351
|
Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments. J Neurooncol 2018; 141:303-313. [PMID: 30535593 DOI: 10.1007/s11060-018-03049-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The brain is a very soft tissue. Glioblastoma (GBM) brain tumours are highly infiltrative into the surrounding healthy brain tissue and invasion mechanisms that have been defined using rigid substrates therefore may not apply to GBM dissemination. GBMs characteristically lose expression of the high molecular weight tropomyosins, a class of actin-associating proteins and essential regulators of the actin stress fibres and focal adhesions that underpin cell migration on rigid substrates. METHODS Here, we investigated how loss of the high molecular weight tropomyosins affects GBM on soft matrices that recapitulate the biomechanical architecture of the brain. RESULTS We find that Tpm 2.1 is down-regulated in GBM grown on soft substrates. We demonstrate that Tpm 2.1 depletion by siRNA induces cell spreading and elongation in soft 3D hydrogels, irrespective of matrix composition. Tpm 1.7, a second high molecular weight tropomyosin is also down-regulated when cells are cultured on soft brain-like surfaces and we show that effects of this isoform are matrix dependent, with Tpm 1.7 inducing cell rounding in 3D collagen gels. Finally, we show that the absence of Tpm 2.1 from primary patient-derived GBMs correlates with elongated, mesenchymal invasion. CONCLUSIONS We propose that Tpm 2.1 down-regulation facilitates GBM colonisation of the soft brain environment. This specialisation of the GBM actin cytoskeleton organisation that is highly suited to the soft brain-like environment may provide novel therapeutic targets for arresting GBM invasion.
Collapse
|
352
|
Chester D, Kathard R, Nortey J, Nellenbach K, Brown AC. Viscoelastic properties of microgel thin films control fibroblast modes of migration and pro-fibrotic responses. Biomaterials 2018; 185:371-382. [DOI: 10.1016/j.biomaterials.2018.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
|
353
|
Brusatin G, Panciera T, Gandin A, Citron A, Piccolo S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. NATURE MATERIALS 2018; 17:1063-1075. [PMID: 30374202 PMCID: PMC6992423 DOI: 10.1038/s41563-018-0180-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 05/11/2023]
Abstract
Mechanical signals are increasingly recognized as overarching regulators of cell behaviour, controlling stemness, organoid biology, tissue development and regeneration. Moreover, aberrant mechanotransduction is a driver of disease, including cancer, fibrosis and cardiovascular defects. A central question remains how cells compute a host of biomechanical signals into meaningful biological behaviours. Biomaterials and microfabrication technologies are essential to address this issue. Here we review a large body of evidence that connects diverse biomaterial-based systems to the functions of YAP/TAZ, two highly related mechanosensitive transcriptional regulators. YAP/TAZ orchestrate the response to a suite of engineered microenviroments, emerging as a universal control system for cells in two and three dimensions, in static or dynamic fashions, over a range of elastic and viscoelastic stimuli, from solid to fluid states. This approach may guide the rational design of technological and material-based platforms with dramatically improved functionalities and inform the generation of new biomaterials for regenerative medicine applications.
Collapse
Affiliation(s)
- Giovanna Brusatin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
| | - Tito Panciera
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Alessandro Gandin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Anna Citron
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy.
- IFOM-the FIRC Institute of Molecular Oncology, .
| |
Collapse
|
354
|
Desai A, Geraghty S, Dean D. Effects of blocking integrin β1 and N-cadherin cellular interactions on mechanical properties of vascular smooth muscle cells. J Biomech 2018; 82:337-345. [PMID: 30503562 DOI: 10.1016/j.jbiomech.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/02/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023]
Abstract
Experimental measurements of cellular mechanical properties have shown large variability in whole-cell mechanical properties between cells from a single population. This heterogeneity has been observed in many cell populations and with several measurement techniques but the sources are not yet fully understood. Cell mechanical properties are directly related to the composition and organization of the cytoskeleton, which is physically coupled to neighboring cells through adherens junctions and to underlying matrix through focal adhesion complexes. This high level of heterogeneity may be attributed to varying cellular interactions throughout the sample. We tested the effect of cell-cell and cell-matrix interactions on the mechanical properties of vascular smooth muscle cells (VSMCs) in culture by using antibodies to block N-cadherin and integrin β1 interactions. VSMCs were cultured on substrates of varying stiffness with and without tension. Under each of these conditions, cellular mechanical properties were characterized by performing atomic force microscopy (AFM) and cellular structure was analyzed through immunofluorescence imaging. As expected, VSMC mechanical properties were greatly affected by the underlying culture substrate and applied tension. Interestingly, the cell-to-cell variation in mechanical properties within each sample decreased significantly in the antibody conditions. Thus, the cells grown with blocking antibodies were more homogeneous in their mechanical properties on both glass and soft substrates. This suggests that diversified adhesion binding between cells and the ECM is responsible for a significant amount of mechanical heterogeneity that is observed in 2D cell culture studies.
Collapse
Affiliation(s)
- Aesha Desai
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Sandra Geraghty
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
355
|
Izquierdo-Álvarez A, Vargas DA, Jorge-Peñas Á, Subramani R, Vaeyens MM, Van Oosterwyck H. Spatiotemporal Analyses of Cellular Tractions Describe Subcellular Effect of Substrate Stiffness and Coating. Ann Biomed Eng 2018; 47:624-637. [DOI: 10.1007/s10439-018-02164-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
|
356
|
Darling NJ, Sideris E, Hamada N, Carmichael ST, Segura T. Injectable and Spatially Patterned Microporous Annealed Particle (MAP) Hydrogels for Tissue Repair Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801046. [PMID: 30479933 PMCID: PMC6247047 DOI: 10.1002/advs.201801046] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 05/26/2023]
Abstract
Spatially patterned hydrogels are becoming increasingly popular in the field of regenerative medicine and tissue repair because of their ability to guide cell infiltration and migration. However, postfabrication technologies are usually required to spatially pattern a hydrogel, making these hydrogels difficult to translate into the clinic. Here, an injectable spatially patterned hydrogel is reported using hyaluronic acid (HA)-based particle hydrogels. These particle hydrogels are sequentially loaded into a syringe to form a pattern and, once injected, they maintain the pattern. The applicability of this hydrogel in a wound healing skin model, a subcutaneous implant model, as well as a stroke brain model is examined and distinct patterning in all models tested is shown. This injectable and spatially patterned hydrogel can be used to create physical or biochemical gradients. Further, this design can better match the scaffold properties within the physical location of the tissue (e.g., wound border vs wound center). This allows for better design features within the material that promote repair and regeneration.
Collapse
Affiliation(s)
- Nicole J. Darling
- Department of Chemical and Biomolecular EngineeringUniversity of California, Los Angeles420 Westwood PlazaLos AngelesCA90095USA
| | - Elias Sideris
- Department of Chemical and Biomolecular EngineeringUniversity of California, Los Angeles420 Westwood PlazaLos AngelesCA90095USA
| | - Naomi Hamada
- Department of Chemical and Biomolecular EngineeringUniversity of California, Los Angeles420 Westwood PlazaLos AngelesCA90095USA
| | - S. Thomas Carmichael
- Department of NeurologyDavid Geffen School of MedicineUniversity of California, Los Angeles621 Charles Young DriveLos AngelesCA90095USA
| | - Tatiana Segura
- Department of Chemical and Biomolecular EngineeringUniversity of California, Los Angeles420 Westwood PlazaLos AngelesCA90095USA
| |
Collapse
|
357
|
Burkel B, Proestaki M, Tyznik S, Notbohm J. Heterogeneity and nonaffinity of cell-induced matrix displacements. Phys Rev E 2018; 98:052410. [PMID: 30619988 PMCID: PMC6319873 DOI: 10.1103/physreve.98.052410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cell contractile forces deform and reorganize the surrounding matrix, but the relationship between the forces and the resulting displacements is complicated by the fact that the fibrous structure brings about a complex set of mechanical properties. Many studies have quantified nonlinear and time-dependent properties at macroscopic scales, but it is unclear whether macroscopic properties apply to the scale of a cell, where the matrix is composed of a heterogeneous network of fibers. To address this question, we mimicked the contraction of a cell embedded within a fibrous collagen matrix and quantified the resulting displacements. The data revealed displacements that were heterogeneous and nonaffine. The heterogeneity was reproducible during cyclic loading, and it decreased with decreasing fiber length. Both the experiments and a fiber network model showed that the heterogeneous displacements decayed over distance at a rate no faster than the average displacement field, indicating no transition to homogeneous continuum behavior. Experiments with cells fully embedded in collagen matrices revealed the presence of heterogeneous displacements as well, exposing the dramatic heterogeneity in matrix reorganization that is induced by cells at different positions within the same fibrous matrix.
