simultaneously in one model, and what is the joint distribution of effect size and allele frequency at causal variants? We review and compare three whole-genome analysis methods that use mixed linear models (MLMs) to estimate genetic variation. In all methods, genetic variation is estimated from the relationship between close or distant relatives on the basis of pedigree information and/or single nucleotide polymorphisms (SNPs). We discuss theory, estimation procedures, bias, and precision of each method and review recent advances in the dissection of genetic variation of complex traits in human populations. By using genome-wide data, it is now established that SNPs in total account for far more of the genetic variation than the statistically highly significant SNPs that have been detected in genome-wide association studies. All SNPs together, however, do not account for all of the genetic variance estimated by pedigree-based methods. We explain possible reasons for this remaining "missing heritability."
Collapse
Affiliation(s)
- Anna AE Vinkhuyzen
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - Naomi R Wray
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - Jian Yang
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The Translation Research Institute, Brisbane, Queensland, Australia
| | - Michael E Goddard
- University of Melbourne, Department of Food and Agricultural Systems, Parkville, Victoria, Australia
- Biosciences Research Division, Department of Primary Industries,Bundoora, Victoria, Australia
| | - Peter M Visscher
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The Translation Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
3457
|
Gruber L, Kisling S, Lichti P, Martin FP, May S, Klingenspor M, Lichtenegger M, Rychlik M, Haller D. High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity. PLoS One 2013; 8:e71661. [PMID: 23977107 PMCID: PMC3745443 DOI: 10.1371/journal.pone.0071661] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD) and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn's disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD) impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn's disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn's disease-like ileitis. METHODS TNF(ΔARE/WT) mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics) were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG) translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors. RESULTS HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNF(ΔARE/WT). Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria. CONCLUSIONS HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn's disease-relevant mouse model through mechanisms that involve increased intestinal permeability and altered luminal factors, leading to enhanced dendritic cell recruitment and promoted Th17 immune responses.
Collapse
Affiliation(s)
- Lisa Gruber
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
- Biofunctionality Unit, ZIEL - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Sigrid Kisling
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Pia Lichti
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - François-Pierre Martin
- Nestec Ltd., Nestlé Research Center, Lausanne, Switzerland
- Nestlé Institute of Health Sciences SA, Campus EPFL, Lausanne, Switzerland
| | - Stephanie May
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
- Nutritional Medicine Unit, ZIEL - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin Klingenspor
- Nutritional Medicine Unit, ZIEL - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Chair of Molecular Nutritional Medicine, Technische Universität München, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Freising-Weihenstephan, Germany
| | - Martina Lichtenegger
- Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
- BIOANALYTIK Weihenstephan, ZIEL - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
- Biofunctionality Unit, ZIEL - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
3458
|
Liu W, Chen Y, Golan MA, Annunziata ML, Du J, Dougherty U, Kong J, Musch M, Huang Y, Pekow J, Zheng C, Bissonnette M, Hanauer SB, Li YC. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Invest 2013; 123:3983-96. [PMID: 23945234 DOI: 10.1172/jci65842] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022] Open
Abstract
The inhibitory effects of vitamin D on colitis have been previously documented. Global vitamin D receptor (VDR) deletion exaggerates colitis, but the relative anticolitic contribution of epithelial and nonepithelial VDR signaling is unknown. Here, we showed that colonic epithelial VDR expression was substantially reduced in patients with Crohn's disease or ulcerative colitis. Moreover, targeted expression of human VDR (hVDR) in intestinal epithelial cells (IECs) protected mice from developing colitis. In experimental colitis models induced by 2,4,6-trinitrobenzenesulfonic acid, dextran sulfate sodium, or CD4(+)CD45RB(hi) T cell transfer, transgenic mice expressing hVDR in IECs were highly resistant to colitis, as manifested by marked reductions in clinical colitis scores, colonic histological damage, and colonic inflammation compared with WT mice. Reconstitution of Vdr-deficient IECs with the hVDR transgene completely rescued Vdr-null mice from severe colitis and death, even though the mice still maintained a hyperresponsive Vdr-deficient immune system. Mechanistically, VDR signaling attenuated PUMA induction in IECs by blocking NF-κB activation, leading to a reduction in IEC apoptosis. Together, these results demonstrate that gut epithelial VDR signaling inhibits colitis by protecting the mucosal epithelial barrier, and this anticolitic activity is independent of nonepithelial immune VDR actions.
Collapse
Affiliation(s)
- Weicheng Liu
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3459
|
Keidel S, Chen L, Pointon J, Wordsworth P. ERAP1 and ankylosing spondylitis. Curr Opin Immunol 2013; 25:97-102. [PMID: 23452840 DOI: 10.1016/j.coi.2012.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/21/2022]
Abstract
The strong genetic association of ERAP1 (endoplasmic reticulum aminopeptidase 1) with ankylosing spondylitis (AS), which is restricted to HLA-B27 positive cases, has profound pathogenetic implications. ERAP1 is involved in trimming peptides to optimal length for binding to HLA class 1 molecules, thereby not only affecting the stability and processing of HLA-B27 but also influencing the peptide repertoire presented to the immune system. This could have secondary effects on specific adaptive or autoimmune responses in AS. However, it appears increasingly likely that the pathogenic effect of ERAP1 may be mediated through effects on innate immunity, such as altering the interaction between HLA-B27 and immune receptors such as the killer immunoglobulin-like receptors (KIR) found on a range of innate immune cells or via the endoplasmic reticulum unfolded protein response. ERAP1 variants associated with reduced endopeptidase activity appear to be protective against AS, raising the possibility that ERAP1 inhibition could represent a future treatment strategy.
Collapse
Affiliation(s)
- Sarah Keidel
- University of Oxford Institute of Musculoskeletal Sciences, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD, UK
| | | | | | | |
Collapse
|
3460
|
Söderman J, Norén E, Christiansson M, Bragde H, Thiébaut R, Hugot JP, Tysk C, O’Morain CA, Gassull M, Finkel Y, Colombel JF, Lémann M, Almer S. Analysis of single nucleotide polymorphisms in the region of CLDN2-MORC4 in relation to inflammatory bowel disease. World J Gastroenterol 2013; 19:4935-4943. [PMID: 23946598 PMCID: PMC3740423 DOI: 10.3748/wjg.v19.i30.4935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/04/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate a possible genetic influence of claudin (CLDN)1, CLDN2 and CLDN4 in the etiology of inflammatory bowel disease.
METHODS: Allelic association between genetic regions of CLDN1, CLDN2 or CLDN4 and patients with inflammatory bowel disease, Crohn’s disease (CD) or ulcerative colitis were investigated using both a case-control study approach (one case randomly selected from each of 191 Swedish inflammatory bowel disease families and 333 controls) and a family-based study (463 non-Swedish European inflammatory bowel disease -families). A nonsynonymous coding single nucleotide polymorphism in MORC4, located on the same linkage block as CLDN2, was investigated for association, as were two novel CLDN2 single nucleotide polymorphism markers, identified by resequencing.
RESULTS: A single nucleotide polymorphism marker (rs12014762) located in the genetic region of CLDN2 was significantly associated to CD (case-control allelic OR = 1.98, 95%CI: 1.17-3.35, P = 0.007). MORC4 was present on the same linkage block as this CD marker. Using the case-control approach, a significant association (case control allelic OR = 1.61, 95%CI: 1.08-2.41, P = 0.018) was found between CD and a nonsynonymous coding single nucleotide polymorphism (rs6622126) in MORC4. The association between the CLDN2 marker and CD was not replicated in the family-based study. Ulcerative colitis was not associated to any of the single nucleotide polymorphism markers.
CONCLUSION: These findings suggest that a variant of the CLDN2-MORC4 region predisposes to CD in a Swedish population.
Collapse
|
3461
|
Rowlan JS, Li Q, Manichaikul A, Wang Q, Matsumoto AH, Shi W. Atherosclerosis susceptibility Loci identified in an extremely atherosclerosis-resistant mouse strain. J Am Heart Assoc 2013; 2:e000260. [PMID: 23938286 PMCID: PMC3828785 DOI: 10.1161/jaha.113.000260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background C3H/HeJ (C3H) mice are extremely resistant to atherosclerosis, especially males. To understand the underlying genetic basis, we performed quantitative trait locus (QTL) analysis on a male F2 (the second generation from an intercross between 2 inbred strains) cohort derived from an intercross between C3H and C57BL/6 (B6) apolipoprotein E–deficient (Apoe−/−) mice. Methods and Results Two hundred forty‐six male F2 mice were started on a Western diet at 8 weeks of age and kept on the diet for 5 weeks. Atherosclerotic lesions in the aortic root and fasting plasma lipid levels were measured. One hundred thirty‐four microsatellite markers across the entire genome were genotyped. Four significant QTLs on chromosomes (Chr) 2, 4, 9, and 15 and 4 suggestive loci on Chr1, Chr4, and Chr7 were identified for atherosclerotic lesions. Unexpectedly, the C3H allele was associated with increased lesion formation for 2 of the 4 significant QTLs. Six loci for high‐density lipoprotein (HDL), 6 for non‐HDL cholesterol, and 3 for triglycerides were also identified. The QTL for atherosclerosis on Chr9 replicated Ath29, originally mapped in a female F2 cohort derived from B6 and C3H Apoe−/− mice. This locus coincided with a QTL for HDL, and there was a moderate, but statistically significant, correlation between atherosclerotic lesion sizes and plasma HDL cholesterol levels in F2 mice. Conclusions These data indicate that most atherosclerosis susceptibility loci are distinct from those for plasma lipids except for the Chr9 locus, which exerts effect through interactions with HDL.
Collapse
Affiliation(s)
- Jessica S. Rowlan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Qiongzhen Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Ani Manichaikul
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA (A.M.)
| | - Qian Wang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Alan H. Matsumoto
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
- Department Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA (W.S.)
- Correspondence to: Weibin Shi, University of Virginia, Box 801339, Snyder 266, 480 Ray C Hunt Drive, Charlottesville, VA 22908. E‐mail:
| |
Collapse
|
3462
|
Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 2013; 14:661-73. [PMID: 23917628 DOI: 10.1038/nrg3502] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shared aetiopathogenic factors among immune-mediated diseases have long been suggested by their co-familiality and co-occurrence, and molecular support has been provided by analysis of human leukocyte antigen (HLA) haplotypes and genome-wide association studies. The interrelationships can now be better appreciated following the genotyping of large immune disease sample sets on a shared SNP array: the 'Immunochip'. Here, we systematically analyse loci shared among major immune-mediated diseases. This reveals that several diseases share multiple susceptibility loci, but there are many nuances. The most associated variant at a given locus frequently differs and, even when shared, the same allele often has opposite associations. Interestingly, risk alleles conferring the largest effect sizes are usually disease-specific. These factors help to explain why early evidence of extensive 'sharing' is not always reflected in epidemiological overlap.
