351
|
Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 2017; 16:10. [PMID: 28086863 PMCID: PMC5237289 DOI: 10.1186/s12933-016-0484-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.
Collapse
Affiliation(s)
- Jason Kar Sheng Lew
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Daryl O. Schwenke
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| |
Collapse
|
352
|
Liu X, Liu S. Role of microRNAs in the pathogenesis of diabetic cardiomyopathy. Biomed Rep 2017; 6:140-145. [PMID: 28357065 DOI: 10.3892/br.2017.841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
The morbidity of diabetes mellitus has been increasing annually. As a progressive metabolic disorder, chronic complications occur in the late stage of diabetes. In addition, cardiovascular diseases account for the major cause of morbidity and mortality among the diabetic population worldwide. Diabetic cardiomyopathy (DCM) is a type of diabetic heart disease. Patients with DCM show symptoms and signs of heart failure while no specific cause, such as coronary disease, hypertension, alcohol consumption, or other structural heart diseases has been identified. The pathogenesis of DCM is complex and has not been well understood until recently. MicroRNAs (miRs) belong to a novel family of highly conserved, short, non-coding, single-stranded RNA molecules that regulate transcriptional and post-transcriptional gene expression. Furthermore, recent studies have demonstrated an association between miRs and DCM. In the current review, the role of miRs in the pathogenesis of DCM is summarized. It was concluded that miRs contribute to the regulation of cardiomyocyte hypertrophy, myocardial fibrosis, cardiomyocyte apoptosis, mitochondrial dysfunction, myocardial electrical remodeling, epigenetic modification and various other pathophysiological processes of DCM. These studies may provide novel insights into targets for prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Shixue Liu
- Emergency Department, Rizhao Chinese Medicine Hospital, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
353
|
Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes. Sci Rep 2017; 7:39604. [PMID: 28067255 PMCID: PMC5220363 DOI: 10.1038/srep39604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis.
Collapse
|
354
|
Shang Y, Zhang X, Leng W, Chen L, Lei X, Zhang T, Greiser A, Liang Z, Wang J. Assessment of Diabetic Cardiomyopathy by Cardiovascular Magnetic Resonance T1 Mapping: Correlation with Left-Ventricular Diastolic Dysfunction and Diabetic Duration. J Diabetes Res 2017; 2017:9584278. [PMID: 28791311 PMCID: PMC5534277 DOI: 10.1155/2017/9584278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/09/2017] [Accepted: 05/28/2017] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To quantify extracellular matrix expansion with the cardiovascular magnetic resonance (CMR) T1 mapping technique and the derived extracellular volume fraction (ECV) in diabetic cardiomyopathy (DbCM) patients and to detect the relationship among ECV, duration of diabetes, and diastolic function. MATERIALS Thirty-eight patients with diabetic cardiomyopathy (20 males, age 54.6 ± 8.6 years) and thirty-two matched normal controls (15 males, age 51.4 ± 13.6 years) were prospectively enrolled. All of them were scanned by T1 mapping to obtain the native and postcontrast T1 values of myocardium and blood, and ECV was calculated accordingly. All patients also underwent transthoracic echocardiographic tissue Doppler imaging to assess left-ventricular diastolic function. RESULTS There was a significant difference in ECV between the two groups (DbCMs 30.4 ± 2.9% versus controls 27.1 ± 2.4%, P < 0.001). The duration of diabetes was positively and strongly associated with ECV (R = 0.539, P = 0.0005). There was also a significant difference in ECV (P ≤ 0.001) among four groups (A, controls; B, DbCM patients with duration of diabetes <5 years; C, 5-10 years; and D, >10 years). ECV was negatively associated with LV E'/A' (R = -0.403, P = 0.012). CONCLUSION CMR T1 mapping can reflect myocardial extracellular matrix expansion in DbCM and can be a powerful technique for the early diagnosis of DbCM.
