3601
|
Abstract
Caveolae are specialized plasma membrane subdomains capable of transport and sophisticated compartmentalization of cell signaling. Numerous cell functions, including cell type-specific functions, involve caveolae and require caveolin-1, the major protein component of these organelles. Caveolae are particularly abundant in endothelial cells and participate in endothelial transcytosis, vascular permeability, vasomotor tone control, and vascular reactivity. Caveolin-1 drives the formation of plasma membrane caveolae and anchors them to the actin cytoskeleton, modulates cell interaction with the extracellular matrix, pulls together and regulates signaling molecules, and transports cholesterol. Via these functions, caveolin-1 might play an important role in cell movement through control of cell membrane composition and membrane surface expansion, polarization of signaling molecules and matrix proteolysis, and/or cytoskeleton remodeling. Caveolae and caveolin-1 are polarized in migrating endothelial cells, indicating they may play a role in cell motility. Several studies have shown that manipulation of caveolin-1 expression affects cell migration in a complex way. We are reviewing the current data and hypotheses in favor of an essential role for caveolae in cell migration.
Collapse
Affiliation(s)
- Angels Navarro
- Department of Anesthesiology Research, Cleveland Clinic Foundation, Cleveland, Ohio 44122, USA
| | | | | |
Collapse
|
3602
|
Besson A, Assoian RK, Roberts JM. Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer 2004; 4:948-55. [PMID: 15573116 DOI: 10.1038/nrc1501] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclin-dependent kinase inhibitors (CKIs) are well known inhibitors of cell proliferation. Their activity is disrupted in many tumour types. Recent studies show that some of these proteins have interesting alternative functions, acting in the cytoplasm to regulate Rho signalling and thereby controlling cytoskeletal organization and cell migration. The upregulation of CKIs in the cytoplasm of many cancer cells indicates that although loss of nuclear CKIs is important for cancer cell proliferation, gain of cytoplasmic CKI function might be involved in tumour invasion and metastasis.
Collapse
Affiliation(s)
- Arnaud Besson
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Division of Basic Science, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
3603
|
Fujita H, Fukuhara S, Sakurai A, Yamagishi A, Kamioka Y, Nakaoka Y, Masuda M, Mochizuki N. Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J Biol Chem 2004; 280:5022-31. [PMID: 15569673 DOI: 10.1074/jbc.m409701200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial cell migration is promoted by chemoattractants and is accompanied with microtubule extension toward the leading edge. Cytoskeletal microtubules polarize to function as rails for delivering a variety of molecules by motor proteins during cell migration. It remains, however, unclear how directional migration with polarized extension of microtubules is regulated. Here we report that Rap1 controls the migration of vascular endothelial cells. We found that Rap1-associating molecule, RAPL, which belongs to the Ras association domain family (Rassf), localized on microtubules and that activated Rap1 induced dissociation of RAPL from microtubules. A Rap1 activation-monitoring probe based on the fluorescence resonance energy transfer enabled us to demonstrate that local Rap1 activation occurs at the leading edge of the cells under the two types of cell migration, chemotaxis and wound healing. Time lapse imaging of microtubules marked by enhanced green fluorescent protein-RAPL showed the directional growth of microtubules toward the leading edge of the migrating cells. Using adenovirus, inactivation of Rap1 by expression of rap1GAPII inhibited wound healing. In addition, disconnection of Rap1 and RAPL by expression of a RAPL mutant also perturbed wound healing. Collectively, the locally activated Rap1 and its association with RAPL controls the directional migration of vascular endothelial cells.
Collapse
Affiliation(s)
- Hisakazu Fujita
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
3604
|
Tamagnone L, Comoglio PM. To move or not to move? Semaphorin signalling in cell migration. EMBO Rep 2004; 5:356-61. [PMID: 15060572 PMCID: PMC1299025 DOI: 10.1038/sj.embor.7400114] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 02/03/2004] [Indexed: 01/13/2023] Open
Abstract
Semaphorins were discovered 11 years ago as molecular cues for axon guidance that are conserved from invertebrates to humans. More than 20 semaphorin genes have been identified in mammals and their protein products are now known to be involved in a range of processes from the guidance of cell migration to the regulation of the immune response, angiogenesis and cancer. Plexins, either alone or in association with neuropilins, constitute high-affinity semaphorin receptors. However, other transmembrane molecules have been implicated in semaphorin receptor complexes, and interactions between plexins and a range of intracellular effectors have been reported. These data indicate that semaphorins might be able to elicit responses through more than one signalling pathway. Interestingly, according to recent findings, the semaphorin-dependent control of cell migration crucially involves integrin-based adhesive structures through which polarized cell-membrane protrusion is coupled to cytoskeletal dynamics. This review focuses on the mechanisms whereby semaphorins are thought to regulate cell migration.
Collapse
Affiliation(s)
- Luca Tamagnone
- Institute for Cancer Research and Treatment, University of Turin Medical School-IRCC, SP 142, 10060 Candiolo, Turin, Italy.
| | | |
Collapse
|
3605
|
Abstract
As our understanding of integrins as multifunctional adhesion and signaling molecules has grown, so has their recognition as potential therapeutic targets in human diseases. Leukocyte integrins are of particular interest in this regard, as they are key molecules in immune-mediated and inflammatory processes and are thus critically involved in diverse clinical disorders, ranging from asthma to atherosclerosis. Antagonists that interfere with integrin-dependent leukocyte trafficking and/or post-trafficking events have shown efficacy in multiple preclinical models, but these have not always predicted success in subsequent clinical trials (e.g., ischemia-reperfusion disorders and transplantation). However, recent successes of integrin antagonists in psoriasis, inflammatory bowel disease, and multiple sclerosis demonstrate the tremendous potential of antiadhesion therapy directed at leukocyte integrins. This article will review the role of the leukocyte integrins in the inflammatory process, approaches to targeting leukocyte integrins and their ligands, and the results of completed clinical trials.
Collapse
Affiliation(s)
- Karyn Yonekawa
- Division of Nephrology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
3606
|
Abstract
Here we review studies of the physical, material properties of animal cells and their cytoskeleton, such as elastic stiffness and fluid viscosity, that determine how they respond to, and are shaped by, forces inside and out. Currently and historically, most such studies have reported a single value for a cell property and/or propose a single broad structural model based on nonliving materials. We believe that such physical studies would be of more interest to most cell biologists if greater emphasis were placed on the well-established regional differences within a cell and the ability of the cell to quickly change its mechanical behaviors
Collapse
Affiliation(s)
- Steven R Heidemann
- Department of Physiology, Michigan State University, East Lansing, MI 48824-3320, USA
| | | |
Collapse
|
3607
|
Miao H, Strebhardt K, Pasquale EB, Shen TL, Guan JL, Wang B. Inhibition of integrin-mediated cell adhesion but not directional cell migration requires catalytic activity of EphB3 receptor tyrosine kinase. Role of Rho family small GTPases. J Biol Chem 2004; 280:923-32. [PMID: 15536074 DOI: 10.1074/jbc.m411383200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic studies have shown that Eph receptor tyrosine kinases have both kinase-dependent and kinase-independent functions through incompletely understood mechanisms. We report here that ephrin-B1 stimulation of endogenous EphB kinases in LS174T colorectal epithelial cells inhibited integrin-mediated adhesion and HGF/SF-induced directional cell migration. Using 293 cells stably transfected with wild type (WT)- or kinase-deficient (KD-EphB3), we found that inhibition of integrin-mediated cell adhesion and induction of cell rounding was kinase-dependent. Unexpectedly, in two independent assays, both KD- and WT-EphB3 significantly inhibited directional cell migration. Upon ephrin-B1 stimulation, the activities of Rac1 and Cdc42 were reduced in both WT- and KD-EphB3-expressing cells that were induced to migrate. Pharmacological evidence demonstrates that a relative increase in RhoA signaling as a result of decreased Rac1/Cdc42 activities contributes to the inhibitory effects. Furthermore, EphB3-mediated inhibitory effect on cell adhesion but not migration was abolished by the integrin activating antibodies, suggesting that the inhibition of cell migration is not because of down-regulation of integrin function. These results uncover a differential requirement for EphB3 catalytic activity in the regulation of cell adhesion and migration, and suggest that while catalytic activity of EphB3 is required for inhibition of integrin-mediated cell adhesion, a distinct signaling pathway to Rho GTPases shared by WT- and KD-EphB3 receptor mediates inhibition of directional cell migration.