Collapse
|
3463
|
Kole A, He J, Rivollier A, Silveira DD, Kitamura K, Maloy KJ, Kelsall BL. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:2771-9. [PMID: 23913971 DOI: 10.4049/jimmunol.1301093] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We explored the function of endogenous type I IFNs (IFN-1) in the colon using the T cell adoptive transfer model of colitis. Colon mononuclear phagocytes (MPs) constitutively produced IFN-1 in a Toll/IL-1R domain-containing adapter-inducing IFN-β-dependent manner. Transfer of CD4(+)CD45RB(hi) T cells from wild-type (WT) or IFN-α/β receptor subunit 1 knockout (IFNAR1(-/-)) mice into RAG(-/-) hosts resulted in similar onset and severity of colitis. In contrast, RAG(-/-) × IFNAR1(-/-) double knockout (DKO) mice developed accelerated severe colitis compared with RAG(-/-) hosts when transferred with WT CD4(+)CD45RB(hi) T cells. IFNAR signaling on host hematopoietic cells was required to delay colitis development. MPs isolated from the colon lamina propria of IFNAR1(-/-) mice produced less IL-10, IL-1R antagonist, and IL-27 compared with WT MPs. Accelerated colitis development in DKO mice was characterized by early T cell proliferation and accumulation of CD11b(+)CD103(-) dendritic cells in the mesenteric lymph nodes, both of which could be reversed by systemic administration of IL-1R antagonist (anakinra). Cotransfer of CD4(+)CD25(+) regulatory T cells (Tregs) from WT or IFNAR1(-/-) mice prevented disease caused by CD4(+)CD45RB(hi) T cells. However, WT CD4(+)CD25(+)Foxp3(GFP+) Tregs cotransferred with CD4(+)CD45RB(hi) T cells into DKO hosts failed to expand or maintain Foxp3 expression and gained effector functions in the colon. To our knowledge, these data are the first to demonstrate an essential role for IFN-1 in the production of anti-inflammatory cytokines by gut MPs and the indirect maintenance of intestinal T cell homeostasis by both limiting effector T cell expansion and promoting Treg stability.
Collapse
Affiliation(s)
- Abhisake Kole
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
3464
|
Abstract
Inflammatory bowel diseases (IBDs; e.g., Crohn's disease [CD] and ulcerative colitis [UC]) are chronic immunologically mediated diseases characterized by frequent relapses, often requiring hospitalization and surgery. There is substantial heterogeneity in the progressive natural history of disease with cumulative accrual of bowel damage and impairment of functioning. Recent advances in therapeutics have significantly improved our ability to achieve disease remission; yet therapies remain expensive and are associated with significant side effects precluding widespread use in all patients with IBD. Consequently, algorithms for the management of patients with IBD require a personalized approach incorporating an individual's projected likely natural history, the probability of response to a specific therapeutic agent and an informed approach to management of loss of response to current therapies.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 165 Cambridge Street, 9th Floor, Boston, MA 02114, USA.
| |
Collapse
|
3465
|
Abstract
Inflammatory bowel diseases (Crohn's disease and ulcerative colitis) are chronic immunologically mediated diseases of the gut. Advances in genetics have revolutionized our understanding of the pathogenesis of these conditions with 163 risk loci identified, encompassing a variety of immunologic functions. There is substantial heterogeneity in the natural history of these diseases with respect to disease onset, course, and progression to complications. There are also significant variations in response to therapies and susceptibility to therapy-related and disease-related complications. An important need in the field is to identify predictors of disease course, complications, and likelihood of response and adverse events to allow for targeted therapeutic decision making. The genotype of an individual in constant and non-modifiable, and thus could potentially fulfill the role of important predictors of these outcomes. In this review, we discuss the existing literature on the prediction of various disease phenotypes in Crohn's disease and ulcerative colitis using underlying genotype. We also identify gaps in the literature and suggest future directions for research. There is need for large, multi-institutional, and international collaborative consortia with efficient and detailed cohort accrual, phenotypic definition, genotyping, and dynamic assessments of external (e.g., diet) and internal (microbiome) environment to allow us to progress toward personalized and precision medicine in the management of these complex diseases.
Collapse
|
3466
|
Abreu MT. The genetics and pathogenesis of inflammatory bowel disease. Gastroenterol Hepatol (N Y) 2013; 9:521-523. [PMID: 24719601 PMCID: PMC3980996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Maria T Abreu
- Chief, Division of Gastroenterology Martin Kaiser Chair in Gastroenterology Professor of Medicine Professor of Microbiology and Immunology University of Miami Miller School of Medicine Miami, Florida
| |
Collapse
|
3467
|
D'Amato M. Genes and functional GI disorders: from casual to causal relationship. Neurogastroenterol Motil 2013; 25:638-49. [PMID: 23826979 DOI: 10.1111/nmo.12173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The functional gastrointestinal disorders (FGID), and in particular irritable bowel syndrome (IBS), pose a considerable burden on health care and society, and negatively impact quality of life. These are common conditions of unknown etiology, and symptom-based criteria are currently the sole nosological tools for their clinical classification. Major insight into FGID pathophysiology is therefore needed and, in recent years, increasing hope has been put on genetic research for the identification of causative pathways. This is more advanced in IBS compared with other FGID, but it has still provided often indecipherable results and no unequivocal evidence of a pathogenetic role for any particular gene. Although thousands of genetic variants have been undoubtedly linked to human disease in hundreds of genome-wide association studies (GWAS), no similar effort has yet even been attempted in FGID. If meaningful, robust, and reproducible results are to be obtained for IBS and other FGID, we must shift gear and adopt these powerful hypothesis-free approaches through concerted actions and allocation of adequate resources. Provided these are in place, the major challenge will be, inevitably, the choice of the target phenotype(s) beyond a descriptive symptom-based classification. PURPOSE In view of these much awaited developments, salient results and difficulties inherent to IBS gene discovery are briefly summarized here.
Collapse
Affiliation(s)
- Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3468
|
Ellinghaus D, Zhang H, Zeissig S, Lipinski S, Till A, Jiang T, Stade B, Bromberg Y, Ellinghaus E, Keller A, Rivas MA, Skieceviciene J, Doncheva NT, Liu X, Liu Q, Jiang F, Forster M, Mayr G, Albrecht M, Häsler R, Boehm BO, Goodall J, Berzuini CR, Lee J, Andersen V, Vogel U, Kupcinskas L, Kayser M, Krawczak M, Nikolaus S, Weersma RK, Ponsioen CY, Sans M, Wijmenga C, Strachan DP, McArdle WL, Vermeire S, Rutgeerts P, Sanderson JD, Mathew CG, Vatn MH, Wang J, Nöthen MM, Duerr RH, Büning C, Brand S, Glas J, Winkelmann J, Illig T, Latiano A, Annese V, Halfvarson J, D’Amato M, Daly MJ, Nothnagel M, Karlsen TH, Subramani S, Rosenstiel P, Schreiber S, Parkes M, Franke A. Association between variants of PRDM1 and NDP52 and Crohn's disease, based on exome sequencing and functional studies. Gastroenterology 2013; 145:339-47. [PMID: 23624108 PMCID: PMC3753067 DOI: 10.1053/j.gastro.2013.04.040] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed sequencing, genetic association, expression, and functional studies. METHODS We sequenced whole exomes of 42 unrelated subjects with CD and 5 healthy subjects (controls) and then filtered single nucleotide variants by incorporating association results from meta-analyses of CD GWAS and in silico mutation effect prediction algorithms. We then genotyped 9348 subjects with CD, 2868 subjects with ulcerative colitis, and 14,567 control subjects and associated variants analyzed in functional studies using materials from subjects and controls and in vitro model systems. RESULTS We identified rare missense mutations in PR domain-containing 1 (PRDM1) and associated these with CD. These mutations increased proliferation of T cells and secretion of cytokines on activation and increased expression of the adhesion molecule L-selectin. A common CD risk allele, identified in GWAS, correlated with reduced expression of PRDM1 in ileal biopsy specimens and peripheral blood mononuclear cells (combined P = 1.6 × 10(-8)). We identified an association between CD and a common missense variant, Val248Ala, in nuclear domain 10 protein 52 (NDP52) (P = 4.83 × 10(-9)). We found that this variant impairs the regulatory functions of NDP52 to inhibit nuclear factor κB activation of genes that regulate inflammation and affect the stability of proteins in Toll-like receptor pathways. CONCLUSIONS We have extended the results of GWAS and provide evidence that variants in PRDM1 and NDP52 determine susceptibility to CD. PRDM1 maps adjacent to a CD interval identified in GWAS and encodes a transcription factor expressed by T and B cells. NDP52 is an adaptor protein that functions in selective autophagy of intracellular bacteria and signaling molecules, supporting the role of autophagy in the pathogenesis of CD.
