351
|
Dabrowska J, Brylinski M. Stereoselectivity of 8-OH-DPAT toward the serotonin 5-HT1A receptor: Biochemical and molecular modeling study. Biochem Pharmacol 2006; 72:498-511. [PMID: 16796994 DOI: 10.1016/j.bcp.2006.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 12/28/2022]
Abstract
The great majority of pharmacological investigations of 5-HT1A receptors' reactivity has been performed using racemic 8-OH-DPAT, therefore the biochemical as well as behavioral profiles of both 8-OH-DPAT enantiomers are not circumstantiated. In the biochemical study capability of racemic 8-OH-DPAT (0.05, 0.1 mg/kg s.c.) and its counterparts R-8-OH-DPAT (0.05, 0.1 mg/kg s.c.) and S-8-OH-DPAT (0.05, 0.1 mg/kg s.c.) to influence 5-HT synthesis rate in rats' prefrontal cortex, hypothalamus, hippocampus and brainstem was evaluated by HPLC/ED technique. Biochemical results are supported by the exhaustive computational study of possible differences between R- and S-enantiomer toward the 5-HT1A receptor. A reliable 3D model of the rat 5-HT1A receptor was constructed from the amino acid sequence using the crystal structure of bovine rhodopsin as a structural template. The structure of the receptor model was validated through docking studies and molecular dynamics simulations that gave results consistent with experimental data. Docking studies and the dynamics of ligand-receptor complexes emphasized different profiles of both enantiomers at the molecular level. The results of both biochemical and computational studies confirmed that R-enantiomer in contrast to S-8-OH-DPAT acts as full and potent agonist, whilst racemic form may display similar pharmacological profile to R-8-OH-DPAT.
Collapse
Affiliation(s)
- Joanna Dabrowska
- Department of Pharmacology, Medical University of Silesia, 38 Jordana Street, 41-808 Zabrze, Poland
| | | |
Collapse
|
352
|
Abstract
Accessory olfaction is defined as the chemoreceptive system that employs the vomeronasal complex (VNC) and its distinct central projections to the accessory olfactory bulb (AOB) and limbic/cortical systems. Comparisons of the structural and functional features of primate accessory olfaction can now be made at many levels. Advances in the understanding of molecular mechanisms of odorant transfer and detection, physiological analyses of signal processing, and appreciation of ontogenetic timetables have clarified the contribution of accessory chemoreception to the sensory map. Two principal functions dominate: the decoding of social information through the uptake of signals (often fluid-borne), and the provision of an essential pathway for the "migration" of presumptive neurocrine (GnRH) cells from the olfactory placode to the hypothalamus. VN "smelling" (vomerolfaction) is now seen to overlap with primary olfaction. Both systems detect signal compounds along the spectrum of volatility/molecular weight, and neither is an exclusive sensor. Both main and accessory chemoreception seem to require collaborative molecular devices to assist in odorant transfer (binding proteins) and (for the VNO) signal recognition (MHC1 proteins). Most adaptive-selective features of primate chemocommunication variously resemble those of other terrestrial mammals. VN function, along with its genome, has been maintained within the Strepsirrhines and tarsiers, reduced in Platyrrhines, and nearly extinguished at the Catarrhine up to hominin levels. It persists as an intriguing ancient sense that retains key features of past evolutionary events.
Collapse
Affiliation(s)
- C S Evans
- Glasgow Caledonian University, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
353
|
Ye K, Lameijer EWM, Beukers MW, Ijzerman AP. A two-entropies analysis to identify functional positions in the transmembrane region of class A G protein-coupled receptors. Proteins 2006; 63:1018-30. [PMID: 16532452 DOI: 10.1002/prot.20899] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Residues in the transmembrane region of G protein-coupled receptors (GPCRs) are important for ligand binding and activation, but the function of individual positions is poorly understood. Using a sequence alignment of class A GPCRs (grouped in subfamilies), we propose a so-called "two-entropies analysis" to determine the potential role of individual positions in the transmembrane region of class A GPCRs. In our approach, such positions appear scattered, while largely clustered according to their biological function. Our method appears superior when compared to other bioinformatics approaches, such as the evolutionary trace method, entropy-variability plot, and correlated mutation analysis, both qualitatively and quantitatively.
Collapse
Affiliation(s)
- Kai Ye
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
354
|
Ross JR, Riley J, Quigley C, Welsh KI. Clinical Pharmacology and Pharmacotherapy of Opioid Switching in Cancer Patients. Oncologist 2006; 11:765-73. [PMID: 16880235 DOI: 10.1634/theoncologist.11-7-765] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pain is one of the most common and often most feared symptoms in patients with cancer. Ongoing or progressive pain is physically debilitating and has a marked impact on quality of life. Since a third of the population will die from cancer, and of these, 80% will experience severe pain in their final year of life, effective treatment of cancer-related pain remains both a high priority and an ongoing challenge in clinical practice. Individuals with moderate to severe cancer-related pain require treatment with strong analgesics, namely opioids. There is evidence to support the therapeutic maneuver of opioid switching in clinical practice, but further evidence is needed to elucidate the underlying mechanisms for interindividual differences in response to different opioids. Large, robust clinical trials will be needed if clinical differences among side-effect profiles of different opioids are to be clearly demonstrated. This review discusses candidate genes, which contribute to opioid response; many other genes have also been implicated in "pain" from animal or human studies. In order to continue to evaluate the genetic contributions to both pain susceptibility and analgesic response, further candidate genes need to be considered. Good pain control remains a high priority for clinicians and patients, and there is much work to be done to further individualize analgesic therapy for patients with cancer.
Collapse
Affiliation(s)
- Joy R Ross
- Department of Palliative Medicine, Horder Ward, Royal Marsden Hospital, London SW3 6JJ, United Kingdom.
| | | | | | | |
Collapse
|
355
|
Abstract
The era of molecular biology and cloning brought new knowledge about the structure and function of drug receptors, and demonstrated that the term 'receptor' must be distinguished from other molecular drug targets such as enzymes, transporters and ion channels. Analysis of the targets of all current therapeutic drugs has shown that more than 95% of these are proteins. The DNA sequencing of the entire human genome has led to identification of many previously unknown proteins that may represent potential drug targets. In order to understand fully the functional mechanisms of a protein, it is crucial to know its three-dimensional molecular structure. This may be determined experimentally by x-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy or electron microscopy, and computationally by structural bioinformatics and molecular modelling. The molecular targets of nearly all current psychotropic drugs are membrane proteins. These have proven extremely difficult to purify and crystallize due to their amphipathic surface, with a hydrophobic area in contact with membrane phospholipids and polar surface areas in contact with the aqueous phases on both sides of the membrane. We have used molecular modelling methods, based on crystal structures of related proteins, to model various neurotransmitter receptors and transporters. The receptor and transporter models have been used to study their structural properties, functional mechanisms and the molecular mechanisms of action of psychotropic drugs. Our results demonstrate the large structural flexibility of transporter and receptor proteins, with substantial movements and conformational changes taking place during substrate translocation in transporters, and by agonist induced receptor stimulation.
Collapse
Affiliation(s)
- Svein G Dahl
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
356
|
Zhang J, Shen CP, Xiao JC, Lanza TJ, Lin LS, Francis BE, Fong TM, Chen RZ. Effects of mutations at conserved TM II residues on ligand binding and activation of mouse 5-HT6 receptor. Eur J Pharmacol 2006; 534:77-82. [PMID: 16612839 DOI: 10.1016/j.ejphar.2006.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An aspartate residue (Asp-72) in the transmembrane helix II of mouse 5-hydroxytryptamine-6 receptor (5-HT6) is conserved among most G protein-coupled receptors. We have examined the functional significance of this residue by site-directed mutagenesis. A single Asp --> Ala (D72A) mutation resulted in an 8-fold decrease in apparent affinity for 5-HT, and a 60-fold reduction in EC50 value of agonist-induced stimulation of adenylyl cyclase. A F69L/T70I/D72A triple mutant showed a 2-fold reduction in apparent affinity for 5-HT but complete loss of adenylyl cyclase stimulation. Binding of SB-258585 (4-iodo-N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]benzene-sulfonamide), a selective 5-HT6 antagonist, was mildly affected (2- to 4-fold decrease in affinity) in the two mutants. Our data suggest that Asp-72 and additional residues toward the intracellular side of TM II have a limited role in ligand binding but are critical for functional activation of the 5-HT6 receptor.