Collapse
Affiliation(s)
- Hui Miao
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Ireland Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| | | | | | | | | | | |
Collapse
|
3608
|
Tountas NA, Brautigan DL. Migration and retraction of endothelial and epithelial cells require PHI-1, a specific protein-phosphatase-1 inhibitor protein. J Cell Sci 2004; 117:5905-12. [PMID: 15522888 DOI: 10.1242/jcs.01506] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration and retraction are interrelated activities that are crucial for a range of physiological processes such as wound healing and vascular permeability. Immunostaining of brain sections for the specific inhibitor of type-1 protein Ser/Thr phosphatase called PHI-1 showed high expression levels in smooth muscle and especially in vascular endothelial cells. During migration of cultured human lung microvascular endothelial cells, endogenous PHI-1 was concentrated to the trailing edge of the cells. Knockdown of PHI-1 using small interfering RNAs reduced by 45% the rate of HeLa cell migration in a wound-healing assay. These cells exhibited an extremely elongated phenotype relative to controls and time-lapse movies revealed a defect in retraction of the trailing edge. Both HeLa and human vascular endothelial cells depleted of PHI-1 showed increased surface areas relative to controls during cell spreading in a replating assay. Analysis of sequential microscopic images demonstrated this was due to a significant decrease in the number of retraction events, whereas protrusive action was unaffected. The Ser/Thr phosphorylation of several signaling, cytoskeletal and focal-adhesion proteins was unchanged in PHI-1-depleted cells, so the target of PHI-1 inhibited protein-phosphatase 1 remains unidentified. Nonetheless, the results show that PHI-1 participates in regulatory events at the trailing edge of migrating cells and modulates retraction of endothelial and epithelial cells.
Collapse
Affiliation(s)
- Nikolaos A Tountas
- Center for Cell Signaling, University of Virginia School of Medicine, PO Box 800577, Charlottesville, VA 22908, USA
| | | |
Collapse
|
3609
|
Toda M, Dawson M, Nakamura T, Munro PMG, Richardson RM, Bailly M, Ono SJ. Impact of Engagement of FcϵRI and CC Chemokine Receptor 1 on Mast Cell Activation and Motility. J Biol Chem 2004; 279:48443-8. [PMID: 15337751 DOI: 10.1074/jbc.m408725200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CC chemokines participate in the recruitment and activation of immune cells through CC chemokine receptors (CCRs). Here, we report that cross-talk between CCR1-mediated signaling pathway and FcepsilonRI-mediated signaling pathway affects degranulation positively but affects chemotaxis of mast cells adversely. Costimulation via FcepsilonRI engagement with IgE/antigen and CCR1 engagement with recombinant human CCL3 synergistically enhanced degranulation in rat basophilic leukemia-2H3 cells expressing human CCR1 (RBL-CCR1). Interestingly, FcepsilonRI engagement inhibited CCL3-mediated chemotaxis and membrane ruffling of RBL-CCR1 cells. Small GTP-binding proteins of the Rho family, Rac, Cdc42, and Rho control chemotaxis by mediating the reorganization of the actin cytoskeleton. Both a Rho inhibitor C3 exoenzyme and a Rho kinase (ROCK) inhibitor Y-27632 inhibited chemotaxis of RBL-CCR1 cells toward CCL3, indicating that activation of the Rho/ROCK signaling pathway is required for the CCL3-mediated chemotaxis of the cells. Costimulation with IgE/antigen and CCL3 enhanced Rac and Cdc42 activation but decreased ROCK activation in RBL-CCR1 cells compared with that in the cells stimulated with CCL3 alone. These results suggest that costimulation via FcepsilonRI and CCR1 engagements induced 1) inhibition of membrane ruffling, 2) decreased ROCK activation, and 3) reciprocal imbalance between Small GTP-binding proteins of the Rho family, which result in the inhibition of chemotaxis of RBL-CCR1 cells. The cross-talk between FcepsilonRI-mediated signaling pathway and CCR-mediated signaling pathway would induce optimal activation and arrested chemotaxis of mast cells, thus contributing to allergic inflammation.
Collapse
Affiliation(s)
- Masako Toda
- Division of Ocular Immunology, Institutes of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
3610
|
Pinheiro EM, Montell DJ. Requirement for Par-6 and Bazooka inDrosophilaborder cell migration. Development 2004; 131:5243-51. [PMID: 15456726 DOI: 10.1242/dev.01412] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polarized epithelial cells convert into migratory invasive cells during a number of developmental processes, as well as when tumors metastasize. Much has been learned recently concerning the molecules and mechanisms that are responsible for generating and maintaining epithelial cell polarity. However,less is known about what becomes of epithelial polarity proteins when various cell types become migratory and invasive. Here, we report the localization of several apical epithelial proteins, Par-6, Par-3/Bazooka and aPKC, during border cell migration in the Drosophila ovary. All of these proteins remained asymmetrically distributed throughout migration. Moreover, depletion of either Par-6 or Par-3/Bazooka by RNAi resulted in disorganization of the border cell cluster and impaired migration. The distributions of several transmembrane proteins required for migration were abnormal following Par-6 or Par-3/Bazooka downregulation, possibly accounting for the migration defects. Taken together, these results indicate that cells need not lose apical/basal polarity in order to invade neighboring tissues and in some cases even require such polarity for proper motility.
Collapse
Affiliation(s)
- Elaine M Pinheiro
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
3611
|
Lynch L, Vodyanik PI, Boettiger D, Guvakova MA. Insulin-like growth factor I controls adhesion strength mediated by alpha5beta1 integrins in motile carcinoma cells. Mol Biol Cell 2004; 16:51-63. [PMID: 15509657 PMCID: PMC539151 DOI: 10.1091/mbc.e04-05-0399] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
One of the intriguing questions regarding cell motility concerns the mechanism that makes stationary cells move. Here, we provide the first physical evidence that the onset of breast cancer cell motility in response to insulin-like growth factor I (IGF-I) correlates with lowering of adhesion strength from 2.52 +/- 0.20 to 1.52 +/- 0.13 microdynes/microm2 in cells attached to fibronectin via alpha5beta1 integrin. The adhesion strength depends on the dose of IGF-I and time of IGF-I treatment. Weakening of cell-matrix adhesion is blocked significantly (p < 0.01) by the catalytically inactive IGF-I receptor (IGF-IR) and the phosphoinositide 3-kinase (PI-3 kinase) inhibitor LY-294002, but it is unaffected by mitogen-activated protein kinase kinase inhibitor UO-126 and Src kinase inhibitor PP2. Sustained blockade of Rho-associated kinase (ROCK) with Y-27632 down-regulates adhesion strength in stationary, but not in IGF-I-treated, cells. Jasplakinolide, a drug that prevents actin filament disassembly, counteracts the effect of IGF-I on integrin-mediated cell adhesion. In the absence of growth factor signaling, ROCK supports a strong adhesion via alpha5beta1 integrin, whereas activation of the IGF-IR kinase reduces cell-matrix adhesion through a PI-3K-dependent, but ROCK-independent, mechanism. We propose that disassembly of the actin filaments via PI-3 kinase pathway contributes to weakening of adhesion strength and induction of cell movement. Understanding how cell adhesion and migration are coordinated has an important application in cancer research, developmental biology, and tissue bioengineering.