Collapse
Affiliation(s)
- David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Hu Zhang
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
- Department of Gastroenterology & State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Sebastian Zeissig
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simone Lipinski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andreas Till
- Section of Molecular Biology, University of California San Diego & San Diego Center for Systems Biology (SDCSB), La Jolla, California, USA
| | | | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New York, USA
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andreas Keller
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Manuel A Rivas
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | | | | | | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gabriele Mayr
- Max-Planck Institute for Informatics, Saarbrücken, Germany
| | - Mario Albrecht
- Max-Planck Institute for Informatics, Saarbrücken, Germany
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bernhard O Boehm
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Medical Center Ulm and Center of Excellence “Metabolic Disorders” Baden-Württemberg, Ulm, Germany
| | - Jane Goodall
- Department of Medicine, University of Cambridge, UK
| | - Carlo R Berzuini
- Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - James Lee
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
| | - Vibeke Andersen
- Viborg Regional Hospital, Medical Department, Viborg, Denmark
- Aabenraa SHS, Medical Department, Aabenraa, Denmark
| | - Ulla Vogel
- National Research Centre for Working Environment, Copenhagen, Denmark
| | - Limas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
- PopGen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rinse K Weersma
- University Medical Center Groningen, Department of Gastroenterology, Groningen, The Netherlands
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Miquel Sans
- Service of Digestive Diseases, Centro Médico Teknon, Barcelona, Spain
| | - Cisca Wijmenga
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - David P Strachan
- Division of Population Health Sciences and Education, St George’s, University of London, London, UK
| | - Wendy L McArdle
- Avon Longitudinal Study of Parents and Children (ALSPAC) Laboratory, Department of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Séverine Vermeire
- University Hospital Gasthuisberg, Division of Gastroenterology, Leuven, Belgium
| | - Paul Rutgeerts
- University Hospital Gasthuisberg, Division of Gastroenterology, Leuven, Belgium
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy’s & St. Thomas’ National Health Service Foundation Trust, London, UK
| | | | - Morten H Vatn
- Rikshospitalet University Hospital, Medical Department, Oslo, Norway
| | | | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Richard H Duerr
- University of Pittsburgh School of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Graduate School of Public Health, Department of Human Genetics, Pittsburgh, Pennsylvania, USA
| | - Carsten Büning
- Department of Gastroenterology, Hepatology and Endocrinology, Charité, Campus Mitte, Berlin, Germany
| | - Stephan Brand
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Glas
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Preventive Dentistry and Periodontology, LMU, Munich, Germany
- Department of Human Genetics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, MRI, Technische Universität München, Munich, Germany
- Departement of Neurology, MRI, Technische Universität München, Munich, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Anna Latiano
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
| | - Vito Annese
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
- Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, Italy
| | - Jonas Halfvarson
- Division of Gastroenterology, Örebro University Hospital and School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Mauro D’Amato
- Karolinska Institute, Department of Biosciences and Nutrition, Stockholm, Sweden
| | - Mark J Daly
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Michael Nothnagel
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Tom H Karlsen
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Suresh Subramani
- Section of Molecular Biology, University of California San Diego & San Diego Center for Systems Biology (SDCSB), La Jolla, California, USA
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miles Parkes
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
3469
|
Graham DB, Xavier RJ. From genetics of inflammatory bowel disease towards mechanistic insights. Trends Immunol 2013; 34:371-8. [PMID: 23639549 PMCID: PMC3735683 DOI: 10.1016/j.it.2013.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/15/2022]
Abstract
Advancements in human genetics now poise the field to illuminate the pathophysiology of complex genetic disease. In particular, genome-wide association studies (GWAS) have generated insights into the mechanisms driving inflammatory bowel disease (IBD) and implicated genes shared by multiple autoimmune and autoinflammatory diseases. Thus, emerging evidence suggests a central role for the mucosal immune system in mediating immune homeostasis and highlights the complexity of genetic and environmental interactions that collectively modulate the risk of disease. Nevertheless, the challenge remains to determine how genetic variation can precipitate and sustain the inappropriate inflammatory response to commensals that is observed in IBD. Here, we highlight recent advancements in immunogenetics and provide a forward-looking view of the innovations that will deliver mechanistic insights from human genetics.
Collapse
|
3470
|
Ventham NT, Kennedy NA, Nimmo ER, Satsangi J. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology 2013; 145:293-308. [PMID: 23751777 PMCID: PMC3919211 DOI: 10.1053/j.gastro.2013.05.050] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/16/2013] [Accepted: 05/26/2013] [Indexed: 02/07/2023]
Abstract
In the past decade, there have been fundamental advances in our understanding of genetic factors that contribute to the inflammatory bowel diseases (IBDs) Crohn's disease and ulcerative colitis. The latest international collaborative studies have brought the number of IBD susceptibility gene loci to 163. However, genetic factors account for only a portion of overall disease variance, indicating a need to better explore gene-environment interactions in the development of IBD. Epigenetic factors can mediate interactions between the environment and the genome; their study could provide new insight into the pathogenesis of IBD. We review recent progress in identification of genetic factors associated with IBD and discuss epigenetic mechanisms that could affect development and progression of IBD.
Collapse
Affiliation(s)
- Nicholas T. Ventham
- Reprint requests Address requests for reprints to: Nicholas T. Ventham, Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland. fax: +44 131 651 1085.
| | | | | | | |
Collapse
|
3471
|
Ko DC, Urban TJ. Understanding human variation in infectious disease susceptibility through clinical and cellular GWAS. PLoS Pathog 2013; 9:e1003424. [PMID: 23935492 PMCID: PMC3731241 DOI: 10.1371/journal.ppat.1003424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of
| | | |
Collapse
|
3472
|
Börnigen D, Morgan XC, Franzosa EA, Ren B, Xavier RJ, Garrett WS, Huttenhower C. Functional profiling of the gut microbiome in disease-associated inflammation. Genome Med 2013; 5:65. [PMID: 23906180 PMCID: PMC3978847 DOI: 10.1186/gm469] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The microbial residents of the human gut are a major factor in the development and lifelong maintenance of health. The gut microbiota differs to a large degree from person to person and has an important influence on health and disease due to its interaction with the human immune system. Its overall composition and microbial ecology have been implicated in many autoimmune diseases, and it represents a particularly important area for translational research as a new target for diagnostics and therapeutics in complex inflammatory conditions. Determining the biomolecular mechanisms by which altered microbial communities contribute to human disease will be an important outcome of current functional studies of the human microbiome. In this review, we discuss functional profiling of the human microbiome using metagenomic and metatranscriptomic approaches, focusing on the implications for inflammatory conditions such as inflammatory bowel disease and rheumatoid arthritis. Common themes in gut microbial ecology have emerged among these diverse diseases, but they have not yet been linked to targetable mechanisms such as microbial gene and genome composition, pathway and transcript activity, and metabolism. Combining these microbial activities with host gene, transcript and metabolic information will be necessary to understand how and why these complex interacting systems are altered in disease-associated inflammation.
Collapse
Affiliation(s)
- Daniela Börnigen
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA ; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xochitl C Morgan
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA ; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA ; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Boyu Ren
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA ; Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Wendy S Garrett
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA ; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA ; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA ; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
3473
|
Stringer S, Derks EM, Kahn RS, Hill WG, Wray NR. Assumptions and properties of limiting pathway models for analysis of epistasis in complex traits. PLoS One 2013; 8:e68913. [PMID: 23935903 PMCID: PMC3728313 DOI: 10.1371/journal.pone.0068913] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
For most complex traits, results from genome-wide association studies show that the proportion of the phenotypic variance attributable to the additive effects of individual SNPs, that is, the heritability explained by the SNPs, is substantially less than the estimate of heritability obtained by standard methods using correlations between relatives. This difference has been called the "missing heritability". One explanation is that heritability estimates from family (including twin) studies are biased upwards. Zuk et al. revisited overestimation of narrow sense heritability from twin studies as a result of confounding with non-additive genetic variance. They propose a limiting pathway (LP) model that generates significant epistatic variation and its simple parametrization provides a convenient way to explore implications of epistasis. They conclude that over-estimation of narrow sense heritability from family data ('phantom heritability') may explain an important proportion of missing heritability. We show that for highly heritable quantitative traits large phantom heritability estimates from twin studies are possible only if a large contribution of common environment is assumed. The LP model is underpinned by strong assumptions that are unlikely to hold, including that all contributing pathways have the same mean and variance and are uncorrelated. Here, we relax the assumptions that underlie the LP model to be more biologically plausible. Together with theoretical, empirical, and pragmatic arguments we conclude that in outbred populations the contribution of additive genetic variance is likely to be much more important than the contribution of non-additive variance.
Collapse
Affiliation(s)
- Sven Stringer
- Department of Psychiatry, Amsterdam Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
3474
|
Thessen Hedreul M, Möller S, Stridh P, Gupta Y, Gillett A, Daniel Beyeen A, Öckinger J, Flytzani S, Diez M, Olsson T, Jagodic M. Combining genetic mapping with genome-wide expression in experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and candidate genes regulating autoimmunity. Hum Mol Genet 2013; 22:4952-66. [PMID: 23900079 PMCID: PMC3836475 DOI: 10.1093/hmg/ddt343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system commonly used to study multiple sclerosis (MS). We combined clinical EAE phenotypes with genome-wide expression profiling in spleens from 150 backcross rats between susceptible DA and resistant PVG rat strains during the chronic EAE phase. This enabled correlation of transcripts with genotypes, other transcripts and clinical EAE phenotypes and implicated potential genetic causes and pathways in EAE. We detected 2285 expression quantitative trait loci (eQTLs). Sixty out of 599 cis-eQTLs overlapped well-known EAE QTLs and constitute positional candidate genes, including Ifit1 (Eae7), Atg7 (Eae20-22), Klrc3 (eEae22) and Mfsd4 (Eae17). A trans-eQTL that overlaps Eae23a regulated a large number of small RNAs and implicates a master regulator of transcription. We defined several disease-correlated networks enriched for pathways involved in cell-mediated immunity. They include C-type lectins, G protein coupled receptors, mitogen-activated protein kinases, transmembrane proteins, suppressors of transcription (Jundp2 and Nr1d1) and STAT transcription factors (Stat4) involved in interferon signaling. The most significant network was enriched for T cell functions, similar to genetic findings in MS, and revealed both established and novel gene interactions. Transcripts in the network have been associated with T cell proliferation and differentiation, the TCR signaling and regulation of regulatory T cells. A number of network genes and their family members have been associated with MS and/or other autoimmune diseases. Combining disease and genome-wide expression phenotypes provides a link between disease risk genes and distinct molecular pathways that are dysregulated during chronic autoimmune inflammation.
Collapse
Affiliation(s)
- Melanie Thessen Hedreul
- Department of Clinical Neuroscience, Neuroimmunology Unit, Center for Molecular Medicine L8:04, Karolinska Institutet, L8:04, 17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3475
|
Cox MB, Bowden NA, Scott RJ, Lechner-Scott J. Common genetic variants in the plasminogen activation pathway are not associated with multiple sclerosis. Mult Scler 2013; 20:489-91. [DOI: 10.1177/1352458513498127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinase 9 (MMP9) is involved in multiple sclerosis (MS) aetiology. Previously, we identified differential gene expression of plasminogen activation cascade genes in MS patients. Based on our gene expression results, we wanted to identify whether polymorphisms in the genes associated with the plasminogen pathway could predict MS risk. We genotyped 1153 trio families, 727 MS cases and 604 healthy controls for 17 polymorphisms in MMP9, plasminogen activator urokinase (PLAU), PLAU receptor (PLAUR) and serpin peptidase inhibitor/clade 2/member B2 (SERPINB2) genes. No associations were found between the 17 polymorphisms and MS. Also, gene expression levels were analysed according to genotype: no associations were observed. In conclusion despite the consistent evidence for the role of MMP9 and the plasminogen activation cascade in MS, we found no associations between genotype nor gene expression. This suggested there are other potentially modifiable factors influencing gene expression in MS.
Collapse
Affiliation(s)
- Mathew B Cox
- Hunter Medical Research Institute, and University of Newcastle, Australia
| | - Nikola A Bowden
- Hunter Medical Research Institute, and University of Newcastle, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, and University of Newcastle, Australia
- Hunter Area Pathology Service, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, and University of Newcastle, Australia
- Department of Neurology, John Hunter Hospital, Australia
| |
Collapse
|
3476
|
Coskun M, Bjerrum JT, Seidelin JB, Troelsen JT, Olsen J, Nielsen OH. miR-20b, miR-98, miR-125b-1*, and let-7e* as new potential diagnostic biomarkers in ulcerative colitis. World J Gastroenterol 2013; 19:4289-4299. [PMID: 23885139 PMCID: PMC3718896 DOI: 10.3748/wjg.v19.i27.4289] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/15/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To use microarray-based miRNA profiling of colonic mucosal biopsies from patients with ulcerative colitis (UC), Crohn’s disease (CD), and controls in order to identify new potential miRNA biomarkers in inflammatory bowel disease.
