351
|
Coyne ES, Nie Y, Abdurrachim D, Ong CZL, Zhou Y, Ali AAB, Meyers S, Grein J, Blumenschein W, Gongol B, Liu Y, Hugelshofer C, Carballo-Jane E, Talukdar S. Leukotriene B4 receptor 1 (BLT1) does not mediate disease progression in a mouse model of liver fibrosis. Biochem J 2023; 481:BCJ20230422. [PMID: 38014500 PMCID: PMC10903445 DOI: 10.1042/bcj20230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
MASH is a prevalent liver disease that can progress to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and ultimately death, but there are no approved therapies. Leukotriene B4 (LTB4) is a potent pro-inflammatory chemoattractant that drives macrophage and neutrophil chemotaxis, and genetic loss or inhibition of its high affinity receptor, leukotriene B4 receptor 1 (BLT1), results in improved insulin sensitivity and decreased hepatic steatosis. To validate the therapeutic efficacy of BLT1 inhibition in an inflammatory and pro-fibrotic mouse model of MASH and fibrosis, mice were challenged with a choline-deficient, L-amino acid defined high fat diet and treated with a BLT1 antagonist at 30 or 90 mg/kg for 8 weeks. Liver function, histology, and gene expression were evaluated at the end of the study. Treatment with the BLT1 antagonist significantly reduced plasma lipids and liver steatosis but had no impact on liver injury biomarkers or histological endpoints such as inflammation, ballooning, or fibrosis compared to control. Artificial intelligence-powered digital pathology analysis revealed a significant reduction in steatosis co-localized fibrosis in livers treated with the BLT1 antagonist. Liver RNA-seq and pathway analyses revealed significant changes in fatty acid, arachidonic acid, and eicosanoid metabolic pathways with BLT1 antagonist treatment, however, these changes were not sufficient to impact inflammation and fibrosis endpoints. Targeting this LTB4-BLT1 axis with a small molecule inhibitor in animal models of chronic liver disease should be considered with caution, and additional studies are warranted to understand the mechanistic nuances of BLT1 inhibition in the context of MASH and liver fibrosis.
Collapse
Affiliation(s)
| | - Yilin Nie
- Merck & Co., Inc., South San Francisco, CA, U.S.A
| | | | | | | | | | | | - Jeff Grein
- Merck & Co., Inc., South San Francisco, CA, U.S.A
| | | | | | - Yang Liu
- Merck & Co., Inc., South San Francisco, CA, U.S.A
| | | | | | | |
Collapse
|
352
|
Chen YQ. NASH Drug Development: Seeing the Light at the End of the Tunnel? J Clin Transl Hepatol 2023; 11:1397-1403. [PMID: 37719961 PMCID: PMC10500295 DOI: 10.14218/jcth.2023.00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 07/03/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease affecting a large population worldwide. No clinically approved drugs are available. In this minireview, we discuss the heterogeneous nature of NASH and lack of consensus in outcome measures among clinical trials. We summarize NASH therapeutic targets and candidate drugs. We compare the efficacy of 33 published clinical trials that evaluated noninvasive biomarkers and liver biopsy. Currently, phase II trial results of fibroblast growth factor 21 (FGF21) and phase III trial results of resmetirom and pioglitazone are encouraging.
Collapse
Affiliation(s)
- Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
353
|
Lastuvkova H, Nova Z, Hroch M, Alaei Faradonbeh F, Schreiberova J, Mokry J, Faistova H, Stefela A, Dusek J, Kucera O, Hyspler R, Dohnalkova E, Bayer RL, Hirsova P, Pavek P, Micuda S. Carvedilol impairs bile acid homeostasis in mice: implication for nonalcoholic steatohepatitis. Toxicol Sci 2023; 196:200-217. [PMID: 37632784 PMCID: PMC10682974 DOI: 10.1093/toxsci/kfad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Carvedilol is a widely used beta-adrenoreceptor antagonist for multiple cardiovascular indications; however, it may induce cholestasis in patients, but the mechanism for this effect is unclear. Carvedilol also prevents the development of various forms of experimental liver injury, but its effect on nonalcoholic steatohepatitis (NASH) is largely unknown. In this study, we determined the effect of carvedilol (10 mg/kg/day p.o.) on bile formation and bile acid (BA) turnover in male C57BL/6 mice consuming either a chow diet or a western-type NASH-inducing diet. BAs were profiled by liquid chromatography-mass spectrometry and BA-related enzymes, transporters, and regulators were evaluated by western blot analysis and qRT-PCR. In chow diet-fed mice, carvedilol increased plasma concentrations of BAs resulting from reduced BA uptake to hepatocytes via Ntcp transporter downregulation. Inhibition of the β-adrenoreceptor-cAMP-Epac1-Ntcp pathway by carvedilol may be the post-transcriptional mechanism underlying this effect. In contrast, carvedilol did not worsen the deterioration of BA homeostasis accompanying NASH; however, it shifted the spectra of BAs toward more hydrophilic and less toxic α-muricholic and hyocholic acids. This positive effect of carvedilol was associated with a significant attenuation of liver steatosis, inflammation, and fibrosis in NASH mice. In conclusion, our results indicate that carvedilol may increase BAs in plasma by modifying their liver transport. In addition, carvedilol provided significant hepatoprotection in a NASH murine model without worsening BA accumulation. These data suggest beneficial effects of carvedilol in patients at high risk for developing NASH.
Collapse
Affiliation(s)
- Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Zuzana Nova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jolana Schreiberova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Faistova
- Department of Pathology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Otto Kucera
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radomír Hyspler
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Hradec Kralove, Czech Republic
| | - Ester Dohnalkova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rachel L Bayer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
354
|
Omari S, Lee H, Wang J, Zeng SX, Lu H. Extracellular and intracellular functions of coiled-coil domain containing 3. J Mol Cell Biol 2023; 15:mjad037. [PMID: 37263799 PMCID: PMC10849165 DOI: 10.1093/jmcb/mjad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023] Open
Abstract
Coiled-coil domain containing 3 (CCDC3, also called Favine) is a highly conserved protein initially identified as a protein secreted from adipocytes and endothelial cells in the vascular system with endocrine-like functions. Recently, CCDC3 was also found to function as a nuclear tumor suppressor in breast cancers. Although it is still understudied, CCDC3, since its discovery, has been shown to play multiple roles in lipid metabolism, fatty liver, abdominal obesity, anti-inflammation, atherosclerosis, and cancer. This essay is thus composed to offer an overview of these extracellular endocrine-like and intracellular (nuclear) functions of CCDC3. We also discuss the possible underlying cellular and molecular mechanisms of CCDC3, the implications for clinical translation, and the remaining puzzles about this special molecule.
Collapse
Affiliation(s)
- Sara Omari
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hyemin Lee
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jieqiong Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shelya X Zeng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
355
|
Miao Y, Zhang B, Sun X, Ma X, Fang D, Zhang W, Wu T, Xu X, Yu C, Hou Y, Ding Q, Yang S, Fu L, Zhang Z, Bi Y. The Presence and Severity of NAFLD are Associated With Cognitive Impairment and Hippocampal Damage. J Clin Endocrinol Metab 2023; 108:3239-3249. [PMID: 37310344 DOI: 10.1210/clinem/dgad352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 06/10/2023] [Indexed: 06/14/2023]
Abstract
CONTEXT Although cognitive impairment in nonalcoholic fatty liver disease (NAFLD) has received attention in recent years, little is known about detailed cognitive functions in histologically diagnosed individuals. OBJECTIVE This study aimed to investigate the association of liver pathological changes with cognitive features and further explore the underlying brain manifestations. METHODS AND PATIENTS We performed a cross-sectional study in 320 subjects who underwent liver biopsy. Among the enrolled participants, 225 underwent assessments of global cognition and cognitive subdomains. Furthermore, 70 individuals received functional magnetic resonance imaging scans for neuroimaging evaluations. The associations among liver histological features, brain alterations, and cognitive functions were evaluated using structural equation model. RESULTS Compared with controls, patients with NAFLD had poorer immediate memory and delayed memory. Severe liver steatosis (odds ratio, 2.189; 95% CI, 1.020-4.699) and ballooning (OR, 3.655; 95% CI, 1.419-9.414) were related to a higher proportion of memory impairment. Structural magnetic resonance imaging showed that patients with nonalcoholic steatohepatitis exhibited volume loss in left hippocampus and its subregions of subiculum and presubiculum. Task-based magnetic resonance imaging showed that patients with nonalcoholic steatohepatitis had decreased left hippocampal activation. Path analysis demonstrated that higher NAFLD activity scores were associated with lower subiculum volume and reduced hippocampal activation, and such hippocampal damage contributed to lower delayed memory scores. CONCLUSIONS We are the first to report the presence and severity of NAFLD to be associated with an increased risk of memory impairment and hippocampal structural and functional abnormalities. These findings stress the significance of early cognitive evaluation in patients with NAFLD.
Collapse
Affiliation(s)
- Yingwen Miao
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Bing Zhang
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xitai Sun
- Department of General Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing 210008, China
| | - Xuelin Ma
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Da Fang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Wen Zhang
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Xiang Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Congcong Yu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Yinjiao Hou
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Qun Ding
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Sijue Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Linqing Fu
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| |
Collapse
|
356
|
Kim J, Chang N, Kim Y, Lee J, Oh D, Choi J, Kim O, Kim S, Choi M, Lee J, Lee J, Kim J, Cho M, Kim M, Lee K, Hwang D, Sa JK, Park S, Baek S, Im D. The Novel Tetra-Specific Drug C-192, Conjugated Using UniStac, Alleviates Non-Alcoholic Steatohepatitis in an MCD Diet-Induced Mouse Model. Pharmaceuticals (Basel) 2023; 16:1601. [PMID: 38004466 PMCID: PMC10674394 DOI: 10.3390/ph16111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a complex disease resulting from chronic liver injury associated with obesity, type 2 diabetes, and inflammation. Recently, the importance of developing multi-target drugs as a strategy to address complex diseases such as NASH has been growing; however, their manufacturing processes remain time- and cost-intensive and inefficient. To overcome these limitations, we developed UniStac, a novel enzyme-mediated conjugation platform for multi-specific drug development. UniStac demonstrated high conjugation yields, optimal thermal stabilities, and robust biological activities. We designed a tetra-specific compound, C-192, targeting glucagon-like peptide 1 (GLP-1), glucagon (GCG), fibroblast growth factor 21 (FGF21), and interleukin-1 receptor antagonist (IL-1RA) simultaneously for the treatment of NASH using UniStac. The biological activity and treatment efficacy of C-192 were confirmed both in vitro and in vivo using a methionine-choline-deficient (MCD) diet-induced mouse model. C-192 exhibited profound therapeutic efficacies compared to conventional drugs, including liraglutide and dulaglutide. C-192 significantly improved alanine transaminase levels, triglyceride accumulation, and the non-alcoholic fatty liver disease activity score. In this study, we demonstrated the feasibility of UniStac in creating multi-specific drugs and confirmed the therapeutic potential of C-192, a drug that integrates multiple mechanisms into a single molecule for the treatment of NASH.
Collapse
Affiliation(s)
- Jihye Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Nakho Chang
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Yunki Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jaehyun Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Daeseok Oh
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jaeyoung Choi
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Onyou Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Sujin Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Myongho Choi
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Junyeob Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Junghwa Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jungyul Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Minji Cho
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Minsu Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Kwanghwan Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Dukhyun Hwang
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jason K. Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sungjin Park
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Seungjae Baek
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daeseong Im
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| |
Collapse
|
357
|
Newsome PN, Sanyal AJ, Neff G, Schattenberg JM, Ratziu V, Ertle J, Link J, Mackie A, Schoelch C, Lawitz E. A randomised Phase IIa trial of amine oxidase copper-containing 3 (AOC3) inhibitor BI 1467335 in adults with non-alcoholic steatohepatitis. Nat Commun 2023; 14:7151. [PMID: 37932258 PMCID: PMC10628239 DOI: 10.1038/s41467-023-42398-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive, inflammatory liver disease with no approved pharmacological treatment. This Phase IIa, double-blind, placebo-controlled, multicentre trial (ClinicalTrials.gov: NCT03166735) investigated pharmacodynamics and safety of BI 1467335, an amine oxidase copper-containing 3 (AOC3) inhibitor, in adults with NASH from Europe and North America. Participants from 44 centres across the US, Germany, Spain, Belgium, the UK, Netherlands, Canada, France and Ireland were randomised (2:1:1:1:2; 27 July 2017 to 14 June 2019) to daily oral BI 1467335 1 mg (n = 16), 3 mg (n = 16), 6 mg (n = 17), 10 mg (n = 32) or placebo (n = 32) for 12 weeks, with follow-up to Week 16. Primary endpoint was AOC3 activity relative to baseline (%), 24 hours post-dose after 12 weeks' treatment. Secondary biomarker endpoints included changes from baseline at Week 12 in alanine aminotransferase (ALT) and caspase-cleaved cytokeratin 18 (CK-18 caspase). Mean AOC3 activities relative to baseline at Week 12: 90.4% (placebo; n = 32), 26.5% (1 mg; n = 16), 10.4% (3 mg; n = 16), 5.0% (6 mg; n = 16), 3.3% (10 mg; n = 32). These changes indicated that BI 1467335 dose-dependently inhibited AOC3 activity; ≥3 mg doses achieved >80% inhibition ( < 20% activity) at Week 4. At Week 12 following doses of BI 1467335 ≥ 3 mg, ALT and CK-18 caspase decreased dose-dependently. All tested BI 1467335 doses were well tolerated, with no clinically relevant treatment-emergent safety signals. BI 1467335 strongly inhibited AOC3 in participants with NASH, with doses ≥3 mg dose-dependently reducing the levels of liver injury biomarkers, ALT and CK-18. This trial was registered with ClinicalTrials.gov (NCT03166735) and the European Union Drug Regulating Authorities Clinical Trials Database (EudraCT 2016-000499-83).