Collapse
Affiliation(s)
- Brian Burkel
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Maria Proestaki
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Stephen Tyznik
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
358
|
Diba M, Polini A, Petre DG, Zhang Y, Leeuwenburgh SC. Fiber-reinforced colloidal gels as injectable and moldable biomaterials for regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:143-150. [DOI: 10.1016/j.msec.2018.06.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/09/2018] [Accepted: 06/16/2018] [Indexed: 12/20/2022]
|
359
|
Chang JK, Emon MAB, Li CS, Yang Q, Chang HP, Yang Z, Wu CI, Saif MT, Rogers JA. Cytotoxicity and in Vitro Degradation Kinetics of Foundry-Compatible Semiconductor Nanomembranes and Electronic Microcomponents. ACS NANO 2018; 12:9721-9732. [PMID: 30160102 DOI: 10.1021/acsnano.8b04513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Foundry-compatible materials and processing approaches serve as the foundations for advanced, active implantable microsystems that can dissolve in biofluids into biocompatible reaction products, with broad potential applications in biomedicine. The results reported here include in vitro studies of the dissolution kinetics and nanoscale bioresorption behaviors of device-grade thin films of Si, SiN x, SiO2, and W in the presence of dynamic cell cultures via atomic force microscopy and X-ray photoemission spectroscopy. In situ investigations of cell-extracellular mechanotransduction induced by cellular traction provide insights into the cytotoxicity of these same materials and of microcomponents formed with them using foundry-compatible processes, indicating potential cytotoxicity elicited by W at concentrations greater than 6 mM. The findings are of central relevance to the biocompatibility of modern Si-based electronics technologies as active, bioresorbable microsystems that interface with living tissues.
Collapse
Affiliation(s)
- Jan-Kai Chang
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
| | - M A Bashar Emon
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chia-Shuo Li
- Graduate Institute of Photonics and Optoelectronics , National Taiwan University , Taipei 10617 , Taiwan
| | - Quansan Yang
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Mechanical Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Hui-Ping Chang
- Graduate Institute of Photonics and Optoelectronics , National Taiwan University , Taipei 10617 , Taiwan
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Zijian Yang
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chih-I Wu
- Graduate Institute of Photonics and Optoelectronics , National Taiwan University , Taipei 10617 , Taiwan
| | - M Taher Saif
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - John A Rogers
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Departments of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Simpson Querrey Institute for BioNanotechnology, McCormick School of Engineering, and Feinberg School of Medicine , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
360
|
Dai J, Qin L, Chen Y, Wang H, Lin G, Li X, Liao H, Fang H. Matrix stiffness regulates epithelial-mesenchymal transition via cytoskeletal remodeling and MRTF-A translocation in osteosarcoma cells. J Mech Behav Biomed Mater 2018; 90:226-238. [PMID: 30384218 DOI: 10.1016/j.jmbbm.2018.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Matrix stiffness is known to alter cellular behaviors in various biological contexts. Previous investigations have shown that epithelial-mesenchymal transition (EMT) promotes the progression and invasion of tumor. Mechanical signaling is identified as a regulator of EMT. However, the molecular mechanisms underlying the influence exerted by matrix stiffness on EMT in osteosarcoma remains largely unknown. Using polyacrylamide hydrogel model, we investigate the effects of matrix stiffness on EMT and migration in osteosarcoma. Our data indicates that high matrix stiffness regulates cell morphology and promotes EMT and migration in osteosarcoma MG63 cell line in vitro. Notably, matrix stiffness promotes polymerization of actin and nuclear accumulation of myocardin-related transcription factor A (MRTF-A). Furthermore, inhibiting MRTF-A by CCG 203971 significantly reduces EMT and migration on rigid gels. These data suggest that matrix stiffness of the tumor microenvironment actively regulate osteosarcoma EMT and migration through cytoskeletal remodeling and translocation of MRTF-A, which may contribute to cancer progression.
Collapse
Affiliation(s)
- Jun Dai
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Liang Qin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Yan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Huan Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Guanlin Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Xiao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Hui Liao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China.
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China.
| |
Collapse
|
361
|
Effect of patterned polyacrylamide hydrogel on morphology and orientation of cultured NRVMs. Sci Rep 2018; 8:11991. [PMID: 30097609 PMCID: PMC6086831 DOI: 10.1038/s41598-018-30360-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022] Open
Abstract
We recently demonstrated that patterned Parylene C films could be effectively used as a mask for directly copolymerizing proteins on polyacrylamide hydrogel (PAm). In this work, we have proved the applicability of this technique for studying the effect such platforms render on neonatal rat ventricular myocytes (NRVMs). Firstly, we have characterised topographically and mechanically the scaffolds in liquid at the nano-scale level. We thus establish that such platforms have physical properties that closely mimics the in vivo extracellular environment of cells. We have then studied the cell morphology and physiology by comparing cultures on flat uniformly-covered and collagen-patterned scaffolds. We show that micro-patterns promote the elongation of cells along the principal axis of the ridges coated with collagen. In several cases, cells also tend to create bridges across the grooves. We have finally studied cell contraction, monitoring Ca2+ cycling at a certain stimulation. Cells seeded on patterned scaffolds present significant responses in comparison to the isotropic ones.
Collapse
|
362
|
Mohan A, Schlue KT, Kniffin AF, Mayer CR, Duke AA, Narayanan V, Arsenovic PT, Bathula K, Danielsson BE, Dumbali SP, Maruthamuthu V, Conway DE. Spatial Proliferation of Epithelial Cells Is Regulated by E-Cadherin Force. Biophys J 2018; 115:853-864. [PMID: 30131170 DOI: 10.1016/j.bpj.2018.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 06/24/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022] Open
Abstract
Cell proliferation and contact inhibition play a major role in maintaining epithelial cell homeostasis. Prior experiments have shown that externally applied forces, such as stretch, result in increased proliferation in an E-cadherin force-dependent manner. In this study, the spatial regulation of cell proliferation in large epithelial colonies was examined. Surprisingly, cells at the center of the colony still had increased proliferation as compared to cells in confluent monolayers. E-cadherin forces were found to be elevated for both cells at the edge and center of these larger colonies when compared to confluent monolayers. To determine if high levels of E-cadherin force were necessary to induce proliferation at the center of the colony, a lower-force mutant of E-cadherin was developed. Cells with lower E-cadherin force had significantly reduced proliferation for cells at the center of the colony but minimal differences for cells at the edges of the colony. Similarly, increasing substrate stiffness was found to increase E-cadherin force and increase the proliferation rate across the colony. Taken together, these results show that forces through cell-cell junctions regulate proliferation across large groups of epithelial cells. In addition, an important finding of this study is that junction forces are dynamic and modulate cellular function even in the absence of externally applied loads.
Collapse
Affiliation(s)
- Abhinav Mohan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kyle T Schlue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Alex F Kniffin
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Carl R Mayer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Ashley A Duke
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Paul T Arsenovic
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kranthidhar Bathula
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Sandeep P Dumbali
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Venkat Maruthamuthu
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
363
|
Meng Z, Qiu Y, Lin KC, Kumar A, Placone JK, Fang C, Wang KC, Lu S, Pan M, Hong AW, Moroishi T, Luo M, Plouffe SW, Diao Y, Ye Z, Park HW, Wang X, Yu FX, Chien S, Wang CY, Ren B, Engler AJ, Guan KL. RAP2 mediates mechanoresponses of the Hippo pathway. Nature 2018; 560:655-660. [PMID: 30135582 PMCID: PMC6128698 DOI: 10.1038/s41586-018-0444-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/12/2018] [Indexed: 02/05/2023]
Abstract
Mammalian cells are surrounded by neighbouring cells and extracellular matrix (ECM), which provide cells with structural support and mechanical cues that influence diverse biological processes1. The Hippo pathway effectors YAP (also known as YAP1) and TAZ (also known as WWTR1) are regulated by mechanical cues and mediate cellular responses to ECM stiffness2,3. Here we identified the Ras-related GTPase RAP2 as a key intracellular signal transducer that relays ECM rigidity signals to control mechanosensitive cellular activities through YAP and TAZ. RAP2 is activated by low ECM stiffness, and deletion of RAP2 blocks the regulation of YAP and TAZ by stiffness signals and promotes aberrant cell growth. Mechanistically, matrix stiffness acts through phospholipase Cγ1 (PLCγ1) to influence levels of phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, which activates RAP2 through PDZGEF1 and PDZGEF2 (also known as RAPGEF2 and RAPGEF6). At low stiffness, active RAP2 binds to and stimulates MAP4K4, MAP4K6, MAP4K7 and ARHGAP29, resulting in activation of LATS1 and LATS2 and inhibition of YAP and TAZ. RAP2, YAP and TAZ have pivotal roles in mechanoregulated transcription, as deletion of YAP and TAZ abolishes the ECM stiffness-responsive transcriptome. Our findings show that RAP2 is a molecular switch in mechanotransduction, thereby defining a mechanosignalling pathway from ECM stiffness to the nucleus.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Kimberly C Lin
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Cao Fang
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kuei-Chun Wang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shicong Lu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Margaret Pan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Audrey W Hong
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Toshiro Moroishi
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Enzymology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Min Luo
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yarui Diao
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Xiaoqiong Wang
- Robert J. Tomisch Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu Chien
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Adam J Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
364
|
Kong YP, Rioja AY, Xue X, Sun Y, Fu J, Putnam AJ. A systems mechanobiology model to predict cardiac reprogramming outcomes on different biomaterials. Biomaterials 2018; 181:280-292. [PMID: 30096562 DOI: 10.1016/j.biomaterials.2018.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
During normal development, the extracellular matrix (ECM) regulates cell fate mechanically and biochemically. However, the ECM's influence on lineage reprogramming, a process by which a cell's developmental cycle is reversed to attain a progenitor-like cell state followed by subsequent differentiation into a desired cell phenotype, is unknown. Using a material mimetic of the ECM, here we show that ligand identity, ligand density, and substrate modulus modulate indirect cardiac reprogramming efficiency, but were not individually correlated with phenotypic outcomes in a predictive manner. Alternatively, we developed a data-driven model using partial least squares regression to relate short-term cell states, defined by quantitative mechanosensitive responses to different material environments, with long-term changes in phenotype. This model was validated by accurately predicting the reprogramming outcomes on a different material platform. Collectively, these findings suggest a means to rapidly screen candidate biomaterials that support reprogramming with high efficiency, without subjecting cells to the entire reprogramming process.