Collapse
Affiliation(s)
- Jiaping Zhang
- Department of Metabolic Disorders, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Dowling MR, Willets JM, Budd DC, Charlton SJ, Nahorski SR, Challiss RAJ. A single point mutation (N514Y) in the human M3 muscarinic acetylcholine receptor reveals differences in the properties of antagonists: evidence for differential inverse agonism. J Pharmacol Exp Ther 2006; 317:1134-42. [PMID: 16489127 DOI: 10.1124/jpet.106.101246] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A single asparagine-to-tyrosine point mutation in the human M muscarinic acetylcholine (mACh) receptor at residue 514 (N514Y) resulted in a marked increase (approximately 300%) in agonist-independent [3H]inositol phosphate ([3H]IPx) accumulation compared with the response observed for the wild-type (WT) receptor. All the antagonists tested were able to inhibit both the WT-M3 and (N514Y)M3 mACh receptor-mediated basal [3H]IPx accumulation in a concentration-dependent manner. However, significant differences in both potency and binding affinity were only seen for those antagonists that possess greater receptor affinity. Despite being transfected with equivalent amounts of cDNA, cells expressed the (N514Y)M3 mACh receptor at levels that were only 25 to 30% of those seen for the WT receptor. Differences in the ability of chronic antagonist exposure to up-regulate (N514Y)M3 mACh receptor expression levels were also seen, with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) producing only 50% of the receptor up-regulation produced by atropine or pirenzepine. Basal phosphorylation of the (N514Y)M3 mACh receptor was approximately 100% greater than that seen for the WT-M3 receptor. The ability of antagonists to decrease basal (N514Y)M3 mACh receptor phosphorylation revealed differences in inverse-agonist efficacy. Atropine, 4-DAMP, and pirenzepine all reduced basal phosphorylation to similar levels, whereas methoctramine, a full inverse agonist with respect to reducing agonist-independent [3H]IPx accumulation, produced no significant attenuation of basal receptor phosphorylation. This study shows that mACh receptor inverse agonists can exhibit differential signaling profiles, which are dependent on the specific pathway investigated, and therefore provides evidence that the molecular mechanism of inverse agonism is likely to be more complex than the stabilization of a single inactive receptor conformation.
Collapse
Affiliation(s)
- Mark R Dowling
- Department of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
358
|
Abramow-Newerly M, Ming H, Chidiac P. Modulation of subfamily B/R4 RGS protein function by 14-3-3 proteins. Cell Signal 2006; 18:2209-22. [PMID: 16839744 DOI: 10.1016/j.cellsig.2006.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 05/09/2006] [Indexed: 12/01/2022]
Abstract
Regulator of G protein signalling (RGS) proteins are primarily known for their ability to act as GTPase activating proteins (GAPs) and thus attenuate G protein function within G protein-coupled receptor (GPCR) signalling pathways. However, RGS proteins have been found to interact with additional binding partners, and this has introduced more complexity to our understanding of their potential role in vivo. Here, we identify a novel interaction between RGS proteins (RGS4, RGS5, RGS16) and the multifunctional protein 14-3-3. Two isoforms, 14-3-3beta and 14-3-3epsilon, directly interact with all three purified RGS proteins and data from in vitro steady state GTP hydrolysis assays show that 14-3-3 inhibits the GTPase activity of RGS4 and RGS16, but has limited effects on RGS5 under comparable conditions. Moreover in a competitive pull-down experiment, 14-3-3epsilon competes with Galphao for RGS4, but not for RGS5. This mechanism is further reinforced in living cells, where 14-3-3epsilon sequesters RGS4 in the cytoplasm and impedes its recruitment to the plasma membrane by Galpha protein. Thus, 14-3-3 might act as a molecular chelator, preventing RGS proteins from interacting with Galpha, and ultimately prolonging the signal transduction pathway. In conclusion, our findings suggest that 14-3-3 proteins may indirectly promote GPCR signalling via their inhibitory effects on RGS GAP function.
Collapse
Affiliation(s)
- Maria Abramow-Newerly
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
359
|
Hawtin SR. Pharmacological Chaperone Activity of SR49059 to Functionally Recover Misfolded Mutations of the Vasopressin V1a Receptor. J Biol Chem 2006; 281:14604-14. [PMID: 16565083 DOI: 10.1074/jbc.m511610200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pharmacological chaperones represent a new class of ligand with the potential to facilitate the delivery of misfolded, but still active, G-protein-coupled receptors to the cell surface. Using transfected HEK 293T cells, treatment with a nonpeptide antagonist, SR49059, dramatically increased ( approximately 60-fold) the surface expression of a misfolded, nonfunctional and intracellularly localized vasopressin V(1a) receptor (V(1a)R) mutant (D148A). This rescue of surface expression (111 +/- 7%) was almost identical to wild type assessed by confocal microscopy and quantitative enzyme-linked immunosorbent assay-based techniques. Recovery was not specific to D148A, since other surface-impaired mutations, D148N and D148E, and wild type were also increased following SR49059 exposure. However, surface delivery was specific to SR49059, since V(1a)R-selective peptide ligands or unrelated ligands were unable to mimic this action, suggesting that SR49059 acts intracellularly. SR49059-mediated surface rescue was time-, mutant-, and concentration-dependent but not directly related to its binding affinity. Maximal recovery was achieved following 12 h of treatment and did not involve de novo receptor synthesis or a consequence of preventing endogenous constitutive activity and/or internalization. Once at the surface, all mutants displayed enhanced signaling ability, and D148A was able to undergo agonist-mediated internalization. SR49059 was not effectively removed from the receptor, since signaling (EC(50)) of both wild type and D148A was reduced approximately 40-fold. This is the first report of a pharmacological chaperone ligand to act on misfolded mutant V(1a) Rs. This work provides an excellent model to understand the mechanistic action of an important new class of drug that may have potential in the treatment of diseases caused by inherited mutations.
Collapse
Affiliation(s)
- Stuart R Hawtin
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
360
|
Spehr M, Kelliher KR, Li XH, Boehm T, Leinders-Zufall T, Zufall F. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J Neurosci 2006; 26:1961-70. [PMID: 16481428 PMCID: PMC6674934 DOI: 10.1523/jneurosci.4939-05.2006] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC), which play a critical role in immune recognition, influence mating preference and other social behaviors in fish, mice, and humans via chemical signals. The cellular and molecular mechanisms by which this occurs and the nature of these chemosignals remain unclear. In contrast to the widely held view that olfactory sensory neurons (OSNs) in the main olfactory epithelium (MOE) are stimulated by volatile chemosignals only, we show here that nonvolatile immune system molecules function as olfactory cues in the mammalian MOE. Using mice with targeted deletions in selected signal transduction genes (CNGA2, CNGA4), we used a combination of dye tracing, electrophysiological, Ca2+ imaging, and behavioral approaches to demonstrate that nonvolatile MHC class I peptides activate subsets of OSNs at subnanomolar concentrations in vitro and affect social preference of male mice in vivo. Both effects depend on the cyclic nucleotide-gated (CNG) channel gene CNGA2, the function of which in the nose is unique to the main population of OSNs. Disruption of the modulatory CNGA4 channel subunit reveals a profound defect in adaptation of peptide-evoked potentials in the MOE. Because sensory neurons in the vomeronasal organ (VNO) also respond to MHC peptides but do not express CNGA2, distinct mechanisms are used by the mammalian main and accessory olfactory systems for the detection of MHC peptide ligands. These results suggest a general role for MHC peptides in chemical communication even in those vertebrates that lack a functional VNO.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
361
|
Abstract
The retinal pigment epithelium (RPE) lying distal to the retina regulates the extracellular environment and provides metabolic support to the outer retina. RPE abnormalities are closely associated with retinal death and it has been claimed several of the most important diseases causing blindness are degenerations of the RPE. Therefore, the study of the RPE is important in Ophthalmology. Although visualisation of the RPE is part of clinical investigations, there are a limited number of methods which have been used to investigate RPE function. One of the most important is a study of the current generated by the RPE. In this it is similar to other secretory epithelia. The RPE current is large and varies as retinal activity alters. It is also affected by drugs and disease. The RPE currents can be studied in cell culture, in animal experimentation but also in clinical situations. The object of this review is to summarise this work, to relate it to the molecular membrane mechanisms of the RPE and to possible mechanisms of disease states.
Collapse
Affiliation(s)
- Geoffrey B Arden
- Department of Optometry and Visual Science, Henry Wellcome Laboratiories for Visual Sciences, City University, London, UK.
| | | |
Collapse
|
362
|
Surgand JS, Rodrigo J, Kellenberger E, Rognan D. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 2006; 62:509-38. [PMID: 16294340 DOI: 10.1002/prot.20768] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The amino acid sequences of 369 human nonolfactory G-protein-coupled receptors (GPCRs) have been aligned at the seven transmembrane domain (TM) and used to extract the nature of 30 critical residues supposed--from the X-ray structure of bovine rhodopsin bound to retinal--to line the TM binding cavity of ground-state receptors. Interestingly, the clustering of human GPCRs from these 30 residues mirrors the recently described phylogenetic tree of full-sequence human GPCRs (Fredriksson et al., Mol Pharmacol 2003;63:1256-1272) with few exceptions. A TM cavity could be found for all investigated GPCRs with physicochemical properties matching that of their cognate ligands. The current approach allows a very fast comparison of most human GPCRs from the focused perspective of the predicted TM cavity and permits to easily detect key residues that drive ligand selectivity or promiscuity.