METHODS: Colonic mucosal pinch biopsies from the descending part were obtained endoscopically from patients with active UC or CD, quiescent UC or CD, as well as healthy controls. Total RNA was isolated and miRNA expression assessed using the miRNA microarray Geniom Biochip miRNA Homo sapiens (Febit GmbH, Heidelberg, Germany). Data analysis was carried out by principal component analysis and projection to latent structure-discriminant analysis using the SIMCA-P+12 software package (Umetrics, Umea, Sweden). The microarray data were subsequently validated by quantitative real-time polymerase chain reaction (qPCR) performed on colonic tissue samples from active UC patients (n = 20), patients with quiescent UC (n = 19), and healthy controls (n = 20). The qPCR results were analyzed with Mann-Whitney U test. In silico prediction analysis were performed to identify potential miRNA target genes and the predicted miRNA targets were then compared with all UC associated susceptibility genes reported in the literature.
RESULTS: The colonic mucosal miRNA transcriptome differs significantly between UC and controls, UC and CD, as well as between UC patients with mucosal inflammation and those without. However, no clear differences in the transcriptome of patients with CD and controls were found. The miRNAs with the strongest differential power were identified (miR-20b, miR-99a, miR-203, miR-26b, and miR-98) and found to be up-regulated more than a 10-fold in active UC as compared to quiescent UC, CD, and controls. Two miRNAs, miR-125b-1* and let-7e*, were up-regulated more than 5-fold in quiescent UC compared to active UC, CD, and controls. Four of the seven miRNAs (miR-20b, miR-98, miR-125b-1*, and let-7e*) were validated by qPCR and found to be specifically upregulated in patients with UC. Using in silico analysis we found several predicted pro-inflammatory target genes involved in various pathways, such as mitogen-activated protein kinase and cytokine signaling, which are both key signaling pathways in UC.
CONCLUSION: The present study provides the first evidence that miR-20b, miR-98, miR-125b-1*, and let-7e* are deregulated in patients with UC. The level of these miRNAs may serve as new potential biomarkers for this chronic disease.
Collapse
|
3477
|
Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov 2013; 12:581-94. [PMID: 23868113 DOI: 10.1038/nrd4051] [Citation(s) in RCA: 465] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than 90% of the compounds that enter clinical trials fail to demonstrate sufficient safety and efficacy to gain regulatory approval. Most of this failure is due to the limited predictive value of preclinical models of disease, and our continued ignorance regarding the consequences of perturbing specific targets over long periods of time in humans. 'Experiments of nature' - naturally occurring mutations in humans that affect the activity of a particular protein target or targets - can be used to estimate the probable efficacy and toxicity of a drug targeting such proteins, as well as to establish causal rather than reactive relationships between targets and outcomes. Here, we describe the concept of dose-response curves derived from experiments of nature, with an emphasis on human genetics as a valuable tool to prioritize molecular targets in drug development. We discuss empirical examples of drug-gene pairs that support the role of human genetics in testing therapeutic hypotheses at the stage of target validation, provide objective criteria to prioritize genetic findings for future drug discovery efforts and highlight the limitations of a target validation approach that is anchored in human genetics.
Collapse
Affiliation(s)
- Robert M Plenge
- Division of Rheumatology, Immunology and Allergy, Brigham And Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
3478
|
Michail S, Bultron G, Depaolo RW. Genetic variants associated with Crohn's disease. APPLICATION OF CLINICAL GENETICS 2013; 6:25-32. [PMID: 23935379 PMCID: PMC3735034 DOI: 10.2147/tacg.s33966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crohn’s disease is an immune-related disorder characterized by inflammation of the gastrointestinal mucosa, which can occur in any area throughout the digestive tract. This life-long disease commonly presents with abdominal pain, diarrhea, vomiting, and weight loss. While the exact etiology of this disease is largely unknown, it is thought to arise from an interaction between microbial, immunological, and environmental factors in a genetically susceptible host, whereby the immune system attacks the intestine as it cross reacts against gut microbial antigens. The study of genetic variants associated with Crohn’s disease has shed light on our understanding of disease pathophysiology. A large number of genetic variants identified in Crohn’s disease are related to genes targeting microbial recognition and bacterial wall sensing, the most common being NOD2/CARD15 gene. This review will discuss the recent advance in our knowledge of genetic variants of this disease and how they influence the disease course and prognosis.
Collapse
Affiliation(s)
- Sonia Michail
- The University of Southern California, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
3479
|
Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson MM, Gros P. Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog 2013; 9:e1003491. [PMID: 23853600 PMCID: PMC3708918 DOI: 10.1371/journal.ppat.1003491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/28/2013] [Indexed: 02/07/2023] Open
Abstract
Interferon Regulatory Factor 8 (IRF8) is required for development, maturation and expression of anti-microbial defenses of myeloid cells. BXH2 mice harbor a severely hypomorphic allele at Irf8 (Irf8R294C) that causes susceptibility to infection with intracellular pathogens including Mycobacterium tuberculosis. We report that BXH2 are completely resistant to the development of cerebral malaria (ECM) following Plasmodium berghei ANKA infection. Comparative transcriptional profiling of brain RNA as well as chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) was used to identify IRF8-regulated genes whose expression is associated with pathological acute neuroinflammation. Genes increased by infection were strongly enriched for IRF8 binding sites, suggesting that IRF8 acts as a transcriptional activator in inflammatory programs. These lists were enriched for myeloid-specific pathways, including interferon responses, antigen presentation and Th1 polarizing cytokines. We show that inactivation of several of these downstream target genes (including the Irf8 transcription partner Irf1) confers protection against ECM. ECM-resistance in Irf8 and Irf1 mutants is associated with impaired myeloid and lymphoid cells function, including production of IL12p40 and IFNγ. We note strong overlap between genes bound and regulated by IRF8 during ECM and genes regulated in the lungs of M. tuberculosis infected mice. This IRF8-dependent network contains several genes recently identified as risk factors in acute and chronic human inflammatory conditions. We report a common core of IRF8-bound genes forming a critical inflammatory host-response network. Cerebral malaria is a severe and often lethal complication from infection with Plasmodium falciparum which is driven in part by pathological host inflammatory response to parasitized red cells′ adherence in the brain microvasculature. However, the pathways that initiate and amplify this pathological neuroinflammation are not well understood. As susceptibility to cerebral malaria is variable and has been shown to be partially heritable, we have studied this from a genetic perspective using a mouse model of infection with P. berghei which induces experimental cerebral malaria (ECM). Here we show that mice bearing mutations in the myeloid transcription factor IRF8 and its heterodimerization partner IRF1 are completely resistant to ECM. We have identified the genes and associated networks that are activated by IRF8 during ECM. Loss-of-function mutations of several IRF8 targets are also shown to be protective. Parallel analysis of lungs infected with Mycobacterium tuberculosis show that IRF8-associated core pathways are also engaged during tuberculosis where they play a protective role. This contrast illustrates the balancing act required by the immune system to respond to pathogens and highlights a lynchpin role for IRF8 in both. Finally, several genes in these networks have been individually associated with chronic or acute inflammatory conditions in humans.
Collapse
Affiliation(s)
- Joanne Berghout
- Department of Biochemistry and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - David Langlais
- Department of Biochemistry and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Irena Radovanovic
- Department of Biochemistry and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Mifong Tam
- McGill University Health Centre, Montreal, Quebec, Canada
| | - John D. MacMicking
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | - Philippe Gros
- Department of Biochemistry and Complex Traits Group, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
3480
|
Marlow GJ, van Gent D, Ferguson LR. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol 2013; 19:3931-3941. [PMID: 23840137 PMCID: PMC3703179 DOI: 10.3748/wjg.v19.i25.3931] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/18/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn’s disease (CD) or ulcerative colitis are chronic intestinal disorders, which are on the increase in “Westernised” countries. IBD can be caused by both genetic and environmental factors. Interleukin-10 (IL-10) is an immunoregulatory cytokine that has been identified as being involved in several diseases including IBD. Studies have shown that polymorphisms in the promoter region reduce serum levels of IL-10 and this reduction has been associated with some forms of IBD. Mouse models have shown promising results with IL-10 supplementation, as such IL-10 supplementation has been touted as being a possible alternative treatment for CD in humans. Clinical trials have shown that recombinant human IL-10 is safe and well tolerated up to a dose of 8 μg/kg. However, to date, the results of the clinical trials have been disappointing. Although CD activity was reduced as measured by the CD activity index, IL-10 supplementation did not result in significantly reduced remission rates or clinical improvements when compared to placebo. This review discusses why IL-10 supplementation is not effective in CD patients currently and what can be addressed to potentially make IL-10 supplementation a more viable treatment option in the future. Based on the current research we conclude that IL-10 supplementation is not a one size fits all treatment and if the correct population of patients is chosen then IL-10 supplementation could be of benefit.
Collapse
|
3481
|
Aigner J, Villatoro S, Rabionet R, Roquer J, Jiménez-Conde J, Martí E, Estivill X. A common 56-kilobase deletion in a primate-specific segmental duplication creates a novel butyrophilin-like protein. BMC Genet 2013; 14:61. [PMID: 23829304 PMCID: PMC3729544 DOI: 10.1186/1471-2156-14-61] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/21/2013] [Indexed: 12/22/2022] Open
Abstract
Background The Butyrophilin-like (BTNL) proteins are likely to play an important role in inflammation and immune response. Like the B7 protein family, many human and murine BTNL members have been shown to control T lymphocytes response, and polymorphisms in human BTNL2 have been linked to several inflammatory diseases, such as pulmonary sarcoidosis, inflammatory bowel disease and neonatal lupus. Results In this study we provide a comprehensive population, genomic and transcriptomic analysis of a 56-kb deletion copy number variant (CNV), located within two segmental duplications of two genes belonging to the BTNL family, namely BTNL8 and BTNL3. We confirm the presence of a novel BTNL8*3 fusion-protein product, and show an influence of the deletion variant on the expression level of several genes involved in immune function, including BTNL9, another member of the same family. Moreover, by genotyping HapMap and human diversity panel (HGDP) samples, we demonstrate a clear difference in the stratification of the BTNL8_BTNL3-del allele frequency between major continental human populations. Conclusion Despite tremendous progress in the field of structural variation, rather few CNVs have been functionally characterized so far. Here, we show clear functional consequences of a new deletion CNV (BTNL8_BTNL3-del) with potentially important implication in the human immune system and in inflammatory and proliferative disorders. In addition, the marked population differences found of BTNL8_BTNL3-del frequencies suggest that this deletion CNV might have evolved under positive selection due to environmental conditions in some populations, with potential phenotypic consequences.