Collapse
Affiliation(s)
- Yongning Shang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaochun Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- *Xiaochun Zhang:
| | - Weilling Leng
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liu Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotian Lei
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tianjing Zhang
- Northeast Asia MR Collaboration, Siemens Healthcare, Beijing, China
| | | | - Ziwen Liang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
- *Ziwen Liang: and
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- *Jian Wang:
| |
Collapse
|
355
|
Mátyás C, Németh BT, Oláh A, Török M, Ruppert M, Kellermayer D, Barta BA, Szabó G, Kökény G, Horváth EM, Bódi B, Papp Z, Merkely B, Radovits T. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes. Eur J Heart Fail 2016; 19:326-336. [PMID: 27995696 PMCID: PMC5347963 DOI: 10.1002/ejhf.711] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/21/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022] Open
Abstract
Aims Heart failure with preserved ejection fraction (HFpEF) has a great epidemiological burden. The pathophysiological role of cyclic guanosine monophosphate (cGMP) signalling has been intensively investigated in HFpEF. Elevated levels of cGMP have been shown to exert cardioprotective effects in various cardiovascular diseases, including diabetic cardiomyopathy. We investigated the effect of long‐term preventive application of the phosphodiesterase‐5A (PDE5A) inhibitor vardenafil in diabetic cardiomyopathy‐associated HFpEF. Methods and results Zucker diabetic fatty (ZDF) rats were used as a model of HFpEF and ZDF lean rats served as controls. Animals received vehicle or 10 mg/kg body weight vardenafil per os from weeks 7 to 32 of age. Cardiac function, morphology was assessed by left ventricular (LV) pressure–volume analysis and echocardiography at week 32. Cardiomyocyte force measurements were performed. The key markers of cGMP signalling, nitro‐oxidative stress, apoptosis, myocardial hypertrophy and fibrosis were examined. The ZDF animals showed diastolic dysfunction (increased LV/cardiomyocyte stiffness, prolonged LV relaxation time), preserved systolic performance, decreased myocardial cGMP level coupled with impaired protein kinase G (PKG) activity, increased nitro‐oxidative stress, enhanced cardiomyocyte apoptosis, and hypertrophic and fibrotic remodelling of the myocardium. Vardenafil effectively prevented the development of HFpEF by maintaining diastolic function (decreased LV/cardiomyocyte stiffness and LV relaxation time), by restoring cGMP levels and PKG activation, by lowering apoptosis and by alleviating nitro‐oxidative stress, myocardial hypertrophy and fibrotic remodelling. Conclusions We report that vardenafil successfully prevented the development of diabetes mellitus‐associated HFpEF. Thus, PDE5A inhibition as a preventive approach might be a promising option in the management of HFpEF patients with diabetes mellitus.
Collapse
Affiliation(s)
- Csaba Mátyás
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Balázs T Németh
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Marianna Török
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Dalma Kellermayer
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Bálint A Barta
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Eszter M Horváth
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122, Budapest, Hungary
| |
Collapse
|
356
|
The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res 2016; 116:57-69. [PMID: 27988384 DOI: 10.1016/j.phrs.2016.12.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) plays a pivotal role in the maintenance of cardiovascular homeostasis. A reduction in the bioavailability of endogenous NO, manifest as a decrease in the production and/or impaired signaling, is associated with many cardiovascular diseases including hypertension, atherosclerosis, stroke and heart failure. There is substantial evidence that reactive oxygen species (ROS), generated predominantly from NADPH oxidases (Nox), are responsible for the reduced NO bioavailability in vascular and cardiac pathologies. ROS can compromise NO function via a direct inactivation of NO, together with a reduction in NO synthesis and oxidation of its receptor, soluble guanylyl cyclase. Whilst nitrovasodilators are administered to compensate for the ROS-mediated loss in NO bioactivity, their clinical utility is limited due to the development of tolerance and resistance and systemic hypotension. Moreover, efforts to directly scavenge ROS with antioxidants has had limited clinical efficacy. This review outlines the therapeutic utility of NO-based therapeutics in cardiovascular diseases and describes the source and impact of ROS in these pathologies, with particular focus on the interaction with NO. Future therapeutic approaches in the treatment of cardiovascular diseases are highlighted with a focus on nitroxyl (HNO) donors as an alternative to traditional NO donors and the development of novel Nox inhibitors.