Collapse
Affiliation(s)
- Yen P Kong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ana Y Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Jianping Fu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
365
|
LaCroix AS, Lynch AD, Berginski ME, Hoffman BD. Tunable molecular tension sensors reveal extension-based control of vinculin loading. eLife 2018; 7:33927. [PMID: 30024378 PMCID: PMC6053308 DOI: 10.7554/elife.33927] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/03/2018] [Indexed: 01/03/2023] Open
Abstract
Molecular tension sensors have contributed to a growing understanding of mechanobiology. However, the limited dynamic range and inability to specify the mechanical sensitivity of these sensors has hindered their widespread use in diverse contexts. Here, we systematically examine the components of tension sensors that can be altered to improve their functionality. Guided by the development of a first principles model describing the mechanical behavior of these sensors, we create a collection of sensors that exhibit predictable sensitivities and significantly improved performance in cellulo. Utilized in the context of vinculin mechanobiology, a trio of these new biosensors with distinct force- and extension-sensitivities reveal that an extension-based control paradigm regulates vinculin loading in a variety of mechanical contexts. To enable the rational design of molecular tension sensors appropriate for diverse applications, we predict the mechanical behavior, in terms of force and extension, of additional 1020 distinct designs. Cells must sense signals from their surroundings to play their roles within the body. These signals can be biochemical, such as growth-promoting substances, or mechanical, for example the stiffness or softness of the environment. Mechanical signals can be detected by load-bearing proteins, which stretch like tiny springs in response to forces. In animals, these proteins span the membrane separating the interior of the cell from the exterior. Externally, the proteins attach to structures around the cell; internally, they connect to the machinery that both generates forces and allows cells to respond to signals from outside. As such, load-bearing proteins form a direct mechanical link between cell and environment. Scientists use tools called molecular tension sensors to measure how much a load-bearing protein stretches in response to changes, and the force that is being applied to it. However, just like any other type of scale, these sensors only work over a certain range, which happens to be limited. This means that, for example, they cannot measure forces in tissues that are too soft (like the brain), or too stiff (such as bones). New sensors that can assess forces in these contexts are therefore needed, but so far research in this area has been slow due to a reliance on ‘trial-and-error’ approaches. Here, LaCroix et al. developed a new method to predict the sensitivity of molecular tension sensors inside cells. This was accomplished by examining several existing sensors, and identifying which components could be altered to change the properties of the sensors. Then, this information was used to create a computer model that could predict how new sensors would behave, and which range of forces they could measure. Finally, the sensors designed following this method were tested in mouse cells grown in the laboratory, and they worked better than their predecessors. The next step was for LaCroix et al. to use a trio of new sensors with different sensitivities to study the load-bearing protein vinculin in mouse cells. The goal was to figure out exactly how cells manage their load-bearing proteins. Indeed, it was widely assumed that a cell acts on a load-bearing protein by applying a force on it. In response, the protein would stretch by a certain amount, which can change depending on its properties – a ‘stiffer’ protein would stretch less. Unexpectedly, the new sensors showed that cells instead manipulate how much vinculin stretches, applying varying forces to achieve the same length of the protein in different environments. Improved molecular tension sensors will give scientists a better insight into how cells respond to their mechanical environment, which could help to direct cell behavior in tissues engineered in the laboratory. This knowledge is also directly relevant to human health, as the mechanical properties of many tissues change during disease, such as tumors stiffening during cancer.
Collapse
Affiliation(s)
- Andrew S LaCroix
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Andrew D Lynch
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Matthew E Berginski
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, United States
| |
Collapse
|
366
|
Induction of quiescence (G0) in bone marrow stromal stem cells enhances their stem cell characteristics. Stem Cell Res 2018; 30:69-80. [DOI: 10.1016/j.scr.2018.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/22/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
|
367
|
Abstract
Blood vessels are essential for blood circulation but also control organ growth, homeostasis, and regeneration, which has been attributed to the release of paracrine signals by endothelial cells. Endothelial tubules are associated with specialised mesenchymal cells, termed pericytes, which help to maintain vessel wall integrity. Here we identify pericytes as regulators of epithelial and endothelial morphogenesis in postnatal lung. Mice lacking expression of the Hippo pathway components YAP and TAZ in pericytes show defective alveologenesis. Mutant pericytes are present in normal numbers but display strongly reduced expression of hepatocyte growth factor leading to impaired activation of the c-Met receptor, which is expressed by alveolar epithelial cells. YAP and TAZ are also required for expression of angiopoietin-1 by pulmonary pericytes, which also controls hepatocyte growth factor expression and thereby alveologenesis in an autocrine fashion. These findings establish that pericytes have important, organ-specific signalling properties and coordinate the behavior of epithelial and vascular cells during lung morphogenesis. Pericytes surround endothelial tubules and help maintain the integrity of blood vessels. Here the authors show that pericytes regulate lung morphogenesis via paracrine signalling controlled by components of the Hippo pathway.
Collapse
|
368
|
Lin CH, Jokela T, Gray J, LaBarge MA. Combinatorial Microenvironments Impose a Continuum of Cellular Responses to a Single Pathway-Targeted Anti-cancer Compound. Cell Rep 2018; 21:533-545. [PMID: 29020637 DOI: 10.1016/j.celrep.2017.09.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/26/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironments are a driver of resistance to anti-cancer drugs. Dissecting cell-microenvironment interactions into tractable units of study presents a challenge. Here, we assess the impact of hundreds of tumor-inspired microenvironments, in parallel, on lapatinib responses in four cancer cell lines. Combinations of ECM and soluble factors were printed on stiffness-tunable substrata to generate a collection of controlled microenvironments in which to explore cell-based functional responses. Proliferation, HER2 protein expression and phosphorylation, and morphology were measured in single cells. Using dimension reduction and linear modeling, the effects of microenvironment constituents were identified and then validated empirically. Each of the cell lines exhibits unique microenvironment-response patterns. Fibronectin, type IV collagen, and matrix rigidity are significant regulators of lapatinib resistance in HER2-amplified breast cancer cells. Small-molecule inhibitors were identified that could attenuate microenvironment-imposed resistance. Thus, we demonstrate a strategy to identify resistance- and sensitivity-driving microenvironments to improve the efficacy of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Chun-Han Lin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tiina Jokela
- Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; Center for Cancer Biomarkers, University of Bergen, Bergen 5009, Norway
| | - Joe Gray
- Department of Bioengineering, Oregon Health & Science University, Portland, OR 97201, USA
| | - Mark A LaBarge
- Department of Population Sciences, City of Hope, Duarte, CA 91010, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Center for Cancer Biomarkers, University of Bergen, Bergen 5009, Norway.