Collapse
|
363
|
Fillion D, Deraët M, Holleran BJ, Escher E. Stereospecific Synthesis of a Carbene-Generating Angiotensin II Analogue for Comparative Photoaffinity Labeling: Improved Incorporation and Absence of Methionine Selectivity. J Med Chem 2006; 49:2200-9. [PMID: 16570916 DOI: 10.1021/jm050958a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereospecific convergent synthesis of N-[(9-fluorenyl)methoxycarbonyl]-p-[3-(trifluoromethyl)-3H-diazirin-3-yl]-l-phenylalanine (Fmoc-12, Fmoc-Tdf) and its incorporation into the C-terminal position of the angiotensin II (AngII) peptide to form (125)I[Sar(1),Tdf(8)]AngII ((125)I-13) is presented. This amino acid photoprobe is a highly reactive carbene-generating diazirine phenylalanine derivative that can be used for photoaffinity labeling. Using model receptors, we compared the reactivity and the Met selectivity of 12 to that of the widely used and reputedly Met-selective p-benzoyl-l-phenylalanine (Bpa) photoprobe. Wild-type and mutant AngII type 2 receptors, a G protein-coupled receptors, were photolabeled with (125)I-13 as well as with (125)I[Sar(1),Bpa(8)]AngII ((125)I-14), and the respective incorporation yields were assessed. The carbene-generating 12 was more reactive toward inert residues and was not Met-selective compared to the biradical ketone-generating Bpa, allowing for more precise determination of ligand contact points in peptidergic receptors.
Collapse
Affiliation(s)
- Dany Fillion
- Department of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | |
Collapse
|
364
|
Kim Y, Lee BD, Kim O, Bae YS, Lee T, Suh PG, Ryu SH. Pituitary Adenylate Cyclase-Activating Polypeptide 27 Is a Functional Ligand for Formyl Peptide Receptor-Like 1. THE JOURNAL OF IMMUNOLOGY 2006; 176:2969-75. [PMID: 16493055 DOI: 10.4049/jimmunol.176.5.2969] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in the regulation of several immune responses, its target receptors and signaling mechanisms have yet to be fully elucidated in immune cells. In this study, we found that PACAP27, but not PACAP38, specifically stimulated intracellular calcium mobilization and ERK phosphorylation in human neutrophils. Moreover, formyl peptide receptor-like 1 (FPRL1) was identified as a PACAP27 receptor, and PACAP27 was found to selectively stimulate intracellular calcium increase in FPRL1-transfected rat basophil leukocytes-2H3 cell lines. In addition, PACAP27-induced calcium increase and ERK phosphorylation were specifically inhibited by an FPRL1 antagonist, Trp-Arg-Trp-Trp-Trp-Trp (WRW4), thus supporting the notion that PACAP27 acts on FPRL1. In terms of the functional role of PACAP27, we found that the peptide stimulated CD11b surface up-regulation and neutrophil chemotactic migration, and that these responses were completely inhibited by WRW4. The interaction between PACAP27 and FPRL1 was analyzed further using truncated PACAPs and chimeric PACAPs using vasoactive intestinal peptide, and the C-terminal region of PACAP27 was found to perform a vital function in the activation of FPRL1. Taken together, our study suggests that PACAP27 activates phagocytes via FPRL1 activation, and that this results in proinflammatory behavior, involving chemotaxis and the up-regulation of CD11b.
Collapse
Affiliation(s)
- Youndong Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | |
Collapse
|
365
|
Abstract
A subset of melanopsin-expressing retinal ganglion cells has been identified to be directly photosensitive (pRGCs), modulating a range of behavioral and physiological responses to light. Recent expression studies of melanopsin have provided compelling evidence that melanopsin is the photopigment of the pRGCs. However, the mechanism by which melanopsin transduces light information remains an open question. This review discusses the signaling pathways that may underlie melanopsin-dependent phototransduction in native pRGCs, as well as the many exciting challenges ahead.
Collapse
Affiliation(s)
- Stuart Peirson
- Division of Neuroscience and Mental Health, Department of Cellular and Molecular Neuroscience, Faculty of Medicine, Charing Cross Hospital, Imperial College London, London W6 8RF, United Kingdom.
| | | |
Collapse
|
366
|
Oh DY, Kim K, Kwon HB, Seong JY. Cellular and molecular biology of orphan G protein-coupled receptors. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 252:163-218. [PMID: 16984818 DOI: 10.1016/s0074-7696(06)52003-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of membrane-spanning proteins. It plays a variety of roles in pathophysiological processes by transmitting extracellular signals to cells via heterotrimeric G proteins. Completion of the human genome project revealed the presence of approximately 168 genes encoding established nonsensory GPCRs, as well as 207 genes predicted to encode novel GPCRs for which the natural ligands remained to be identified, the so-called orphan GPCRs. Eighty-six of these orphans have now been paired to novel or previously known molecules, and 121 remain to be deorphaned. A better understanding of the GPCR structures and classification; knowledge of the receptor activation mechanism, either dependent on or independent of an agonist; increased understanding of the control of GPCR-mediated signal transduction; and development of appropriate ligand screening systems may improve the probability of discovering novel ligands for the remaining orphan GPCRs.
Collapse
Affiliation(s)
- Da Young Oh
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, Seoul 136-707, Korea
| | | | | | | |
Collapse
|
367
|
Moro S, Bacilieri M, Deflorian F, Spalluto G. G protein-coupled receptors as challenging druggable targets: insights from in silico studies. NEW J CHEM 2006. [DOI: 10.1039/b516389g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
368
|
Orozco-Cabal L, Pollandt S, Liu J, Shinnick-Gallagher P, Gallagher JP. Regulation of Synaptic Transmission by CRF Receptors. Rev Neurosci 2006; 17:279-307. [PMID: 16878401 DOI: 10.1515/revneuro.2006.17.3.279] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Corticotropin-releasing factor (CRF or CRH) and its family of related peptides have long been recognized as hypothalamic-pituitary-adrenal (HPA) axis peptides that function to regulate the release of other hormones, e.g., ACTH. In addition, CRF acts outside the HPA axis not as a hormone, but as a regulator of synaptic transmission, pre- and post-synaptically, within specific CNS neuronal circuits. Synaptic transmission within the nervous system is today understood to be a more complex process compared to the concepts associated with the term 'synapse' introduced by Sherrington in 1897. Based on more than a century of progress with modern cellular and molecular experimental techniques, prior definitions and functions of synaptic molecules and their receptors need to be reconsidered (see Glossary and Fig. 1), especially in light of the important roles for CRF, its family of peptides and other potential endogenous regulators of neurotransmission, e.g., vasopressin, NPY, etc. (see Glossary). In addition, the property of 'constitutive activity' which is associated with G-protein coupled receptors (GPCRs) provides a persistent tonic mechanism to fine-tune synaptic transmission during both acute and chronic information transfer. We have applied the term 'regulator', adapted from the hormone literature, to CRF, as an example of a specific endogenous substance that functions to facilitate or depress the actions of neuromodulators on fast and slow synaptic responses. As such, synaptic neuroregulators provide a basic substrate to prime or initiate silently plastic processes underlying neurotransmitter-mediated information transfer at CNS synapses. Here we review the role of CRF to regulate CNS synaptic transmission and also suggest how under a variety of allostatic changes, e.g., associated with normal plasticity, or adaptations resulting from mental disorders, the synaptic regulatory role for CRF may be 'switched' in its polarity and/or magnitude in order to provide a coping mechanism to deal with daily and life-long stressors. Thus, a prominent role we assign to non-HPA axis CRF, its family of peptides, and their receptors, is to maintain both acute and chronic synaptic stability.
Collapse
Affiliation(s)
- Luis Orozco-Cabal
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555-1031, USA
| | | | | | | | | |
Collapse
|
369
|
Langmead CJ, Fry VAH, Forbes IT, Branch CL, Christopoulos A, Wood MD, Herdon HJ. Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol 2006; 69:236-46. [PMID: 16207821 DOI: 10.1124/mol.105.017814] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
4-n-Butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine hydrogen chloride (AC-42) is a selective agonist of the muscarinic M(1) receptor previously suggested to interact with an "ectopic" site on this receptor. However, the pharmacological properties of this site (i.e., whether it overlaps to any extent with the classic orthosteric site or represents a novel allosteric site) remain undetermined. In the present study, atropine or pirenzepine significantly inhibited the ability of either carbachol or AC-42 to stimulate inositol phosphate accumulation or intracellular calcium mobilization in Chinese hamster ovary (CHO) cells stably expressing the human M(1) receptor. However, the interaction between either of these antagonists and AC-42 was characterized by Schild slopes significantly less than unity. Increasing the concentrations of atropine revealed that the Schild regression was curvilinear, consistent with a negative allosteric interaction. More direct evidence for an allosteric mode of action of AC-42 was obtained in [(3)H]N-methylscopolamine ([(3)H]NMS) binding studies, in that both AC-42 and the prototypical modulator gallamine failed to fully inhibit specific [(3)H]NMS binding in a manner that was quantitatively described by an allosteric model applied to both modulator data sets. Furthermore, AC-42 and gallamine significantly retarded the rate of [(3)H]NMS dissociation from CHO-hM(1) cell membranes, conclusively demonstrating their ability to bind to a topographically distinct site to change M(1) receptor conformation. These data provide the first direct evidence that AC-42 is an allosteric agonist that activates M(1) receptors in the absence of the orthosteric agonist.