Collapse
|
357
|
Qin CX, Sleaby R, Davidoff AJ, Bell JR, De Blasio MJ, Delbridge LM, Chatham JC, Ritchie RH. Insights into the role of maladaptive hexosamine biosynthesis and O-GlcNAcylation in development of diabetic cardiac complications. Pharmacol Res 2016; 116:45-56. [PMID: 27988387 DOI: 10.1016/j.phrs.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus significantly increases the risk of heart failure, independent of coronary artery disease. The mechanisms implicated in the development of diabetic heart disease, commonly termed diabetic cardiomyopathy, are complex, but much of the impact of diabetes on the heart can be attributed to impaired glucose handling. It has been shown that the maladaptive nutrient-sensing hexosamine biosynthesis pathway (HBP) contributes to diabetic complications in many non-cardiac tissues. Glucose metabolism by the HBP leads to enzymatically-regulated, O-linked attachment of a sugar moiety molecule, β-N-acetylglucosamine (O-GlcNAc), to proteins, affecting their biological activity (similar to phosphorylation). In normal physiology, transient activation of HBP/O-GlcNAc mechanisms is an adaptive, protective means to enhance cell survival; interventions that acutely suppress this pathway decrease tolerance to stress. Conversely, chronic dysregulation of HBP/O-GlcNAc mechanisms has been shown to be detrimental in certain pathological settings, including diabetes and cancer. Most of our understanding of the impact of sustained maladaptive HBP and O-GlcNAc protein modifications has been derived from adipose tissue, skeletal muscle and other non-cardiac tissues, as a contributing mechanism to insulin resistance and progression of diabetic complications. However, the long-term consequences of persistent activation of cardiac HBP and O-GlcNAc are not well-understood; therefore, the goal of this timely review is to highlight current understanding of the role of the HBP pathway in development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Pharmacology, University of Melbourne, VIC 3010, Australia
| | - Rochelle Sleaby
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Amy J Davidoff
- University of New England, Biddeford, ME, 04072, United States
| | - James R Bell
- Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; School of BioSciences, University of Melbourne, VIC 3010, Australia
| | | | - John C Chatham
- University of Alabama at Birmingham, Birmingham, AL, 35233, United States
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Pharmacology, University of Melbourne, VIC 3010, Australia; Department of Medicine, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
358
|
Naringin Mitigates Cardiac Hypertrophy by Reducing Oxidative Stress and Inactivating c-Jun Nuclear Kinase-1 Protein in Type I Diabetes. J Cardiovasc Pharmacol 2016; 67:136-44. [PMID: 26421421 DOI: 10.1097/fjc.0000000000000325] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac hypertrophy (CH) in type 1 diabetes mellitus is attributed to increased oxidative stress-associated activation of c-Jun Nuclear Kinase (JNK). We investigated the effects of naringin on hyperglycemia-associated oxidative stress, activation of JNK-1, and CH. Male Sprague-Dawley rats (225-250 g) (n = 7) were divided into 6 groups. Groups I and II were orally treated with distilled water [3.0 mL/kg body weight/day (BW)] and naringin (50 mg/kg BW), respectively. Groups III-VI were rendered diabetic by a single intraperitoneal injection of 65 mg/kg BW of streptozotocin. Groups III, IV, and V were further treated with insulin (4.0 I.U, s.c, twice daily), naringin (50 mg/kg BW), and ramipril (3.0 mg/kg BW), respectively. After 56 days, the animals were sacrificed and then plasma and cardiac tissues obtained for further analysis. Naringin treatment of diabetic rats significantly reversed oxidative stress, lipid peroxidation, proteins oxidation, CH indices, and JNK protein activation compared with untreated diabetic animals. Our results do suggest that naringin mitigates CH by inhibiting oxidative stress leading to inactivation of JNK-1. Naringin supplements could therefore ameliorate CH in diabetic patients.