| |
Collapse
|
369
|
Zhang X, Yang L, Chien S, Lv Y. Suspension state promotes metastasis of breast cancer cells by up-regulating cyclooxygenase-2. Am J Cancer Res 2018; 8:3722-3736. [PMID: 30083255 PMCID: PMC6071525 DOI: 10.7150/thno.25434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
Hematogenous metastasis requires tumor cells to detach from primary tumor into blood/lymphatic circulation and extravasate. Tumor cells in the blood circulation system, named circulating tumor cells (CTCs), are in a suspension state, with unique cytoskeletal structure and molecular phenotype different from primary tumor cells. The aim of this study is to assess the impact of suspension state on the metastatic potential of breast cancer cells (BCCs) and study its underlying mechanism. Methods: BCCs were cultured on low-adhesion plates to mimic the suspension state. Conventional adherent culture BCCs were used as the control. This study examined the metastatic potential of adherent and suspension BCCs in vitro and in vivo. RNA sequencing analysis, siRNA, and inhibitors were used to determine the underlying molecular mechanism. Results: The suspension state significantly increased the metastatic potential of BCCs, but slightly suppressed their tumor growth. RNA sequencing analysis revealed that the suspension state resulted in an acquisition of unique molecular signature enriched in pro-metastatic and tumor-suppressive genes. Specifically, prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes protein cyclooxygenase-2 (COX-2), was identified as a highly up-regulated gene in suspension state compared with adherent cultured BCCs. Inhibition of the catalytic activity of COX-2 by celecoxib markedly suppressed suspension-increased migration and invasion of BCCs. In addition, knock-down of COX-2 by siRNA reduced the experimental lung metastasis formation of suspension cultured BCCs, which was associated with a remarkable decrease in retention and survival of BCCs in lungs of mice in the early stage of metastasis. Activation of Ca2+/calcineurin (CaN)/nuclear factor of activated T cells (NFAT) pathway and disruption of cytoskeleton contributed to the COX-2 up-expression by suspension state. Conclusions: Our results demonstrate that suspension state plays an important role in the metastatic potential of CTCs, and suggest a potential application of COX-2 inhibitor for anti-metastasis.
Collapse
|
370
|
Tusan CG, Man YH, Zarkoob H, Johnston DA, Andriotis OG, Thurner PJ, Yang S, Sander EA, Gentleman E, Sengers BG, Evans ND. Collective Cell Behavior in Mechanosensing of Substrate Thickness. Biophys J 2018; 114:2743-2755. [PMID: 29874622 PMCID: PMC6027966 DOI: 10.1016/j.bpj.2018.03.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix stiffness has a profound effect on the behavior of many cell types. Adherent cells apply contractile forces to the material on which they adhere and sense the resistance of the material to deformation-its stiffness. This is dependent on both the elastic modulus and the thickness of the material, with the corollary that single cells are able to sense underlying stiff materials through soft hydrogel materials at low (<10 μm) thicknesses. Here, we hypothesized that cohesive colonies of cells exert more force and create more hydrogel deformation than single cells, therefore enabling them to mechanosense more deeply into underlying materials than single cells. To test this, we modulated the thickness of soft (1 kPa) elastic extracellular-matrix-functionalized polyacrylamide hydrogels adhered to glass substrates and allowed colonies of MG63 cells to form on their surfaces. Cell morphology and deformations of fluorescent fiducial-marker-labeled hydrogels were quantified by time-lapse fluorescence microscopy imaging. Single-cell spreading increased with respect to decreasing hydrogel thickness, with data fitting to an exponential model with half-maximal response at a thickness of 3.2 μm. By quantifying cell area within colonies of defined area, we similarly found that colony-cell spreading increased with decreasing hydrogel thickness but with a greater half-maximal response at 54 μm. Depth-sensing was dependent on Rho-associated protein kinase-mediated cellular contractility. Surface hydrogel deformations were significantly greater on thick hydrogels compared to thin hydrogels. In addition, deformations extended greater distances from the periphery of colonies on thick hydrogels compared to thin hydrogels. Our data suggest that by acting collectively, cells mechanosense rigid materials beneath elastic hydrogels at greater depths than individual cells. This raises the possibility that the collective action of cells in colonies or sheets may allow cells to sense structures of differing material properties at comparatively large distances.
Collapse
Affiliation(s)
- Camelia G Tusan
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Yu-Hin Man
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom; Mechanical Engineering, University of Southampton, Southampton, United Kingdom
| | - Hoda Zarkoob
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa
| | - David A Johnston
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, Technische Universität Wien, Vienna, Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, Technische Universität Wien, Vienna, Austria
| | - Shoufeng Yang
- Mechanical Engineering, University of Southampton, Southampton, United Kingdom; Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Edward A Sander
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Bram G Sengers
- Mechanical Engineering, University of Southampton, Southampton, United Kingdom
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom; Mechanical Engineering, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
371
|
Hippo Signaling Plays an Essential Role in Cell State Transitions during Cardiac Fibroblast Development. Dev Cell 2018; 45:153-169.e6. [PMID: 29689192 DOI: 10.1016/j.devcel.2018.03.019] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
During development, progenitors progress through transition states. The cardiac epicardium contains progenitors of essential non-cardiomyocytes. The Hippo pathway, a kinase cascade that inhibits the Yap transcriptional co-factor, controls organ size in developing hearts. Here, we investigated Hippo kinases Lats1 and Lats2 in epicardial diversification. Epicardial-specific deletion of Lats1/2 was embryonic lethal, and mutant embryos had defective coronary vasculature remodeling. Single-cell RNA sequencing revealed that Lats1/2 mutant cells failed to activate fibroblast differentiation but remained in an intermediate cell state with both epicardial and fibroblast characteristics. Lats1/2 mutant cells displayed an arrested developmental trajectory with persistence of epicardial markers and expanded expression of Yap targets Dhrs3, an inhibitor of retinoic acid synthesis, and Dpp4, a protease that modulates extracellular matrix (ECM) composition. Genetic and pharmacologic manipulation revealed that Yap inhibits fibroblast differentiation, prolonging a subepicardial-like cell state, and promotes expression of matricellular factors, such as Dpp4, that define ECM characteristics.
Collapse
|
372
|
Immunization efficacy of cryopreserved genetically attenuated Plasmodium berghei sporozoites. Parasitol Res 2018; 117:2487-2497. [PMID: 29797085 DOI: 10.1007/s00436-018-5937-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
Malaria is transmitted through the injection of Plasmodium sporozoites into the skin by Anopheles mosquitoes. The parasites first replicate within the liver before infecting red blood cells, which leads to the symptoms of the disease. Experimental immunization with attenuated sporozoites that arrest their development in the liver has been extensively investigated in rodent models and humans. Recent technological advances have included the capacity to cryopreserve sporozoites for injection, which has enabled a series of controlled studies on human infection with sporozoites. Here, we used a cryopreservation protocol to test the efficiency of genetically attenuated cryopreserved sporozoites for immunization of mice in comparison with freshly isolated controls. This showed that cryopreserved sporozoites are highly viable as judged by their capacity to migrate in vitro but show only 20% efficiency in liver infection, which impacts their capacity to generate protection of animals in immunization experiments.
Collapse
|
373
|
LeSavage BL, Suhar NA, Madl CM, Heilshorn SC. Production of Elastin-like Protein Hydrogels for Encapsulation and Immunostaining of Cells in 3D. J Vis Exp 2018. [PMID: 29863669 DOI: 10.3791/57739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two-dimensional (2D) tissue culture techniques have been essential for our understanding of fundamental cell biology. However, traditional 2D tissue culture systems lack a three-dimensional (3D) matrix, resulting in a significant disconnect between results collected in vitro and in vivo. To address this limitation, researchers have engineered 3D hydrogel tissue culture platforms that can mimic the biochemical and biophysical properties of the in vivo cell microenvironment. This research has motivated the need to develop material platforms that support 3D cell encapsulation and downstream biochemical assays. Recombinant protein engineering offers a unique toolset for 3D hydrogel material design and development by allowing for the specific control of protein sequence and therefore, by extension, the potential mechanical and biochemical properties of the resultant matrix. Here, we present a protocol for the expression of recombinantly-derived elastin-like protein (ELP), which can be used to form hydrogels with independently tunable mechanical properties and cell-adhesive ligand concentration. We further present a methodology for cell encapsulation within ELP hydrogels and subsequent immunofluorescent staining of embedded cells for downstream analysis and quantification.
Collapse
Affiliation(s)
| | - Nicholas A Suhar
- Department of Materials Science and Engineering, Stanford University
| | | | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University;
| |
Collapse
|
374
|
Zhao C, Lin JS, Choolani M, Dan YY, Pastorin G, Ho HK. Enhanced hepatic differentiation of human amniotic epithelial cells on polyethylene glycol-linked multiwalled carbon nanotube-coated hydrogels. J Tissue Eng Regen Med 2018; 12:1556-1566. [PMID: 29700978 DOI: 10.1002/term.2672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/16/2018] [Accepted: 04/12/2018] [Indexed: 01/24/2023]
Abstract
Polyethylene glycol-linked multiwalled carbon nanotube-coated poly-acrylamide hydrogel (CNT-PA) was customized to mimic human liver stiffness and nanostructured surface in liver cells for modulating differentiation of human amniotic epithelial cells (hAECs) into functional hepatocyte-like cells (HLCs) in vitro. This composite of CNT-PA matrix enhanced the hepatic differentiation of hAECs into HLCs with suppression of pluripotent markers and up-regulation of hepatic markers at both transcript and protein levels. Furthermore, the HLCs on CNT-PA demonstrated hepatocytic functions in terms of albumin secretion, higher uptake of indocyanine green, and comparable CYP3A4 enzymatic function and inducibility when matched against HepG2 cells. Taken together, CNT-PA provides an efficient and scalable platform for the expansion of HLCs from hAECs and could be explored further for downstream development.