Collapse
Affiliation(s)
- Christopher J Langmead
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, Third Ave., Harlow, Essex, CM19 5AW, UK.
| | | | | | | | | | | | | |
Collapse
|
370
|
Lee YH, Naider F, Becker JM. Interacting Residues in an Activated State of a G Protein-coupled Receptor. J Biol Chem 2006; 281:2263-72. [PMID: 16314417 DOI: 10.1074/jbc.m509987200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ste2p, the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone alpha-factor of Saccharomyces cerevisiae, was used as a model GPCR to investigate the role of specific residues in the resting and activated states of the receptor. Using a series of biological and biochemical analyses of wild-type and site-directed mutant receptors, we identified Asn(205) as a potential interacting partner with the Tyr(266) residue. An N205H/Y266H double mutant showed pH-dependent functional activity, whereas the N205H receptor was non-functional and the Y266H receptor was partially active indicating that the histidine 205 and 266 residues interact in an activated state of the receptor. The introduction of N205K or Y266D mutations into the P258L/S259L constitutively active receptor suppressed the constitutive activity; in contrast, the N205K/Y266D/P258L/S259L quadruple mutant was fully constitutively active, again indicating an interaction between residues at the 205 and 206 positions in the receptor-active state. To further test this interaction, we introduced the N205C/Y266C, F204C/Y266C, and N205C/A265C double mutations into wild-type and P258L/S259L constitutively active receptors. After trypsin digestion, we found that a disulfide-cross-linked product, with the molecular weight expected for a receptor fragment with a cross-link between N205C and Y266C, formed only in the N205C/Y266C constitutively activated receptor. This study represents the first experimental demonstration of an interaction between specific residues in an active state, but not the resting state, of Ste2p. The information gained from this study should contribute to an understanding of the conformational differences between resting and active states in GPCRs.
Collapse
MESH Headings
- Alanine/chemistry
- Asparagine/chemistry
- Biological Assay
- Cross-Linking Reagents/pharmacology
- Disulfides/chemistry
- Dose-Response Relationship, Drug
- Genes, Dominant
- Genes, Reporter
- Histidine/chemistry
- Hydrogen-Ion Concentration
- Immunoblotting
- Kinetics
- Lac Operon
- Models, Biological
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Phenotype
- Pheromones/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Mating Factor/chemistry
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Signal Transduction
- Trypsin/pharmacology
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Yong-Hun Lee
- Department of Microbiology, University of Tennessee, Nashville, TN 37996, USA
| | | | | |
Collapse
|
371
|
Betz SF, Reinhart GJ, Lio FM, Chen C, Struthers RS. Overlapping, Nonidentical Binding Sites of Different Classes of Nonpeptide Antagonists for the Human Gonadotropin-Releasing Hormone Receptor. J Med Chem 2005; 49:637-47. [PMID: 16420049 DOI: 10.1021/jm0506928] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide agonists and antagonists of the human gonadotropin-releasing hormone receptor (GnRH-R) are widely used to treat a range of reproductive hormone related diseases. Recently, nonpeptide, orally available GnRH-R antagonists have emerged from several chemical classes. To understand how a relatively large peptide-binding pocket can recognize numerous nonpeptide ligands, we undertook a systematic mapping of GnRH-R residues involved in the binding of three nonpeptide antagonists. A region composed of the extracellular portions of transmembrane helices 6 and 7, extracellular loop 3, and the N-terminal domain significantly contributed to nonpeptide antagonist binding. However, each molecule was affected by a different subset of residues in these regions, indicating that each appears to occupy distinct, partially overlapping subregions within the more extensive peptide-binding pocket. Moreover, the resulting receptor interaction maps provide a basis to begin to reconcile structure-activity relationships between various nonpeptide and peptide series and facilitate the design of improved therapeutic agents.
Collapse
Affiliation(s)
- Stephen F Betz
- Department of Endocrinology, Neurocrine Biosciences, Inc., San Diego, California 92130, USA.
| | | | | | | | | |
Collapse
|
372
|
Frimurer TM, Ulven T, Elling CE, Gerlach LO, Kostenis E, Högberg T. A physicogenetic method to assign ligand-binding relationships between 7TM receptors. Bioorg Med Chem Lett 2005; 15:3707-12. [PMID: 15993056 DOI: 10.1016/j.bmcl.2005.05.102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/09/2005] [Accepted: 05/26/2005] [Indexed: 11/29/2022]
Abstract
A computational protocol has been devised to relate 7TM receptor proteins (GPCRs) with respect to physicochemical features of the core ligand-binding site as defined from the crystal structure of bovine rhodopsin. The identification of such receptors that already are associated with ligand information (e.g., small molecule ligands with mutagenesis or SAR data) is used to support structure-guided drug design of novel ligands. A case targeting the newly identified prostaglandin D2 receptor CRTH2 serves as a primary example to illustrate the procedure.
Collapse
MESH Headings
- Animals
- Benzimidazoles/chemistry
- Benzimidazoles/pharmacology
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Biphenyl Compounds
- Cattle
- Computer Simulation
- Drug Design
- Hydrocarbons, Aromatic/pharmacology
- Indomethacin/analogs & derivatives
- Indomethacin/chemistry
- Indomethacin/pharmacology
- Ligands
- Models, Biological
- Molecular Structure
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/metabolism
- Rhodopsin/chemistry
- Structure-Activity Relationship
- Tetrazoles/chemistry
- Tetrazoles/pharmacology
Collapse
|
373
|
Tang CM, Insel PA. Genetic variation in G-protein-coupled receptors – consequences for G-protein-coupled receptors as drug targets. Expert Opin Ther Targets 2005; 9:1247-65. [PMID: 16300474 DOI: 10.1517/14728222.9.6.1247] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptors (GPCRs), including 'orphan' GPCRs whose natural ligands are unknown, comprise the largest membrane receptor superfamily and are the most commonly used therapeutic targets. GPCR genetic loci harbour numerous variants, such as DNA insertions or deletions and single nucleotide polymorphisms that alter GPCR expression and function, thereby contributing to inter-individual differences in disease susceptibility/progression and drug responses. In this article, the authors review examples of GPCR genetic variants that influence transcription, translation, receptor folding and expression on cell surface (by affecting receptor trafficking, dimerisation, desensitisation/downregulation), or perturb receptor function (by altering ligand binding, G-protein coupling and receptor constitutive activity). In spite of such effects, assessment for genetic variants is not currently applied to the drug development and approval process or in the clinical use of GPCR drugs. Further insights will, the authors believe, alter drug discovery/development, therapeutics and likely provide new GPCR drug targets.
Collapse
Affiliation(s)
- Chih-Min Tang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | | |
Collapse
|
374
|
Civelli O, Saito Y, Wang Z, Nothacker HP, Reinscheid RK. Orphan GPCRs and their ligands. Pharmacol Ther 2005; 110:525-32. [PMID: 16289308 DOI: 10.1016/j.pharmthera.2005.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 10/04/2005] [Indexed: 12/31/2022]
Abstract
Due to their diversity, G-protein-coupled receptors (GPCRs) are major regulators of intercellular interactions. They exert their actions by being activated by a vast array of natural ligands, referred to in this article as "transmitters". Yet each GPCR is highly selective in its ligand recognition. Traditionally, the transmitters were found first and served to characterize the receptors pharmacologically. Since the end of the 1980s, however, it is the GPCRs that are first to be found because they are identified molecularly by homology screening approaches. But the GPCRs found this way suffer of one drawback, they lack their natural transmitters, they are "orphan" GPCRs. Searching for transmitters of orphan GPCRs has given birth to the reverse pharmacology approach that uses orphan GPCRs as targets to identify their transmitters. The most salient successes of the reverse pharmacology approach were the discoveries of 9 novel neuropeptide families. These have enriched our understanding of several important behavioral responses. But the application of reverse pharmacology has also led to some surprising results that question some basic pharmacological concepts. This review aims at describing the history of the orphan GPCRs and their impact on our understanding of biology.
Collapse
Affiliation(s)
- Olivier Civelli
- Department of Pharmacology and Department of Developmental and Cell Biology, University of California, Irvine, Med Surge II Room 369, Irvine, CA 92697-4625, USA.
| | | | | | | | | |
Collapse
|
375
|
Abstract
Plants, like animals, use signal transduction pathways based on heterotrimeric guanine nucleotide-binding proteins (G proteins) to regulate many aspects of development and cell signaling. Some components of G protein signaling are highly conserved between plants and animals and some are not. This Viewpoint compares key aspects of G protein signal transduction in plants and animals and describes the current knowledge of this system in plants, the questions that still await exploration, and the value of research on plant G proteins to scientists who do not study plants. Pathways in Science's Signal Transduction Knowledge Environment Connections Maps database provide details about the emerging roles of G proteins in several cellular processes of plants.