Collapse
Affiliation(s)
- Philip N Newsome
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| | | | - Guy Neff
- Covenant Research, Sarasota, FL, USA
| | | | - Vlad Ratziu
- Sorbonne Université, Institute of Cardiometabolism and Nutrition, Hospital Pitié-Salpêtrière, Paris, France
| | - Judith Ertle
- Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | | | | | | | - Eric Lawitz
- Texas Liver Institute, University of Texas Health, San Antonio, TX, USA
| |
Collapse
|
358
|
Jin Y, Kozan D, Anderson JL, Hensley M, Shen MC, Wen J, Moll T, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver triglycerides accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565134. [PMID: 37961364 PMCID: PMC10635069 DOI: 10.1101/2023.11.01.565134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited β-oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Monica Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
359
|
Cui D, Wang Z, Dang Q, Wang J, Qin J, Song J, Zhai X, Zhou Y, Zhao L, Lu G, Liu H, Liu G, Liu R, Shao C, Zhang X, Liu Z. Spliceosome component Usp39 contributes to hepatic lipid homeostasis through the regulation of autophagy. Nat Commun 2023; 14:7032. [PMID: 37923718 PMCID: PMC10624899 DOI: 10.1038/s41467-023-42461-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023] Open
Abstract
Regulation of alternative splicing (AS) enables a single transcript to yield multiple isoforms that increase transcriptome and proteome diversity. Here, we report that spliceosome component Usp39 plays a role in the regulation of hepatocyte lipid homeostasis. We demonstrate that Usp39 expression is downregulated in hepatic tissues of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) subjects. Hepatocyte-specific Usp39 deletion in mice leads to increased lipid accumulation, spontaneous steatosis and impaired autophagy. Combined analysis of RNA immunoprecipitation (RIP-seq) and bulk RNA sequencing (RNA-seq) data reveals that Usp39 regulates AS of several autophagy-related genes. In particular, deletion of Usp39 results in alternative 5' splice site selection of exon 6 in Heat shock transcription factor 1 (Hsf1) and consequently its reduced expression. Importantly, overexpression of Hsf1 could attenuate lipid accumulation caused by Usp39 deficiency. Taken together, our findings indicate that Usp39-mediated AS is required for sustaining autophagy and lipid homeostasis in the liver.
Collapse
Affiliation(s)
- Donghai Cui
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Qianli Dang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jianping Song
- Department of General Surgery, The Second Hospital, Shandong University, Jinan, China
| | - Xiangyu Zhai
- Department of General Surgery, The Second Hospital, Shandong University, Jinan, China
| | - Yachao Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Ling Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
360
|
Liu T, Wang Q, Zhou L, Zhang P, Mi L, Qiu X, Chen Z, Kuang H, Li S, Lin JD. Intrahepatic paracrine signaling by cardiotrophin-like cytokine factor 1 ameliorates diet-induced NASH in mice. Hepatology 2023; 78:1478-1491. [PMID: 35950514 PMCID: PMC9918604 DOI: 10.1002/hep.32719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The mammalian liver harbors heterogeneous cell types that communicate via local paracrine signaling. Recent studies have delineated the transcriptomic landscape of the liver in NASH that provides insights into liver cell heterogeneity, intercellular crosstalk, and disease-associated reprogramming. However, the nature of intrahepatic signaling and its role in NASH progression remain obscure. APPROACH AND RESULTS Here, we performed transcriptomic analyses and identified cardiotrophin-like cytokine factor 1 (CLCF1), a member of the IL-6 family cytokines, as a cholangiocyte-derived paracrine factor that was elevated in the liver from diet-induced NASH mice and patients with NASH. Adenovirus-associated virus-mediated overexpression of CLCF1 in the liver ameliorated NASH pathologies in two diet-induced NASH models in mice, illustrating that CLCF1 induction may serve an adaptive and protective role during NASH pathogenesis. Unexpectedly, messenger RNA and protein levels of leukemia inhibitory factor receptor (LIFR), a subunit of the receptor complex for CLCF1, were markedly downregulated in NASH liver. Hepatocyte-specific inactivation of LIFR accelerated NASH progression in mice, supporting an important role of intrahepatic cytokine signaling in maintaining tissue homeostasis under metabolic stress conditions. CONCLUSIONS Together, this study sheds light on the molecular nature of intrahepatic paracrine signaling during NASH pathogenesis and uncovers potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Lin Mi
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Henry Kuang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
361
|
Bell DSH, Jerkins T. In praise of pioglitazone: An economically efficacious therapy for type 2 diabetes and other manifestations of the metabolic syndrome. Diabetes Obes Metab 2023; 25:3093-3102. [PMID: 37534526 DOI: 10.1111/dom.15222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
Pioglitazone improves glycaemic control, not only by lowering insulin resistance, but also by improving beta cell function. Because of the improved beta cell function the glycaemic control that occurs with pioglitazone is prolonged. Pioglitazone has positive effects not only on cardiac risk factors and surrogate measures of cardiovascular disease, it also lowers the incidence of cardiac events in patients with diabetes. The recurrence of transient ischaemic attack and ischaemic stroke is also reduced in non-diabetic, insulin-resistant subjects. Utilized at preclinical stages (but not later) of heart failure, pioglitazone improves diastolic function and avoids progression to heart failure. Pioglitazone, through suppression of atrial remodelling, also decreases the incidence of atrial fibrillation. The manifestations of diseases associated with insulin resistance (non-alcoholic steatohepatitis and polycystic ovary disease) are also improved with pioglitazone. Pioglitazone may possibly improve psoriasis and other dermopathies. Pioglitazone is therefore an inexpensive and efficacious drug for the insulin-resistant subject with diabetes that is underutilized because of biases that have evolved from the toxicities of other thiazolidinediones.
Collapse
Affiliation(s)
- David S H Bell
- Department of Endocrinology, Southside Endocrinology, Irondale, Alabama, USA
| | - Terri Jerkins
- Department of Endocrinology, Lipscomb University, Nashville, Tennessee, USA
| |
Collapse
|
362
|
Zhu Z, Hu X, Liu K, Li J, Fan K, Wang H, Wang L, He L, Ma Y, Guan R, Wang Z. E3 ubiquitin ligase Siah1 aggravates NAFLD through Scp2 ubiquitination. Int Immunopharmacol 2023; 124:110897. [PMID: 37696143 DOI: 10.1016/j.intimp.2023.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver disorders and accompanied by multiple metabolic dysfunctions. Although excessive lipid accumulation in hepatocytes has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are very complicated and remain largely unknown. In this study, we reported that upregulated expression of the seven in absentia homolog 1 (Siah1) in the liver exacerbated NAFLD progression. Conversely, Siah1 downregulation markedly alleviated the high fat diet-induced accumulation of hepatic fat and expression of genes related to lipid metabolism in vitro and in vivo. The mechanistic study revealed that Siah1 interacted with sterol carrier protein 2 (Scp2) and promotes its ubiquitination and degradation, suggesting that Siah1 is an important activator of Scp2 ubiquitination in the context of NAFLD. Our results demonstrated that Siah1 regulated the lipid accumulation in NAFLD by interacting with Scp2. Thus, this study presents Siah1 as a promising therapeutic target in the development of NAFLD.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xiao Hu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Kehan Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Jingpei Li
- Department of Thoracic Surgery/Oncology, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200000, PR China
| | - Huafei Wang
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Li Wang
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Lulu He
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China.
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
363
|
Lampignano L, Tatoli R, Donghia R, Bortone I, Castellana F, Zupo R, Lozupone M, Panza F, Conte C, Sardone R. Nutritional patterns as machine learning predictors of liver health in a population of elderly subjects. Nutr Metab Cardiovasc Dis 2023; 33:2233-2241. [PMID: 37541928 DOI: 10.1016/j.numecd.2023.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic hepatic steatosis affects 25% of adults worldwide and its prevalence increases with age. There is currently no definitive treatment for NAFLD but international guidelines recommend a lifestyle-based approach, including a healthy diet. The aim of this study was to investigate the interactions between eating habits and the risk of steatosis and/or hepatic fibrosis, using a machine learning approach, in a non-institutionalized elderly population. METHODS AND RESULTS We recruited 1929 subjects, mean age 74 years, from the population-based Salus in Apulia Study. Dietary habits and the risk of steatosis and hepatic fibrosis were evaluated with a validated food frequency questionnaire, the Fatty Liver Index (FLI) and the FIB-4 score, respectively. Two dietary patterns associated with the risk of steatosis and hepatic fibrosis have been identified. They are both similar to a "western" diet, defined by a greater consumption of refined foods, with a rich content of sugars and saturated fats, and alcoholic and non-alcoholic calorie drinks. CONCLUSION This study further supports the concept of diet as a factor that significantly influences the development of the most widespread liver diseases. However, longitudinal studies are needed to better understand the causal effect of the consumption of particular foods on fat accumulation in the liver.
Collapse
Affiliation(s)
| | - Rossella Tatoli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | | | - Roberta Zupo
- Department of Interdisciplinary Medicine, University "Aldo Moro", Bari, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
| |
Collapse
|
364
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
365
|
Terracciani F, Falcomatà A, Gallo P, Picardi A, Vespasiani-Gentilucci U. Prognostication in NAFLD: physiological bases, clinical indicators, and newer biomarkers. J Physiol Biochem 2023; 79:851-868. [PMID: 36472795 DOI: 10.1007/s13105-022-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic in Western countries. Notably, while the majority of NAFLD patients will not evolve until advanced liver disease, a minority of them will progress towards liver-related events. Therefore, risk stratification and prognostication are emerging as fundamental in order to optimize human and economic resources for the care of these patients.Liver fibrosis has been clearly recognized as the main predictor of poor hepatic and extrahepatic outcomes. However, a prediction based only on the stage of fibrosis is near-sighted and static, as it does not capture the propensity of disease to further progress, the speed of progression and their changes over time. These determinants, which result from the interaction between genetic predisposition and acquired risk factors (obesity, diabetes, etc.), express themselves in disease activity, and can be synthesized by biomarkers of hepatic inflammation and fibrogenesis.In this review, we present the currently available clinical tools for risk stratification and prognostication in NAFLD specifically with respect to the risk of progression towards hard hepatic outcomes, i.e., liver-related events and death. We also discuss about the genetic and acquired drivers of disease progression, together with the physiopathological bases of their come into action. Finally, we introduce the most promising biomarkers in the direction of repeatedly assessing disease activity over time, mainly in response to future therapeutic interventions.
Collapse
Affiliation(s)
- Francesca Terracciani
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Falcomatà
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo Gallo
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy.
| | - Antonio Picardi
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | | |
Collapse
|
366
|
Li M, Wang H, Zhang XJ, Cai J, Li H. NAFLD: An Emerging Causal Factor for Cardiovascular Disease. Physiology (Bethesda) 2023; 38:0. [PMID: 37431986 DOI: 10.1152/physiol.00013.2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide that poses a significant threat to human health. Cardiovascular disease (CVD) is the leading cause of mortality in NAFLD patients. NAFLD and CVD share risk factors such as obesity, insulin resistance, and type 2 diabetes. However, whether NAFLD is a causal risk factor for CVD remains a matter of debate. This review summarizes the evidence from prospective clinical and Mendelian randomization studies that underscore the potential causal relationship between NAFLD and CVD. The mechanisms of NAFLD contributing to the development of CVD and the necessity of addressing CVD risk while managing NAFLD in clinical practice are also discussed.