Collapse
Affiliation(s)
- Johanna Aigner
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona 08003, Spain
| | | | | | | | | | | | | |
Collapse
|
3482
|
Abstract
Genetic studies in immune-mediated diseases have yielded a large number of disease-associated loci. Here we review the progress being made in 12 such diseases, for which 199 independently associated non-HLA loci have been identified by genome-wide association studies since 2007. It is striking that many of the loci are not unique to a single disease but shared between different immune-mediated diseases. The challenge now is to understand how the unique and shared genetic factors can provide insight into the underlying disease biology. We annotated disease-associated variants using the Encyclopedia of DNA Elements (ENCODE) database and demonstrate that, of the predisposing disease variants, the majority have the potential to be regulatory. We also demonstrate that many of these variants affect the expression of nearby genes. Furthermore, we summarize results from the Immunochip, a custom array, which allows a detailed comparison between five of the diseases that have so far been analyzed using this platform.
Collapse
Affiliation(s)
- Isis Ricaño-Ponce
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands;
| | | |
Collapse
|
3483
|
Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res 2013; 76:1-8. [PMID: 23827161 DOI: 10.1016/j.phrs.2013.06.007] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/06/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway constitute the fulcrum in many vital cellular processes, including cell growth, differentiation, proliferation, and regulatory immune functions. Various cytokines, growth factors, and protein tyrosine kinases communicate through the JAK/STAT pathway and regulate the transcription of numerous genes. In addition to their critical roles in a plethora of key cellular activities, the JAK/STAT signaling pathways also have been implicated in the pathogenesis of several diseases, including inflammatory bowel disease (IBD), especially since a JAK inhibitor recently has been shown to be effective in the treatment of ulcerative colitis. The aim of this review is to highlight the recent findings on the regulatory mechanism of JAK/STAT signaling pathways and to reveal the evolving comprehension of their interface which might be of interest for clinicians involved in IBD therapy. Further, it is described how these signaling pathways have been exploited for the development of promising novel JAK inhibitors with anti-inflammatory effects verified in clinical trials.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
3484
|
Increasing incidence of paediatric inflammatory bowel disease in northern Stockholm County, 2002-2007. J Pediatr Gastroenterol Nutr 2013; 57:29-34. [PMID: 23459320 DOI: 10.1097/mpg.0b013e31828f21b4] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES A sharp increase in paediatric (younger than 16 years) inflammatory bowel disease (IBD) incidence was observed in northern Stockholm County, Sweden, in 1990-2001. The increasing incidence was primarily explained by a rising incidence of Crohn disease (CD). Here, we present an update on the trends in incidence of paediatric IBD, 2002-2007. METHOD Medical records of all children diagnosed as having suspected IBD in northern Stockholm County, 2002-2007, were scrutinised using defined diagnostic criteria. Disease extension, localisation, and behaviour at diagnosis were classified within the framework of the Paris classification. RESULT A total of 133 children were diagnosed as having IBD 2002-2007 corresponding to a sex- and age-standardised incidence (per 10 person-years) for paediatric IBD of 12.8 (95% CI 10.8-15.2). The standardised incidence was 9.2 (95% CI 7.5-11.2) for CD and 2.8 (95% CI 1.9-4.0) for ulcerative colitis (UC). A significant increasing incidence of UC (P < 0.05) was observed during the study period. No temporal trend was observed for the incidence of CD. CONCLUSIONS The incidence rate of paediatric IBD in northern Stockholm was significantly higher in 2002-2007 than that observed in our earlier study covering 1990-2001. The former sharp increase in incidence of paediatric CD seems, however, to have levelled out, although at a higher rate than reported from most other regions in the world. Although CD was still predominant, the observed increase in incidence of UC during the study period is notable.
Collapse
|
3485
|
Nys K, Agostinis P, Vermeire S. Autophagy: a new target or an old strategy for the treatment of Crohn's disease? Nat Rev Gastroenterol Hepatol 2013; 10:395-401. [PMID: 23591407 DOI: 10.1038/nrgastro.2013.66] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 5 years much progress has been made in understanding the molecular basis of Crohn's disease, a multifactorial chronic inflammatory disease of the gastrointestinal tract. Data suggest that hampered autophagy--the major lysosomal pathway for recycling of cytoplasmic material--might contribute to an increased susceptibility to Crohn's disease. Consequently, intense investigations have started to evaluate the potential value of autophagy as a therapeutic target and as a highly needed diagnostic tool. Interestingly, as well as the promising introduction of direct autophagic modulators, several drugs already used in the treatment of Crohn's disease might exert at least part of their effect through the regulation of autophagy. However, whether this phenomenon contributes to or rather counteracts their therapeutic use, remains to be determined and might prove to be highly compound-specific. Here we review the complex and emerging role of autophagy modulation in the battle against Crohn's disease. Moreover, we discuss the potential benefits and deleterious effects of autophagic regulation by both new and clinically used drugs.
Collapse
Affiliation(s)
- Kris Nys
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Faculty of Medicine, Catholic University of Leuven, Herestraat 49, Box 701, 3000 Leuven, Belgium
| | | | | |
Collapse
|
3486
|
Abstract
PURPOSE OF REVIEW Stem cell therapy has emerged as a promising therapeutic strategy for inflammatory bowel diseases (IBDs). Currently, stem cell therapy is not part of the standard of care and is usually only performed as a part of clinical trials. In this review, clinical results, proposed underlying mechanisms, and future research directions will be discussed. RECENT FINDINGS Administration of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) has been evaluated for IBD treatment over the past years. MSC therapy is being explored as a treatment option for fistulizing Crohn's disease and for luminal Crohn's disease. It is shown to be well tolerated, but results on efficacy are inconsistent. HSC transplantation seems to be very effective, but serious adverse events are common. Therefore, future research should focus on improving efficacy of MSC therapy, and on improvement of safety of HSC therapy. SUMMARY Both MSC and HSC therapy offer clinical potential, but currently are not routinely used for IBD treatment. MSC therapy seems well tolerated but results on efficacy are conflicting. HSC transplantation is shown to be effective but safety concerns remain. Nonetheless, for severe refractory IBD cases, stem cell therapy could well become the next-generation treatment option.
Collapse
|
3487
|
Abstract
PURPOSE OF REVIEW To use insights from evolutionary biology to assess the current evidence for the causes, treatment, and prevention of inflammatory bowel disease (IBD). RECENT FINDINGS When analyzed in the context of evolutionary adaptation, recent assessments of genetic, microbial, and environmental associations with IBD implicate infectious causation. SUMMARY An evolutionary perspective provides insight into the causes of IBD, interpretation of its manifestations, and assessment of interventions. The evidence implicating infectious causation suggests that future studies of IBD would benefit from increased focus on infectious causes and interventions that prevent or inhibit them.
Collapse
|
3488
|
Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol 2013; 5:5/7/a018341. [PMID: 23818502 DOI: 10.1101/cshperspect.a018341] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this process. Here, we discuss specialization of regulatory T-cell responses in the intestine, and how a breakdown in these processes can lead to chronic intestinal inflammation.
Collapse
Affiliation(s)
- Oliver J Harrison
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
3489
|
Abstract
PURPOSE OF REVIEW Epigenetic studies are transforming our understanding of a variety of complex pathological conditions including cancer, autoimmune, and inflammatory diseases. A selection of the major recent advances in this area will be reviewed, focusing on the important emerging themes that are relevant to these diseases including inflammatory bowel disease (IBD). RECENT FINDINGS The main current themes that will be addressed on the role of epigenetics in disease pathogenesis include current understanding of the nature and function of histone modifications and DNA methylation; the connection between epigenetics and metabolic pathways; new studies on the mechanism of heritability of epigenetic changes; the role of stochastic noise and the expanding research on chromatin readers and their potential as selective therapeutic targets. The recent contribution of epigenetic modifications in defining the molecular basis of IBD and how such changes may act as fine-tuners of gene expression in these intestinal disorders are also discussed. SUMMARY Published evidence over the last 12-18 months indicates that targeting epigenetic factors can be efficacious in cancer and inflammatory disease. All the indications are that future research will continue to reveal new epigenetic targets and mechanisms that will advance the prospects for selective epigenetic therapy for IBD and other complex diseases.
Collapse
|
3490
|
Jun JC, Cominelli F, Abbott DW. RIP2 activity in inflammatory disease and implications for novel therapeutics. J Leukoc Biol 2013; 94:927-32. [PMID: 23794710 DOI: 10.1189/jlb.0213109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of NOD2 and RIP2 in inflammatory disease has been paradoxical. Whereas loss-of-function NOD2 polymorphisms cause CD, a granulomatous disease of the gastrointestinal tract, gain-of-function mutations cause EOS-a granulomatous disease primarily affecting the skin, joints, and eyes. Thus, gain-of-function mutations and loss-of-function polymorphisms cause granulomatous inflammatory disease, only in different anatomic locations. The situation is complicated further by the fact that WT NOD2 and WT RIP2 activity has been implicated in diseases such as asthma, inflammatory arthritis and MS. This article reviews the role that the NOD2:RIP2 complex plays in inflammatory disease, with an emphasis on the inhibition of this signaling pathway as a novel pharmaceutical target in inflammatory disease.