Collapse
Affiliation(s)
- Sarah M Assmann
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| |
Collapse
|
376
|
Silin VI, Karlik EA, Ridge KD, Vanderah DJ. Development of surface-based assays for transmembrane proteins: selective immobilization of functional CCR5, a G protein-coupled receptor. Anal Biochem 2005; 349:247-53. [PMID: 16298323 DOI: 10.1016/j.ab.2005.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/23/2022]
Abstract
A general method to develop surface-based assays for transmembrane (TM) receptor function(s) without the need to isolate, purify, and reconstitute the proteins is presented. Based on the formation of an active surface that selectively immobilizes membrane vesicles, the method is illustrated using the chemokine receptor CCR5, a member of the largest family of cell surface eukaryotic TM proteins, the G protein-coupled receptors (GPCRs). The method begins with a protein-resistant surface containing a low percentage (1-5%) of surface-bound biotin on gold as the initial template. Surface plasmon resonance (SPR) data show specific immobilization of functional CCR5 after the initial template is activated by immobilization of rho 1D4 antibody, an anti-rhodopsin monoclonal antibody specific for the carboxyl terminal nine amino acids on bovine rhodopsin that had been engineered into the carboxyl terminus of CCR5, and exposure to vesicles obtained from mammalian cells transfected with a synthetic human CCR5 gene. Activation of the initial template is effected by sequential immobilization of avidin, which binds to the biotin in the initial template, a biotinylated goat anti-mouse immunoglobulin G (Bt-IgG), which binds to the avidin binding sites distal to the surface and the F(c) portion of the rho 1D4 antibody through its F(ab) region(s) and finally rho 1D4. This approach establishes a broad outline for the development and application of various assays for CCR5 functions. SPR data also showed that vesicle immobilization could be achieved through an integrin-integrin antibody interaction after activation of the initial template with a goat anti-human integrin beta1 antibody. These results suggest that the generic nature of the initial platform and flexibility of the subsequent surface activation for specific immobilization of membrane vesicles can be applied to the development of assays for other GPCRs or TM receptors for which antibodies are available or can be engineered to contain a particular antibody epitope.
Collapse
Affiliation(s)
- Vitalii I Silin
- Biotechnology Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | | | |
Collapse
|
377
|
Tunaru S, Lättig J, Kero J, Krause G, Offermanns S. Characterization of determinants of ligand binding to the nicotinic acid receptor GPR109A (HM74A/PUMA-G). Mol Pharmacol 2005; 68:1271-80. [PMID: 16099840 DOI: 10.1124/mol.105.015750] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The G-protein-coupled receptor GPR109A (HM74A/PUMA-G) has recently been shown to function as a receptor for nicotinic acid (niacin) and to mediate its antilipolytic effects. Nicotinic acid is able to strongly raise plasma levels of high-density lipoprotein cholesterol, a property that distinguishes nicotinic acid from other lipid-lowering drugs. To investigate the structural determinants of GPR109A ligand binding, we performed site-directed mutagenesis of putative ligand binding residues combined with generation of chimeric receptors consisting of GPR109A and its close relative GPR109B, which does not bind nicotinic acid. We could identify Asn86/Trp91 [transmembrane helix (TMH) 2/extracellular loop (ECL) 1], Arg111 (TMH3), Ser178 (ECL2), Phe276 (TMH7), and Tyr284 (TMH7) as amino acid residues critical for binding of nicotinic acid. Together with data from molecular modeling studies, our data suggest that the ligand binding pocket for nicotinic acid of GPR109A is distinct from that of most other group A receptors. Although Arg111 at TMH3 serves as the basic anchor point for the carboxylate ligands, the ring system of nicotinic acid is embedded between Trp91 at the junction TMH2/ECL1 and Phe276/Tyr284 at TMH7. The heterocyclic ring is also bound to Ser178 at ECL2 via an H-bond. These data will facilitate the design of new antidyslipidemic drugs acting via GPR109A.
Collapse
Affiliation(s)
- Sorin Tunaru
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
378
|
Leifert WR, Aloia AL, Bucco O, Glatz RV, McMurchie EJ. G-protein-coupled receptors in drug discovery: nanosizing using cell-free technologies and molecular biology approaches. ACTA ACUST UNITED AC 2005; 10:765-79. [PMID: 16234342 DOI: 10.1177/1087057105280517] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signal transduction by G-protein-coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. Signal transduction has been studied extensively with both cell-based systems and assays comprising isolated signaling components. Interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high throughput screening, biosensors, and so on will focus greater attention on assay development to allow for miniaturization, ultra-high throughput and, eventually, microarray/biochip assay formats. Although cell-based assays are adequate for many GPCRs, it is likely that these formats will limit the development of higher density GPCR assay platforms mandatory for other applications. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR assay platforms adaptable for such applications as microarrays. The authors review current cell-free GPCR assay technologies and molecular biological approaches for construction of novel, functional GPCR assays.
Collapse
Affiliation(s)
- Wayne R Leifert
- CSIRO Molecular and Health Technologies, Adelaide, SA, Australia.
| | | | | | | | | |
Collapse
|
379
|
Hawtin SR. Charged residues of the conserved DRY triplet of the vasopressin V1a receptor provide molecular determinants for cell surface delivery and internalization. Mol Pharmacol 2005; 68:1172-82. [PMID: 16049168 DOI: 10.1124/mol.105.013359] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The highly conserved "Asp-Arg-Tyr" triplet in the distal region of the third transmembrane region of most G-protein-coupled receptors is implicated in their activation process and mediation of G-protein signaling. The aim of this study was to determine whether specific features at this locus are important for the vasopressin V(1a) receptor (V(1a)R) by performing site-directed mutagenesis. In transfected HEK 293T cells, mutation of Asp (D148A) resulted in a misfolded receptor that was nonfunctional, localized intracellularly, and not constitutively active. Nonconservative (D148R) substitution was not expressed, whereas asparagine (D148N) partially restored cell surface expression, although no specific ligand-binding or inositol phosphate signaling was detected. In contrast, conservative (D148E) substitution was expressed moderately higher, bound ligands, and signaled similarly to a hemagglutinin epitope-tagged wild-type receptor. However, D148E showed a greater tendency to be internalized once it was delivered to the membrane. Individual replacements of the conserved arginine and tyrosine (R149A, Y150A) led to decreased signal transduction without affecting surface expression, agonist affinity, or internalization or increasing basal signaling activity. Incorporation of aspartate (R149D) or reversal of charges (D148R/R149D) were nonfunctional, localized intracellularly, and indicated the absence of an ionic interaction between Asp-148 and Arg-149. It is noteworthy that an important role of arginine was identified for regulating agonist-mediated internalization when a histidine (R149H) was present. This mutant was expressed on the cell surface but was rapidly internalized after agonist treatment. This study highlights the importance of specific charged residues within this motif that provide important determinants for cell surface delivery, internalization and for normal V(1a)R function.
Collapse
Affiliation(s)
- Stuart R Hawtin
- Institute of Cell Signaling, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
380
|
Masi T, Cekanova M, Walker K, Bernert H, Majidi M, Becker JM, Schuller HM. Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary adenocarcinomas in Syrian golden hamsters contain beta 2-adrenergic receptor single-nucleotide polymorphisms. Genes Chromosomes Cancer 2005; 44:212-217. [PMID: 15942941 DOI: 10.1002/gcc.20228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cigarette smoking contributes to the development of lung cancer throughout the world, with cases of pulmonary adenocarcinoma (PAC) the most numerous. Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which is formed from nicotine, has been demonstrated to cause mutations in genes that affect cell regulation and proliferation. Moreover, NNK has been shown to interact directly with and stimulate beta adrenergic receptor (ADRB) signal transduction pathways. Our goal was to determine whether single-nucleotide polymorphisms (SNPs) in the Adrb2 from PAC tumors were induced in golden hamsters by the injection of NNK. Here we report the cloning and sequencing of Adrb2 clones from either dissected lung tumors from NNK-injected animals or whole-lung tissue from water-injected controls. Both sets of animals contained SNPs; however, we found significantly more SNPs in the Adrb2 from NNK-injected animals than in the controls. The majority of these SNPs were novel, nonsynonymous mutations found in regions of the Adrb2 known to be involved in ligand binding, G-protein coupling, and desensitization/down-regulation. Our data verified the mutagenic effects of NNK as well as demonstrated that this animal model provides an outstanding way of identifying mutations not only in the Adrb2, but also in other genes that may play essential roles in the regulation and growth of pulmonary adenocarcinomas.