Collapse
Affiliation(s)
- Laura Lynch
- Department of Microbiology, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
3612
|
Nakaya Y, Kuroda S, Katagiri YT, Kaibuchi K, Takahashi Y. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev Cell 2004; 7:425-38. [PMID: 15363416 DOI: 10.1016/j.devcel.2004.08.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Revised: 07/15/2004] [Accepted: 07/16/2004] [Indexed: 11/18/2022]
Abstract
Mesenchymal-epithelial transitions (MET) are crucial for vertebrate organogenesis. The roles of Rho family GTPases in such processes during actual development remain largely unknown. By electroporating genes into chick presomitic mesenchymal cells, we demonstrate that Cdc42 and Rac1 play important and different roles in the MET that generates the vertebrate somites. Presomitic mesenchymal cells, which normally contribute to both the epithelial and mesenchymal populations of the somite, were hyperepithelialized when Cdc42 signaling was blocked. Conversely, cells taking up genes that elevate Cdc42 levels remained mesenchymal. Thus, Cdc42 activity levels appear critical for the binary decision that defines the epithelial and mesenchymal somitic compartments. Proper levels of Rac1 are necessary for somitic epithelialization, since cells with activated or inhibited Rac1 failed to undergo correct epithelialization. Furthermore, Rac1 appears to be required for Paraxis to act as an epithelialization-promoting transcription factor during somitogenesis.
Collapse
Affiliation(s)
- Yukiko Nakaya
- Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-Minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | |
Collapse
|
3613
|
Kole TP, Tseng Y, Jiang I, Katz JL, Wirtz D. Intracellular mechanics of migrating fibroblasts. Mol Biol Cell 2004; 16:328-38. [PMID: 15483053 PMCID: PMC539176 DOI: 10.1091/mbc.e04-06-0485] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell migration is a highly coordinated process that occurs through the translation of biochemical signals into specific biomechanical events. The biochemical and structural properties of the proteins involved in cell motility, as well as their subcellular localization, have been studied extensively. However, how these proteins work in concert to generate the mechanical properties required to produce global motility is not well understood. Using intracellular microrheology and a fibroblast scratch-wound assay, we show that cytoskeleton reorganization produced by motility results in mechanical stiffening of both the leading lamella and the perinuclear region of motile cells. This effect is significantly more pronounced in the leading edge, suggesting that the mechanical properties of migrating fibroblasts are spatially coordinated. Disruption of the microtubule network by nocodazole treatment results in the arrest of cell migration and a loss of subcellular mechanical polarization; however, the overall mechanical properties of the cell remain mostly unchanged. Furthermore, we find that activation of Rac and Cdc42 in quiescent fibroblasts elicits mechanical behavior similar to that of migrating cells. We conclude that a polarized mechanics of the cytoskeleton is essential for directed cell migration and is coordinated through microtubules.
Collapse
Affiliation(s)
- Thomas P Kole
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
3614
|
Wiseman PW, Brown CM, Webb DJ, Hebert B, Johnson NL, Squier JA, Ellisman MH, Horwitz AF. Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. J Cell Sci 2004; 117:5521-34. [PMID: 15479718 DOI: 10.1242/jcs.01416] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Image correlation microscopy methodology was extended and used to determine retrospectively the density, dynamics and interactions of alpha5-integrin in migrating cells. Alpha5-integrin is present in submicroscopic clusters containing 3-4 integrins before it is discernibly organized. The integrin in nascent adhesions, as identified by the presence of paxillin, is approximately 1.4 times more concentrated, approximately 4.5 times more clustered and much less mobile than in surrounding regions. Thus, while integrins are clustered throughout the cell, they differ in nascent adhesions and appear to initiate adhesion formation, despite their lack of visible organization. In more mature adhesions where the integrin is visibly organized there are approximately 900 integrins microm(-2) (about fivefold higher than surrounding regions). Interestingly, alpha5-integrin and alpha-actinin, but not paxillin, reside in a complex throughout the cell, where they diffuse and flow together, even in regions where they are not organized. During adhesion disassembly some integrins diffuse away slowly, alpha-actinin undergoes a directed movement at speeds similar to actin retrograde flow (0.29 microm min(-1)), while all of the paxillin diffuses away rapidly.
Collapse
Affiliation(s)
- Paul W Wiseman
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. Montreal, Quebec H3A 2K6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
3615
|
CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 2004; 4:73. [PMID: 15471548 PMCID: PMC524493 DOI: 10.1186/1471-2407-4-73] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 10/07/2004] [Indexed: 02/01/2023] Open
Abstract
Background Invasion is an important early step of cancer metastasis that is not well understood. Developing therapeutics to limit metastasis requires the identification and validation of candidate proteins necessary for invasion and migration. Methods We developed a functional proteomic screen to identify mediators of tumor cell invasion. This screen couples Fluorophore Assisted Light Inactivation (FALI) to a scFv antibody library to systematically inactivate surface proteins expressed by human fibrosarcoma cells followed by a high-throughput assessment of transwell invasion. Results Using this screen, we have identified CD155 (the poliovirus receptor) as a mediator of tumor cell invasion through its role in migration. Knockdown of CD155 by FALI or by RNAi resulted in a significant decrease in transwell migration of HT1080 fibrosarcoma cells towards a serum chemoattractant. CD155 was found to be highly expressed in multiple cancer cell lines and primary tumors including glioblastoma (GBM). Knockdown of CD155 also decreased migration of U87MG GBM cells. CD155 is recruited to the leading edge of migrating cells where it colocalizes with actin and αv-integrin, known mediators of motility and adhesion. Knockdown of CD155 also altered cellular morphology, resulting in cells that were larger and more elongated than controls when plated on a Matrigel substrate. Conclusion These results implicate a role for CD155 in mediating tumor cell invasion and migration and suggest that CD155 may contribute to tumorigenesis.
Collapse
|
3616
|
Chen X, Hui L, Foster DA, Drain CM. Efficient synthesis and photodynamic activity of porphyrin-saccharide conjugates: targeting and incapacitating cancer cells. Biochemistry 2004; 43:10918-29. [PMID: 15323552 PMCID: PMC6180334 DOI: 10.1021/bi049272v] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since the role of saccharides in cell recognition, metabolism, and cell labeling is well-established, the conjugation of saccharides to drugs is an active area of research. Thus, one goal in the use of saccharide-drug conjugates is to impart a greater specificity toward a given cell type or other targets. Although widely used to treat some cancers and age related macular degeneration, the drugs used in photodynamic therapy (PDT) display poor chemical selectivity toward the intended targets, and uptake by cells most likely arises from passive, diffusional processes. Instead, the specific irradiation of the target tissues, and the formation of the toxic species in situ, are the primary factors that modulate the selectivity in the present mode of PDT. We report herein a two-step method to make nonhydrolyzable saccharide-porphyrin conjugates in high yields using a tetra(pentafluorophenyl)porphyrin and the thio derivative of the sugar. As a demonstration of their properties, the selective uptake (and/or binding) of these compounds to several cancer cell types was examined, followed by an investigation of their photodynamic properties. As expected, different malignant cell types take up one type of saccharide-porphyrin conjugate preferentially over others; for example, human breast cancer cells (MDA-MB-231) absorb a tetraglucose-porphyrin conjugate over the corresponding galactose derivative. Doseametric studies reveal that these saccharide-porphyrin conjugates exhibit varying PDT responses depending on drug concentration and irradiation energy. (1) Using 20 microM conjugate and greater irradiation energy induces cell death by necrosis. (2) When 10-20 microM conjugate and less irradiation energy are used, both necrosis and apoptosis are observed. (3) Using 10 microM and the least irradiation energy, a significant reduction in cell migration is observed, which indicates a reduction in aggressiveness of the cancer cells.
Collapse
Affiliation(s)
- Xin Chen
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10021
| | - Li Hui
- Department of Biological Science, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10021
| | - David A. Foster
- Department of Biological Science, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10021
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10021
- Department of Chemistry and Biochemistry and Biological Science, The Rockefeller University, 1230 York Avenue, New York, New York 10021
- To whom correspondence should be addressed. . Phone: (212) 650-3791. Fax: (212) 772-5332
| |
Collapse
|
3617
|
Franca-Koh J, Devreotes PN. Moving Forward: Mechanisms of Chemoattractant Gradient Sensing. Physiology (Bethesda) 2004; 19:300-8. [PMID: 15381759 DOI: 10.1152/physiol.00017.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cells use an internal compass to sense the direction of chemoattractant gradients. This is used to bias pseudopod extension at the front of the cell and to orient cell polarization. Recent studies have highlighted the important roles played by phosphoinositide-3,4,5-triphosphate and small G proteins, but many questions remain.