Collapse
Affiliation(s)
- Janice C Jun
- 1.Case Western Reserve University School of Medicine, Wolstein Research Bldg., 2103 Cornell Rd., Room 6532, Cleveland, OH 44122, USA.
| | | | | |
Collapse
|
3491
|
Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, Westra HJ, Shakhbazov K, Abdellaoui A, Agrawal A, Albrecht E, Alizadeh BZ, Amin N, Barnard J, Baumeister SE, Benke KS, Bielak LF, Boatman JA, Boyle PA, Davies G, de Leeuw C, Eklund N, Evans DS, Ferhmann R, Fischer K, Gieger C, Gjessing HK, Hägg S, Harris JR, Hayward C, Holzapfel C, Ibrahim-Verbaas CA, Ingelsson E, Jacobsson B, Joshi PK, Jugessur A, Kaakinen M, Kanoni S, Karjalainen J, Kolcic I, Kristiansson K, Kutalik Z, Lahti J, Lee SH, Lin P, Lind PA, Liu Y, Lohman K, Loitfelder M, McMahon G, Vidal PM, Meirelles O, Milani L, Myhre R, Nuotio ML, Oldmeadow CJ, Petrovic KE, Peyrot WJ, Polašek O, Quaye L, Reinmaa E, Rice JP, Rizzi TS, Schmidt H, Schmidt R, Smith AV, Smith JA, Tanaka T, Terracciano A, van der Loos MJ, Vitart V, Völzke H, Wellmann J, Yu L, Zhao W, Allik J, Attia JR, Bandinelli S, Bastardot F, Beauchamp J, Bennett DA, Berger K, Bierut LJ, Boomsma DI, Bültmann U, Campbell H, Chabris CF, Cherkas L, Chung MK, Cucca F, de Andrade M, De Jager PL, De Neve JE, Deary IJ, Dedoussis GV, Deloukas P, Dimitriou M, Eiriksdottir G, Elderson MF, Eriksson JG, et alRietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, Westra HJ, Shakhbazov K, Abdellaoui A, Agrawal A, Albrecht E, Alizadeh BZ, Amin N, Barnard J, Baumeister SE, Benke KS, Bielak LF, Boatman JA, Boyle PA, Davies G, de Leeuw C, Eklund N, Evans DS, Ferhmann R, Fischer K, Gieger C, Gjessing HK, Hägg S, Harris JR, Hayward C, Holzapfel C, Ibrahim-Verbaas CA, Ingelsson E, Jacobsson B, Joshi PK, Jugessur A, Kaakinen M, Kanoni S, Karjalainen J, Kolcic I, Kristiansson K, Kutalik Z, Lahti J, Lee SH, Lin P, Lind PA, Liu Y, Lohman K, Loitfelder M, McMahon G, Vidal PM, Meirelles O, Milani L, Myhre R, Nuotio ML, Oldmeadow CJ, Petrovic KE, Peyrot WJ, Polašek O, Quaye L, Reinmaa E, Rice JP, Rizzi TS, Schmidt H, Schmidt R, Smith AV, Smith JA, Tanaka T, Terracciano A, van der Loos MJ, Vitart V, Völzke H, Wellmann J, Yu L, Zhao W, Allik J, Attia JR, Bandinelli S, Bastardot F, Beauchamp J, Bennett DA, Berger K, Bierut LJ, Boomsma DI, Bültmann U, Campbell H, Chabris CF, Cherkas L, Chung MK, Cucca F, de Andrade M, De Jager PL, De Neve JE, Deary IJ, Dedoussis GV, Deloukas P, Dimitriou M, Eiriksdottir G, Elderson MF, Eriksson JG, Evans DM, Faul JD, Ferrucci L, Garcia ME, Grönberg H, Gudnason V, Hall P, Harris JM, Harris TB, Hastie ND, Heath AC, Hernandez DG, Hoffmann W, Hofman A, Holle R, Holliday EG, Hottenga JJ, Iacono WG, Illig T, Järvelin MR, Kähönen M, Kaprio J, Kirkpatrick RM, Kowgier M, Latvala A, Launer LJ, Lawlor DA, Lehtimäki T, Li J, Lichtenstein P, Lichtner P, Liewald DC, Madden PA, Magnusson PKE, Mäkinen TE, Masala M, McGue M, Metspalu A, Mielck A, Miller MB, Montgomery GW, Mukherjee S, Nyholt DR, Oostra BA, Palmer LJ, Palotie A, Penninx B, Perola M, Peyser PA, Preisig M, Räikkönen K, Raitakari OT, Realo A, Ring SM, Ripatti S, Rivadeneira F, Rudan I, Rustichini A, Salomaa V, Sarin AP, Schlessinger D, Scott RJ, Snieder H, Pourcain BS, Starr JM, Sul JH, Surakka I, Svento R, Teumer A, Tiemeier H, Rooij FJA, Van Wagoner DR, Vartiainen E, Viikari J, Vollenweider P, Vonk JM, Waeber G, Weir DR, Wichmann HE, Widen E, Willemsen G, Wilson JF, Wright AF, Conley D, Davey-Smith G, Franke L, Groenen PJF, Hofman A, Johannesson M, Kardia SL, Krueger RF, Laibson D, Martin NG, Meyer MN, Posthuma D, Thurik AR, Timpson NJ, Uitterlinden AG, van Duijn CM, Visscher PM, Benjamin DJ, Cesarini D, Koellinger PD. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 2013; 340:1467-71. [PMID: 23722424 PMCID: PMC3751588 DOI: 10.1126/science.1235488] [Show More Authors] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
Collapse
Affiliation(s)
- Cornelius A. Rietveld
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Sarah E. Medland
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Jaime Derringer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309–0447, USA
| | - Jian Yang
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Nicolas W. Martin
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Konstantin Shakhbazov
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abdel Abdellaoui
- Department of Biological Psychology, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Behrooz Z. Alizadeh
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - John Barnard
- Heart and Vascular and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Kelly S. Benke
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109–2029, USA
| | - Jeffrey A. Boatman
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Patricia A. Boyle
- Rush University Medical Center, Rush Alzheimer’s Disease Center, Chicago, IL 60612, USA
| | - Gail Davies
- Centre for Cognitive Aging and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, Scotland, UK
| | - Christiaan de Leeuw
- Department of Functional Genomics, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Niina Eklund
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, The National Institute for Health and Welfare, Helsinki 00014, Finland
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107–1728, USA
| | - Rudolf Ferhmann
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Håkon K. Gjessing
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Nydalen, N-0403 Oslo, Norway
| | - Sara Hägg
- Molecular Epidemiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jennifer R. Harris
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Nydalen, N-0403 Oslo, Norway
| | - Caroline Hayward
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Christina Holzapfel
- Else Kroener-Fresenius-Centre for Nutritional Medicine, Technische Universität München, 81675 Munich, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Carla A. Ibrahim-Verbaas
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Erik Ingelsson
- Molecular Epidemiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bo Jacobsson
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Nydalen, N-0403 Oslo, Norway
- Department of Obstetrics and Gynecology, Institute of Public Health, Sahlgrenska Academy, Sahgrenska University Hospital, Gothenburg, 413 45, Sweden
| | - Peter K. Joshi
- Centre for Population Health Sciences, The University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Astanand Jugessur
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Nydalen, N-0403 Oslo, Norway
| | - Marika Kaakinen
- Institute of Health Sciences, University of Oulu, Oulu 90014, Finland
- Biocenter Oulu, University of Oulu, Oulu 90014, Finland
| | - Stavroula Kanoni
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Juha Karjalainen
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, 21000 Split, Croatia
| | - Kati Kristiansson
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, The National Institute for Health and Welfare, Helsinki 00014, Finland
| | - Zoltán Kutalik
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Jari Lahti
- Institute of Behavioral Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Sang H. Lee
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Peng Lin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Penelope A. Lind
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC 27157–1063, USA
| | - Kurt Lohman
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC 27157–1063, USA
| | - Marisa Loitfelder
- Division for Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz 8036, Austria
| | - George McMahon
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2PR, UK
| | - Pedro Marques Vidal
- Institute of Social and Preventive Medicine, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Osorio Meirelles
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Ronny Myhre
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Nydalen, N-0403 Oslo, Norway
| | - Marja-Liisa Nuotio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, The National Institute for Health and Welfare, Helsinki 00014, Finland
| | - Christopher J. Oldmeadow
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Katja E. Petrovic
- Division of General Neurology, Department of Neurology, General Hospital and Medical University of Graz, Graz 8036, Austria
| | - Wouter J. Peyrot
- Department of Psychiatry, VU University Medical Center, 1081 HL Amsterdam, The Netherlands
| | - Ozren Polašek
- Faculty of Medicine, University of Split, 21000 Split, Croatia
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Eva Reinmaa
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - John P. Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thais S. Rizzi
- Department of Functional Genomics, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz 8036, Austria
| | - Reinhold Schmidt
- Division for Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz 8036, Austria
| | - Albert V. Smith
- Icelandic Heart Association, Kopavogur 201, Iceland
- Department of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109–2029, USA
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Antonio Terracciano
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
- College of Medicine, Florida State University, Tallahassee, FL 32306–4300, USA
| | - Matthijs J.H.M. van der Loos
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Veronique Vitart
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17489, Germany
| | - Jürgen Wellmann
- Institute of Epidemiology and Social Medicine, University of Muenster, 48129 Muenster, Germany
| | - Lei Yu
- Rush University Medical Center, Rush Alzheimer’s Disease Center, Chicago, IL 60612, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109–2029, USA
| | - Jüri Allik
- Department of Psychology, University of Tartu, Tartu 50410, Estonia
| | - John R. Attia
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | | | - François Bastardot
- Department of Internal Medicine, University Hospital, 1011 Lausanne, Switzerland
| | | | - David A. Bennett
- Rush University Medical Center, Rush Alzheimer’s Disease Center, Chicago, IL 60612, USA
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Muenster, 48129 Muenster, Germany
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dorret I. Boomsma
- Department of Biological Psychology, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Ute Bültmann
- Department of Health Sciences, Community & Occupational Medicine, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
| | - Harry Campbell
- Centre for Population Health Sciences, The University of Edinburgh, Edinburgh EH8 9AG, UK
| | | | - Lynn Cherkas
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Mina K. Chung
- Heart and Vascular and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, 09042, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 SS, Italy
| | - Mariza de Andrade
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Philip L. De Jager
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jan-Emmanuel De Neve
- School of Public Policy, University College London, London WC1H 9QU, UK
- Centre for Economic Performance, London School of Economics, London WC2A 2AE, UK
| | - Ian J. Deary
- Centre for Cognitive Aging and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, Scotland, UK
- Department of Psychology, The University of Edinburgh, Edinburgh EH8 9JZ, Scotland, UK
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens 17671, Greece
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Maria Dimitriou
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens 17671, Greece
| | | | - Martin F. Elderson
- LifeLines Cohort Study, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Johan G. Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki 00014, Finland
- Unit of General Practice, Helsinki University Central Hospital, Helsinki 00280, Finland
- Folkhälsan Research Center, Helsinki 00250, Finland
- Vaasa Central Hospital, Vaasa 65130, Finland
| | - David M. Evans
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2PR, UK
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Melissa E. Garcia
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur 201, Iceland
- Department of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Juliette M. Harris
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Tamara B. Harris
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Nicholas D. Hastie
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew C. Heath
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110–1093, USA
| | - Dena G. Hernandez
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17489, Germany
| | - Adriaan Hofman
- Faculty of Behavioral and Social Sciences, University of Groningen, 9747 AD Groningen, The Netherlands
| | - Rolf Holle
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Elizabeth G. Holliday
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - William G. Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455–0344, USA
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, 30625 Hannover, Germany
| | - Marjo-Riitta Järvelin
- Institute of Health Sciences, University of Oulu, Oulu 90014, Finland
- Biocenter Oulu, University of Oulu, Oulu 90014, Finland
- Department of Epidemiology and Biostatistics, MRC-HPA Centre for Environment and Health, Imperial College London, London W2 1PG, UK
- Unit of Primary Care, Oulu University Hospital, Oulu 90220, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu 90101, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere 33520, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, 00300 Helsinki, Finland
| | | | - Matthew Kowgier
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Antti Latvala
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, 00300 Helsinki, Finland