Collapse
Affiliation(s)
- Thomas Masi
- Experimental Oncology Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | |
Collapse
|
381
|
Beukers MW, Ijzerman AP. Techniques: How to boost GPCR mutagenesis studies using yeast. Trends Pharmacol Sci 2005; 26:533-9. [PMID: 16126284 DOI: 10.1016/j.tips.2005.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 07/18/2005] [Accepted: 08/12/2005] [Indexed: 11/29/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the major targets of today's medicines. To elucidate the mechanism of activation of GPCRs and the interaction of these receptors with their G proteins, mutagenesis studies have proven to be a powerful tool and have provided insight into the structure and function of GPCRs. Random mutagenesis is useful in this respect particularly when combined with a robust screening assay that is based on the functional properties of the mutants. In this article, the use of random mutagenesis combined with a functional screening assay in yeast is described and compared with alternative approaches such as site-directed mutagenesis per se, alanine/cysteine scanning and another screening assay, receptor selection and amplification technology (R-SAT). Screening in yeast of randomly mutated GPCRs has proven successful in the identification of ligands for orphan receptors and in high-throughput approaches. Moreover, it has provided substantial insight into G-protein coupling and receptor activation.
Collapse
Affiliation(s)
- Margot W Beukers
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Einsteinweg 55, 2300 CC Leiden, The Netherlands.
| | | |
Collapse
|
382
|
Yan F, Mosier PD, Westkaemper RB, Stewart J, Zjawiony JK, Vortherms TA, Sheffler DJ, Roth BL. Identification of the molecular mechanisms by which the diterpenoid salvinorin A binds to kappa-opioid receptors. Biochemistry 2005; 44:8643-51. [PMID: 15952771 DOI: 10.1021/bi050490d] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salvinorin A is a naturally occurring hallucinogenic diterpenoid from the plant Salvia divinorumthat selectively and potently activates kappa-opioid receptors (KORs). Salvinorin A is unique in that it is the only known lipid-like molecule that selectively and potently activates a G-protein coupled receptor (GPCR), which has as its endogenous agonist a peptide; salvinorin A is also the only known non-nitrogenous opioid receptor agonist. In this paper, we identify key residues in KORs responsible for the high binding affinity and agonist efficacy of salvinorin A. Surprisingly, we discovered that salvinorin A was stabilized in the binding pocket by interactions with tyrosine residues in helix 7 (Tyr313 and Tyr320) and helix 2 (Tyr119). Intriguingly, activation of KORs by salvinorin A required interactions with the helix 7 tyrosines Tyr312, Tyr313, and Tyr320 and with Tyr139 in helix 3. In contrast, the prototypical nitrogenous KOR agonist U69593 and the endogenous peptidergic agonist dynorphin A (1-13) showed differential requirements for these three residues for binding and activation. We also employed a novel approach, whereby we examined the effects of cysteine-substitution mutagenesis on the binding of salvinorin A and an analogue with a free sulfhydryl group, 2-thiosalvinorin B. We discovered that residues predicted to be in close proximity, especially Tyr313, to the free thiol of 2-thiosalvinorin B when mutated to Cys showed enhanced affinity for 2-thiosalvinorin B. When these findings are taken together, they imply that the diterpenoid salvinorin A utilizes unique residues within a commonly shared binding pocket to selectively activate KORs.
Collapse
Affiliation(s)
- Feng Yan
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
383
|
Sgourakis NG, Bagos PG, Hamodrakas SJ. Prediction of the coupling specificity of GPCRs to four families of G-proteins using hidden Markov models and artificial neural networks. Bioinformatics 2005; 21:4101-6. [PMID: 16174684 DOI: 10.1093/bioinformatics/bti679] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MOTIVATION G-protein coupled receptors are a major class of eukaryotic cell-surface receptors. A very important aspect of their function is the specific interaction (coupling) with members of four G-protein families. A single GPCR may interact with members of more than one G-protein families (promiscuous coupling). To date all published methods that predict the coupling specificity of GPCRs are restricted to three main coupling groups G(i/o), G(q/11) and G(s), not including G(12/13)-coupled or other promiscuous receptors. RESULTS We present a method that combines hidden Markov models and a feed-forward artificial neural network to overcome these limitations, while producing the most accurate predictions currently available. Using an up-to-date curated dataset, our method yields a 94% correct classification rate in a 5-fold cross-validation test. The method predicts also promiscuous coupling preferences, including coupling to G(12/13), whereas unlike other methods avoids overpredictions (false positives) when non-GPCR sequences are encountered. AVAILABILITY A webserver for academic users is available at http://bioinformatics.biol.uoa.gr/PRED-COUPLE2
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Greece
| | | | | |
Collapse
|
384
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
385
|
Abstract
Pairing orphan G-protein-coupled receptors (GPCRs) to potential ligands found in tissue extracts or in libraries of synthetic compounds has identified an ever-increasing number of transmitters, some of which are novel, some of which were previously known and, more recently, some of which are unexpected. These discoveries raise questions about the nature of transmitters and the specificity of GPCRs. In this article, several aspects of the impact of orphan GPCR research on our understanding of the diversity of transmitters will be discussed.
Collapse
Affiliation(s)
- Olivier Civelli
- Department of Pharmacology and Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-4625, USA.
| |
Collapse
|
386
|
Lundstrom K. Structural biology of G protein-coupled receptors. Bioorg Med Chem Lett 2005; 15:3654-7. [PMID: 15935658 DOI: 10.1016/j.bmcl.2005.05.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 04/29/2005] [Accepted: 05/11/2005] [Indexed: 11/29/2022]
Abstract
More than 60% of the current drugs are based on G protein-coupled receptors. Paradoxically, high-resolution structures are not available to facilitate rational drug design. Difficulties in expression, purification, and crystallization of these transmembrane receptors are the reasons for the low success rate. Recent individual and network-based technology development has significantly improved our knowledge of structural biology and might soon bring a major breakthrough in this area.
Collapse
|
387
|
Okuno T, Yokomizo T, Hori T, Miyano M, Shimizu T. Leukotriene B4 receptor and the function of its helix 8. J Biol Chem 2005; 280:32049-52. [PMID: 16046389 DOI: 10.1074/jbc.r500007200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
More than 30 lipid ligands, which express their biological activities through cognate G-protein-coupled receptors (GPCRs), have been reported. Among them, leukotriene B(4) (LTB(4)) is a potent lipid mediator involved in host defense, inflammation, and the immune responses. Two GPCRs for LTB(4) (BLT1 and BLT2) have been cloned and analyzed. Recent studies using genetically engineered mice suggest that BLT1 plays an important role in several inflammatory diseases including ischemic reperfusion tissue injury, atherosclerosis, and bronchial asthma. BLT1 is also a good tool to study the molecular mechanism of GPCR activation and inactivation in vitro. In this brief review, we focus on the biological and biochemical properties of BLT1 with special attention to the putative helix 8 of the receptor.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry and Molecular Biology and Metabolome, Faculty of Medicine, The University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
388
|
Yang Y, Chen M, Loux TJ, Georgeson KE, Harmon CM. Molecular mechanism of the intracellular segments of the melanocortin-4 receptor for NDP-MSH signaling. Biochemistry 2005; 44:6971-9. [PMID: 15865442 DOI: 10.1021/bi047521+] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations of the human melanocortin-4 receptor (hMC4R) have been previously identified to be the most common cause of monogenic human obesity. Specifically, mutations of the intracellular C terminus and the third intracellular loop of hMC4R have been reported to play an important role in human obesity. However, the molecular basis of these hMC4R intracellular segments in receptor function remains unclear. In this study, we utilized deletions and mutations of specific portions of the hMC4R to determine the molecular mechanism of both the C terminus and the third intracellular loop in receptor signaling. Our results indicate that deletions of the distal 25 (the entire C terminus), 22, 18, 17, 16, and 15 amino acids of the C terminus result in the complete loss of both [Nle(4)-d-Phe(7)]-alpha-melanocyte stimulating hormone (NDP-MSH) binding and NDP-MSH-mediated cAMP production. Deletion of the distal 14 amino acids of the C terminus significantly decreases both NDP-MSH binding affinity and potency, but deletion of the distal 13 amino acids of the C terminus does not affect NDP-MSH activity. Further analysis revealed that the proximal 12 amino acids of the C terminus are not only important for receptor signaling but also important for ligand binding. Our results also indicate that the third intracellular loop of the hMC4R is important for receptor signaling but not ligand binding. In summary, our findings suggest that the proximal region of the melanocortin-4 receptor (MC4R) C terminus is crucial not only for receptor signaling but also for ligand binding, while the third intracellular loop is important mainly for receptor signaling.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA.
| | | | | | | | | |
Collapse
|
389
|
Chen CC, Dormidontova EE. Architectural and structural optimization of the protective polymer layer for enhanced targeting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5605-15. [PMID: 15924497 DOI: 10.1021/la047109v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Using Monte Carlo simulations we study the influence of ligand architecture (valence, branching length) and structure (polydispersity) of a flat protective polymer layer on the accessibility of its functional groups and efficiency of receptor targeting. Two types of receptor surfaces were considered: the surface homogeneously covered with receptors and the surface containing a finite number of receptor sites. We found that multivalent ligands provide a larger density of targeting groups on the periphery of the layer compared to monovalent ligands for the same overall number of targeting groups per polymer layer. Because of their cooperativity in binding, multivalent ligands were also considerably more efficient in binding to both types of receptor surfaces. With an increase of ligand valence the number of functional groups attached to receptors noticeably increases. Short-branched divalent ligands show an especially high cooperativity in binding to closely packed receptors. However, in the case of immobile receptors separated by a finite distance from each other, the average distance between the functional groups belonging to the same short divalent ligand is too small to reach different receptors simultaneously and the receptor binding is less efficient than in the monovalent ligand case. Using a bidisperse protective polymer layer formed by short nonfunctional polymers and long functionalized polymers considerably increases the fraction of functional groups on the periphery of the layer. Simulations of receptor binding confirm the high efficiency of receptor targeting by bidisperse polymer layers, which is achieved by means of larger compressibility and higher capability of the ligands to reach out compared to the corresponding monodisperse layers. The concepts of multivalent ligands and a bidisperse protective polymer layer each have their own advantages which can be combined for an enhanced targeting effect.