Collapse
Affiliation(s)
- Chunyan Zhao
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.,NanoCore, Faculty of Engineering, National University of Singapore, Singapore
| | - Jamie Siqi Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.,NanoCore, Faculty of Engineering, National University of Singapore, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
375
|
Evans EB, Brady SW, Tripathi A, Hoffman-Kim D. Schwann cell durotaxis can be guided by physiologically relevant stiffness gradients. Biomater Res 2018; 22:14. [PMID: 29780613 PMCID: PMC5948700 DOI: 10.1186/s40824-018-0124-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Successful nerve regeneration depends upon directed migration of morphologically specialized repair state Schwann cells across a nerve defect. Although several groups have studied directed migration of Schwann cells in response to chemical or topographic cues, the current understanding of how the mechanical environment influences migration remains largely understudied and incomplete. Therefore, the focus of this study was to evaluate Schwann cell migration and morphodynamics in the presence of stiffness gradients, which revealed that Schwann cells can follow extracellular gradients of increasing stiffness, in a form of directed migration termed durotaxis. Methods Polyacrylamide substrates were fabricated to mimic the range of stiffness found in peripheral nerve tissue. We assessed Schwann cell response to substrates that were either mechanically uniform or embedded with a shallow or steep stiffness gradient, respectively corresponding to the mechanical niche present during either the fluid phase or subsequent matrix phase of the peripheral nerve regeneration process. We examined cell migration (velocity and directionality) and morphology (elongation, spread area, nuclear aspect ratio, and cell process dynamics). We also characterized the surface morphology of Schwann cells by scanning electron microscopy. Results On laminin-coated polyacrylamide substrates embedded with either a shallow (∼0.04 kPa/mm) or steep (∼0.95 kPa/mm) stiffness gradient, Schwann cells displayed durotaxis, increasing both their speed and directionality along the gradient materials, fabricated with elastic moduli in the range found in peripheral nerve tissue. Uniquely and unlike cell behavior reported in other cell types, the durotactic response of Schwann cells was not dependent upon the slope of the gradient. When we examined whether durotaxis behavior was accompanied by a pro-regenerative Schwann cell phenotype, we observed altered cell morphology, including increases in spread area and the number, elongation, and branching of the cellular processes, on the steep but not the shallow gradient materials. This phenotype emerged within hours of the cells adhering to the materials and was sustained throughout the 24 hour duration of the experiment. Control experiments also showed that unlike most adherent cells, Schwann cells did not alter their morphology in response to uniform substrates of different stiffnesses. Conclusion This study is notable in its report of durotaxis of cells in response to a stiffness gradient slope, which is greater than an order of magnitude less than reported elsewhere in the literature, suggesting Schwann cells are highly sensitive detectors of mechanical heterogeneity. Altogether, this work identifies durotaxis as a new migratory modality in Schwann cells, and further shows that the presence of a steep stiffness gradient can support a pro-regenerative cell morphology. Electronic supplementary material The online version of this article (10.1186/s40824-018-0124-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth B Evans
- 1Department of Molecular Pharmacology, Physiology, Brown University, Providence, Rhode Island, 02912 USA
| | - Samantha W Brady
- 1Department of Molecular Pharmacology, Physiology, Brown University, Providence, Rhode Island, 02912 USA
| | - Anubhav Tripathi
- 1Department of Molecular Pharmacology, Physiology, Brown University, Providence, Rhode Island, 02912 USA.,2Center for Biomedical Engineering, Brown University, Providence, Rhode Island, 02912 USA
| | - Diane Hoffman-Kim
- 1Department of Molecular Pharmacology, Physiology, Brown University, Providence, Rhode Island, 02912 USA.,2Center for Biomedical Engineering, Brown University, Providence, Rhode Island, 02912 USA.,3Carney Institute for Brain Science, Brown University, Providence, Rhode Island, 02912 USA.,4Center to Advance Predictive Biology, Brown University, Providence, Rhode Island, 02912 USA
| |
Collapse
|
376
|
Bastounis EE, Yeh YT, Theriot JA. Matrix stiffness modulates infection of endothelial cells by Listeria monocytogenes via expression of cell surface vimentin. Mol Biol Cell 2018; 29:1571-1589. [PMID: 29718765 PMCID: PMC6080647 DOI: 10.1091/mbc.e18-04-0228] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been studied previously, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens is hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm) and found that adhesion of Lm to host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
377
|
Wang KC, Egelhoff TT, Caplan AI, Welter JF, Baskaran H. ROCK Inhibition Promotes the Development of Chondrogenic Tissue by Improved Mass Transport. Tissue Eng Part A 2018; 24:1218-1227. [PMID: 29397789 DOI: 10.1089/ten.tea.2017.0438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human mesenchymal stem cell (hMSC)-based chondrogenesis is a key process used to develop tissue engineered cartilage constructs from stem cells, but the resulting constructs have inferior biochemical and biomechanical properties compared to native articular cartilage. Transforming growth factor β containing medium is commonly applied to cell layers of hMSCs, which aggregate upon centrifugation to form 3-D constructs. The aggregation process leads to a high cell density condition, which can cause nutrient limitations during long-term culture and, subsequently, inferior quality of tissue engineered constructs. Our objective is to modulate the aggregation process by targeting RhoA/ROCK signaling pathway, the chief modulator of actomyosin contractility, to enhance the end quality of the engineered constructs. Through ROCK inhibition, repression of cytoskeletal tension in chondrogenic hMSCs was achieved along with less dense aggregates with enhanced transport properties. ROCK inhibition also led to significantly increased cartilaginous extracellular matrix accumulation. These findings can be used to create an improved microenvironment for hMSC-derived tissue engineered cartilage culture. We expect that these findings will ultimately lead to improved cartilaginous tissue development from hMSCs.
Collapse
Affiliation(s)
- Kuo-Chen Wang
- 1 Department of Biology, Case Western Reserve University , Cleveland, Ohio.,2 Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Thomas T Egelhoff
- 3 Department of Cellular and Molecular Medicine, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| | - Arnold I Caplan
- 1 Department of Biology, Case Western Reserve University , Cleveland, Ohio.,2 Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Jean F Welter
- 1 Department of Biology, Case Western Reserve University , Cleveland, Ohio.,2 Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Harihara Baskaran
- 2 Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,4 Department of Chemical and Biomolecular Engineering, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
378
|
Labriola NR, Sadick JS, Morgan JR, Mathiowitz E, Darling EM. Cell Mimicking Microparticles Influence the Organization, Growth, and Mechanophenotype of Stem Cell Spheroids. Ann Biomed Eng 2018; 46:1146-1159. [PMID: 29671154 DOI: 10.1007/s10439-018-2028-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Abstract
Substrate stiffness is known to alter cell behavior and drive stem cell differentiation, though most research in this area has been restricted to traditional, two-dimensional culture systems rather than more physiologically relevant, three-dimensional (3D) platforms. In this study, we utilized polymer-based, cell mimicking microparticles (CMMPs) to deliver distinct, stable mechanical cues to human adipose derived stem cells in 3D spheroid culture to examine changes in adipogenic differentiation response and mechanophenotype. After 21 days of adipogenic induction, spheroids containing CMMPs (composite spheroids) stiffened in accordance with CMMP elasticity such that spheroids containing the stiffest, ~ 10 kPa, CMMPs were over 27% stiffer than those incorporating the most compliant, ~ 0.25 kPa CMMPs. Adipogenically induced, cell-only spheroids were over 180% larger and 50% more compliant than matched controls. Interestingly, composite spheroids cultured without chemical induction factors dissociated when presented with CMMPs stiffer than ~ 1 kPa, while adipogenic induction factors mitigated this behavior. Gene expression for PPARG and FABP4 were upregulated more than 45-fold in adipogenically induced samples compared to controls but were unaffected by CMMP elasticity, attributed to insufficient cell-CMMP contacts throughout the composite spheroid. In summary, mechanically tuned CMMPs influenced whole-spheroid mechanophenotype and stability but minimally affected differentiation response.