| | - Lenore J. Launer
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Debbie A. Lawlor
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2PR, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital, Tampere 33520, Finland
| | - Jingmei Li
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - David C. Liewald
- Centre for Cognitive Aging and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, Scotland, UK
| | - Pamela A. Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tomi E. Mäkinen
- Department of Health, Functional Capacity and Welfare, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Marco Masala
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, 09042, Cagliari, Italy
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455–0344, USA
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Andreas Mielck
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Michael B. Miller
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455–0344, USA
| | - Grant W. Montgomery
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Sutapa Mukherjee
- Western Australia Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Perth, Western Australia 6009, Australia
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Women’s College Research Institute, University of Toronto, Toronto, Ontario M5G 1N8, Canada
| | - Dale R. Nyholt
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Ben A. Oostra
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Lyle J. Palmer
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland
| | - Brenda Penninx
- Department of Psychiatry, VU University Medical Center, 1081 HL Amsterdam, The Netherlands
| | - Markus Perola
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, The National Institute for Health and Welfare, Helsinki 00014, Finland
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109–2029, USA
| | - Martin Preisig
- Department of Internal Medicine, University Hospital, 1011 Lausanne, Switzerland
| | - Katri Räikkönen
- Institute of Behavioral Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Anu Realo
- Department of Psychology, University of Tartu, Tartu 50410, Estonia
| | - Susan M. Ring
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2PR, UK
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, The National Institute for Health and Welfare, Helsinki 00014, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Igor Rudan
- Centre for Population Health Sciences, The University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Aldo Rustichini
- Department of Economics, University of Minnesota, Minneapolis, MN 55455–0462, USA
| | - Veikko Salomaa
- Chronic Disease Epidemiology Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
| | - David Schlessinger
- National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Rodney J. Scott
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Beate St Pourcain
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2PR, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, UK
| | - John M. Starr
- Centre for Cognitive Aging and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, Scotland, UK
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh EH8 9JZ, Scotland, UK
| | - Jae Hoon Sul
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Ida Surakka
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, The National Institute for Health and Welfare, Helsinki 00014, Finland
| | - Rauli Svento
- Department of Economics, Oulu Business School, University of Oulu, Oulu 90014, Finland
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald 17487, Germany
| | | | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, 3000 CB Rotterdam, The Netherlands
| | - Frank JAan Rooij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| | - David R. Van Wagoner
- Heart and Vascular and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Erkki Vartiainen
- Division of Welfare and Health Promotion, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Jorma Viikari
- Department of Medicine, Turku University Hospital, Turku 20520, Finland
| | - Peter Vollenweider
- Department of Internal Medicine, University Hospital, 1011 Lausanne, Switzerland
| | - Judith M. Vonk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Gérard Waeber
- Department of Internal Medicine, University Hospital, 1011 Lausanne, Switzerland
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, USA
| | - H.-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Klinikum Grosshadern, 81377 Munich, Germany
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - James F. Wilson
- Centre for Population Health Sciences, The University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Alan F. Wright
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Dalton Conley
- Department of Sociology, New York University, New York, NY 10012, USA
| | - George Davey-Smith
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2PR, UK
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Patrick J. F. Groenen
- Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam 3000 DR, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Magnus Johannesson
- Department of Economics, Stockholm School of Economics, Stockholm 113 83, Sweden
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109–2029, USA
| | - Robert F. Krueger
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455–0344, USA
| | - David Laibson
- Department of Economics, Harvard University, Cambridge, MA 02138, USA
| | - Nicholas G. Martin
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Michelle N. Meyer
- Petrie-Flom Center for Health Law Policy, Biotechnology, & Bioethics, Harvard Law School, Cambridge, MA 02138, USA
- Nelson A. Rockefeller Institute of Government, State University of New York, Albany, NY 12203–1003, USA
| | - Danielle Posthuma
- Department of Functional Genomics, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, 3000 CB Rotterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Centrer, 1081 BT Amsterdam, The Netherlands
| | - A. Roy Thurik
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
- Panteia, Zoetermeer 2701 AA, Netherlands
- GSCM-Montpellier Business School, Montpellier 34185, France
| | - Nicholas J. Timpson
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2PR, UK
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Cornelia M. van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
- Centre for Medical Systems Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter M. Visscher
- Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - David Cesarini
- Center for Experimental Social Science, Department of Economics, New York University, New York, NY 10012, USA
- Division of Social Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Research Institute of Industrial Economics, Stockholm 102 15, Sweden
| | - Philipp D. Koellinger
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| |
Collapse
|
3492
|
Zulfiqar F, Hozo I, Rangarajan S, Mariuzza RA, Dziarski R, Gupta D. Genetic Association of Peptidoglycan Recognition Protein Variants with Inflammatory Bowel Disease. PLoS One 2013; 8:e67393. [PMID: 23840689 PMCID: PMC3686734 DOI: 10.1371/journal.pone.0067393] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/17/2013] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a common disease, includes Crohn's disease (CD) and ulcerative colitis (UC), and is determined by altered gut bacterial populations and aberrant host immune response. Peptidoglycan recognition proteins (PGLYRP) are innate immunity bactericidal proteins expressed in the intestine. In mice, PGLYRPs modulate bacterial populations in the gut and sensitivity to experimentally induced UC. The role of PGLYRPs in humans with CD and/or UC has not been previously investigated. Here we tested the hypothesis that genetic variants in PGLYRP1, PGLYRP2, PGLYRP3 and PGLYRP4 genes associate with CD and/or UC and with gender and/or age of onset of disease in the patient population. We sequenced all PGLYRP exons in 372 CD patients, 77 UC patients, 265 population controls, 210 familial CD controls, and 24 familial UC controls, identified all polymorphisms in these populations, and analyzed the variants for significant association with CD and UC. We identified 16 polymorphisms in the four PGLYRP genes that significantly associated with CD, UC, and/or subgroups of patient populations. Of the 16, 5 significantly associated with both CD and UC, 6 with CD, and 5 with UC. 12 significant variants result in amino acid substitutions and based on structural modeling several of these missense variants may have structural and/or functional consequences for PGLYRP proteins. Our data demonstrate that genetic variants in PGLYRP genes associate with CD and UC and may provide a novel insight into the mechanism of pathogenesis of IBD.
Collapse
Affiliation(s)
- Fareeha Zulfiqar
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Iztok Hozo
- Department of Mathematics, Indiana University Northwest, Gary, Indiana, United States of America
| | - Sneha Rangarajan
- The Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, United States of America
| | - Roy A. Mariuzza
- The Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, United States of America
| | - Roman Dziarski
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Dipika Gupta
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
3493
|
Bradfute SB, Castillo EF, Arko-Mensah J, Chauhan S, Jiang S, Mandell M, Deretic V. Autophagy as an immune effector against tuberculosis. Curr Opin Microbiol 2013; 16:355-65. [PMID: 23790398 DOI: 10.1016/j.mib.2013.05.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/15/2022]
Abstract
The now well-accepted innate immunity paradigm that autophagy acts as a cell-autonomous defense against intracellular bacteria has its key origins in studies with Mycobacterium tuberculosis, an important human pathogen and a model microorganism infecting macrophages. A number of different factors have been identified that play into the anti-mycobacterial functions of autophagy, and recent in vivo studies in the mouse model of tuberculosis have uncovered additional anti-inflammatory and tissue-sparing functions of autophagy. Complementing these observations, genome wide association studies indicate a considerable overlap between autophagy, human susceptibility to mycobacterial infections and predisposition loci for inflammatory bowel disease. Finally, recent studies show that autophagy is an important regulator and effector of IL-1 responses, and that autophagy intersects with type I interferon pathology-modulating responses.
Collapse
Affiliation(s)
- Steven B Bradfute
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
3494
|
Hunt KA, Mistry V, Bockett NA, Ahmad T, Ban M, Barker JN, Barrett JC, Blackburn H, Brand O, Burren O, Capon F, Compston A, Gough SCL, Jostins L, Kong Y, Lee JC, Lek M, MacArthur DG, Mansfield JC, Mathew CG, Mein CA, Mirza M, Nutland S, Onengut-Gumuscu S, Papouli E, Parkes M, Rich SS, Sawcer S, Satsangi J, Simmonds MJ, Trembath RC, Walker NM, Wozniak E, Todd JA, Simpson MA, Plagnol V, van Heel DA. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature 2013; 498:232-5. [PMID: 23698362 PMCID: PMC3736321 DOI: 10.1038/nature12170] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.
Collapse
Affiliation(s)
- Karen A Hunt
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3495
|
Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 2013; 14:483-95. [PMID: 23752797 DOI: 10.1038/nrg3461] [Citation(s) in RCA: 739] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies have identified many variants that each affects multiple traits, particularly across autoimmune diseases, cancers and neuropsychiatric disorders, suggesting that pleiotropic effects on human complex traits may be widespread. However, systematic detection of such effects is challenging and requires new methodologies and frameworks for interpreting cross-phenotype results. In this Review, we discuss the evidence for pleiotropy in contemporary genetic mapping studies, new and established analytical approaches to identifying pleiotropic effects, sources of spurious cross-phenotype effects and study design considerations. We also outline the molecular and clinical implications of such findings and discuss future directions of research.
Collapse
Affiliation(s)
- Nadia Solovieff
- Center for Human Genetics Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
3496
|
Large sample size, wide variant spectrum, and advanced machine-learning technique boost risk prediction for inflammatory bowel disease. Am J Hum Genet 2013; 92:1008-12. [PMID: 23731541 DOI: 10.1016/j.ajhg.2013.05.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/19/2013] [Accepted: 05/02/2013] [Indexed: 02/08/2023] Open
Abstract
We performed risk assessment for Crohn's disease (CD) and ulcerative colitis (UC), the two common forms of inflammatory bowel disease (IBD), by using data from the International IBD Genetics Consortium's Immunochip project. This data set contains ~17,000 CD cases, ~13,000 UC cases, and ~22,000 controls from 15 European countries typed on the Immunochip. This custom chip provides a more comprehensive catalog of the most promising candidate variants by picking up the remaining common variants and certain rare variants that were missed in the first generation of GWAS. Given this unprecedented large sample size and wide variant spectrum, we employed the most recent machine-learning techniques to build optimal predictive models. Our final predictive models achieved areas under the curve (AUCs) of 0.86 and 0.83 for CD and UC, respectively, in an independent evaluation. To our knowledge, this is the best prediction performance ever reported for CD and UC to date.