Collapse
Affiliation(s)
- Chun-Chung Chen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
390
|
Urizar E, Montanelli L, Loy T, Bonomi M, Swillens S, Gales C, Bouvier M, Smits G, Vassart G, Costagliola S. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J 2005; 24:1954-64. [PMID: 15889138 PMCID: PMC1142614 DOI: 10.1038/sj.emboj.7600686] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 04/27/2005] [Indexed: 11/09/2022] Open
Abstract
The monomeric model of rhodopsin-like G protein-coupled receptors (GPCRs) has progressively yielded the floor to the concept of GPCRs being oligo(di)mers, but the functional correlates of dimerization remain unclear. In this report, dimers of glycoprotein hormone receptors were demonstrated in living cells, with a combination of biophysical (bioluminescence resonance energy transfer and homogenous time resolved fluorescence/fluorescence resonance energy transfer), functional and biochemical approaches. Thyrotropin (TSHr) and lutropin (LH/CGr) receptors form homo- and heterodimers, via interactions involving primarily their heptahelical domains. The large hormone-binding ectodomains were dispensable for dimerization but modulated protomer interaction. Dimerization was not affected by agonist binding. Observed functional complementation indicates that TSHr dimers may function as a single functional unit. Finally, heterologous binding-competition studies, performed with heterodimers between TSHr and LH/CG-TSHr chimeras, demonstrated the unsuspected existence of strong negative cooperativity of hormone binding. Tracer desorption experiments indicated an allosteric behavior in TSHr and, to a lesser extent, in LH/CGr and FSHr homodimers. This study is the first report of homodimerization associated with negative cooperativity in rhodopsin-like GPCRs. As such, it may warrant revisitation of allosterism in the whole GPCR family.
Collapse
Affiliation(s)
- Eneko Urizar
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- Departamento de Neurofarmacología, Facultad de Farmacia, Universidad del País Vasco, Vitoria-Gasteiz, Spain
| | - Lucia Montanelli
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Tiffany Loy
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Marco Bonomi
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- Institute of Endocrine Sciences, Istituto Auxologico Italiano IRCCS and Ospedale Maggiore di Milano IRCCS, Italy
| | - Stéphane Swillens
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Céline Gales
- Department of Biochemistry, Université de Montréal, succursale Centre-Ville, Montréal, Québec, Canada
| | - Michel Bouvier
- Department of Biochemistry, Université de Montréal, succursale Centre-Ville, Montréal, Québec, Canada
| | - Guillaume Smits
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- Service de Génétique Médicale, Hôpital Erasme, Brussels, Belgium
| | - Gilbert Vassart
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- Service de Génétique Médicale, Hôpital Erasme, Brussels, Belgium
| | - Sabine Costagliola
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, 1070 Bruxelles, Belgium. Tel.: +32 2 555 4169; Fax: +32 2 555 4212; E-mail:
| |
Collapse
|
391
|
Sgourakis NG, Bagos PG, Papasaikas PK, Hamodrakas SJ. A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models. BMC Bioinformatics 2005; 6:104. [PMID: 15847681 PMCID: PMC1087828 DOI: 10.1186/1471-2105-6-104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 04/22/2005] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND G- Protein coupled receptors (GPCRs) comprise the largest group of eukaryotic cell surface receptors with great pharmacological interest. A broad range of native ligands interact and activate GPCRs, leading to signal transduction within cells. Most of these responses are mediated through the interaction of GPCRs with heterotrimeric GTP-binding proteins (G-proteins). Due to the information explosion in biological sequence databases, the development of software algorithms that could predict properties of GPCRs is important. Experimental data reported in the literature suggest that heterotrimeric G-proteins interact with parts of the activated receptor at the transmembrane helix-intracellular loop interface. Utilizing this information and membrane topology information, we have developed an intensive exploratory approach to generate a refined library of statistical models (Hidden Markov Models) that predict the coupling preference of GPCRs to heterotrimeric G-proteins. The method predicts the coupling preferences of GPCRs to Gs, Gi/o and Gq/11, but not G12/13 subfamilies. RESULTS Using a dataset of 282 GPCR sequences of known coupling preference to G-proteins and adopting a five-fold cross-validation procedure, the method yielded an 89.7% correct classification rate. In a validation set comprised of all receptor sequences that are species homologues to GPCRs with known coupling preferences, excluding the sequences used to train the models, our method yields a correct classification rate of 91.0%. Furthermore, promiscuous coupling properties were correctly predicted for 6 of the 24 GPCRs that are known to interact with more than one subfamily of G-proteins. CONCLUSION Our method demonstrates high correct classification rate. Unlike previously published methods performing the same task, it does not require any transmembrane topology prediction in a preceding step. A web-server for the prediction of GPCRs coupling specificity to G-proteins available for non-commercial users is located at http://bioinformatics.biol.uoa.gr/PRED-COUPLE.
Collapse
MESH Headings
- Algorithms
- Amino Acid Sequence
- Animals
- Binding Sites
- Computational Biology/methods
- Databases, Protein
- Humans
- Ligands
- Markov Chains
- Models, Biological
- Models, Chemical
- Models, Statistical
- Molecular Sequence Data
- Pattern Recognition, Automated
- Protein Interaction Mapping
- Receptors, Cell Surface
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Sensitivity and Specificity
- Sequence Alignment
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Software
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 157 01, Greece
| | - Pantelis G Bagos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 157 01, Greece
| | - Panagiotis K Papasaikas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 157 01, Greece
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 157 01, Greece
| |
Collapse
|
392
|
Chee C, Arshad S, Singh S, Mistry S, Hamdy S. The influence of chemical gustatory stimuli and oral anaesthesia on healthy human pharyngeal swallowing. Chem Senses 2005; 30:393-400. [PMID: 15829608 DOI: 10.1093/chemse/bji034] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study explored the effects of taste and oral anaesthesia on human sequential swallowing. Subjects were healthy adults (n = 42, mean age 28 years, 21 females), investigated by means of a water swallow test. Taste stimuli comprised quinine, glucose, citrus and saline solutions compared with neutral water. Oral anaesthesia comprised topical lidocaine at doses of 10, 20 and 40 mg and compared with placebo. Data were collected on swallowing speed (volume per second), inter-swallow interval and swallowing capacity (volume per swallow). Compared with water, glucose, citrus and saline reduced swallowing speed (10.94 +/- 0.89 versus 9.56 +/- 0.79, 9.33 +/- 1.19, 9.37 +/- 0.92 ml/s respectively, P < 0.05). Inter-swallow interval was increased only by quinine and saline (1.47 +/- 1.11 versus 2.13 +/- 0.34 and 1.92 +/- 0.31 s, P < 0.04). Swallowing capacity was only marginally increased by quinine (P = 0.0759). Compared with the placebo, only 40 mg of lidocaine altered swallowing, immediately reducing the swallowing speed (7.89 +/- 2.34 versus 10.11 +/- 3.26 ml/s, P < 0.05) and increasing inter-swallow interval (1.67 +/- 0.38 versus 1.45 +/- 0.29 s, P < 0.01) without affecting capacity. By 15 min all measures except sensory thresholds had returned to baseline values. Thus, swallowing function is highly influenced by chemosensory input, providing insight into how oral sensation regulates pharyngeal swallowing.
Collapse
Affiliation(s)
- Carolyn Chee
- Manchester Medical School, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | | | | |
Collapse
|
393
|
Kiihne SR, Creemers AFL, de Grip WJ, Bovee-Geurts PHM, Lugtenburg J, de Groot HJM. Selective Interface Detection: Mapping Binding Site Contacts in Membrane Proteins by NMR Spectroscopy. J Am Chem Soc 2005; 127:5734-5. [PMID: 15839640 DOI: 10.1021/ja045677r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intermolecular contact surfaces are important regions where specific interactions mediate biological function. We introduce a new magic angle spinning solid state NMR technique, dubbed "selective interface detection spectroscopy" (SIDY). In this technique, 13C-attached protons (1Hlig) are dephased by 1H-13C REDOR. A spin diffusion period is then used to enhance long distance 1H-1H correlations, and the results are detected by a short period of cross polarization to the 13C isotope labels. This SIDY approach allows selective observation of the interface between 13C-labeled and unlabeled moieties. We have used SIDY to probe the ligand-protein binding surface between a uniformly isotopically labeled ligand cofactor, U-13C20-11-cis-retinal, and its binding site in rhodopsin (Rho), an unlabeled, membrane-embedded G-protein coupled receptor (GPCR). The observed 1HGPCR-13Clig correlations indicate multiple close contacts between the protein and the ionone ring of the ligand, in agreement with binding studies. The polyene tail of the ligand displays fewer strong correlations in the SIDY spectrum. Some correlations can be assigned to the protein side chains lining the ligand binding site, in agreement with the crystal structure.