Collapse
Affiliation(s)
- Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongmin Wang
- Department of Rehabilitation Medicine, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
367
|
Anushiravani A, Alswat K, Dalekos GN, Zachou K, Örmeci N, Al-Busafi S, Abdo A, Sanai F, Mikhail NN, Soliman R, Shiha G. Multicenter validation of FIB-6 as a novel machine learning non-invasive score to rule out liver cirrhosis in biopsy-proven MAFLD. Eur J Gastroenterol Hepatol 2023; 35:1284-1288. [PMID: 37695595 DOI: 10.1097/meg.0000000000002641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIMS We previously developed and validated a non-invasive diagnostic index based on routine laboratory parameters for predicting the stage of hepatic fibrosis in patients with chronic hepatitis C (CHC) called FIB-6 through machine learning with random forests algorithm using retrospective data of 7238 biopsy-proven CHC patients. Our aim is to validate this novel score in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). METHOD Performance of the new score was externally validated in cohorts from one site in Egypt (n = 674) and in 5 different countries (n = 1798) in Iran, KSA, Greece, Turkey and Oman. Experienced pathologists using METAVIR scoring system scored the biopsy samples. Results were compared with FIB-4, APRI, and AAR. RESULTS A total of 2472 and their liver biopsy results were included, using the optimal cutoffs of FIB-6 indicated a reliable performance in diagnosing cirrhosis, severe fibrosis, and significant fibrosis with sensitivity = 70.5%, specificity = 62.9%. PPV = 15.0% and NPV = 95.8% for diagnosis of cirrhosis. For diagnosis of severe fibrosis (F3 and F4), the results were 86.5%, 24.0%, 15.1% and 91.9% respectively, while for diagnosis of significant fibrosis (F2, F3 and F4), the results were 87.0%, 16.4%, 24.8% and 80.0%). Comparing the results of FIB-6 rule-out cutoffs with those of FIB-4, APRI, and AAR, FIB-6 had the highest sensitivity and NPV (97.0% and 94.7%), as compared to FIB-4 (71.6% and 94.7%), APRI (36.4% and 90.7%), and AAR (61.2% and 90.9%). CONCLUSION FIB-6 score is an accurate, simple, NIT for ruling out advanced fibrosis and liver cirrhosis in patients with MAFLD.
Collapse
Affiliation(s)
- Amir Anushiravani
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Khalid Alswat
- Liver Disease Research Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Necati Örmeci
- Department of Internal Medicine, Gastroenterology and Hepatology İstanbul Health and Technology University, Istanbul, Türkiye
| | - Said Al-Busafi
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ayman Abdo
- Liver Disease Research Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Faisal Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Nabiel Nh Mikhail
- Gastroenterology and Hepatology Department, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El-Mansoura
- Biostatistics and Cancer Epidemiology Department, South Egypt Cancer Institute, Assiut University, Assuit
| | - Riham Soliman
- Gastroenterology and Hepatology Department, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El-Mansoura
- Tropical Medicine Department, Faculty of Medicine, Port Said University, Port Said
| | - Gamal Shiha
- Gastroenterology and Hepatology Department, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El-Mansoura
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
368
|
Fishman J, Tapper EB, Dodge S, Miller K, Lewandowski D, Bogdanov A, Bonafede M. The incremental cost of non-alcoholic steatohepatitis and type 2 diabetes in the United States using real-world data. Curr Med Res Opin 2023; 39:1425-1429. [PMID: 37740457 DOI: 10.1080/03007995.2023.2262926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) and type 2 diabetes (T2D) are both linked to substantial healthcare costs and are often co-occurring. We aim to quantify the incremental cost of NASH and T2D using real-world data. METHODS Adults (≥18 years old) with ≥2 diagnosis codes for NASH and/or ≥2 diagnosis codes for T2D between 1/1/2016 and 12/31/2021 and ≥24 months of continuous claims enrollment (study period) were identified in electronic health records or claims in the Veradigm Integrated Dataset. Patients were stratified into 3 cohorts: NASH-only, T2D-only, and NASH + T2D. We calculated annualized costs for the 24-month study period and fit a generalized linear model (excluding the most expensive 1%) that controlled for disease cohort, age, sex, and modified Charlson comorbidity index to estimate the per year all-cause healthcare costs and incremental cost of adding T2D to a NASH diagnosis (or vice versa). RESULTS We identified 23,111 patients diagnosed with NASH-only, 3,548,786 patients with T2D-only, and 30,339 patients with NASH + T2D. The model-predicted mean costs per year were $7,668 for patients with NASH-only, $11,226 for patients with T2D-only, and $16,812 for patients with NASH + T2D. The incremental increase in costs per year of adding T2D to NASH was 63% (+$4,846), and the incremental increase in costs per year of adding NASH to T2D was 42% (+$4,692). CONCLUSIONS Both NASH and T2D contribute to the high healthcare costs among patients with a dual diagnosis. Results from our analysis indicate that NASH comprises a high portion of total healthcare costs among patients with NASH and T2D.
Collapse
Affiliation(s)
- Jesse Fishman
- Madrigal Pharmaceuticals, West Conshohocken, PA, USA
| | | | - Stephen Dodge
- Madrigal Pharmaceuticals, West Conshohocken, PA, USA
| | - Keith Miller
- Madrigal Pharmaceuticals, West Conshohocken, PA, USA
| | | | | | | |
Collapse
|
369
|
Mehta A, Lee TB, Alebna P, Grandhi GR, Dixon DL, Salloum FN, Sanyal AJ, Siddiqui MS. Discordant association of nonalcoholic fatty liver disease with lipoprotein(a) and markers of atherogenic dyslipidemia. J Clin Lipidol 2023; 17:828-833. [PMID: 37957050 DOI: 10.1016/j.jacl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 11/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with atherogenic dyslipidemia and an increased risk of cardiovascular events. Previous studies have suggested an inverse relationship between NAFLD severity and lipoprotein(a) [Lp(a)] level, but contemporary data from the U.S. are lacking. Lp(a), lipid profile, apolipoproteins, and nuclear magnetic resonance-based lipoprotein particle concentrations were measured in 151 patients with biopsy-proven NAFLD. Levels were compared between those with nonalcoholic fatty liver (NAFL) on histology and non-alcoholic steatohepatitis (NASH). Median age was 55 [48, 62] years, 67% of patients were women, 83% were White, 43% had NAFL, and 57% had NASH. Triglyceride level was higher and high-density lipoprotein-cholesterol (HDL-C) was lower among those with NASH as compared with NAFL. Circulating apolipoprotein-B (ApoB) and low-density lipoprotein particle concentration (LDL-P) were 9% and 17% higher in the NASH group as compared with NAFL, respectively. Contrastingly, Lp(a) concentration was 50% lower in NASH relative to NAFL group. Hepatocyte ballooning, lobular inflammation, and fibrosis on histology were inversely associated with Lp(a) concentration. NAFLD severity has a discordant association with Lp(a) and other markers of atherogenic dyslipidemia. This relationship may have implications for prognosticating cardiovascular disease risk in patients with NAFLD.
Collapse
Affiliation(s)
- Anurag Mehta
- Virginia Commonwealth University Health Pauley Heart Center, Richmond, Virginia (Drs Mehta, Lee, Alebna, Grandhi, Dixon, and Salloum).
| | - Terence B Lee
- Virginia Commonwealth University Health Pauley Heart Center, Richmond, Virginia (Drs Mehta, Lee, Alebna, Grandhi, Dixon, and Salloum)
| | - Pamela Alebna
- Virginia Commonwealth University Health Pauley Heart Center, Richmond, Virginia (Drs Mehta, Lee, Alebna, Grandhi, Dixon, and Salloum)
| | - Gowtham R Grandhi
- Virginia Commonwealth University Health Pauley Heart Center, Richmond, Virginia (Drs Mehta, Lee, Alebna, Grandhi, Dixon, and Salloum)
| | - Dave L Dixon
- Virginia Commonwealth University Health Pauley Heart Center, Richmond, Virginia (Drs Mehta, Lee, Alebna, Grandhi, Dixon, and Salloum); Virginia Commonwealth University School of Pharmacy, Richmond, Virginia (Dr Dixon)
| | - Fadi N Salloum
- Virginia Commonwealth University Health Pauley Heart Center, Richmond, Virginia (Drs Mehta, Lee, Alebna, Grandhi, Dixon, and Salloum)
| | - Arun J Sanyal
- Stravitz-Sanyal Liver Institute, Virginia Commonwealth University, Richmond, Virginia (Drs Sanyal and Siddiqui)
| | - Mohammad S Siddiqui
- Stravitz-Sanyal Liver Institute, Virginia Commonwealth University, Richmond, Virginia (Drs Sanyal and Siddiqui)
| |
Collapse
|
370
|
Skudder-Hill L, Coffey S, Sequeira-Bisson IR, Ko J, Poppitt SD, Petrov MS. Comprehensive analysis of dyslipidemia states associated with fat in the pancreas. Diabetes Metab Syndr 2023; 17:102881. [PMID: 37862954 DOI: 10.1016/j.dsx.2023.102881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The global burden of cardiovascular diseases continues to rise, and it is increasingly acknowledged that guidelines based on traditional risk factors fail to identify a substantial fraction of people who develop cardiovascular diseases. Fat in the pancreas could be one of the unappreciated risk factors. This study aimed to investigate the associations of dyslipidemia states with fat in the pancreas. METHODS All participants underwent magnetic resonance imaging on the same 3.0 T scanner for quantification of fat in the pancreas, analyzed as both binary (i.e., fatty change of the pancreas) and continuous (i.e., intra-pancreatic fat deposition) variables. Statistical analyses were adjusted for body mass index, glycated hemoglobin, fasting insulin, ethnicity, age, and sex. RESULTS There were 346 participants studied. On most adjusted analyses, high-density lipoprotein cholesterol dyslipidemia was significantly associated with both fatty change of the pancreas (p = 0.010) and intra-pancreatic fat deposition (p = 0.008). Neither low-density lipoprotein cholesterol dyslipidemia nor triglyceride dyslipidemia were significantly associated with fatty change of the pancreas and intra-pancreatic fat deposition. The absence of any dyslipidemia was inversely associated with both fatty change of the pancreas (p = 0.016) and intra-pancreatic fat deposition (p < 0.001). CONCLUSIONS Dyslipidemias are uncoupled when it comes to the relationship with fat in the pancreas, with only high-density lipoprotein cholesterol dyslipidemia having a consistent and strong link with it. The residual cardiovascular diseases risk may be attributed to fatty change of the pancreas.
Collapse
Affiliation(s)
| | - Sean Coffey
- Department of Medicine - HeartOtago, University of Otago, Dunedin, New Zealand
| | - Ivana R Sequeira-Bisson
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, New Zealand
| | - Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- School of Medicine, University of Auckland, Auckland, New Zealand; Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, New Zealand; Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
371
|
Jiang W, Liu Z, Liu S, Du T. Associations of advanced liver fibrosis with heart failure with preserved ejection fraction in type 2 diabetic patients according to obesity and metabolic goal achievement status. Front Endocrinol (Lausanne) 2023; 14:1183075. [PMID: 37941902 PMCID: PMC10628500 DOI: 10.3389/fendo.2023.1183075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF), a major cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM), is frequently coexisted with obesity, poor glycemic, blood pressure (BP), and/or lipid control. We aimed to investigate the associations of nonalcoholic fatty liver disease (NAFLD) and its advanced fibrosis with HFpEF according to obesity, glycated hemoglobin A1c (HbA1c), BP, and low-density lipoprotein cholesterol (LDL-C) goal achievement status in T2DM patients. Methods A total of 2,418 T2DM patients who were hospitalized were cross-sectionally assessed. Liver fibrosis was evaluated by non-invasive biomarkers. Logistic regression analysis was used to evaluate the independent and combined associations of fibrosis status and diabetic care goal attainments with HFpEF risk. Results Simple steatosis was not associated with HFpEF risk compared with patients without steatosis, while advanced liver fibrosis was found to have significantly higher odds for HFpEF risk (odds ratio,1.59; 95% confidence interval, 1.22-2.08). Advanced fibrosis in NAFLD was significantly associated with an increased risk of HFpEF, regardless of obesity status, HbA1c, BP, and LDL-C goal achievement status. P values for the interactions between fibrosis status and HbA1c control status, fibrosis status and BP control status, fibrosis status and LDL-C control status, and fibrosis status and body mass index (BMI) status on HFpEF risk were 0.021, 0.13, 0.001, and 0.23, respectively. Conclusion In patients with T2DM, advanced hepatic fibrosis was significantly associated with HFpEF risk, irrespective of obesity status, HbA1c, BP, and LDL-C goal attainment status. Further, HbA1c and LDL-C goal attainment status modified this association.