Collapse
Affiliation(s)
- Jonathan Franca-Koh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
3618
|
Dail M, Kalo MS, Seddon JA, Côté JF, Vuori K, Pasquale EB. SHEP1 Function in Cell Migration Is Impaired by a Single Amino Acid Mutation That Disrupts Association with the Scaffolding Protein Cas but Not with Ras GTPases. J Biol Chem 2004; 279:41892-902. [PMID: 15272013 DOI: 10.1074/jbc.m402929200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHEP1 is a signaling protein that contains a guanine nucleotide exchange factor-like domain, which binds Ras family GTPases and also forms a stable complex with the scaffolding protein Crk-associated substrate (Cas). SHEP1 and Cas have several common functions, such as increasing c-Jun N-terminal kinase activity, promoting T cell activation, and regulating the actin cytoskeleton. However, it is unclear whether a physical association between SHEP1 and Cas is required for these activities. We reported previously that SHEP1 is tyrosine-phosphorylated downstream of the EphB2 receptor; in this study, we further demonstrate that activated EphB2 inhibits SHEP1 association with Cas. To investigate whether phosphorylation negatively regulates the SHEP1-Cas complex, we have identified by mass spectrometry several SHEP1 tyrosine phosphorylation sites downstream of EphB2; of particular interest among them is tyrosine 635 in the Cas association/exchange factor domain. Mutation of this tyrosine to glutamic acid, but not to phenylalanine, disrupts Cas binding to SHEP1 without inhibiting Ras GTPase binding. The glutamic acid mutation also makes SHEP1 unable to promote Cas-Crk association, membrane ruffling, and cell migration toward epidermal growth factor (EGF), implying that these activities of SHEP1 depend upon a physical interaction with Cas. Association with Cas also seems to be necessary for EGF-induced SHEP1 tyrosine phosphorylation, which is mediated by a Src family kinase. It is noteworthy that EGF stimulation does not cause dissociation of SHEP1 from Cas. These data show that SHEP1 regulates membrane ruffling and cell migration and that binding to Cas is probably critical for these functions. Furthermore, the SHEP1-Cas complex may have different roles downstream of EphB2 and the EGF receptor.
Collapse
Affiliation(s)
- Monique Dail
- The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
3619
|
Richards GR, Millard RM, Leveridge M, Kerby J, Simpson PB. Quantitative Assays of Chemotaxis and Chemokinesis for Human Neural Cells. Assay Drug Dev Technol 2004; 2:465-72. [PMID: 15671644 DOI: 10.1089/adt.2004.2.465] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell migration is vital for many physiological processes, and its modulation is likely to be of therapeutic benefit. In this study we have developed fluorescence image-based chemokinesis and chemotaxis assays on the Cellomics (Pittsburgh, PA) ArrayScan platform, which would be suitable for industrial drug discovery in a variety of fields. Studying the migratory characteristics of neural stem cells is of interest for understanding the therapeutic potential of these cells, in terms of both cellular transplantation and the activation of endogenous populations of stem cells. Growth conditions were identified whereby human neural precursors could be maintained as neurospheres and plated out into microtitre plates for high-content assays. Chemokinesis was assessed using fluorescent bead-coated 96-well microtitre plates, whilst chemotaxis was assessed using BD Biosciences (Oxford, UK) Fluoroblok 24-well plates. Assays for both chemokinesis and chemotaxis were developed that were quantified automatically using the ArrayScan and appropriate algorithms. Using the two complementary techniques, foetal bovine serum was observed to have chemokinetic effects on the cells, whilst platelet-derived growth factor isoform AB was chemotactic. The two assays described here are suitable for screening for novel modulators of cell migration, or for performing more detailed mechanistic follow-up studies. These assays enable us to perform cell motility studies with minimal laboratory handling, in an automated manner, thereby allowing quantitative studies of cell behaviour to be incorporated in a routine drug discovery screening cascade.
Collapse
Affiliation(s)
- Gillian R Richards
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK
| | | | | | | | | |
Collapse
|
3620
|
Abstract
During random locomotion, human neutrophils and Dictyostelium discoideum amoebae repeatedly extend and retract cytoplasmic processes. During directed cell migration--chemotaxis--these pseudopodia form predominantly at the leading edge in response to the local accumulation of certain signalling molecules. Concurrent changes in actin and myosin enable the cell to move towards the stimulus. Recent studies are beginning to identify an intricate network of signalling molecules that mediate these processes, and how these molecules become localized in the cell is now becoming clear.
Collapse
Affiliation(s)
- Peter J M Van Haastert
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | | |
Collapse
|
3621
|
Nagata-Ohashi K, Ohta Y, Goto K, Chiba S, Mori R, Nishita M, Ohashi K, Kousaka K, Iwamatsu A, Niwa R, Uemura T, Mizuno K. A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. ACTA ACUST UNITED AC 2004; 165:465-71. [PMID: 15159416 PMCID: PMC2172350 DOI: 10.1083/jcb.200401136] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases ∼10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1β induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin–rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1β and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm.
Collapse
Affiliation(s)
- Kyoko Nagata-Ohashi
- Dept. of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3622
|
Nombela-Arrieta C, Lacalle RA, Montoya MC, Kunisaki Y, Megías D, Marqués M, Carrera AC, Mañes S, Fukui Y, Martínez-A C, Stein JV. Differential Requirements for DOCK2 and Phosphoinositide-3-Kinase γ during T and B Lymphocyte Homing. Immunity 2004; 21:429-41. [PMID: 15357953 DOI: 10.1016/j.immuni.2004.07.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Revised: 07/02/2004] [Accepted: 07/16/2004] [Indexed: 01/29/2023]
Abstract
Chemokines guide lymphocytes from blood to secondary lymphoid organs by triggering integrin-dependent firm adhesion under vascular flow and directed migration of T and B lymphocytes within lymphoid tissue. Here, we analyze the roles of DOCK2, a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster Myoblast City, and phosphoinositide-3-kinase (PI3K) during lymphocyte recirculation. DOCK2 mediated efficient lymphocyte migration in a largely PI3K-independent manner, although a minor, PI3K-dependent pathway for migration was observed in wild-type and DOCK2-deficient lymphocytes. In T cells, this residual migration depended mainly on PI3Kgamma, whereas other PI3K isoforms were implicated in B cells. In vitro adhesion assays and intravital microscopy of lymphoid organ vasculature uncovered an unexpected defect in integrin activation in DOCK2-/- B cells, whereas lack of DOCK2 did not affect chemokine-triggered integrin activation in T cells. DOCK2 and PI3Kgamma thus play distinct roles during T and B cell integrin activation and migration.
Collapse
Affiliation(s)
- César Nombela-Arrieta
- Department of Immunology and Oncology, National Center for Biotechnology, Campus Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3623
|
Altan ZM, Fenteany G. c-Jun N-terminal kinase regulates lamellipodial protrusion and cell sheet migration during epithelial wound closure by a gene expression-independent mechanism. Biochem Biophys Res Commun 2004; 322:56-67. [PMID: 15313173 DOI: 10.1016/j.bbrc.2004.07.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Indexed: 02/05/2023]
Abstract
c-Jun N-terminal kinase (JNK) is emerging as an important regulator of cell migration. Perturbing the JNK signaling pathway with three structurally and mechanistically distinct inhibitors that selectively target either JNKs themselves or the upstream mixed-lineage kinases, we found dramatic inhibition of membrane protrusion and cell sheet migration during wound closure in Madin-Darby canine kidney (MDCK) epithelial cell monolayers. Extension of lamellipodia is blocked from the earliest times after wounding in the presence of JNK pathway inhibitors, whereas assembly of non-protrusive actin bundles at the wound margin is unaffected. Inhibitors of the other mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase and p38 MAPK pathways, only have comparatively weak or marginal inhibitory effects on wound closure. Multiple splice variants of both JNK1 and JNK2 are expressed in MDCK cells, and JNK1 and JNK2 are rapidly and transiently activated upon wounding. Phosphorylation of c-Jun does not appear relevant to MDCK wound closure, and membrane protrusion directly after wounding is not affected by inhibitors of RNA or protein synthesis. While most known substrates of JNK are transcription factors or proteins regulating apoptosis, our data indicate that JNK regulates protrusion and migration in a gene expression-independent manner and suggest an important cytoplasmic role for JNK in the control of cell motility.