Collapse
Affiliation(s)
- Nicholas R Labriola
- Center for Biomedical Engineering, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA
| | - Jessica S Sadick
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- Center for Biomedical Engineering, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.,School of Engineering, Brown University, Providence, RI, USA
| | - Edith Mathiowitz
- Center for Biomedical Engineering, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.,School of Engineering, Brown University, Providence, RI, USA
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA. .,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA. .,School of Engineering, Brown University, Providence, RI, USA. .,Department of Orthopaedics, Brown University, Providence, RI, USA.
| |
Collapse
|
379
|
Liu L, Zhang SX, Liao W, Farhoodi HP, Wong CW, Chen CC, Ségaliny AI, Chacko JV, Nguyen LP, Lu M, Polovin G, Pone EJ, Downing TL, Lawson DA, Digman MA, Zhao W. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci Transl Med 2018; 9:9/400/eaan2966. [PMID: 28747514 DOI: 10.1126/scitranslmed.aan2966] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo.
Collapse
Affiliation(s)
- Linan Liu
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Shirley X Zhang
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wenbin Liao
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Henry P Farhoodi
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chi W Wong
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Claire C Chen
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Aude I Ségaliny
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenu V Chacko
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lily P Nguyen
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Mengrou Lu
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - George Polovin
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Egest J Pone
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Timothy L Downing
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Devon A Lawson
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92697, USA.,Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
380
|
Saxena N, Mogha P, Dash S, Majumder A, Jadhav S, Sen S. Matrix elasticity regulates mesenchymal stem cell chemotaxis. J Cell Sci 2018. [PMID: 29535208 DOI: 10.1242/jcs.211391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efficient homing of human mesenchymal stem cells (hMSCs) is likely to be dictated by a combination of physical and chemical factors present in the microenvironment. However, crosstalk between the physical and chemical cues remains incompletely understood. Here, we address this question by probing the efficiency of epidermal growth factor (EGF)-induced hMSC chemotaxis on substrates of varying stiffness (3, 30 and 600 kPa) inside a polydimethylsiloxane (PDMS) microfluidic device. Chemotactic speed was found to be the sum of a stiffness-dependent component and a chemokine concentration-dependent component. While the stiffness-dependent component scaled inversely with stiffness, the chemotactic component was independent of stiffness. Faster chemotaxis on the softest 3 kPa substrates is attributed to a combination of weaker adhesions and higher protrusion rate. While chemotaxis was mildly sensitive to contractility inhibitors, suppression of chemotaxis upon actin depolymerization demonstrates the role of actin-mediated protrusions in driving chemotaxis. In addition to highlighting the collective influence of physical and chemical cues in chemotactic migration, our results suggest that hMSC homing is more efficient on softer substrates.
Collapse
Affiliation(s)
- Neha Saxena
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Pankaj Mogha
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Silalipi Dash
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Sameer Jadhav
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Shamik Sen
- Department of Bioscience and Bioengineering, IIT, Bombay, Maharashtra 400076, India
| |
Collapse
|
381
|
Wheelwright M, Win Z, Mikkila JL, Amen KY, Alford PW, Metzger JM. Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS One 2018; 13:e0194909. [PMID: 29617427 PMCID: PMC5884520 DOI: 10.1371/journal.pone.0194909] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 11/24/2022] Open
Abstract
Recent advances have made it possible to readily derive cardiac myocytes from human induced pluripotent stem cells (hiPSC-CMs). HiPSC-CMs represent a valuable new experimental model for studying human cardiac muscle physiology and disease. Many laboratories have devoted substantial effort to examining the functional properties of isolated hiPSC-CMs, but to date, force production has not been adequately characterized. Here, we utilized traction force microscopy (TFM) with micro-patterning cell printing to investigate the maximum force production of isolated single hiPSC-CMs under varied culture and assay conditions. We examined the role of length of differentiation in culture and the effects of varied extracellular calcium concentration in the culture media on the maturation of hiPSC-CMs. Results show that hiPSC-CMs developing in culture for two weeks produced significantly less force than cells cultured from one to three months, with hiPSC-CMs cultured for three months resembling the cell morphology and function of neonatal rat ventricular myocytes in terms of size, dimensions, and force production. Furthermore, hiPSC-CMs cultured long term in conditions of physiologic calcium concentrations were larger and produced more force than hiPSC-CMs cultured in standard media with sub-physiological calcium. We also examined relationships between cell morphology, substrate stiffness and force production. Results showed a significant relationship between cell area and force. Implementing directed modifications of substrate stiffness, by varying stiffness from embryonic-like to adult myocardium-like, hiPSC-CMs produced maximal forces on substrates with a lower modulus and significantly less force when assayed on increasingly stiff adult myocardium-like substrates. Calculated strain energy measurements paralleled these findings. Collectively, these findings further establish single cell TFM as a valuable approach to illuminate the quantitative physiological maturation of force in hiPSC-CMs.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Zaw Win
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jennifer L. Mikkila
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kamilah Y. Amen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Patrick W. Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
382
|
Morphometric analysis of spread platelets identifies integrin α IIbβ 3-specific contractile phenotype. Sci Rep 2018; 8:5428. [PMID: 29615672 PMCID: PMC5882949 DOI: 10.1038/s41598-018-23684-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
Haemostatic platelet function is intimately linked to cellular mechanics and cytoskeletal morphology. How cytoskeletal reorganizations give rise to a highly contractile phenotype that is necessary for clot contraction remains poorly understood. To elucidate this process in vitro, we developed a morphometric screen to quantify the spatial organization of actin fibres and vinculin adhesion sites in single spread platelets. Platelets from healthy donors predominantly adopted a bipolar morphology on fibrinogen and fibronectin, whereas distinguishable, more isotropic phenotypes on collagen type I or laminin. Specific integrin αIIbβ3 inhibitors induced an isotropic cytoskeletal organization in a dose-dependent manner. The same trend was observed with decreasing matrix stiffness. Circular F-actin arrangements in platelets from a patient with type II Glanzmann thrombasthenia (GT) were consistent with the residual activity of a small number of αIIbβ3 integrins. Cytoskeletal morphologies in vitro thus inform about platelet adhesion receptor identity and functionality, and integrin αIIbβ3 mechanotransduction fundamentally determines the adoption of a bipolar phenotype associated with contraction. Super-resolution microscopy and electron microscopies further confirmed the stress fibre-like contractile actin architecture. For the first time, our assay allows the unbiased and quantitative assessment of platelet morphologies and could help to identify defective platelet behaviour contributing to elusive bleeding phenotypes.
Collapse
|
383
|
Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomater 2018; 70:110-119. [PMID: 29410241 DOI: 10.1016/j.actbio.2018.01.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. STATEMENT OF SIGNIFICANCE Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function.
Collapse
|
384
|
Vianay B, Senger F, Alamos S, Anjur-Dietrich M, Bearce E, Cheeseman B, Lee L, Théry M. Variation in traction forces during cell cycle progression. Biol Cell 2018; 110:91-96. [DOI: 10.1111/boc.201800006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Benoit Vianay
- University of Paris Diderot; INSERM; CEA; Hôpital Saint Louis; Institut Universitaire d'Hematologie; UMRS1160; CytoMorpho Lab; 75010 Paris France
| | - Fabrice Senger
- University of Grenoble-Alpes; CEA; CNRS; INRA; Biosciences & Biotechnology Institute of Grenoble; Laboratoire de Phyiologie Cellulaire & Végétale; CytoMorpho Lab; 38054 Grenoble France
| | - Simon Alamos
- Physiology Course; Marine Biology Laboratory; Woods Hole MA USA
| | | | | | - Bevan Cheeseman
- Physiology Course; Marine Biology Laboratory; Woods Hole MA USA
| | - Lisa Lee
- Physiology Course; Marine Biology Laboratory; Woods Hole MA USA
| | - Manuel Théry
- University of Paris Diderot; INSERM; CEA; Hôpital Saint Louis; Institut Universitaire d'Hematologie; UMRS1160; CytoMorpho Lab; 75010 Paris France
- University of Grenoble-Alpes; CEA; CNRS; INRA; Biosciences & Biotechnology Institute of Grenoble; Laboratoire de Phyiologie Cellulaire & Végétale; CytoMorpho Lab; 38054 Grenoble France
| |
Collapse
|
385
|
Lee IN, Dobre O, Richards D, Ballestrem C, Curran JM, Hunt JA, Richardson SM, Swift J, Wong LS. Photoresponsive Hydrogels with Photoswitchable Mechanical Properties Allow Time-Resolved Analysis of Cellular Responses to Matrix Stiffening. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7765-7776. [PMID: 29430919 PMCID: PMC5864053 DOI: 10.1021/acsami.7b18302] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/12/2018] [Indexed: 05/03/2023]
Abstract
As cell function and phenotype can be directed by the mechanical characteristics of the surrounding matrix, hydrogels have become important platforms for cell culture systems, with properties that can be tuned by external stimuli, such as divalent cations, enzymatic treatment, and pH. However, many of these stimuli can directly affect cell behavior, making it difficult to distinguish purely mechanical signaling events. This study reports on the development of a hydrogel that incorporates photoswitchable cross-linkers, which can reversibly alter their stiffness upon irradiation with the appropriate wavelength of light. Furthermore, this study reports the response of bone-marrow-derived mesenchymal stem cells (MSCs) on these hydrogels that were stiffened systematically by irradiation with blue light. The substrates were shown to be noncytotoxic, and crucially MSCs were not affected by blue-light exposure. Time-resolved analysis of cell morphology showed characteristic cell spreading and increased aspect ratios in response to greater substrate stiffness. This hydrogel provides a platform to study mechanosignaling in cells responding to dynamic changes in stiffness, offering a new way to study mechanotransduction signaling pathways and biological processes, with implicit changes to tissue mechanics, such as development, ageing, and fibrosis.