Collapse
Affiliation(s)
- Wangyan Jiang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
- Department of Clinical Nutrition, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Zhelong Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Shaohua Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Tingting Du
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| |
Collapse
|
372
|
Xia Y, Andersson E, Caputo M, Cansby E, Sedda F, Font-Gironès F, Ruud J, Kurhe Y, Hallberg B, Marschall HU, Asterholm IW, Romeo S, Blüher M, Mahlapuu M. Knockout of STE20-type kinase TAOK3 does not attenuate diet-induced NAFLD development in mice. Mol Med 2023; 29:138. [PMID: 37864157 PMCID: PMC10589923 DOI: 10.1186/s10020-023-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD), the primary hepatic consequence of obesity, is affecting about 25% of the global adult population. The aim of this study was to examine the in vivo role of STE20-type protein kinase TAOK3, which has been previously reported to regulate hepatocellular lipotoxicity in vitro, in the development of NAFLD and systemic insulin resistance in the context of obesity. METHODS Taok3 knockout mice and wild-type littermates were challenged with a high-fat diet. Various in vivo tests were performed to characterize the whole-body metabolism. NAFLD progression in the liver, and lipotoxic damage in adipose tissue, kidney, and skeletal muscle were compared between the genotypes by histological assessment, immunofluorescence microscopy, protein and gene expression profiling, and biochemical assays. Intracellular lipid accumulation and oxidative/ER stress were analyzed in cultured human and mouse hepatocytes where TAOK3 was knocked down by small interfering RNA. The expression of TAOK3-related STE20-type kinases was quantified in different organs from high-fat diet-fed Taok3-/- and wild-type mice. RESULTS TAOK3 deficiency had no impact on body weight or composition, food consumption, locomotor activity, or systemic glucose or insulin homeostasis in obese mice. Consistently, Taok3-/- mice and wild-type littermates developed a similar degree of high-fat diet-induced liver steatosis, inflammation, and fibrosis, and we detected no difference in lipotoxic damage of adipose tissue, kidney, or skeletal muscle when comparing the two genotypes. In contrast, the silencing of TAOK3 in vitro markedly suppressed ectopic lipid accumulation and metabolic stress in mouse and human hepatocytes. Interestingly, the hepatic mRNA abundance of several TAOK3-related kinases, which have been previously implicated to increase the risk of NAFLD susceptibility, was significantly elevated in Taok3-/- vs. wild-type mice. CONCLUSIONS In contrast to the in vitro observations, genetic deficiency of TAOK3 in mice failed to mitigate the detrimental metabolic consequences of chronic exposure to dietary lipids, which may be partly attributable to the activation of liver-specific compensation response for the genetic loss of TAOK3 by related STE20-type kinases.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Francesca Sedda
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ferran Font-Gironès
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ruud
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
373
|
Ke P, Xu M, Feng J, Tian Q, He Y, Lu K, Lu Z. Association between weight change and risk of liver fibrosis in adults with type 2 diabetes. J Glob Health 2023; 13:04138. [PMID: 37856776 PMCID: PMC10586795 DOI: 10.7189/jogh.13.04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Liver fibrosis plays a key role in the progression of non-alcoholic fatty liver disease to cirrhosis. Considering weight change is known to be closely associated with increased risk of liver fibrosis, we aimed to address a gap in evidence regarding the existence of this association in patients with type 2 diabetes (T2D). METHODS We included data on 622 T2D patients and 1618 non-T2D participants from the 2017-2018 cycle of the National Health and Nutrition Examination Survey (NHANES). We assessed liver fibrosis by the median values of liver stiffness measurement (LSM). According to the participants' body mass index (BMI) at age 25 (early adulthood), 10 years prior (middle adulthood), and at the 2017-2018 cycle (late adulthood), we categorised weight change patterns into stable non-obese, weight loss, weight gain, and stable obese. We applied logistic regression to association analysis and used population attributable fraction (PAF) to analyses hypothetical prevention regimens. RESULTS The prevalence of liver fibrosis was higher in T2D patients (23.04%) than in non-T2D participants (6.70%), while weight change was associated with a greater risk of fibrosis in the former compared to the latter group. Compared with T2D patients in the stable non-obese group, stable obese individuals from 10 years prior to the 2017-2018 cycle had the highest risk of developing liver fibrosis, corresponding to an adjusted odds ratio (aOR) of 3.13 (95% confidence interval = 1.84-5.48). Absolute weight change patterns showed that the risk of liver fibrosis was highest (aOR = 2.94) when T2D patients gained at least 20 kg of weight from 10 years prior to 2017-2018 cycle. CONCLUSIONS Obesity in middle and late adulthood is associated with an increased risk of T2D complicated with liver fibrosis.
Collapse
Affiliation(s)
- Pan Ke
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minzhi Xu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Feng
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingfeng Tian
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Lu
- Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
374
|
Li J, Huang J, Lv Y, Ji H. Association between dietary intakes of B vitamins and nonalcoholic fatty liver disease in postmenopausal women: a cross-sectional study. Front Nutr 2023; 10:1272321. [PMID: 37927496 PMCID: PMC10621796 DOI: 10.3389/fnut.2023.1272321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is increasingly common globally, particularly among postmenopausal women. Diet plays a fundamental role in the treatment of NAFLD. However, clinical research on the dietary intakes of B vitamins, specifically in postmenopausal women, is scant. Hence, it is imperative to study the impact of B vitamin dietary intake in postmenopausal women. Methods This study utilized National Health and Nutrition Examination Survey (NHANES) data for 668 postmenopausal women. Logistic regression analysis was conducted to investigate the association of the intakes of B vitamins with hepatic steatosis and liver fibrosis prevalence. The analysis accounted for various covariates and employed restricted cubic spline analysis to examine potential nonlinear relationships. Additionally, interactions among age, diabetes, and B-vitamin intakes, as well as the interaction between folate and vitamin B12 intake, were explored. Results Higher intakes of folate [0.30 (0.10-0.88)], choline [0.26 (0.07-0.95)], vitamin B1, and vitamin B2 were associated with a reduced risk of hepatic steatosis in postmenopausal women. The associations of niacin (P-nonlinear = 0.0003), vitamin B1 (P-nonlinear = 0.036), and vitamin B2 (P-nonlinear<0.0001) intakes with hepatic steatosis showed a nonlinear pattern. However, no significant associations were observed between the intakes of niacin, vitamin B6 and vitamin B12 and hepatic steatosis. Furthermore, there were no significant associations between B-vitamin intakes and liver fibrosis. No interaction effects were observed. Conclusion Dietary intakes of folate, choline, vitamin B1, and vitamin B2 may be associated with liver steatosis in postmenopausal women, these results suggest that optimizing the intake of these specific B vitamins may have a protective effect against liver steatosis in postmenopausal women, offering valuable insights into potential dietary strategies to promote their well-being.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Hepatobiliary and Pancreatic Medicine, Infectious Disease. and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jingda Huang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanqing Lv
- Department of Hepatobiliary and Pancreatic Medicine, Infectious Disease. and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huifan Ji
- Department of Hepatobiliary and Pancreatic Medicine, Infectious Disease. and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
375
|
Yang H, Li Y, Xu W, Liu W, Xie Y. Exploring the underlying mechanisms of Ashitaba in the management of non-alcoholic fatty liver disease by integrating the analysis of transcriptomics and metabolomics. Front Med (Lausanne) 2023; 10:1247851. [PMID: 37920601 PMCID: PMC10618682 DOI: 10.3389/fmed.2023.1247851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Ashitaba seems to improve glucose intolerance and decrease triglyceride (TG) and total cholesterol (TC), which contribute to the development of non-alcoholic fatty liver disease (NAFLD). However, it remains to be explored the mechanism of Ashitaba in managing NAFLD. We determined the impact of Ashitaba on NAFLD, particularly its underlying mechanisms at the bioinformatic level. The established NAFLD mouse model was treated with or without Ashitaba, and the underlying mechanism was explored using transcriptomics paired with metabolomics. Ashitaba reduced obesity and liver steatosis in NAFLD mice. It identified 429 differentially expressed genes (DEGs) and verified 45 differential metabolites, especially those that alleviate NAFLD via the FXR signaling pathway. Our data may provide insight into the therapeutic impact of Ashitaba in the management of NAFLD and may be useful in clinical interventions for NAFLD.
Collapse
Affiliation(s)
- Huan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Changning Administration Center of Public Hospital and Community Healthcare Center, Shanghai, China
| | - Yunshan Li
- Department of Endocrinology, Seven People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Xu
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Liu
- Department of Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
376
|
Wang H, Barrow F, Fredrickson G, Florczak K, Nguyen H, Parthiban P, Herman A, Adeyi O, Staley C, Ikramuddin S, Ruan HB, Jameson SC, Revelo XS. Dysfunctional T Follicular Helper Cells Cause Intestinal and Hepatic Inflammation in NASH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544061. [PMID: 37873316 PMCID: PMC10592647 DOI: 10.1101/2023.06.07.544061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Nonalcoholic steatohepatitis (NASH), characterized by hepatic inflammation and cellular damage, is the most severe form of nonalcoholic fatty liver disease and the fastest-growing indication for a liver transplant. The intestinal immune system is a central modulator of local and systemic inflammation. In particular, Peyer's patches (PPs) contain T follicular helper (Tfh) cells that support germinal center (GC) responses required for the generation of high-affinity intestinal IgA and the maintenance of intestinal homeostasis. However, our understanding of the mechanisms regulating mucosal immunity during the pathogenesis of NASH is incomplete. Here, using a preclinical mouse model that resembles the key features of human disease, we discovered an essential role for Tfh cells in the pathogenesis of NASH. We have found that mice fed a high-fat high-carbohydrate (HFHC) diet have an inflamed intestinal microenvironment, characterized by enlarged PPs with an expansion of Tfh cells. Surprisingly, the Tfh cells in the PPs of NASH mice showed evidence of dysfunction, along with defective GC responses and reduced IgA+ B cells. Tfh-deficient mice fed the HFHC diet showed compromised intestinal permeability, increased hepatic inflammation, and aggravated NASH, suggesting a fundamental role for Tfh cells in maintaining gut-liver homeostasis. Mechanistically, HFHC diet feeding leads to an aberrant increase in the expression of the transcription factor KLF2 in Tfh cells which inhibits its function. Thus, transgenic mice with reduced KLF2 expression in CD4 T cells displayed improved Tfh cell function and ameliorated NASH, including hepatic steatosis, inflammation, and fibrosis after HFHC feeding. Overall, these findings highlight Tfh cells as key intestinal immune cells involved in the regulation of inflammation in the gut-liver axis during NASH.
Collapse
Affiliation(s)
- Haiguang Wang
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fanta Barrow
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gavin Fredrickson
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kira Florczak
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huy Nguyen
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Preethy Parthiban
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam Herman
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Oyedele Adeyi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xavier S. Revelo
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
377
|
Shi W, Xu G, Gao Y, Zhao J, Liu T, Zhao J, Yang H, Wei Z, Li H, Xu AL, Bai Z, Xiao X. Novel role for epalrestat: protecting against NLRP3 inflammasome-driven NASH by targeting aldose reductase. J Transl Med 2023; 21:700. [PMID: 37805545 PMCID: PMC10560438 DOI: 10.1186/s12967-023-04380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a progressive and inflammatory subtype of nonalcoholic fatty liver disease (NAFLD) characterized by hepatocellular injury, inflammation, and fibrosis in various stages. More than 20% of patients with NASH will progress to cirrhosis. Currently, there is a lack of clinically effective drugs for treating NASH, as improving liver histology in NASH is difficult to achieve and maintain through weight loss alone. Hence, the present study aimed to investigate potential therapeutic drugs for NASH. METHODS BMDMs and THP1 cells were used to construct an inflammasome activation model, and then we evaluated the effect of epalrestat on the NLRP3 inflammasome activation. Western blot, real-time qPCR, flow cytometry, and ELISA were used to evaluate the mechanism of epalrestat on NLRP3 inflammasome activation. Next, MCD-induced NASH models were used to evaluate the therapeutic effects of epalrestat in vivo. In addition, to evaluate the safety of epalrestat in vivo, mice were gavaged with epalrestat daily for 14 days. RESULTS Epalrestat, a clinically effective and safe drug, inhibits NLRP3 inflammasome activation by acting upstream of caspase-1 and inducing ASC oligomerization. Importantly, epalrestat exerts its inhibitory effect on NLRP3 inflammasome activation by inhibiting the activation of aldose reductase. Further investigation revealed that the administration of epalrestat inhibited NLRP3 inflammasome activation in vivo, alleviating liver inflammation and improving NASH pathology. CONCLUSIONS Our study indicated that epalrestat, an aldose reductase inhibitor, effectively suppressed NLRP3 inflammasome activation in vivo and in vitro and might be a new therapeutic approach for NASH.