Collapse
Affiliation(s)
- Z Melis Altan
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
3624
|
Wilker E, Yaffe MB. 14-3-3 Proteins—a focus on cancer and human disease. J Mol Cell Cardiol 2004; 37:633-42. [PMID: 15350836 DOI: 10.1016/j.yjmcc.2004.04.015] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 03/10/2004] [Accepted: 04/23/2004] [Indexed: 12/17/2022]
Abstract
14-3-3 Proteins are a ubiquitous family of molecules that participate in protein kinase signaling pathways within all eukaryotic cells. Functioning as phosphoserine/phosphothreonine-binding modules, 14-3-3 proteins participate in phosphorylation-dependent protein-protein interactions that control progression through the cell cycle, initiation and maintenance of DNA damage checkpoints, activation of MAP kinases, prevention of apoptosis, and coordination of integrin signaling and cytoskeletal dynamics. In this review, we discuss the regulation of 14-3-3 structure and ligand binding, with a focus on the role of 14-3-3 proteins in human disease, particularly cancer. We discuss the latest data on the role of different 14-3-3 isotypes, the interaction of 14-3-3 proteins with Raf, Cdc25, and various integrin family members, and the likelihood that 14-3-3 proteins could be useful therapeutic targets in the treatment of human disease.
Collapse
Affiliation(s)
- Erik Wilker
- Center for Cancer Research, Massachusetts Institute of Technology, E18-580, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
3625
|
Vallés AM, Beuvin M, Boyer B. Activation of Rac1 by paxillin-Crk-DOCK180 signaling complex is antagonized by Rap1 in migrating NBT-II cells. J Biol Chem 2004; 279:44490-6. [PMID: 15308668 DOI: 10.1074/jbc.m405144200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of epithelial cell motility is a fundamental morphogenetic event that is recapitulated during carcinoma metastasis. Random motility of NBT-II carcinoma cells on collagen critically depends on paxillin phosphorylation at Tyr-31 and Tyr-118, the binding sites for the adapter protein CrkII. Two constitutive partners of CrkII are the exchange factors DOCK180 and C3G. CrkII bound to DOCK180 formed a signaling complex with phosphorylated paxillin that was necessary for cell migration as inferred from the inhibition caused by a DOCK180-interfering mutant. DOCK180, which acts predominantly on the Rho family GTPase Rac1, restored cell locomotion in cells expressing Phe-31/118 paxillin mutants deficient in Rac1 GTP-loading, suggesting that formation of paxillin-Crk-DOCK180 signaling complex controls collagen-dependent migration mainly through Rac1 activation. In migrating cells, CrkII constitutive association with C3G was not sufficient to stimulate its GDP/GTP exchange activity toward the Ras family GTPase Rap1. However, when constitutively active RapV12 was overexpressed, it negatively regulated cell motility. Activation of the C3G/Rap1 signaling pathway resulted in down-regulation of the paxillin-Crk-DOCK180 complex and reduction of Rac1-GTP, suggesting that Rap1 activation could suppress the Rac1 signaling pathway in epithelial cells.
Collapse
Affiliation(s)
- Ana M Vallés
- Unité Mixte Recherche 146, Centre National de la Recherche Scientifique, Bātiment 110, Centre Universitaire, 91405 Orsay, France.
| | | | | |
Collapse
|
3626
|
Choma DP, Pumiglia K, DiPersio CM. Integrin alpha3beta1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1. J Cell Sci 2004; 117:3947-59. [PMID: 15265981 DOI: 10.1242/jcs.01251] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epithelial cell migration is a crucial event in wound healing, yet little is known about mechanisms whereby integrins regulate epithelial cell polarization and migration. In the present work, we demonstrate the importance of adhesion through the alpha3beta1 integrin in promoting the stabilization of leading lamellipodia in migrating keratinocytes. We demonstrate that this integrin is found at the leading edge of migrating keratinocytes and that inhibition of alpha3beta1 binding to laminin-5 prevents the formation of stable leading lamellipodia. Consistent with this observation, keratinocytes derived from alpha3beta1-deficient mice fail to form stable leading lamellipodia but retain the ability to form actin-containing protrusions that rapidly extend and retract from the cell membrane. Formation of a leading lamellipodium also requires alpha3beta1-dependent activation of Rac1, because alpha3beta1-deficient keratinocytes show decreased activation of Rac1 compared with alpha3beta1-expressing cells, and formation of stable leading lamellipodia can be inhibited in the latter cells by expression of the dominant negative Rac1 mutant Rac1N17. Furthermore, alpha3beta1-deficient keratinocytes expressing constitutively active Rac1L61 failed to form stable lamellipodia when plated onto laminin-5, demonstrating that alpha3beta1 is required for Rac1-mediated formation of a stable lamellipodium. These observations identify a crucial role for integrin-mediated adhesion and signaling in the formation of large, polarized, stable lamellipodia by migrating epithelial cells. To our knowledge, this study is the first to demonstrate that signal transduction through a specific integrin is required to direct the development of a lamellipodium from an initial protrusion and promote persistent epithelial cell migration.
Collapse
Affiliation(s)
- David P Choma
- Center for Cell Biology and Cancer Research, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
3627
|
Abstract
Alpha3beta1 integrin has been considered to be a mysterious adhesion molecule due to the pleiotropy in its ligand-binding specificity. However, recent studies have identified laminin isoforms as high-affinity ligands for this integrin, and demonstrated that alpha3beta1 integrin plays a number of essential roles in development and differentiation, mainly by mediating the establishment and maintenance of epithelial tissues. Furthermore, alpha3beta1 integrin is also implicated in many other biological phenomena, including cell growth and apoptosis, angiogenesis and neural functions. This integrin receptor forms complexes with various other membrane proteins, such as the transmembrane-4 superfamily proteins (tetraspanins), cytoskeletal proteins and signaling molecules. Recently, lines of evidence have been reported showing that complex formation regulates integrin functions in cell adhesion and migration, signal transduction across cell membranes, and cytoskeletal organization. In addition to these roles in physiological processes, alpha3beta1 integrin performs crucial functions in various pathological processes, especially in wound healing, tumor invasion and metastasis, and infection by pathogenic microorganisms.