Collapse
Affiliation(s)
- I-Ning Lee
- Manchester Institute
of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- School
of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool L69 3GH, United Kingdom
| | - Oana Dobre
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - David Richards
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Judith M. Curran
- School
of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool L69 3GH, United Kingdom
| | - John A. Hunt
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Stephen M. Richardson
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joe Swift
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Lu Shin Wong
- Manchester Institute
of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
386
|
Datko Williams L, Farley A, Cupelli M, Alapati S, Kennedy MS, Dean D. Effects of substrate stiffness on dental pulp stromal cells in culture. J Biomed Mater Res A 2018; 106:1789-1797. [PMID: 29468814 DOI: 10.1002/jbm.a.36382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022]
Abstract
Dental pulp stromal cells (DPSCs) can be differentiated down lineages known to either express bone or dentin specific protein markers. Since the differentiation of cells can be heavily influenced by their environment, it may be possible to influence the osteogenic/odontogenic potential of DPSCs by modulating the mechanical properties of substrate on which they are grown. In this study, human DPSCs were grown with and without hydroxyapatite (HA) microparticles on a range of substrates including fibronectin-coated hydrogels and glass substrates, which represented an elastic moduli range of approximately 3 kPa-50 GPa, over a 21-day period. Alkaline phosphatase activity, osteopontin production, and mineralization were monitored. The presence of HA microparticles increased the relative degree of mineralized matrix produced by the cells relative to those in the same substrate and media condition without the HA microparticles. In addition, cultures with cells grown on stiffer substrates had higher ALP activity and higher degree of mineralization than those grown on softer substrates. This study shows that DPSCs are affected by the mechanical properties of their underlying growth substrate and by the presence of HA microparticles. In addition, relatively stiff substrates (>75 kPa) may be required for significant mineralization of these cultures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1789-1797, 2018.
Collapse
Affiliation(s)
| | - Amanda Farley
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| | - Matthew Cupelli
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| | - Satish Alapati
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois, 60612
| | - Marian S Kennedy
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, 29634
| | - Delphine Dean
- Bioengineering Department, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
387
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget 2018; 7:48093-48106. [PMID: 27344177 PMCID: PMC5217003 DOI: 10.18632/oncotarget.10137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
388
|
Matalon O, Ben-Shmuel A, Kivelevitz J, Sabag B, Fried S, Joseph N, Noy E, Biber G, Barda-Saad M. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1. EMBO J 2018; 37:embj.201696264. [PMID: 29449322 DOI: 10.15252/embj.201696264] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 11/22/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems.
Collapse
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jessica Kivelevitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Guy Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
389
|
Xie SA, Zhang T, Wang J, Zhao F, Zhang YP, Yao WJ, Hur SS, Yeh YT, Pang W, Zheng LS, Fan YB, Kong W, Wang X, Chiu JJ, Zhou J. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1. Biomaterials 2018; 155:203-216. [DOI: 10.1016/j.biomaterials.2017.11.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022]
|
390
|
Shoaib T, Heintz J, Lopez-Berganza JA, Muro-Barrios R, Egner SA, Espinosa-Marzal RM. Stick-Slip Friction Reveals Hydrogel Lubrication Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:756-765. [PMID: 28961012 DOI: 10.1021/acs.langmuir.7b02834] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lubrication behavior of the hydrated biopolymers that constitute tissues in organisms differs from that outlined by the classical Stribeck curve, and studying hydrogel lubrication is a key pathway to understand the complexity of biolubrication. Here, we have investigated the frictional characteristics of polyacrylamide (PAAm) hydrogels with various acrylamide concentrations, exhibiting Young's moduli (E) that range from 1 to 40 kPa, as a function of applied normal load and sliding velocities by colloid probe lateral force microscopy. The speed-dependence of the friction force shows an initial decrease in friction with increasing velocity, while, above a transition velocity V*, friction increases with speed. This study reveals two different boundary lubrication mechanisms characterized by distinct scaling laws. An unprecedented and comprehensive study of the lateral force loops reveals intermittent friction or stick-slip above and below V*, with characteristics that depend on the hydrogel network, applied load, and sliding velocity. Our work thus provides insight into the closely tied parameters governing hydrogel lubrication mechanisms, and stick-slip friction.
Collapse
Affiliation(s)
- Tooba Shoaib
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Joerg Heintz
- Health Care Engineering Systems Center, University of Illinois at Urbana-Champaign , 1206 West Clark Street, Urbana, Illinois 61801, United States
| | - Josue A Lopez-Berganza
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Raymundo Muro-Barrios
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Simon A Egner
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
391
|
Moeller J, Denisin AK, Sim JY, Wilson RE, Ribeiro AJS, Pruitt BL. Controlling cell shape on hydrogels using lift-off protein patterning. PLoS One 2018; 13:e0189901. [PMID: 29298336 PMCID: PMC5752030 DOI: 10.1371/journal.pone.0189901] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Polyacrylamide gels functionalized with extracellular matrix proteins are commonly used as cell culture platforms to evaluate the combined effects of extracellular matrix composition, cell geometry and substrate rigidity on cell physiology. For this purpose, protein transfer onto the surface of polyacrylamide hydrogels must result in geometrically well-resolved micropatterns with homogeneous protein distribution. Yet the outcomes of micropatterning methods have not been pairwise evaluated against these criteria. We report a high-fidelity photoresist lift-off patterning method to pattern ECM proteins on polyacrylamide hydrogels with elastic moduli ranging from 5 to 25 kPa. We directly compare the protein transfer efficiency and pattern geometrical accuracy of this protocol to the widely used microcontact printing method. Lift-off patterning achieves higher protein transfer efficiency, increases pattern accuracy, increases pattern yield, and reduces variability of these factors within arrays of patterns as it bypasses the drying and transfer steps of microcontact printing. We demonstrate that lift-off patterned hydrogels successfully control cell size and shape and enable long-term imaging of actin intracellular structure and lamellipodia dynamics when we culture epithelial cells on these substrates.
Collapse
Affiliation(s)
- Jens Moeller
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Aleksandra K. Denisin
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Joo Yong Sim
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Robin E. Wilson
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Alexandre J. S. Ribeiro
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
392
|
Urbanski MM, Melendez-Vasquez CV. Preparation of Matrices of Variable Stiffness for the Study of Mechanotransduction in Schwann Cell Development. Methods Mol Biol 2018; 1739:281-297. [PMID: 29546714 DOI: 10.1007/978-1-4939-7649-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extracellular matrix (ECM) elasticity may direct cellular differentiation and can be modeled in vitro using synthetic ECM-like substrates with defined elastic properties. However, the effectiveness of such approaches depends on the selection of a range of elasticity and ECM ligands that accurately model the relevant tissue. Here, we present a cell culture system than can be used to study Schwann cell differentiation on substrates which model the changes in mechanical ECM properties that occur during sciatic nerve development.
Collapse
Affiliation(s)
| | - Carmen V Melendez-Vasquez
- Department of Biological Sciences, Hunter College, New York, NY, USA.