Collapse
Affiliation(s)
- Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guang Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jun Zhao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Jia Zhao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huijie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziying Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - An-Long Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
- Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
- Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
378
|
Tang H, Lv F, Zhang P, Liu J, Mao J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1254459. [PMID: 37850091 PMCID: PMC10577417 DOI: 10.3389/fendo.2023.1254459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by episodic sleep state-dependent collapse of the upper airway, with consequent hypoxia, hypercapnia, and arousal from sleep. OSA contributes to multisystem damage; in severe cases, sudden cardiac death might occur. In addition to causing respiratory, cardiovascular and endocrine metabolic diseases, OSA is also closely associated with nonalcoholic fatty liver disease (NAFLD). As the prevalence of OSA and NAFLD increases rapidly, they significantly exert adverse effects on the health of human beings. The authors retrieved relevant documents on OSA and NAFLD from PubMed and Medline. This narrative review elaborates on the current knowledge of OSA and NAFLD, demonstrates the impact of OSA on NAFLD, and clarifies the underlying mechanisms of OSA in the progression of NAFLD. Although there is a lack of sufficient high-quality clinical studies to prove the causal or concomitant relationship between OSA and NAFLD, existing evidence has confirmed the effect of OSA on NAFLD. Elucidating the underlying mechanisms through which OSA impacts NAFLD would hold considerable importance in terms of both prevention and the identification of potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Furong Lv
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Zhang
- Department of Medical Information Engineering, Zhongshan College of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
379
|
Sanyal AJ, Munoz B, Cusi K, Barritt AS, Muthiah M, Mospan AR, Reddy KR, Firpi-Morell R, Thuluvath PJ, Bhamidimarri KR, Fried MW. Validation of a Clinical Risk-based Classification System in a Large Nonalcoholic Fatty Liver Disease Real-world Cohort. Clin Gastroenterol Hepatol 2023; 21:2889-2900.e10. [PMID: 36871772 DOI: 10.1016/j.cgh.2023.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND & AIMS There is an unmet need to validate simple and easily available methods that can be used in routine practice to identify those at risk of adverse outcomes from nonalcoholic fatty liver disease (NAFLD). A retrospective-prospective analysis of NAFLD patients enrolled in a longitudinal noninterventional study (TARGET-NASH) was performed to validate the prognostic utility of the following risk-categories: (A) Fibrosis-4 (FIB-4) <1.3 and/or liver-stiffness measurement (LSM) measured by Fibroscan <8 kp, (B) FIB-4 1.31‒2.6 and/or LSM 8.1-12.5 kp, and (C) FIB-4 >2.6 and/or LSM >12.5 kp. METHODS Those in class A with aspartate transaminase:alanine transaminase ratio >1 or platelets <150,000/mm3, or class B with aspartate transaminase:alanine transaminase ratio >1 or platelets <150,000/mm3 were upstaged by one class. Fine-Gray competing risk analyses were performed for all outcomes. RESULTS A total of 2523 individuals (class A = 555, B = 879, C = 1089) were followed for a median duration of 3.74 years. Adverse outcomes increased from class A to C in all-cause mortality (0.07 vs 0.3 vs 2.5/100 person-years [PY], hazard ratio [HR], 3.0 and 16.3 class B and C vs A), liver-associated clinical events (0.2 vs 1 vs 8/100 PY, HR, 4.3 and 36.6 B and C vs A), major adverse cardiovascular events (0.69 vs 0.87 vs 2.02/100 PY, HR, 0.78 and 1.55 B and C vs A), hepatocellular carcinoma (0 vs 0.09 vs 0.88/100 PY, HR, 8.32 C vs B), and chronic kidney disease (1.24 vs 2.48 vs 3.51/100 PY). Those who were upstaged had outcome rates similar to the lower class defined by their FIB-4. CONCLUSIONS These data support a FIB-4-based risk-stratification of NAFLD that can be used in routine clinical practice. CLINICALTRIALS gov Identifier: NCT02815891.
Collapse
Affiliation(s)
- Arun J Sanyal
- Virginia Commonwealth University, Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Richmond, VA.
| | | | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL
| | - A Sidney Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Muthiah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore and Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore
| | | | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Roberto Firpi-Morell
- Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida
| | - Paul J Thuluvath
- Division of Gastroenterology, Mercy Medical Center & University of Maryland School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
380
|
Xiao J, Zhang X, Zhu C, Gu Y, Sun L, Liang X, He Q. Development, Validation, and Application of a Scoring Model for Non-alcoholic Steatohepatitis. Obes Surg 2023; 33:3246-3255. [PMID: 37644345 DOI: 10.1007/s11695-023-06804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE The aim of this study was to explore risk factors of NASH and then develop a non-invasive scoring model in Chinese patients with obesity. A scoring system was then applied to assess the effect of sleeve gastrectomy on NASH. METHODS A total of 243 patients with obesity were included and divided into NASH group and non-NASH group according to the pathological results of liver biopsy. Logistic regression was used to determine risk factors of NASH. A scoring model was derived by risk factors of NASH. Then, postoperative follow-up was performed in 70 patients. RESULTS Among the 243 patients, 118 (48.56%) patients showed NASH. Multivariate logistic regression identified aspartate aminotransferase (AST) (>21.50 IU/L), high-density lipoprotein cholesterol (HDL-C) (<1.155mmol/L), and homeostasis model assessment (HOMA-IR) (>9.368) as independent risk factors of NASH. The model included above risk factors showed a negative predictive value (NPV) of 70.38% in the low-risk category and a positive predictive value (PPV) of 85.71% in the high-risk category, with the area under the receiver operator curve (AUROC) of 0.737. Bariatric surgery resulted in a sharp decline in AST and HOMA-IR and a significant increase of HDL-C. The points of scoring model were improved at 6 months after surgery. CONCLUSION A non-invasive scoring model was derived by the risk factors of NASH included AST, HDL-C, and HOMA-IR and applied to the postoperative follow-up. After sleeve gastrectomy, the above risk factors and points of scoring model were significantly improved.
Collapse
Affiliation(s)
- Jinfeng Xiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xinxin Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chonggui Zhu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yian Gu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Longhao Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyu Liang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
381
|
Romero-Gómez M, Lawitz E, Shankar RR, Chaudhri E, Liu J, Lam RLH, Kaufman KD, Engel SS. A phase IIa active-comparator-controlled study to evaluate the efficacy and safety of efinopegdutide in patients with non-alcoholic fatty liver disease. J Hepatol 2023; 79:888-897. [PMID: 37355043 DOI: 10.1016/j.jhep.2023.05.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND & AIMS This study assessed the effects of the glucagon-like peptide-1 (GLP-1)/glucagon receptor co-agonist efinopegdutide relative to the selective GLP-1 receptor agonist semaglutide on liver fat content (LFC) in patients with non-alcoholic fatty liver disease (NAFLD). METHODS This was a phase IIa, randomized, active-comparator-controlled, parallel-group, open-label study. A magnetic resonance imaging-estimated proton density fat fraction assessment was performed to determine LFC at screening and Week 24. Participants with an LFC of ≥10% at screening were randomized 1:1 to efinopegdutide 10 mg or semaglutide 1 mg, both administered subcutaneously once weekly for 24 weeks. Participants were stratified according to the concurrent diagnosis of type 2 diabetes mellitus (T2DM). Both drugs were titrated to the target dose over an 8-week time period. The primary efficacy endpoint was relative reduction from baseline in LFC (%) after 24 weeks of treatment. RESULTS Among 145 randomized participants (efinopegdutide n = 72, semaglutide n = 73), 33.1% had T2DM. At baseline, mean BMI was 34.3 kg/m2 and mean LFC was 20.3%. The least squares (LS) mean relative reduction from baseline in LFC at Week 24 was significantly (p <0.001) greater with efinopegdutide (72.7% [90% CI 66.8-78.7]) than with semaglutide (42.3% [90% CI 36.5-48.1]). Both treatment groups had an LS mean percent reduction from baseline in body weight at Week 24 (efinopegdutide 8.5% vs. semaglutide 7.1%; p = 0.085). Slightly higher incidences of adverse events and drug-related adverse events were observed in the efinopegdutide group compared with the semaglutide group, primarily related to an imbalance in gastrointestinal adverse events. CONCLUSIONS In patients with NAFLD, treatment with efinopegdutide 10 mg weekly led to a significantly greater reduction in LFC than semaglutide 1 mg weekly. CLINICAL TRIAL NUMBER EudraCT: 2020-005136-30; NCT: 04944992. IMPACT AND IMPLICATIONS Currently, there are no approved therapies for non-alcoholic steatohepatitis (NASH). The weight loss associated with glucagon-like peptide-1 (GLP-1) receptor agonists has been shown to decrease hepatic inflammation in patients with NASH. In addition to reducing liver fat content (LFC) indirectly through weight loss, glucagon receptor agonism may also reduce LFC by acting on the liver directly to stimulate fatty acid oxidation and reduce lipogenesis. This study demonstrated that treatment of patients with non-alcoholic fatty liver disease with the GLP-1/glucagon receptor co-agonist efinopegdutide (10 mg weekly) led to a significantly greater reduction in LFC compared to treatment with the GLP-1 receptor agonist semaglutide (1 mg weekly), suggesting that efinopegdutide may be an effective treatment for NASH.
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- Digestive Diseases Unit and CIBERehd, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | | | | | - Jie Liu
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | |
Collapse
|
382
|
Zhao M, Jin Z, Xia C, Chen S, Zeng L, Qin S, He Q. Inhibition of free heme-catalyzed Fenton-like reaction prevents non-alcoholic fatty liver disease by hepatocyte-targeted hydrogen delivery. Biomaterials 2023; 301:122230. [PMID: 37418855 DOI: 10.1016/j.biomaterials.2023.122230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
The metabolic disorder of hepatocytes in non-alcoholic fatty liver disease (NAFLD) leads to the formation of an iron pool which induces the Fenton reaction-derived ferroptosis and the deterioration of liver disease. The elimination of the iron pool for the removal of Fenton reactions is vitally important to prevent the evolution of NAFLD, but quite challenging. In this work, we discover that free heme in the iron pool of NAFLD can catalyze the hydrogenation of H2O2/‧OH to block the heme-based Fenton reaction for the first time, and therefore develop a novel hepatocyte-targeted hydrogen delivery system (MSN-Glu) by modifying magnesium silicide nanosheets (MSN) with N-(3-triethoxysilylpropyl) gluconamide to block the heme-catalyzed vicious circle of liver disease. The developed MSN-Glu nanomedicine exhibits a high hydrogen delivery capacity as well as sustained hydrogen release and hepatocyte-targeting behaviors, and remarkably improves the metabolic function of the liver in a NAFLD mouse model by the relief of oxidative stress and the prevention of ferroptosis in hepatocytes, accelerating the removal of the iron pool in fundamental support of NAFLD prevention. The proposed prevention strategy based on the mechanisms of NAFLD disease and hydrogen medicine will provide an inspiration for inflammation-related disease prevention.