Collapse
Affiliation(s)
- Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
3628
|
Zhang Y, Chen K, Tu Y, Wu C. Distinct roles of two structurally closely related focal adhesion proteins, alpha-parvins and beta-parvins, in regulation of cell morphology and survival. J Biol Chem 2004; 279:41695-705. [PMID: 15284246 DOI: 10.1074/jbc.m401563200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Proteins at cell-extracellular matrix adhesions (e.g. focal adhesions) are crucially involved in regulation of cell morphology and survival. We show here that CH-ILKBP/actopaxin/alpha-parvin and affixin/beta-parvin (abbreviated as alpha- and beta-parvin, respectively), two structurally closely related integrin-linked kinase (ILK)-binding focal adhesion proteins, are co-expressed in human cells. Depletion of alpha-parvin dramatically increased the level of beta-parvin, suggesting that beta-parvin is negatively regulated by alpha-parvin in human cells. Loss of PINCH-1 or ILK, to which alpha- and beta-parvin bind, significantly reduced the activation of Rac, a key signaling event that controls lamellipodium formation and cell spreading. We were surprised to find that loss of alpha-parvin, but not that of beta-parvin, markedly stimulated Rac activation and enhanced lamellipodium formation. Overexpression of beta-parvin, however, was insufficient for stimulation of Rac activation or lamellipodium formation, although it was sufficient for promotion of apoptosis, another important cellular process that is regulated by PINCH-1, ILK, and alpha-parvin. In addition, we show that the interactions of ILK with alpha- and beta-parvin are mutually exclusive. Overexpression of beta-parvin or its CH(2) fragment, but not a CH(2) deletion mutant, inhibited the ILK-alpha-parvin complex formation. Finally, we provide evidence suggesting that inhibition of the ILK-alpha-parvin complex is sufficient, although not necessary, for promotion of apoptosis. These results identify Rac as a downstream target of PINCH-1, ILK, and parvin. Furthermore, they demonstrate that alpha- and beta-parvins play distinct roles in mammalian cells and suggest that the formation of the ILK-alpha-parvin complex is crucial for protection of cells from apoptosis.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
3629
|
Zhang Z, Izaguirre G, Lin SY, Lee HY, Schaefer E, Haimovich B. The phosphorylation of vinculin on tyrosine residues 100 and 1065, mediated by SRC kinases, affects cell spreading. Mol Biol Cell 2004; 15:4234-47. [PMID: 15229287 PMCID: PMC515355 DOI: 10.1091/mbc.e04-03-0264] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Surgery and the Cancer Institute of New Jersey, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | | | | | | | | | | |
Collapse
|
3630
|
Gallio M, Englund C, Kylsten P, Samakovlis C. Rhomboid 3 orchestrates Slit-independent repulsion of tracheal branches at the CNS midline. Development 2004; 131:3605-14. [PMID: 15229181 DOI: 10.1242/dev.01242] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
EGF-receptor ligands act as chemoattractants for migrating epithelial cells during organogenesis and wound healing. We present evidence that Rhomboid 3/EGF signalling, which originates from the midline of the Drosophila ventral nerve cord, repels tracheal ganglionic branches and prevents them from crossing it. rho3 acts independently from the main midline repellent Slit, and originates from a different sub-population of midline cells: the VUM neurons. Expression of dominant-negative Egfr or Ras induces midline crosses, whereas activation of the Egfr or Ras in the leading cell of the ganglionic branch can induce premature turns away from the midline. This suggests that the level of Egfr intracellular signalling, rather than the asymmetric activation of the receptor on the cell surface, is an important determinant in ganglionic branch repulsion. We propose that Egfr activation provides a necessary switch for the interpretation of a yet unknown repellent function of the midline.
Collapse
Affiliation(s)
- Marco Gallio
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-106 96 Stockholm, Sweden
| | | | | | | |
Collapse
|
3631
|
Zeng W, Matter WF, Yan SB, Um SL, Vlahos CJ, Liu L. Effect of drotrecogin alfa (activated) on human endothelial cell permeability and Rho kinase signaling. Crit Care Med 2004; 32:S302-8. [PMID: 15118535 DOI: 10.1097/01.ccm.0000128038.49201.8c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To explore whether the improvement in organ function and the vasoactive effect observed in the clinical studies of drotrecogin alfa (activated) (recombinant human activated protein C, rhAPC) in sepsis are a result of rhAPC's effect on endothelial cell (EC) permeability and modulation of the intracellular cytoskeleton via the Rho kinase signaling pathway. DESIGN Findings regarding dose and duration of exposure to the drug with sequential addition of rhAPC and mediators (thrombin, histamine, interleukin-1 beta). SETTING Research laboratory in a pharmaceutical company. SUBJECTS Cultured primary human EC from different tissues and vascular beds. INTERVENTIONS A monolayer of EC was incubated with either rhAPC, thrombin, histamine, or interleukin-1 beta alone or with rhAPC in combination with thrombin or interleukin-beta. The effect of rhAPC and mediators on EC permeability was monitored with measurement of electrical resistance. The effect on Rho kinase pathway signaling was monitored by the levels of phosphorylated myosin light chain and blockage with the Rho kinase specific inhibitor, Y27632. MEASUREMENTS AND MAIN RESULTS Thrombin alone induced an early, concentration-dependent, and transient leakiness of EC. Interleukin-1 beta (0.5 ng/mL) induced an early, irreversible leakiness of EC. rhAPC (0.05-0.2 microg/mL, approximate median therapeutic blood levels) alone had no effect on EC permeability. rhAPC at > or=1 microg/mL induced an early EC leakage. rhAPC (0.19 microg/mL) attenuated the leakage induced by 0.5 ng/mL interleukin-1beta on microvascular EC derived from lung and skin and partially attenuated the leakage induced by 0.25 nM thrombin on human coronary arterial ECs. Levels of phosphorylated myosin light chain increased rapidly in human coronary arterial ECs when stimulated with thrombin or rhAPC (about 100-fold less potent) in a concentration-dependent manner via the Rho kinase signaling pathway. Short (5 mins) preconditioning of human coronary arterial ECs with 0.19 microg/mL rhAPC partially blocked the increase in phosphorylated myosin light chain levels induced by thrombin (0.06-0.2 nM). CONCLUSIONS At concentrations exceeding physiologic and therapeutic levels, rhAPC increases EC permeability, an effect not seen at lower concentrations. The data suggest that interpretation of published in vitro and in vivo data of rhAPC and EC permeability should take into consideration the concentrations of rhAPC used or achieved. Other preliminary novel observations suggest that studying the effects of rhAPC on EC permeability and intracellular cytoskeletal organization may provide understanding of the effect of rhAPC on EC function.
Collapse
Affiliation(s)
- Wei Zeng
- Lilly Research Laboratories, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
3632
|
Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. ACTA ACUST UNITED AC 2004; 166:85-95. [PMID: 15226309 PMCID: PMC2172136 DOI: 10.1083/jcb.200401138] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Runx2 and phosphatidylinositol 3-kinase (PI3K)–Akt signaling play important roles in osteoblast and chondrocyte differentiation. We investigated the relationship between Runx2 and PI3K-Akt signaling. Forced expression of Runx2 enhanced osteoblastic differentiation of C3H10T1/2 and MC3T3-E1 cells and enhanced chondrogenic differentiation of ATDC5 cells, whereas these effects were blocked by treatment with IGF-I antibody or LY294002 or adenoviral introduction of dominant-negative (dn)–Akt. Forced expression of Runx2 or dn-Runx2 enhanced or inhibited cell migration, respectively, whereas the enhancement by Runx2 was abolished by treatment with LY294002 or adenoviral introduction of dn-Akt. Runx2 up-regulated PI3K subunits (p85 and p110β) and Akt, and their expression patterns were similar to that of Runx2 in growth plates. Treatment with LY294002 or introduction of dn-Akt severely diminished DNA binding of Runx2 and Runx2-dependent transcription, whereas forced expression of myrAkt enhanced them. These findings demonstrate that Runx2 and PI3K-Akt signaling are mutually dependent on each other in the regulation of osteoblast and chondrocyte differentiation and their migration.
Collapse
Affiliation(s)
- Takashi Fujita
- Department of Pharmacology, Setsunan University, Hirakata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
3633
|
Abstract
The ezrin/radixin/moesin (ERM) family of actin-binding proteins act both as linkers between the actin cytoskeleton and plasma membrane proteins and as signal transducers in responses involving cytoskeletal remodelling. The Rho family of GTPases also regulate cytoskeletal organisation, and several molecular pathways linking ERM proteins and Rho GTPases have been described. This review discusses recent findings on ERM protein function in leucocytes and how these may be integrated with Rho GTPase signalling.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, UK
| | | |
Collapse
|
3634
|
Hu S, Eberhard L, Chen J, Love JC, Butler JP, Fredberg JJ, Whitesides GM, Wang N. Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am J Physiol Cell Physiol 2004; 287:C1184-91. [PMID: 15213058 DOI: 10.1152/ajpcell.00224.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a three-dimensional magnetic twisting device that is useful in characterizing the mechanical properties of cells. With the use of three pairs of orthogonally aligned coils, oscillatory mechanical torque was applied to magnetic beads about any chosen axis. Frequencies up to 1 kHz could be attained. Cell deformation was measured in response to torque applied via an RGD-coated, surface-bound magnetic bead. In both unpatterned and micropatterned elongated cells on extracellular matrix, the mechanical stiffness transverse to the long axis of the cell was less than half that parallel to the long axis. Elongated cells on poly-L-lysine lost stress fibers and exhibited little mechanical anisotropy; disrupting the actin cytoskeleton or decreasing cytoskeletal tension substantially decreased the anisotropy. These results suggest that mechanical anisotropy originates from intrinsic cytoskeletal tension within the stress fibers. Deformation patterns of the cytoskeleton and the nucleolus were sensitive to loading direction, suggesting anisotropic mechanical signaling. This technology may be useful for elucidating the structural basis of mechanotransduction.