Collapse
|
3497
|
Liu JZ, Hov JR, Folseraas T, Ellinghaus E, Rushbrook SM, Doncheva NT, Andreassen OA, Weersma RK, Weismüller TJ, Eksteen B, Invernizzi P, Hirschfield GM, Gotthardt DN, Pares A, Ellinghaus D, Shah T, Juran BD, Milkiewicz P, Rust C, Schramm C, Müller T, Srivastava B, Dalekos G, Nöthen MM, Herms S, Winkelmann J, Mitrovic M, Braun F, Ponsioen CY, Croucher PJP, Sterneck M, Teufel A, Mason AL, Saarela J, Leppa V, Dorfman R, Alvaro D, Floreani A, Onengut-Gumuscu S, Rich SS, Thompson WK, Schork AJ, Næss S, Thomsen I, Mayr G, König IR, Hveem K, Cleynen I, Gutierrez-Achury J, Ricaño-Ponce I, van Heel D, Björnsson E, Sandford RN, Durie PR, Melum E, Vatn MH, Silverberg MS, Duerr RH, Padyukov L, Brand S, Sans M, Annese V, Achkar JP, Boberg KM, Marschall HU, Chazouillères O, Bowlus CL, Wijmenga C, Schrumpf E, Vermeire S, Albrecht M, Rioux JD, Alexander G, Bergquist A, Cho J, Schreiber S, Manns MP, Färkkilä M, Dale AM, Chapman RW, Lazaridis KN, Franke A, Anderson CA, Karlsen TH. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet 2013; 45:670-5. [PMID: 23603763 PMCID: PMC3667736 DOI: 10.1038/ng.2616] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/29/2013] [Indexed: 12/14/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a severe liver disease of unknown etiology leading to fibrotic destruction of the bile ducts and ultimately to the need for liver transplantation. We compared 3,789 PSC cases of European ancestry to 25,079 population controls across 130,422 SNPs genotyped using the Immunochip. We identified 12 genome-wide significant associations outside the human leukocyte antigen (HLA) complex, 9 of which were new, increasing the number of known PSC risk loci to 16. Despite comorbidity with inflammatory bowel disease (IBD) in 72% of the cases, 6 of the 12 loci showed significantly stronger association with PSC than with IBD, suggesting overlapping yet distinct genetic architectures for these two diseases. We incorporated association statistics from 7 diseases clinically occurring with PSC in the analysis and found suggestive evidence for 33 additional pleiotropic PSC risk loci. Together with network analyses, these findings add to the genetic risk map of PSC and expand on the relationship between PSC and other immune-mediated diseases.
Collapse
Affiliation(s)
- Jimmy Z. Liu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Johannes Roksund Hov
- Norwegian PSC Research Center, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trine Folseraas
- Norwegian PSC Research Center, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Simon M. Rushbrook
- Department of Gastroenterology and Hepatology, Norfolk and Norwich, University Hospitals NHS Trust, Norwich, UK
| | | | - Ole A. Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Ulleval, Oslo, Norway
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| | - Tobias J. Weismüller
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Center-Transplantation (IFB-tx), Hannover Medical School, Hannover, Germany
- Current affiliation: Department of Internal Medicine 1, University Hospital of Bonn, Bonn, Germany
| | - Bertus Eksteen
- Snyder Institute of Chronic Diseases, Department of Medicine, University of Calgary, Calgary, Canada
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Gideon M. Hirschfield
- Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, Canada
- Centre for Liver Research, NIHR Biomedical Research Unit, Birmingham, UK
| | | | - Albert Pares
- Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Tejas Shah
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Brian D. Juran
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | - Piotr Milkiewicz
- Liver Unit and Liver Research Laboratories, Pomeranian Medical University, Szczecin, Poland
| | - Christian Rust
- Department of Medicine 2, Grosshadern, University of Munich, Munich, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Müller
- Department of Internal Medicine, Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Brijesh Srivastava
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Georgios Dalekos
- Department of Medicine, Medical School, University of Thessaly, Larissa, Greece
- Research Laboratory of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Department of Neurology, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mitja Mitrovic
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Felix Braun
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Medical Centre Schleswig-Holstein, Campus Kiel, Germany
| | - Cyriel Y. Ponsioen
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Peter J. P. Croucher
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, United States of America
| | - Martina Sterneck
- Department of Hepatobiliary Surgery and Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Teufel
- 1st Department of Medicine, University of Mainz, Mainz, Germany
| | - Andrew L. Mason
- Division of Gastroenterology and Hepatology, University of Alberta, Edmonton, Alberta, Canada
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Virpi Leppa
- Public Health Genomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki and National Institute for Health and Welfare, Helsinki, Finland
| | - Ruslan Dorfman
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Domenico Alvaro
- Department of Clinical Medicine, Division of Gastroenterology, Sapienza University of Rome, Rome, Italy
| | - Annarosa Floreani
- Dept. of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, Division of Endocrinology & Metabolism, University of Virginia, Charlottesville, USA
- Department of Internal Medicine, Division of Endocrinology & Metabolism, University of Virginia, Charlottesville, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, USA
| | - Wesley K. Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Andrew J. Schork
- Graduate Program in Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Sigrid Næss
- Norwegian PSC Research Center, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingo Thomsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gabriele Mayr
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Inke R. König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Kristian Hveem
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Isabelle Cleynen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Javier Gutierrez-Achury
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Isis Ricaño-Ponce
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - David van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Einar Björnsson
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| | - Richard N. Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Peter R. Durie
- Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Espen Melum
- Norwegian PSC Research Center, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- EpiGen, Campus AHUS, Akershus University Hospital, Nordbyhagen, Norway
| | - Mark S. Silverberg
- Inflammatory Bowel Disease (IBD) Group, Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital Toronto, Ontario, Canada
| | - Richard H. Duerr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stephan Brand
- Department of Medicine II, University Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Germany
| | - Miquel Sans
- Department of Digestive Diseases, Centro Médico Teknon, Barcelona, Spain
| | - Vito Annese
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievodella Sofferenza Hospital, San Giovanni Rotondo, Italy
- Unit of Gastroenterology SOD2, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Jean-Paul Achkar
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kirsten Muri Boberg
- Norwegian PSC Research Center, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hanns-Ulrich Marschall
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy and University Hospital, Gothenburg, Sweden
| | - Olivier Chazouillères
- AP-HP, Hôpital Saint Antoine, Department of Hepatology, UPMC Univ Paris 06, Paris, France
| | - Christopher L. Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis, Davis, CA, USA
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Erik Schrumpf
- Norwegian PSC Research Center, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Severine Vermeire
- Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - Mario Albrecht
- Max Planck Institute for Informatics, Saarbrücken, Germany
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Greifswald, Germany
| | | | | | - John D. Rioux
- Université de Montréal, Research Center, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Graeme Alexander
- Department of Medicine, Division of Hepatology, University of Cambridge, Cambridge, UK
| | - Annika Bergquist
- Department of Gastroenterology and Hepatology, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Judy Cho
- Department of Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
- Popgen Biobank, University Hospital Schleswig-Holstein, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Center-Transplantation (IFB-tx), Hannover Medical School, Hannover, Germany
| | - Martti Färkkilä
- Division of Gastroenterology, Department of Medicine, Helsinki University Hospital, Finland
| | - Anders M. Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Roger W. Chapman
- Department of Hepatology, John Radcliffe University Hospitals NHS Trust, Oxford, UK
| | - Konstantinos N. Lazaridis
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carl A. Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Tom H. Karlsen
- Norwegian PSC Research Center, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Division of Gastroenterology, Institute of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
3498
|
Garn H, Neves JF, Blumberg RS, Renz H. Effect of barrier microbes on organ-based inflammation. J Allergy Clin Immunol 2013; 131:1465-78. [PMID: 23726530 PMCID: PMC4592166 DOI: 10.1016/j.jaci.2013.04.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/17/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022]
Abstract
The prevalence and incidence of chronic inflammatory disorders, including allergies and asthma, as well as inflammatory bowel disease, remain on the increase. Microbes are among the environmental factors that play an important role in shaping normal and pathologic immune responses. Several concepts have been put forward to explain the effect of microbes on the development of these conditions, including the hygiene hypothesis and the microbiota hypothesis. Recently, the dynamics of the development of (intestinal) microbial colonization, its effect on innate and adaptive immune responses (homeostasis), and the role of environmental factors, such as nutrition and others, have been extensively investigated. Furthermore, there is now increasing evidence that a qualitative and quantitative disturbance in colonization (dysbiosis) is associated with dysfunction of immune responses and development of various chronic inflammatory disorders. In this article the recent epidemiologic, clinical, and experimental evidence for this interaction is discussed.
Collapse
Affiliation(s)
- Holger Garn
- Institute of Laboratory Medicine, Philipps-Universität Marburg
| | - Joana F. Neves
- Division of Gastroenterology and Hepatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Richard S. Blumberg
- Division of Gastroenterology and Hepatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps-Universität Marburg
| |
Collapse
|
3499
|
Denson LA. Linking genetic variation to phenotype: eQTL analysis of normal human ileum. Gastroenterology 2013; 144:1339-41. [PMID: 23623963 DOI: 10.1053/j.gastro.2013.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
3500
|
Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J, Martin P, Comeau ME, Sajuthi S, Andrews R, Brown M, Chen WM, Concannon P, Deloukas P, Edkins S, Eyre S, Gaffney PM, Guthery SL, Guthridge JM, Hunt SE, James JA, Keddache M, Moser KL, Nigrovic PA, Onengut-Gumuscu S, Onslow ML, Rosé CD, Rich SS, Steel KJA, Wakeland EK, Wallace CA, Wedderburn LR, Woo P, Bohnsack JF, Haas JP, Glass DN, Langefeld CD, Thomson W, Thompson SD. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet 2013; 45:664-9. [PMID: 23603761 PMCID: PMC3673707 DOI: 10.1038/ng.2614] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 03/25/2013] [Indexed: 12/15/2022]
Abstract
We used the Immunochip array to analyze 2,816 individuals with juvenile idiopathic arthritis (JIA), comprising the most common subtypes (oligoarticular and rheumatoid factor-negative polyarticular JIA), and 13,056 controls. We confirmed association of 3 known JIA risk loci (the human leukocyte antigen (HLA) region, PTPN22 and PTPN2) and identified 14 loci reaching genome-wide significance (P < 5 × 10(-8)) for the first time. Eleven additional new regions showed suggestive evidence of association with JIA (P < 1 × 10(-6)). Dense mapping of loci along with bioinformatics analysis refined the associations to one gene in each of eight regions, highlighting crucial pathways, including the interleukin (IL)-2 pathway, in JIA disease pathogenesis. The entire Immunochip content, the HLA region and the top 27 loci (P < 1 × 10(-6)) explain an estimated 18, 13 and 6% of the risk of JIA, respectively. In summary, this is the largest collection of JIA cases investigated so far and provides new insight into the genetic basis of this childhood autoimmune disease.
Collapse
Affiliation(s)
- Anne Hinks
- Arthritis Research UK Epidemiology Unit, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|