Collapse
Affiliation(s)
- Min Zhao
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Taishan Institute for Hydrogen Biomedical Research, School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Chao Xia
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Shengqiang Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingting Zeng
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedical Research, School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China.
| | - Qianjun He
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
383
|
Li Z, Cao S, Zhao S, Kang N. A bibliometric analysis and visualization of nonalcoholic fatty liver disease from 2012 to 2021. Clin Exp Med 2023; 23:1961-1971. [PMID: 36795238 DOI: 10.1007/s10238-023-01023-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
As a common chronic liver disease, nonalcoholic fatty liver disease (NAFLD) has attracted increasing attention in the past decade. Nevertheless, there are few bibliometric analyses that systematically study this field as a whole. This paper explores the latest research progress and future research trends of NAFLD through the method of bibliometric analysis. The articles related to NAFLD, published from 2012 to 2021 in the Web of Science Core Collections, were searched on February 21, 2022, using relevant keywords. Two different scientometrics software tools were used to conduct the knowledge maps of NAFLD research field. A total of 7975 articles on NAFLD research were included. From 2012 to 2021, the publications related to NAFLD increased by year. China ranked on the top of the list with 2043 publications, and the University of California System emerged as the premier institution in this field. PLOs One, Journal of Hepatology and Scientific Reports became the prolific journals in this research field. Co-cited reference analysis revealed the landmark literature in this research field. In terms of potential hotspots, the burst keywords analysis revealed that liver fibrosis stage, sarcopenia, and autophagy will become the focus of future NAFLD research. The annual output of the global publications in the field of NAFLD research showed a strong upward trend. Research in the field of NAFLD in China and America is more mature than in other countries. Classic literature lays the foundation for research, and multi-field studies provide the new development directions. And besides, fibrosis stage, sarcopenia and autophagy research are the hot spots and frontiers of this field.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Shaoli Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
384
|
Shi Y, Qiu T, Wu C, Yuan W, Yao X, Jiang L, Wang N, Wang L, Han Q, Yang G, Liu X, Sun X. Filamin A facilitates NLRP3 inflammasome activation during arsenic-induced nonalcoholic steatohepatitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107703-107715. [PMID: 37740811 DOI: 10.1007/s11356-023-29702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
Prolonged exposure to arsenic can cause nonalcoholic steatohepatitis (NASH). The NOD-like receptor protein 3 (NLRP3) inflammasome plays an essential role in the process of NASH. However, the mechanism by which arsenic promotes NLRP3 expression remains unclear. Three-month NaAsO2 gavage led to the nuclear factor-κB (NF-κB) signaling pathway activation and NASH. Additionally, NaAsO2 upregulated the level of Filamin A (FLNA) and pyroptosis, thereby activating the NLRP3 inflammasome in SD rat liver. Using FLNA siRNA, NASH-associated inflammation and pyroptosis were clearly mitigated by reducing activation of the NLRP3 inflammasome. Furthermore, arsenic treatment facilitated activation of the NF-κB signaling pathway and promoted p-p65 translocation into the nucleus. Chromatin immunoprecipitation (Ch-IP) assay indicated that FLNA promoted p65 binding to the NLRP3 gene and upregulated the transcription of NLRP3, ultimately leading to pyroptosis and NASH. Our findings indicate that FLNA and pyroptosis are strongly associated with NASH induced by NaAsO2. Collectively, the findings of this study indicated that FLNA mediates NF-κB signaling pathway-induced activation of the NLRP3 inflammasome and ultimately activates pyroptosis and NASH upon NaAsO2 exposure. This information may be useful for improving therapeutic strategies against arsenic-induced NASH.
Collapse
Affiliation(s)
- Yan Shi
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
- Xi'an Center for Disease Control and Prevention, No. 599 Xiying Road, Xi'an, 710000, People's Republic of China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Chenbing Wu
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Weizhuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Ningning Wang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Lu Wang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Qiuyue Han
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
- Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
| |
Collapse
|
385
|
Shannon CE, Ní Chathail MB, Mullin SM, Meehan A, McGillicuddy FC, Roche HM. Precision nutrition for targeting pathophysiology of cardiometabolic phenotypes. Rev Endocr Metab Disord 2023; 24:921-936. [PMID: 37402955 PMCID: PMC10492734 DOI: 10.1007/s11154-023-09821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Obesity is a heterogenous disease accompanied by a broad spectrum of cardiometabolic risk profiles. Traditional paradigms for dietary weight management do not address biological heterogeneity between individuals and have catastrophically failed to combat the global pandemic of obesity-related diseases. Nutritional strategies that extend beyond basic weight management to instead target patient-specific pathophysiology are warranted. In this narrative review, we provide an overview of the tissue-level pathophysiological processes that drive patient heterogeneity to shape distinct cardiometabolic phenotypes in obesity. Specifically, we discuss how divergent physiology and postprandial phenotypes can reveal key metabolic defects within adipose, liver, or skeletal muscle, as well as the integrative involvement of the gut microbiome and the innate immune system. Finally, we highlight potential precision nutritional approaches to target these pathways and discuss recent translational evidence concerning the efficacy of such tailored dietary interventions for different obesity phenotypes, to optimise cardiometabolic benefits.
Collapse
Affiliation(s)
- Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Méabh B Ní Chathail
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Sinéad M Mullin
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Andrew Meehan
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | | | - Helen M Roche
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland.
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
386
|
Ustsinau U, Ehret V, Fürnsinn C, Scherer T, Helbich TH, Hacker M, Krššák M, Philippe C. Novel approach using [ 18F]FTHA-PET and de novo synthesized VLDL for assessment of FFA metabolism in a rat model of diet induced NAFLD. Clin Nutr 2023; 42:1839-1848. [PMID: 37625314 DOI: 10.1016/j.clnu.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND AND AIMS The worldwide prevalence of Non-alcoholic Fatty Liver Disease (NAFLD) raises concerns about associated risk factors, such as obesity and type 2 Diabetes Mellitus, for leading causes of disability and death. Besides Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS), functional imaging with Positron Emission Tomography (PET) could contribute to a deeper understanding of the pathophysiology of NAFLD. Here we describe a novel approach using the PET tracer [18F]FTHA, which is an analog of long-chain free fatty acids (FFA) and is taken up by tissues to enter mitochondria or to be incorporated into complex lipids for further export as very-low-density lipoprotein (VLDL). METHODS Male Sprague Dawley rats, after 6 weeks on a high-fat diet (HFD), were used as a model of diet induced NAFLD, while a standard diet (SD) served as a control group. Liver fat was estimated by MR spectroscopy at a 9.4 T system for phenotyping. To measure hepatic FFA uptake, rats underwent 60 min dynamic [18F]FTHA-PET scans after unrestricted access to food (HFD: n = 6; SD: n = 6) or overnight (≤16h) fasting (HFD: n = 6; SD: n = 5). FFA removal was assessed from incorporated 18F-residual in de novo synthesized VLDL out of plasma. RESULTS MRS of the liver confirmed the presence of NAFLD (>5.6% fat). Under non-fasting conditions, hepatic [18F]FTHA uptake was significantly increased in NAFLD: SUVmean (p = 0.03) within [0; 60] min interval, SUVmean (p = 0.01) and SUVmax (p = 0.03) within [30; 60] min interval. SUVs for hepatic uptake under fasting conditions were not significantly different between the groups. Analysis of FFA removal demonstrated elevated values of 18F-residue in the VLDL plasma fraction of the healthy group compared to the NAFLD (p = 0.0569). CONCLUSION Our novel approach for assessing FFA metabolism using [18F]FTHA demonstrated differences in the hepatic FFA uptake and FFA incorporation into VLDL between healthy and NAFLD rats. [18F]FTHA-PET could be used to study metabolic disturbances involved in the progression of NAFLD.
Collapse
Affiliation(s)
- Usevalad Ustsinau
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Viktoria Ehret
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas H Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Cecile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
387
|
Suzuki K, Kubota Y, Kaneko K, Kamata CC, Furuyama K. CLPX regulates mitochondrial fatty acid β-oxidation in liver cells. J Biol Chem 2023; 299:105210. [PMID: 37660922 PMCID: PMC10556790 DOI: 10.1016/j.jbc.2023.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial fatty acid oxidation (β-oxidation) is an essential metabolic process for energy production in eukaryotic cells, but the regulatory mechanisms of this pathway are largely unknown. In the present study, we found that several enzymes involved in β-oxidation are associated with CLPX, the AAA+ unfoldase that is a component of the mitochondrial matrix protease ClpXP. The suppression of CLPX expression increased β-oxidation activity in the HepG2 cell line and in primary human hepatocytes without glucagon treatment. However, the protein levels of enzymes involved in β-oxidation did not significantly increase in CLPX-deleted HepG2 cells (CLPX-KO cells). Coimmunoprecipitation experiments revealed that the protein level in the immunoprecipitates of each antibody changed after the treatment of WT cells with glucagon, and a part of these changes was also observed in the comparison of WT and CLPX-KO cells without glucagon treatment. Although the exogenous expression of WT or ATP-hydrolysis mutant CLPX suppressed β-oxidation activity in CLPX-KO cells, glucagon treatment induced β-oxidation activity only in CLPX-KO cells expressing WT CLPX. These results suggest that the dissociation of CLPX from its target proteins is essential for the induction of β-oxidation in HepG2 cells. Moreover, specific phosphorylation of AMP-activated protein kinase and a decrease in the expression of acetyl-CoA carboxylase 2 were observed in CLPX-KO cells, suggesting that CLPX might participate in the regulation of the cytosolic signaling pathway for β-oxidation. The mechanism for AMP-activated protein kinase phosphorylation remains elusive; however, our results uncovered the hitherto unknown role of CLPX in mitochondrial β-oxidation in human liver cells.
Collapse
Affiliation(s)
- Ko Suzuki
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yoshiko Kubota
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kiriko Kaneko
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | | | - Kazumichi Furuyama
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan.
| |
Collapse
|
388
|
Gouju J, Legeay S. Pharmacokinetics of obese adults: Not only an increase in weight. Biomed Pharmacother 2023; 166:115281. [PMID: 37573660 DOI: 10.1016/j.biopha.2023.115281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity is a pathophysiological state defined by a body mass index > 30 kg/m2 and characterized by an adipose tissue accumulation leading to an important weight increased. Several pathologies named comorbidities such as cardiovascular disease, type 2 diabetes and cancer make obesity the fifth cause of death in the world. Physiological changes impact the four main phases of pharmacokinetics of some drugs and leads to an inappropriate drug-dose. For absorption, the gastrointestinal transit is accelerated, and the gastric empty time is shortened, that can reduce the solubilization and absorption of some oral drugs. The drug distribution is probably the most impacted by the obesity-related changes because the fat mass (FM) increases at the expense of the lean body weight (LBW), leading to an important increase of the volume of distribution for lipophilic drugs and a low or moderately increase of this parameter for hydrophilic drugs. This modification of the distribution may require drug-dose adjustments. By various mechanisms, the metabolism and elimination of drugs are impacted by obesity and should be considered as similar or lower than that non-obese patients. To better understand the necessary drug-dose adjustments in obese patients, a narrative review of the literature was conducted to highlight the main elements to consider in the therapeutic management of adult obese patients.
Collapse
Affiliation(s)
- Julien Gouju
- MINT, INSERM U1066, CNRS 6021, UNIV Angers, SFR-ICAT 4208, IBS-CHU Angers, 4 rue Larrey, Angers 49933 Cedex 9, France; CHU Angers, 4 rue Larrey, Angers 49933 Cedex 9, France.
| | - Samuel Legeay
- MINT, INSERM U1066, CNRS 6021, UNIV Angers, SFR-ICAT 4208, IBS-CHU Angers, 4 rue Larrey, Angers 49933 Cedex 9, France
| |
Collapse
|
389
|
Andreasen CR, Andersen A, Vilsbøll T. The future of incretins in the treatment of obesity and non-alcoholic fatty liver disease. Diabetologia 2023; 66:1846-1858. [PMID: 37498367 DOI: 10.1007/s00125-023-05966-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/02/2023] [Indexed: 07/28/2023]
Abstract
In the last few decades, glucagon-like peptide-1 receptor (GLP-1R) agonists have changed current guidelines and improved outcomes for individuals with type 2 diabetes. However, the dual glucose-dependent insulinotropic polypeptide receptor (GIPR)/GLP-1R agonist, tirzepatide, has demonstrated superior efficacy regarding improvements in HbA1c and body weight in people with type 2 diabetes. This has led to increasing scientific interest in incretin hormones and incretin interactions, and several compounds based on dual- and multi-agonists are now being investigated for the treatment of metabolic diseases. Herein, we highlight the key scientific advances in utilising incretins for the treatment of obesity and, potentially, non-alcoholic fatty liver disease (NAFLD). The development of multi-agonists with multi-organ targets may alter the natural history of these diseases.
Collapse
Affiliation(s)
- Christine R Andreasen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
390
|
Shi M, Zhang H, Wang W, Zhang X, Liu J, Wang Q, Wang Y, Zhang C, Guo X, Qiao Q, Cui C, Xu J, Wang J. Effect of dapagliflozin on liver and pancreatic fat in patients with type 2 diabetes and non-alcoholic fatty liver disease. J Diabetes Complications 2023; 37:108610. [PMID: 37722211 DOI: 10.1016/j.jdiacomp.2023.108610] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
AIMS To evaluate the effect of dapagliflozin on liver fat content (LFC) and pancreatic fat content (PFC). MATERIALS AND METHODS 84 patients with type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) were randomly assigned to receive either dapagliflozin (n = 42) or serve as controls (n = 42). The primary endpoint is changes in LFC and PFC using magnetic resonance imaging estimated proton density fat fraction. Secondary outcomes include liver fibrosis index, inflammatory cytokine levels, and liver enzyme levels. RESULTS At week 24, the dapagliflozin group significantly reduced LFC (P < 0.001) and PFC (P = 0.033) compared to the control group. Differences were also observed in serum levels of tumor necrosis factor-α (TNF-α) (P = 0.004), interleukin-6 (IL-6) (P = 0.001), and alanine aminotransferase (ALT) (P < 0.001) between the two groups. CONCLUSIONS Dapagliflozin can significantly decrease LFC and PFC in patients with T2D and NAFLD. It also improves serum ALT, TNF-α, and IL-6 levels, making it a promising treatment option for NAFLD. The trial is registered on Chinese Clinical Trial Registry (Registration No. ChiCTR2100054612).