Collapse
Affiliation(s)
- Shaohua Hu
- Physiology Program, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3635
|
Zhuang S, Dang Y, Schnellmann RG. Requirement of the epidermal growth factor receptor in renal epithelial cell proliferation and migration. Am J Physiol Renal Physiol 2004; 287:F365-72. [PMID: 15213065 DOI: 10.1152/ajprenal.00035.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We showed that renal proximal tubular cells (RPTC) can proliferate and migrate following plating and oxidant or mechanical injury in the absence of exogenous growth factors; however, the mechanisms of this response remain unclear. We examined whether epidermal growth factor receptor (EGFR) signaling is activated following plating and mechanical injury and mediates RPTC proliferation and migration. EGFR, Akt [a target of phosphoinositide-3-kinase (PI3K)], and ERK1/2 were activated after plating and mechanical injury, and their phosphorylation was further enhanced by addition of exogenous EGF. Inactivation of the EGFR with the selective inhibitor AG-1478 completely blocked phosphorylation of EGFR, Akt, and ERK1/2 and blocked cell proliferation and migration after plating and injury. Inhibition of PI3K with LY-294002 blocked Akt phosphorylation and proliferation, whereas U-0126 blocked ERK1/2 phosphorylation but had no effect on proliferation. Furthermore, p38 was phosphorylated following mechanical injury and the p38 inhibitor SB-203580 blocked p38 phosphorylation and cell migration. In contrast, neither PI3K nor ERK1/2 inhibition blocked cell migration. These results show that EGFR activation is required for RPTC proliferation and migration and that proliferation is mediated by PI3K, whereas migration is mediated by p38.
Collapse
Affiliation(s)
- Shougang Zhuang
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
3636
|
Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 2004; 4:432-44. [PMID: 15173832 DOI: 10.1038/nri1375] [Citation(s) in RCA: 386] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Beat A Imhof
- Centre Medical Universitaire, Department of Pathology and Immunology, 1 Rue Michel-Servet, 1204, Geneva, Switzerland.
| | | |
Collapse
|
3637
|
Echarri A, Lai MJ, Robinson MR, Pendergast AM. Abl interactor 1 (Abi-1) wave-binding and SNARE domains regulate its nucleocytoplasmic shuttling, lamellipodium localization, and wave-1 levels. Mol Cell Biol 2004; 24:4979-93. [PMID: 15143189 PMCID: PMC416433 DOI: 10.1128/mcb.24.11.4979-4993.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Abl interactor 1 (Abi-1) protein has been implicated in the regulation of actin dynamics and localizes to the tips of lamellipodia and filopodia. Here, we show that Abi-1 binds the actin nucleator protein Wave-1 through an amino-terminal Wave-binding (WAB) domain and that disruption of the Abi-1-Wave-1 interaction prevents Abi-1 from reaching the tip of the lamellipodium. Abi-1 binds to the Wave homology domain of Wave-1, a region that is required for translocation of Wave-1 to the lamellipodium. Mouse embryo fibroblasts that lack one allele of Abi-1 and are homozygous null for the related Abi-2 protein exhibit decreased Wave-1 protein levels. This phenotype is rescued by Abi-1 proteins that retain Wave-1 binding but not by Abi-1 mutants that cannot bind to Wave-1. Moreover, we uncovered an overlapping SNARE domain in the amino terminus of Abi-1 that interacts with Syntaxin-1, a SNARE family member. Further, we demonstrated that Abi-1 shuttles in and out of the nucleus in a leptomycin B (LMB)-dependent manner and that complete nuclear translocation of Abi-1 in the absence of LMB requires the combined inactivation of the SNARE, WAB, and SH3 domains of Abi-1. Thus, Abi-1 undergoes nucleocytoplasmic shuttling and functions at the leading edge to regulate Wave-1 localization and protein levels.
Collapse
Affiliation(s)
- Asier Echarri
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
3638
|
Matsubayashi Y, Ebisuya M, Honjoh S, Nishida E. ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Curr Biol 2004; 14:731-5. [PMID: 15084290 DOI: 10.1016/j.cub.2004.03.060] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 02/27/2004] [Accepted: 03/04/2004] [Indexed: 11/16/2022]
Abstract
In epithelial cell movements, which occur during wound healing or embryonic morphogenesis, sheets of cells move together as a unit. Molecular mechanisms that regulate this sheet movement have been largely unknown, although cell locomotion or movement mechanisms for individual cells, such as for fibroblastic cells, have been extensively studied. Here, we show that, during wound healing, sheets of MDCK epithelial cells migrate coordinately as a unit, and wound-induced activation of ERK MAP kinase (ERK1/2) propagates in cell sheets in accordance with the cell sheet movement. Inhibition of ERK1/2 activation by specific MEK inhibitors or by expressing dominant-negative ERK2 results in marked inhibition of the sheet movement during wound healing, and inhibition of the cell sheet movement by disrupting actin cytoskeleton suppresses propagation of ERK1/2 activation. These results indicate that cell movement and ERK1/2 activation form a positive feedback loop, which facilitates cell sheet migration. Moreover, we find that Src family kinase inhibitors suppress both cell migration and propagation of ERK1/2 activation, suggesting that Src family kinase may participate in this feedback loop. Interestingly, neither cell sheet migration as a unit nor migration-dependent propagation of ERK1/2 activation occurs during wound healing in fibroblastic 3Y1 cells. Thus, our results identify specific requirements of ERK1/2 MAP kinase for epithelial cell sheet movement.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
3639
|
Fera E, O'Neil C, Lee W, Li S, Pickering JG. Fibroblast growth factor-2 and remodeled type I collagen control membrane protrusion in human vascular smooth muscle cells: biphasic activation of Rac1. J Biol Chem 2004; 279:35573-82. [PMID: 15166228 DOI: 10.1074/jbc.m400711200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasma membrane protrusion is fundamental to cell motility, but its regulation by the extracellular environment is not well elucidated. We have quantified lamellipodial protrusion dynamics in human vascular smooth muscle cells exposed to fibroblast growth factor 2 (FGF-2) and type I collagen, two distinct ligands presented to vascular cells during arterial remodeling. Video microscopy revealed that FGF-2 stimulated a modest increase in lamellipodial protrusion rate that peaked within 15 min. This response was associated with immediate but transient activation of Rac1 and was inhibited in cells infected with retrovirus containing cDNA encoding dominant-negative Rac1. A 1-h exposure to FGF-2 also set up a second phase of more striking lamellipodial protrusion evident at 24-36 h. This delayed response was most pronounced when cells were on type 1 collagen and was associated with FGF-2-induced expression of collagenase-1 that localized to the edge of protruding lamellipodia. Moreover, late membrane protrusion was inhibited when cells were on collagenase-resistant type I collagen, implicating degraded collagen as a mediator. For cells on collagen, the immediate activation of Rac1 by FGF-2 was followed by a sustained wave of Rac1 activation that was inhibited when cleavage of the collagen triple helix was prevented and also by blockade of alpha(v)beta(3) integrin. We conclude that lamellipodial protrusion in smooth muscle cells can be regulated by waves of Rac1 activation, corresponding to the sequential presentation of FGF-2 and remodeled collagen. The findings thus reveal a previously unrecognized level of coordination among extracellular input that enables cells to maintain protrusive activity over prolonged periods.