- The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
393
|
Sahin M, Krawczyk KK, Roszkowski P, Wang J, Kaynak B, Kern W, Schlögl S, Grützmacher H. Photoactive silica nanoparticles: Influence of surface functionalization on migration and kinetics of radical-induced photopolymerization reactions. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
394
|
Ghosh D, Dawson MR. Microenvironment Influences Cancer Cell Mechanics from Tumor Growth to Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:69-90. [PMID: 30368749 DOI: 10.1007/978-3-319-95294-9_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment in a solid tumor includes a multitude of cell types, matrix proteins, and growth factors that profoundly influence cancer cell mechanics by providing both physical and chemical stimulation. This tumor microenvironment, which is both dynamic and heterogeneous in nature, plays a critical role in cancer progression from the growth of the primary tumor to the development of metastatic and drug-resistant tumors. This chapter provides an overview of the biophysical tools used to study cancer cell mechanics and mechanical changes in the tumor microenvironment at different stages of cancer progression, including growth of the primary tumor, local invasion, and metastasis. Quantitative single cell biophysical analysis of intracellular mechanics, cell traction forces, and cell motility can easily be combined with analysis of critical cell fate processes, including adhesion, proliferation, and drug resistance, to determine how changes in mechanics contribute to cancer progression. This biophysical approach can be used to systematically investigate the parameters in the tumor that control cancer cell interactions with the stroma and to identify specific conditions that induce tumor-promoting behavior, along with strategies for inhibiting these conditions to treat cancer. Increased understanding of the underlying biophysical mechanisms that drive cancer progression may provide insight into novel therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
395
|
Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:53-69. [PMID: 30456642 DOI: 10.1007/5584_2018_293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An extensive number of cell-matrix interaction studies have identified matrix stiffness as a potent regulator of cellular properties and behaviours. Perhaps most notably, matrix stiffness has been demonstrated to regulate mesenchymal stem cell (MSC) phenotype and lineage commitment. Given the therapeutic potential for MSCs in regenerative medicine, significant efforts have been made to understand the molecular mechanisms involved in stiffness regulation. These efforts have predominantly focused on using stiffness-defined polyacrylamide (PA) hydrogels to culture cells in 2D and have enabled elucidation of a number of mechano-sensitive signalling pathways. However, despite proving to be a valuable tool, these stiffness-defined hydrogels do not reflect the dynamic nature of living tissues, which are subject to continuous remodelling during processes such as development, ageing, disease and regeneration. Therefore, in order to study temporal aspects of stiffness regulation, researchers have developed and exploited novel hydrogel substrates with in situ tuneable stiffness. In particular, photoresponsive hydrogels with photoswitchable stiffness are emerging as exciting platforms to study MSC stiffness regulation. This chapter provides an introduction to the use of PA hydrogel substrates, the molecular mechanisms of mechanotransduction currently under investigation and the development of these emerging photoresponsive hydrogel platforms.
Collapse
|
396
|
Seddiki R, Narayana GHNS, Strale PO, Balcioglu HE, Peyret G, Yao M, Le AP, Teck Lim C, Yan J, Ladoux B, Mège RM. Force-dependent binding of vinculin to α-catenin regulates cell-cell contact stability and collective cell behavior. Mol Biol Cell 2017; 29:380-388. [PMID: 29282282 PMCID: PMC6014167 DOI: 10.1091/mbc.e17-04-0231] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022] Open
Abstract
Combining cell biology and biomechanical analysis, we show here that the coupling between cadherin complexes and actin through tension-dependent α-catenin/vinculin association is regulating AJ stability and dynamics as well as tissue-scale mechanics. The shaping of a multicellular body and repair of adult tissues require fine-tuning of cell adhesion, cell mechanics, and intercellular transmission of mechanical load. Adherens junctions (AJs) are the major intercellular junctions by which cells sense and exert mechanical force on each other. However, how AJs adapt to mechanical stress and how this adaptation contributes to cell–cell cohesion and eventually to tissue-scale dynamics and mechanics remains largely unknown. Here, by analyzing the tension-dependent recruitment of vinculin, α-catenin, and F-actin as a function of stiffness, as well as the dynamics of GFP-tagged wild-type and mutated α-catenins, altered for their binding capability to vinculin, we demonstrate that the force-dependent binding of vinculin stabilizes α-catenin and is responsible for AJ adaptation to force. Challenging cadherin complexes mechanical coupling with magnetic tweezers, and cell–cell cohesion during collective cell movements, further highlight that tension-dependent adaptation of AJs regulates cell–cell contact dynamics and coordinated collective cell migration. Altogether, these data demonstrate that the force-dependent α-catenin/vinculin interaction, manipulated here by mutagenesis and mechanical control, is a core regulator of AJ mechanics and long-range cell–cell interactions.
Collapse
Affiliation(s)
- Rima Seddiki
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| | | | - Pierre-Olivier Strale
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | - Grégoire Peyret
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Anh Phuong Le
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore 117542
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore 117542
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Benoit Ladoux
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - René Marc Mège
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
397
|
Chang TY, Chen C, Lee M, Chang YC, Lu CH, Lu ST, Wang DY, Wang A, Guo CL, Cheng PL. Paxillin facilitates timely neurite initiation on soft-substrate environments by interacting with the endocytic machinery. eLife 2017; 6:31101. [PMID: 29271742 PMCID: PMC5768420 DOI: 10.7554/elife.31101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Neurite initiation is the first step in neuronal development and occurs spontaneously in soft tissue environments. Although the mechanisms regulating the morphology of migratory cells on rigid substrates in cell culture are widely known, how soft environments modulate neurite initiation remains elusive. Using hydrogel cultures, pharmacologic inhibition, and genetic approaches, we reveal that paxillin-linked endocytosis and adhesion are components of a bistable switch controlling neurite initiation in a substrate modulus-dependent manner. On soft substrates, most paxillin binds to endocytic factors and facilitates vesicle invagination, elevating neuritogenic Rac1 activity and expression of genes encoding the endocytic machinery. By contrast, on rigid substrates, cells develop extensive adhesions, increase RhoA activity and sequester paxillin from the endocytic machinery, thereby delaying neurite initiation. Our results highlight paxillin as a core molecule in substrate modulus-controlled morphogenesis and define a mechanism whereby neuronal cells respond to environments exhibiting varying mechanical properties.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Min Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Huan Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Tzu Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - De-Yao Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Davis, United States
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
398
|
Sava P, Ramanathan A, Dobronyi A, Peng X, Sun H, Ledesma-Mendoza A, Herzog EL, Gonzalez AL. Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI Insight 2017; 2:96352. [PMID: 29263297 DOI: 10.1172/jci.insight.96352] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored. Here, we demonstrate enhanced detection of α-SMA+ cells coexpressing the PC marker neural/glial antigen 2 in the human IPF lung. Isolated human PC cultured on decellularized IPF lung matrices adopt expression of α-SMA, demonstrating that these cells undergo phenotypic transition in response to direct contact with the extracellular matrix (ECM) of the fibrotic human lung. Using potentially novel human lung-conjugated hydrogels with tunable mechanical properties, we decoupled PC responses to matrix composition and stiffness to show that α-SMA+ PC accumulate in a mechanosensitive manner independent of matrix composition. PC activated with TGF-β1 remodel the normal lung matrix, increasing tissue stiffness to facilitate the emergence of α-SMA+ PC via MKL-1/MTRFA mechanotranduction. Nintedanib, a tyrosine-kinase inhibitor approved for IPF treatment, restores the elastic modulus of fibrotic lung matrices to reverse the α-SMA+ phenotype. This work furthers our understanding of the role that microvascular PC play in the evolution of IPF, describes the creation of an ex vivo platform that advances the study of fibrosis, and presents a potentially novel mode of action for a commonly used antifibrotic therapy that has great relevance for human disease.
Collapse
Affiliation(s)
- Parid Sava
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Anand Ramanathan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Amelia Dobronyi
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Xueyan Peng
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Huanxing Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
399
|
Controlled molecular self-assembly of complex three-dimensional structures in soft materials. Proc Natl Acad Sci U S A 2017; 115:70-74. [PMID: 29255037 PMCID: PMC5776829 DOI: 10.1073/pnas.1717912115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications.
Collapse
|
400
|
Meng X, Zhang H, Song J, Fan X, Sun L, Xie H. Broad modulus range nanomechanical mapping by magnetic-drive soft probes. Nat Commun 2017; 8:1944. [PMID: 29208894 PMCID: PMC5717272 DOI: 10.1038/s41467-017-02032-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
Stiffness matching between the probe and deformed portion of the sample in piezo-drive peak force modulation atomic force microscopy (AFM) limits the modulus measurement range of single probes. Here we develop a magnetic drive peak force modulation AFM to broaden the dynamic range of the probe with direct cantilever excitation. This approach not only successfully drives the softest commercial probe (6 pN nm-1) for mapping extremely soft samples in liquid but also provides an indentation force of hundreds of nanonewtons for stiff samples with a soft probe. Features of direct measurements of the indentation force and depth can unify the elastic modulus range up to four orders of magnitude, from 1 kPa to 10 MPa (in liquid) and 1 MPa to 20 GPa (in air or liquid) using a single probe. This approach can be particularly useful for analysing heterogeneous samples with large elastic modulus variations in multi-environments.
Collapse
Affiliation(s)
- Xianghe Meng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150080, China
| | - Hao Zhang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150080, China
| | - Jianmin Song
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150080, China
| | - Xinjian Fan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150080, China
| | - Lining Sun
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150080, China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150080, China.
| |
Collapse
|