Collapse
Affiliation(s)
- Mengran Shi
- Department of Nutrition of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hao Zhang
- Department of Nutrition of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Department of Nutrition of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao Zhang
- Department of Endocrinology of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiawei Liu
- Department of Endocrinology of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qixian Wang
- Department of Endocrinology of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Wang
- Department of Endocrinology of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunlin Zhang
- Department of Endocrinology of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoqin Guo
- Department of Endocrinology of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiao Qiao
- Department of Endocrinology of Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chun Cui
- Department of Imaging of Xinqiao Hospital, Army Medical University, China
| | - Jing Xu
- Department of Endocrinology of Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Jian Wang
- Department of Nutrition of Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
391
|
Pettinelli P, Fernández T, Aguirre C, Barrera F, Riquelme A, Fernández-Verdejo R. Prevalence of non-alcoholic fatty liver disease and its association with lifestyle habits in adults in Chile: a cross-sectional study from the National Health Survey 2016-2017. Br J Nutr 2023; 130:1036-1046. [PMID: 36620945 DOI: 10.1017/s0007114523000028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an excessive fat accumulation within the liver, usually associated with excess body weight. A liver biopsy is the gold standard for diagnosis, but it is inapplicable in population-based studies. In large populations, non-invasive methods could be used, which may also serve to identify potential protective factors. We aimed to (a) estimate NAFLD prevalence in the adult population in Chile by using non-invasive methods and (b) determine the association between the presence of NAFLD and lifestyle habits. The National Health Survey of Chile 2016–2017 was analysed. We included individuals aged 21–75 years, without infectious diseases nor risky alcohol consumption. NAFLD was detected by either fatty liver index (FLI; considers circulating TAG, circulating γ-glutamyl-transferase, BMI and waist circumference), lipid accumulation product (LAP; considers sex, circulating TAG and waist circumference) or their combination. Lifestyle habits were determined by questionnaires. We included 2774 participants, representative of 10 599 094 (9 831 644, 11 366 544) adults in Chile. NAFLD prevalence (95 % CI) was 39·4 % (36·2, 42·8) by FLI, 27·2 % (24·2, 30·4) by LAP and 23·5 % (20·7, 26·5) by their combination. The prevalence progressively increased with increasing BMI. Of note, less smoking and more moderate-vigorous physical activity and whole-grain consumption were associated with lower odds of having NAFLD, independently of BMI. At least one out of four adults in Chile is afflicted with NAFLD. Health promotion strategies focused on controlling excess body weight and promoting specific lifestyle habits are urgently required.
Collapse
Affiliation(s)
- Paulina Pettinelli
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tiziana Fernández
- Carrera de Kinesiología, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Aguirre
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Barrera
- Departamento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arnoldo Riquelme
- Departamento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fernández-Verdejo
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
392
|
Ouyang G, Wu Z, Liu Z, Pan G, Wang Y, Liu J, Guo J, Liu T, Huang G, Zeng Y, Wei Z, He S, Yuan G. Identification and validation of potential diagnostic signature and immune cell infiltration for NAFLD based on cuproptosis-related genes by bioinformatics analysis and machine learning. Front Immunol 2023; 14:1251750. [PMID: 37822923 PMCID: PMC10562635 DOI: 10.3389/fimmu.2023.1251750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND AND AIMS Cuproptosis has been identified as a key player in the development of several diseases. In this study, we investigate the potential role of cuproptosis-related genes in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). METHOD The gene expression profiles of NAFLD were obtained from the Gene Expression Omnibus database. Differential expression of cuproptosis-related genes (CRGs) were determined between NAFLD and normal tissues. Protein-protein interaction, correlation, and function enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was analyzed in both NAFLD patients and controls. Quantitative real-time PCR was employed to validate the expression of hub genes. RESULTS Four datasets containing 115 NAFLD and 106 control samples were included for bioinformatics analysis. Three hub CRGs (NFE2L2, DLD, and POLD1) were identified through the intersection of three machine learning algorithms. The receiver operating characteristic curve was plotted based on these three marker genes, and the area under the curve (AUC) value was 0.704. In the external GSE135251 dataset, the AUC value of the three key genes was as high as 0.970. Further nomogram, decision curve, calibration curve analyses also confirmed the diagnostic predictive efficacy. Gene set enrichment analysis and gene set variation analysis showed these three marker genes involved in multiple pathways that are related to the progression of NAFLD. CIBERSORT and single-sample gene set enrichment analysis indicated that their expression levels in macrophages, mast cells, NK cells, Treg cells, resting dendritic cells, and tumor-infiltrating lymphocytes were higher in NAFLD compared with control liver samples. The ceRNA network demonstrated a complex regulatory relationship between the three hub genes. The mRNA level of these hub genes were further confirmed in a mouse NAFLD liver samples. CONCLUSION Our study comprehensively demonstrated the relationship between NAFLD and cuproptosis, developed a promising diagnostic model, and provided potential targets for NAFLD treatment and new insights for exploring the mechanism for NAFLD.
Collapse
Affiliation(s)
- Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Guandong Pan
- Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
- Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital by Liuzhou Science and Technology Bureau, Liuzhou, Guangxi, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Jixu Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Liu
- Department of General Surgery, Luzhai People’s Hospital, Liuzhou, Guangxi, China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Zaiwa Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
393
|
Xu ST, Jin HW, Jin X, Xu BX, Zhang Y, Xie T, Wang G, Wang J, Zhen L. Development and validation for bioanalysis of VK2809, its active metabolite VK2809A and glutathione-conjugated metabolite MB06588 in rat liver using LC-MS/MS. J Pharm Biomed Anal 2023; 234:115595. [PMID: 37487290 DOI: 10.1016/j.jpba.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
VK2809 is a promising drug candidate in Phase II clinical trials for the treatment of non-alcoholic steatohepatitis (NASH). It is a prodrug with a HepDirect strategy, which can achieve selective hepatic metabolic activation, generating an active metabolite VK2809A as a potent and selective agonist for thyroid hormone receptor beta (TRβ), a concomitant reactive metabolite VK2809B, and a glutathione (GSH) conjugate MB06588. Currently, there is no convenient and sensitive bioanalytical method for the simultaneous determination of the above three metabolites. Herein, we established an LC-MS/MS method to separate VK2809 and its metabolites on the XSelect HSS T3 column and quantified them in negative electrospray ionization mode. Subsequently, several factors were investigated such as the use of 60% acetonitrile for homogenization to stabilize the analytes, the addition of 20 mM glutathione for the derivation of VK2809B, and the protein precipitation with methanol containing Sobetirome as the internal standard (IS). The method exhibited good linearity for all compounds (19.4-388.4 nM for VK2809; 27.4-2744.4 nM for VK2809A and 10.6-211.0 nM for MB06588) with great correlation coefficients (r > 0.996). The method validation also demonstrated acceptable precision (RSD < 13.0% for VK2809, RSD < 7.9% for VK2809A, RSD < 14.4% for MB06588) and accuracy (92.7%-103% for VK2809, 91.2%-107.3% for VK2809A, 96%-106.7% for MB06588). The matrix effect, recovery, and stability were also suitable to determine all the analytes. This method is suitable for the bioanalysis of VK2809 and its metabolites and has been successfully applied to the study of intrahepatic exposure in rats. It is expected to be further practiced in drug design, optimization, and metabolism study in the following research.
Collapse
Affiliation(s)
- Si-Tao Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hao-Wen Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bi-Xin Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yu Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tao Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiankun Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Le Zhen
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
394
|
Liu D, Wang S, Liu Y, Luo Y, Wen B, Wu W, Zeng H, Huang J, Liu Z. Fuzhuan brick tea ameliorates hepatic steatosis and steatohepatitis through gut microbiota-derived aryl hydrocarbon receptor ligands in high-fat diet-induced obese mice. Food Funct 2023; 14:8351-8368. [PMID: 37606634 DOI: 10.1039/d3fo01782f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
High-fat diet (HFD) induced obesity and its associated conditions, such as hepatic steatosis and steatohepatitis, are major health concerns worldwide. Previous studies have reported the excellent efficiency of Fuzhuan brick tea (FBT) in attenuating HFD-induced obesity and metabolic disorders. In this study, we investigated the effects of FBT on hepatic steatosis and simple steatohepatitis in HFD-induced obese mice, as well as the metabolic function of the gut microbiome using metagenomics and metabolomics. The results showed that FBT ameliorated dyslipidemia, hepatic steatosis and steatohepatitis in HFD-induced obese mice by normalizing the gut microbiota structure and tryptophan metabolism. FBT increased the cecal abundance of aryl hydrocarbon receptor (AhR)-ligand producing bacteria such as Lactobacillus_reuteri and Lactobacillus_johnsonii, at the expense of AhR-ligand consuming bacteria, such as Faecalibaculum_rodentium and Escherichia_coli, and elevated the cecal contents of AhR-ligands such as IAA, IPA, and KYNA. Furthermore, FBT regulated the expressions of AhR and its targeted lipometabolic genes such as Pemt, Fasn, and SREBP-1c, as well as other inflammatory genes including TNF-α, IL-6, and IL-1β in the liver of mice. Overall, these findings highlight the beneficial effects of FBT on obesity-related hepatic steatosis and steatohepatitis via microbiota-derived AhR signaling.
Collapse
Affiliation(s)
- Dongmin Liu
- Changsha University of Science & Technology, Changsha 410114, China
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Siyu Wang
- Changsha University of Science & Technology, Changsha 410114, China
| | - Yaqing Liu
- Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
395
|
Maurelli M, Gisondi P, Bellinato F, Mantovani A, Targher G, Girolomoni G. Prevalence of Non-Alcoholic Fatty Liver Disease in Adult Individuals with Moderate-to-Severe Atopic Dermatitis. J Clin Med 2023; 12:6057. [PMID: 37762996 PMCID: PMC10531586 DOI: 10.3390/jcm12186057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND There are no published studies on the prevalence of non-alcoholic fatty liver disease (NAFLD) in patients with atopic dermatitis (AD). OBJECTIVES To estimate the prevalence of NAFLD (assessed via liver ultrasonography) in adults with moderate-to-severe AD. METHODS We performed a retrospective, cross-sectional, observational study including adult patients affected by moderate-to-severe AD, moderate-to-severe chronic plaque psoriasis, or a previous diagnosis of thin melanoma in situ (considered as the control group) who attended the Verona University Hospital between January 2022 and April 2023. Fatty liver was assessed via liver ultrasonography. RESULTS A total of 144 adults with AD, 466 with chronic plaque psoriasis, and 99 with thin melanoma were included. The prevalence rates of ultrasound-detected NAFLD among patients with in situ melanoma, those with moderate-to-severe AD, and those with moderate-to-severe chronic plaque psoriasis were 23.2% (23 out of 99), 24.1% (36 out of 144), and 49.8% (228 out of 466), respectively (p < 0.01). Logistic regression analysis revealed that being of male sex, a higher age, a higher body mass index, and psoriasis were independently associated with NAFLD, whereas AD was not. CONCLUSIONS Our findings show that the prevalence of ultrasound-detected NAFLD in patients with moderate-to-severe AD was comparable to that of patients with a previous diagnosis of in situ melanoma. It is plausible to hypothesize that the Th2-type inflammation typically characterizing AD is not a risk factor for NAFLD. Patients with moderate-to-severe psoriasis, but not those with AD, should be screened for NAFLD and other metabolic comorbidities.
Collapse
Affiliation(s)
- Martina Maurelli
- Section of Dermatology and Venereology, University of Verona, 37129 Verona, Italy; (M.M.); (F.B.); (G.G.)
| | - Paolo Gisondi
- Section of Dermatology and Venereology, University of Verona, 37129 Verona, Italy; (M.M.); (F.B.); (G.G.)
| | - Francesco Bellinato
- Section of Dermatology and Venereology, University of Verona, 37129 Verona, Italy; (M.M.); (F.B.); (G.G.)
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37129 Verona, Italy; (A.M.); (G.T.)