Collapse
Affiliation(s)
- Suzanne R Kiihne
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
394
|
Urizar E, Claeysen S, Deupí X, Govaerts C, Costagliola S, Vassart G, Pardo L. An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor. J Biol Chem 2005; 280:17135-41. [PMID: 15722344 DOI: 10.1074/jbc.m414678200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We aimed at understanding molecular events involved in the activation of a member of the G protein-coupled receptor family, the thyrotropin receptor. We have focused on the transmembrane region and in particular on a network of polar interactions between highly conserved residues. Using molecular dynamics simulations and site-directed mutagenesis techniques we have identified residue Asn-7.49, of the NPxxY motif of TM 7, as a molecular switch in the mechanism of thyrotropin receptor (TSHr) activation. Asn-7.49 appears to adopt two different conformations in the inactive and active states. These two states are characterized by specific interactions between this Asn and polar residues in the transmembrane domain. The inactive gauche+ conformation is maintained by interactions with residues Thr-6.43 and Asp-6.44. Mutation of these residues into Ala increases the constitutive activity of the receptor by factors of approximately 14 and approximately 10 relative to wild type TSHr, respectively. Upon receptor activation Asn-7.49 adopts the trans conformation to interact with Asp-2.50 and a putatively charged residue that remains to be identified. In addition, the conserved Leu-2.46 of the (N/S)LxxxD motif also plays a significant role in restraining the receptor in the inactive state because the L2.46A mutation increases constitutive activity by a factor of approximately 13 relative to wild type TSHr. As residues Leu-2.46, Asp-2.50, and Asn-7.49 are strongly conserved, this molecular mechanism of TSHr activation can be extended to other members of the rhodopsin-like family of G protein-coupled receptors.
Collapse
Affiliation(s)
- Eneko Urizar
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire, Université Libre de Bruxelles, Campus Erasme, 808 route de Lennik, B-1070 Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
395
|
Chen C, Pontillo J, Fleck BA, Gao Y, Wen J, Tran JA, Tucci FC, Marinkovic D, Foster AC, Saunders J. 4-{(2R)-[3-Aminopropionylamido]-3-(2,4-dichlorophenyl)propionyl}-1-{2-[(2-thienyl)ethylaminomethyl]phenyl}piperazine as a potent and selective melanocortin-4 receptor antagonist--design, synthesis, and characterization. J Med Chem 2005; 47:6821-30. [PMID: 15615531 DOI: 10.1021/jm049278i] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated that melanocortin-4 receptor (MC4R) antagonists can prevent weight loss in tumor-bearing mice, which indicates clinical usage for the treatment of cachexia. In our efforts to develop potent and selective antagonists of the human MC4R, we designed piperazinebenzylamines bearing a 2,4-dichlorophenylalanine, by utilizing information derived from structure--activity relationships of MC4R agonists and mutagenesis results of the MC4R and peptide ligands. On the basis of known MC4R agonists such 6, we successfully synthesized potent MC4R antagonists exemplified by 10, which possesses a K(i) value of 1.8 nM in binding affinity. 10 does not stimulate cAMP release in HEK 293 cells expressing the human MC4 receptor at 10 microM concentration. It was demonstrated by Schild analysis that 10 was a competitive functional antagonist with a pA(2) value of 7.9 in the inhibition of alpha-MSH-stimulated cAMP accumulation. 10 also penetrated into the brain when dosed intravenously in rats.
Collapse
Affiliation(s)
- Chen Chen
- Neurocrine Biosciences, Inc. 12790 El Camino Real, San Diego, CA 92130, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Lisenbee CS, Dong M, Miller LJ. Paired cysteine mutagenesis to establish the pattern of disulfide bonds in the functional intact secretin receptor. J Biol Chem 2005; 280:12330-8. [PMID: 15664984 DOI: 10.1074/jbc.m414016200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino-terminal domain of class B G protein-coupled receptors contains six conserved cysteine residues involved in structurally and functionally critical disulfide bonds. The mapping of these bonds has been unclear, with one pattern based on biochemical and NMR structural characterizations of refolded, nonglycosylated amino-terminal fragments, and another pattern derived from functional characterizations of intact receptors having paired cysteine mutations. In the present study, we determined the disulfide bonding pattern of the prototypic class B secretin receptor by applying the same paired cysteine mutagenesis approach and confirming the predicted bonding pattern with proteolytic cleavage of intact functional receptor. As expected, systematic mutation to serine of the six conserved cysteine residues within this region of the secretin receptor singly and in pairs resulted in loss of function of most constructs. Notable exceptions were single mutations of the 4th and 6th cysteine residues and paired mutations involving the 1st and 3rd, 2nd and 5th, and 4th and 6th conserved cysteines, with secretin eliciting statistically significant cAMP responses above basal levels of activation for each of these constructs. Immunofluorescence microscopy confirmed similar levels of plasma membrane expression for each of the mutated receptors. Furthermore, cyanogen bromide cleaved a series of wild type and mutant secretin receptors, yielding patterns that agreed with our paired cysteine mutagenesis results. In conclusion, these data suggest the same pattern of disulfide bonding as that predicted previously by NMR and thus support a consistent pattern of amino-terminal disulfide bonds in class B G protein-coupled receptors.
Collapse
Affiliation(s)
- Cayle S Lisenbee
- Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | |
Collapse
|
397
|
Elefsinioti AL, Bagos PG, Spyropoulos IC, Hamodrakas SJ. A database for G proteins and their interaction with GPCRs. BMC Bioinformatics 2004; 5:208. [PMID: 15619328 PMCID: PMC544346 DOI: 10.1186/1471-2105-5-208] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 12/24/2004] [Indexed: 11/10/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) transduce signals from extracellular space into the cell, through their interaction with G proteins, which act as switches forming hetero-trimers composed of different subunits (α,β,γ). The α subunit of the G protein is responsible for the recognition of a given GPCR. Whereas specialised resources for GPCRs, and other groups of receptors, are already available, currently, there is no publicly available database focusing on G Proteins and containing information about their coupling specificity with their respective receptors. Description gpDB is a publicly accessible G proteins/GPCRs relational database. Including species homologs, the database contains detailed information for 418 G protein monomers (272 Gα, 87 Gβ and 59 Gγ) and 2782 GPCRs sequences belonging to families with known coupling to G proteins. The GPCRs and the G proteins are classified according to a hierarchy of different classes, families and sub-families, based on extensive literature searchs. The main innovation besides the classification of both G proteins and GPCRs is the relational model of the database, describing the known coupling specificity of the GPCRs to their respective α subunit of G proteins, a unique feature not available in any other database. There is full sequence information with cross-references to publicly available databases, references to the literature concerning the coupling specificity and the dimerization of GPCRs and the user may submit advanced queries for text search. Furthermore, we provide a pattern search tool, an interface for running BLAST against the database and interconnectivity with PRED-TMR, PRED-GPCR and TMRPres2D. Conclusions The database will be very useful, for both experimentalists and bioinformaticians, for the study of G protein/GPCR interactions and for future development of predictive algorithms. It is available for academics, via a web browser at the URL:
Collapse
Affiliation(s)
- Antigoni L Elefsinioti
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 157 01, Greece
| | - Pantelis G Bagos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 157 01, Greece
| | - Ioannis C Spyropoulos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 157 01, Greece
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 157 01, Greece
| |
Collapse
|
398
|
Affiliation(s)
- Blaine N Armbruster
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
399
|
Abstract
OBJECTIVE AND METHODS 5-Hydroxytryptamine (serotonin) receptor 2B (HTR2B) is involved in brain development. Although expressed in the human brain, HTR2B has not been investigated much for its role in higher brain functions. Here we describe a genome-scan with 391 simple sequence repeat markers in 300 Caucasians, identifying HTR2B gene as a candidate for drug abuse vulnerability. RESULTS From DNA re-sequencing of 110 subjects, we discovered three novel single nucleotide polymorphisms (SNPs), two of which confer a double-mutant of the receptor protein in a drug-abusing population. Arg6, a conserved basic residue, and the conserved acidic Glu42 are mutated simultaneously into Gly, termed R6G/E42G. Furthermore, this double-mutant tends to associate with drug abuse (P = 0.08 by chi2 test). The third SNP that is a synonymous mutation in the codon of Gln11 showed significant association with drug abuse (P = 0.0335 by Fisher's exact test). CONCLUSION Our data are the first suggesting that HTR2B contributes to brain architecture and pathways that are involved in illegal drug reward.
Collapse
Affiliation(s)
- Zhicheng Lin
- Molecular Neurobiology Branch, NIH/NIDA-IRP, 5500 Nathan Shock Dr., Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|