Collapse
Affiliation(s)
- Euridiky Fera
- Robarts Research Institute (Vasscular Biology Group), London Health Sciences Centre, Department of Medicine (Cardiology), University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
3640
|
Yamauchi J, Chan JR, Shooter EM. Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci U S A 2004; 101:8774-9. [PMID: 15161978 PMCID: PMC423271 DOI: 10.1073/pnas.0402795101] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins are recognized widely as essential factors in the developing nervous system. Previously, we demonstrated that neurotrophin 3 activation of TrkC inhibits Schwann cell myelination and enhances the migration of primary Schwann cells through the signaling pathway regulated by the Rho GTPases Rac1 and Cdc42. Here, we show that neurotrophins activate divergent signaling pathways to promote or inhibit Schwann cell migration. Endogenous brain-derived neurotrophic factor acting through p75(NTR) inhibits Schwann cell migration dramatically by Src kinase-dependent activation of the guanine-nucleotide exchange factor Vav2 and RhoA. Together, these results suggest that neurotrophins and their receptors differentially regulate Schwann cell migration through the signaling pathways that depend on Rho GTPases.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Neurobiology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305-5125, USA
| | | | | |
Collapse
|
3641
|
Abstract
Animal cells can change shape and move by using actin polymerization to drive plasma membrane protrusion. Giannone and coworkers (this issue of Cell) describe how cells periodically pull back on these protrusions in order to sense and respond to the rigidity of their environment.
Collapse
Affiliation(s)
- Anne J Ridley
- Ludwig Institute for Cancer Research and Department of Biochemistry and Molecular Biology, University College London, 91 Riding House Street, London W1W 7BS, United Kingdom
| |
Collapse
|
3642
|
Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 2004; 18:862-76. [PMID: 15078817 PMCID: PMC395846 DOI: 10.1101/gad.1185504] [Citation(s) in RCA: 418] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The tumor suppressor p27(Kip1) is an inhibitor of cyclin/cyclin-dependent kinase (CDK) complexes and plays a crucial role in cell cycle regulation. However, p27(Kip1) also has cell cycle-independent functions. Indeed, we find that p27(Kip1) regulates cell migration, as p27(Kip1)-null fibroblasts exhibit a dramatic decrease in motility compared with wild-type cells. The regulation of motility by p27(Kip1) is independent of its cell-cycle regulatory functions, as re-expression of both wild-type p27(Kip1) and a mutant p27(Kip1) (p27CK(-)) that cannot bind to cyclins and CDKs rescues migration of p27(-/-) cells. p27(-/-) cells have increased numbers of actin stress fibers and focal adhesions. This is reminiscent of cells in which the Rho pathway is activated. Indeed, active RhoA levels were increased in cells lacking p27(Kip1). Moreover, inhibition of ROCK, a downstream effector of Rho, was able to rescue the migration defect of p27(-/-) cells in response to growth factors. Finally, we found that p27(Kip1) binds to RhoA, thereby inhibiting RhoA activation by interfering with the interaction between RhoA and its activators, the guanine-nucleotide exchange factors (GEFs). Together, the data suggest a novel role for p27(Kip1) in regulating cell migration via modulation of the Rho pathway.
Collapse
Affiliation(s)
- Arnaud Besson
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Division of Basic Science, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
3643
|
Lee A, Treisman JE. Excessive Myosin activity in mbs mutants causes photoreceptor movement out of the Drosophila eye disc epithelium. Mol Biol Cell 2004; 15:3285-95. [PMID: 15075368 PMCID: PMC452583 DOI: 10.1091/mbc.e04-01-0057] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuronal cells must extend a motile growth cone while maintaining the cell body in its original position. In migrating cells, myosin contraction provides the driving force that pulls the rear of the cell toward the leading edge. We have characterized the function of myosin light chain phosphatase, which down-regulates myosin activity, in Drosophila photoreceptor neurons. Mutations in the gene encoding the myosin binding subunit of this enzyme cause photoreceptors to drop out of the eye disc epithelium and move toward and through the optic stalk. We show that this phenotype is due to excessive phosphorylation of the myosin regulatory light chain Spaghetti squash rather than another potential substrate, Moesin, and that it requires the nonmuscle myosin II heavy chain Zipper. Myosin binding subunit mutant cells continue to express apical epithelial markers and do not undergo ectopic apical constriction. In addition, mutant cells in the wing disc remain within the epithelium and differentiate abnormal wing hairs. We suggest that excessive myosin activity in photoreceptor neurons may pull the cell bodies toward the growth cones in a process resembling normal cell migration.
Collapse
Affiliation(s)
- Arnold Lee
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
3644
|
Abstract
Talin interactions with vinculin are essential for focal adhesions. Curiously, talin contains three noncontiguous vinculin binding sites (VBS) that can bind individually to the vinculin head (Vh) domain. Here we report the crystal structure of the human Vh.VBS1 complex, a validated model of the Vh.VBS2 structure, and biochemical studies that demonstrate that all of talin VBSs activate vinculin by provoking helical bundle conversion of the Vh domain, which displaces the vinculin tail (Vt) domain. Thus, helical bundle conversion is a structurally conserved response in talin-vinculin interactions. Furthermore, talin VBSs bind to Vh in a mutually exclusive manner but do differ in their affinity for Vh and in their ability to displace Vt, suggesting that the strengths of these interactions could lead to differences in signaling outcome. These findings support a model in which talin binds to and activates multiple vinculin molecules to provoke rapid reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tina Izard
- Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
3645
|
|
3646
|
Preisinger C, Short B, De Corte V, Bruyneel E, Haas A, Kopajtich R, Gettemans J, Barr FA. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3zeta. J Cell Biol 2004; 164:1009-20. [PMID: 15037601 PMCID: PMC2172068 DOI: 10.1083/jcb.200310061] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 02/19/2004] [Indexed: 11/22/2022] Open
Abstract
The Golgi apparatus has long been suggested to be important for directing secretion to specific sites on the plasma membrane in response to extracellular signaling events. However, the mechanisms by which signaling events are coordinated with Golgi apparatus function remain poorly understood. Here, we identify a scaffolding function for the Golgi matrix protein GM130 that sheds light on how such signaling events may be regulated. We show that the mammalian Ste20 kinases YSK1 and MST4 target to the Golgi apparatus via the Golgi matrix protein GM130. In addition, GM130 binding activates these kinases by promoting autophosphorylation of a conserved threonine within the T-loop. Interference with YSK1 function perturbs perinuclear Golgi organization, cell migration, and invasion into type I collagen. A biochemical screen identifies 14-3-3zeta as a specific substrate for YSK1 that localizes to the Golgi apparatus, and potentially links YSK1 signaling at the Golgi apparatus with protein transport events, cell adhesion, and polarity complexes important for cell migration.
Collapse
Affiliation(s)
- Christian Preisinger
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Germany
| | | | | | | | | | | | | | | |
Collapse
|
3647
|
Grenklo S, Johansson T, Bertilson L, Karlsson R. Anti-actin antibodies generated against profilin:actin distinguish between non-filamentous and filamentous actin, and label cultured cells in a dotted pattern. Eur J Cell Biol 2004; 83:413-23. [PMID: 15506565 DOI: 10.1078/0171-9335-00400] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin polymerization is a prominent feature of migrating cells, where it powers the protrusion of the leading edge. Many studies have characterized the well-ordered and dynamic arrangement of filamentous actin in this submembraneous space. However, less is known about the organization of unpolymerized actin. Previously, we reported on the use of covalently coupled profilin:actin to study actin dynamics and presented evidence that profilin-bound actin is a major source of actin for filament growth. To locate profilin:actin in the cell we have now used this non-dissociable complex for antibody generation, and obtained monospecific anti-actin and anti-profilin antibodies from two separate immunizations. Fluorescence microscopy revealed drastic differences in the staining pattern generated by the anti-actin antibody preparations. With one, distinct puncta appeared at the actin-rich leading edge and sometimes aligned with microtubules in the interior of the lamella, while the other displayed typical actin filament staining. Labelling experiments in vitro demonstrated failure of the first antibody to recognize filamentous actin and none of the two bound microtubules. The two anti-profilin antibodies purified in parallel generated a punctated pattern similar to that seen with the first anti-actin antibody. All antibody preparations labelled the nuclei.
Collapse
Affiliation(s)
- Staffan Grenklo
- Department of Cell Biology, WGI, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|