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37129 Verona, Italy; (A.M.); (G.T.)
- IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, University of Verona, 37129 Verona, Italy; (M.M.); (F.B.); (G.G.)
| |
Collapse
|
396
|
Bi H, Zhou B, Yang J, Lu Y, Mao F, Song Y. Whole-genome DNA methylation and gene expression profiling in the livers of mice with nonalcoholic steatohepatitis. Life Sci 2023; 329:121951. [PMID: 37473799 DOI: 10.1016/j.lfs.2023.121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the major causes of liver-related morbidity and mortality. It ranges simple steatosis to non-alcoholic steatohepatitis (NASH). Previous studies have shown that epigenetic factors, such as DNA methylation, can contribute to the development and progression of simple steatosis. However, the profiling of whole-genome DNA methylation remains poorly characterized in NASH. MAIN METHODS In this study, we established a mouse model of diet-induced NASH, by maintaining male mice on a high-fructose-high-cholesterol diet (HFHC), to generate hepatic steatosis, inflammation and injury. We profiled hepatic gene expression by RNA-Sequencing and locus-specific 5-methylcytosine level, using Whole Genome Bisulfite Sequencing (WGBS). KEY FINDINGS We identified >1000 differentially methylated regions in NASH versus control group, indicating that NASH diet could modulate the liver methylome. Furthermore, integrated analysis of methylome and transcriptome identified certain key methylated genes and pathways, which may be involved in steroid metabolism and inflammation response. The liver methylation levels of key genes especially Tgfb, Msn, Iqgap1, Cyba, Fcgr1 decreased, and their consequent increased expression may lead to NASH development. SIGNIFICANCE We found that HFHC diet-induced NASH could induces genome-wide differential DNA methylation changes. Thus, we proposed that DNA methylation profiles of genomes may be a useful signature of gene transcription and may play an important role in the development of NASH. We also screened and validated the changes of key genes, which may provide new perspectives for the mechanistic study of NASH in future.
Collapse
Affiliation(s)
- Hanqi Bi
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Zhou
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Yang
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Mao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuping Song
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
397
|
Gao B, Chen Z, Shi M, Mo Y, Xiao H, Xie Y, Lin M, Chi X. Research landscape and frontiers of non-alcoholic steatohepatitis-associated hepatocellular carcinoma: a bibliometric and visual analysis. Front Pharmacol 2023; 14:1240649. [PMID: 37771721 PMCID: PMC10523561 DOI: 10.3389/fphar.2023.1240649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Due to the widespread prevalence of caloric excess and sedentary behavior on a global scale, there is a growing body of epidemiological evidence indicating that non-alcoholic steatohepatitis (NASH) has rapidly become a leading aetiology underlying of hepatocellular carcinoma (HCC). In light of the escalating incidence of NASH-associated HCC (NASH-HCC), it is imperative to mitigate the impending burden. While there has been an increase in global awareness regarding this issue, it has yet to be examined from a bibliometric standpoint. Therefore, this study seeks to provide a comprehensive bibliometric analysis to characterize the evolution of this field. Method: The present study utilized the Web of Science Core Collection (WoSCC) to identify publications pertaining to NASH-HCC over the past 2 decades. Employing Vosviewer 1.6.19, CiteSpace 6.2.R2, and the Analysis Platform of Bibliometrics, the study conducted an analysis of various dimensions including the quantity of publications, countries, institutions, journals, authors, co-references, keywords, and trend topics in this field. Results: A comprehensive analysis of 3,679 publications pertaining to NASH-HCC, published between 1 January 2002 and 1 April 2023, was conducted. The field in question experienced a rapid increase in publications, with the United States serving as the central hub. Collaboration between institutions was more extensive than that between countries. Notably, HEPATOLOGY (n = 30,168) emerged as the most impactful journal, and Zobair M. Younossi (n = 10,025) as the most frequently cited author in co-citations. The most commonly cited references were KLEINER DE, 2005, HEPATOLOGY (n = 630), followed by YOUNOSSI ZM, 2016, HEPATOLOGY (n = 493). The author keywords were categorized into three distinct clusters, namely, Cluster 1 (Mechanism), Cluster 2 (Factors), and Cluster 3 (Diagnosis). Analysis of high-frequency co-occurring keywords and topical trends revealed emphasis on molecular mechanisms in current research. "macrophages" and "tumor microenvironment" were active research hotspots at present in this field. Conclusion: A bibliometric analysis was performed for the first time on publications pertaining to non-alcoholic steatohepatitis-hepatocellular carcinoma, uncovering co-research networks, developmental trends, and current research hotspots. The emerging frontiers of this field focused on the macrophages and tumor microenvironment, especially the tumor-associated macrophages, offering a fresh perspective for future research directions.
Collapse
Affiliation(s)
- Bowen Gao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiheng Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meijie Shi
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yousheng Mo
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huanming Xiao
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yubao Xie
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ming Lin
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoling Chi
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
398
|
Lee MS, Felipe-Dimog EB, Yang JF, Chen YY, Wu KT, Kuo HJ, Lin TC, Wang CL, Hsieh MH, Lin CY, Batsaikhan B, Ho CK, Wu MT, Dai CY. The Efficacy of Anthropometric Indicators in Predicting Non-Alcoholic Fatty Liver Disease Using FibroScan ® CAP Values among the Taiwanese Population. Biomedicines 2023; 11:2518. [PMID: 37760959 PMCID: PMC10526368 DOI: 10.3390/biomedicines11092518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The controlled attenuation parameter (CAP) measurement obtained from FibroScan® is a low-risk method of assessing fatty liver. This study investigated the association between the FibroScan® CAP values and nine anthropometric indicators, including the abdominal volume index (AVI), body fat percentage (BFP), body mass index (BMI), conicity index (CI), ponderal index (PI), relative fat mass (RFM), waist circumference (WC), waist-hip ratio (WHR), and waist-to-height ratio (WHtR), and risk of non-alcoholic fatty liver disease (fatty liver). We analyzed the medical records of adult patients who had FibroScan® CAP results. CAP values <238 dB/m were coded as 0 (non- fatty liver) and ≥238 dB/m as 1 (fatty liver). An individual is considered to have class 1 obesity when their body mass index (BMI) ranges from 30 kg/m2 to 34.9 kg/m2. Class 2 obesity is defined by a BMI ranging from 35 kg/m2 to 39.9 kg/m2, while class 3 obesity is designated by a BMI of 40 kg/m2 or higher. Out of 1763 subjects, 908 (51.5%) had fatty liver. The BMI, WHtR, and PI were found to be more strongly correlated with the CAP by the cluster dendrogram with correlation coefficients of 0.58, 0.54, and 0.54, respectively (all p < 0.0001). We found that 28.3% of the individuals without obesity had fatty liver, and 28.2% of the individuals with obesity did not have fatty liver. The BMI, CI, and PI were significant predictors of fatty liver. The BMI, PI, and WHtR demonstrated better predictive ability, indicated by AUC values of 0.72, 0.68, and 0.68, respectively, a finding that was echoed in our cluster group analysis that showed interconnected clustering with the CAP. Therefore, of the nine anthropometric indicators we studied, the BMI, CI, PI, and WHtR were found to be more effective in predicting the CAP score, i.e., fatty liver.
Collapse
Affiliation(s)
- Meng-Szu Lee
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (M.-S.L.); or (E.B.F.-D.); (C.-K.H.)
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
| | - Eva Belingon Felipe-Dimog
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (M.-S.L.); or (E.B.F.-D.); (C.-K.H.)
- Nursing Department, Mountain Province State Polytechnic College, Bontoc 2616, Mountain Province, Philippines
| | - Jeng-Fu Yang
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
| | - Yi-Yu Chen
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
| | - Kuan-Ta Wu
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
| | - Hsiang-Ju Kuo
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
| | - Tzu-Chun Lin
- Executive Master of Healthcare Administration, Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University Hospital, Kaohsiung City 80756, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
| | - Chao-Ling Wang
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
| | - Meng-Hsuan Hsieh
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
| | - Chia-Yi Lin
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
| | - Batbold Batsaikhan
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia;
| | - Chi-Kung Ho
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (M.-S.L.); or (E.B.F.-D.); (C.-K.H.)
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
| | - Ming-Tsang Wu
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (M.-S.L.); or (E.B.F.-D.); (C.-K.H.)
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
| | - Chia-Yen Dai
- Health Management Center, Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan; (J.-F.Y.); (K.-T.W.); (C.-L.W.); (M.-H.H.); (C.-Y.L.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 87056, Taiwan
| |
Collapse
|
399
|
Tian Y, Liu PF, Li JY, Li YN, Sun P. Hepatic MR imaging using IDEAL-IQ sequence: Will Gd-EOB-DTPA interfere with reproductivity of fat fraction quantification? World J Clin Cases 2023; 11:5887-5896. [PMID: 37727487 PMCID: PMC10506030 DOI: 10.12998/wjcc.v11.i25.5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification sequence (IDEAL-IQ) is based on chemical shift-based water and fat separation technique to get proton density fat fraction. Multiple studies have shown that using IDEAL-IQ to test the stability and repeatability of liver fat is acceptable and has high accuracy. AIM To explore whether Gadoxetate Disodium (Gd-EOB-DTPA) interferes with the measurement of the hepatic fat content quantified with the IDEAL-IQ and to evaluate the robustness of this technique. METHODS IDEAL-IQ was used to quantify the liver fat content at 3.0T in 65 patients injected with Gd-EOB-DTPA contrast. After injection, IDEAL-IQ was estimated four times, and the fat fraction (FF) and R2* were measured at the following time points: Pre-contrast, between the portal phase (70 s) and the late phase (180 s), the delayed phase (5 min) and the hepatobiliary phase (20 min). One-way repeated-measures analysis was conducted to evaluate the difference in the FFs between the four time points. Bland-Altman plots were adopted to assess the FF changes before and after injection of the contrast agent. P < 0.05 was considered statistically significant. RESULTS The assessment of the FF at the four time points in the liver, spleen and spine showed no significant differences, and the measurements of hepatic FF yielded good consistency between T1 and T2 [95% confidence interval: -0.6768%, 0.6658%], T1 and T3 (-0.3900%, 0.3178%), and T1 and T4 (-0.3750%, 0.2825%). R2* of the liver, spleen and spine increased significantly after injection (P < 0.0001). CONCLUSION Using the IDEAL-IQ sequence to measure the FF, we can obtain results that will not be affected by Gd-EOB-DTPA. The high reproducibility of the IDEAL-IQ sequence makes it available in the scanning interval to save time during multiphase examinations.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Peng-Fei Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Yu Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ya-Nan Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Peng Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
400
|
Ali Zarie A, Osman MA, Alshammari GM, Hassan AB, ElGasim Ahmed Yagoub A, Abdo Yahya M. Saudi date cultivars' seed extracts inhibit developing hepatic steatosis in rats fed a high-fat diet. Saudi J Biol Sci 2023; 30:103732. [PMID: 37588573 PMCID: PMC10425400 DOI: 10.1016/j.sjbs.2023.103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
This research aim was to assess the impact of the seed extracts of the date cultivars (Qatara, Barhi, and Ruthana) on rat's liver steatosis, oxidative stress, and inflammation triggered by feeding a high-fat diet (HFD). The experimental design was based on random partitioning into two groups; one that received the standard diet and another that received the HFD diet. The HFD rats were orally administered Lipitor or date seed extracts at 300 or 600 mg/kg/day for 4 weeks. Accordingly, feeding rats HFD significantly increased body and liver weights, hepatic and serum lipid levels, glucose, insulin, HOMA-IR, liver function enzymes, and inflammation markers, and decreased oxidative stress enzymes. Oral administration of Barhi and Ruthana date seed extracts significantly decreased body and liver weights. Serum and liver total cholesterol TC, Triglycerides TGs, and free fatty acids FFAs were also decreased as were AST, ALT, MAD, leptin, and CRP, with a concomitant increase in SOD, GSH, and CAT. Furthermore, similar to Lipitor, oral administration of the extracts reduced inflammation markers such as TNF-α, serum CRP, IL-6, IL-1β, and leptin while increasing IL-10 and adiponectin levels. Histological observation revealed that extract administration improved hepatocyte and parenchymal structures and decreased lipid deposition. In conclusion, both Barhi and Ruthana seed extracts showed strong hepatoprotective, anti-inflammatory, and antioxidant effects against HFD-induced liver steatosis. And date seeds have other beneficial potential for prevention and treatment of various diseases, which can be studied in the future.
Collapse
Affiliation(s)
- Arwa Ali Zarie
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Magdi A. Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amro B. Hassan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|