Collapse
|
359
|
Dendrobium officinale Kimura et Migo attenuates diabetic cardiomyopathy through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced mice. Biomed Pharmacother 2016; 84:1350-1358. [DOI: 10.1016/j.biopha.2016.10.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/19/2022] Open
|
360
|
Diabetic Microvascular Disease and Pulmonary Fibrosis: The Contribution of Platelets and Systemic Inflammation. Int J Mol Sci 2016; 17:ijms17111853. [PMID: 27834824 PMCID: PMC5133853 DOI: 10.3390/ijms17111853] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022] Open
Abstract
Diabetes is strongly associated with systemic inflammation and oxidative stress, but its effect on pulmonary vascular disease and lung function has often been disregarded. Several studies identified restrictive lung disease and fibrotic changes in diabetic patients and in animal models of diabetes. While microvascular dysfunction is a well-known complication of diabetes, the mechanisms leading to diabetes-induced lung injury have largely been disregarded. We described the potential involvement of diabetes-induced platelet-endothelial interactions in perpetuating vascular inflammation and oxidative injury leading to fibrotic changes in the lung. Changes in nitric oxide synthase (NOS) activation and decreased NO bioavailability in the diabetic lung increase platelet activation and vascular injury and may account for platelet hyperreactivity reported in diabetic patients. Additionally, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway has been reported to mediate pancreatic islet damage, and is implicated in the onset of diabetes, inflammation and vascular injury. Many growth factors and diabetes-induced agonists act via the JAK/STAT pathway. Other studies reported the contribution of the JAK/STAT pathway to the regulation of the pulmonary fibrotic process but the role of this pathway in the development of diabetic lung fibrosis has not been considered. These observations may open new therapeutic perspectives for modulating multiple pathways to mitigate diabetes onset or its pulmonary consequences.
Collapse
|
361
|
Short-term caloric restriction in db/db mice improves myocardial function and increases high molecular weight (HMW) adiponectin. ACTA ACUST UNITED AC 2016; 13:28-34. [PMID: 27942464 DOI: 10.1016/j.ijcme.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity and metabolic syndrome lead to the development of metabolic heart disease (MHD) that is characterized by left ventricular hypertrophy (LVH), diastolic dysfunction, and increased mitochondrial ROS. Caloric restriction (CR) is a nutritional intervention that protects against obesity, diabetes, and cardiovascular disease. Healthy adipose tissue is cardioprotective via releasing adipokines such as adiponectin. We tested the hypothesis that CR can ameliorate MHD and it is associated with improved adipose tissue function as reflected by increased circulating levels of high molecular weight (HMW) adiponectin and AMP-activated protein kinase (AMPK) in db/db mice. METHODS Genetically obese db/db and lean db/+ male mice were fed either ad libitum or subjected to 30% CR for 5 weeks. At the end of the study period, echocardiography was carried out to assess diastolic function. Blood, heart, and epididymal fat pads were harvested for mitochondrial study, ELISA, and Western blot analyses. RESULTS CR reversed the development of LVH, prevented diastolic dysfunction, and decreased cardiac mitochondrial H2O2 in db/db (vs. ad lib) mice. These beneficial effects on the heart were associated with increased circulating level of HMW adiponectin. Furthermore, CR increased AMPK and eNOS activation in white adipose tissue of db/db mice, but not in the heart. CONCLUSIONS These findings indicate that even short-term CR protects the heart from MHD. Whether the beneficial effects of CR on the heart could be related to the improved adipose tissue function warrants future investigation.
Collapse
|
362
|
Diao J, Wei J, Yan R, Liu X, Li Q, Lin L, Zhu Y, Li H. Rosmarinic Acid suppressed high glucose-induced apoptosis in H9c2 cells by ameliorating the mitochondrial function and activating STAT3. Biochem Biophys Res Commun 2016; 477:1024-1030. [PMID: 27402269 DOI: 10.1016/j.bbrc.2016.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/28/2022]
Abstract
Mitochondrial injury characterized by intracellular reactive oxygen species (ROS) accumulation plays a critical role in hyperglycemia-induced myocardium dysfunction. Previous studies have demonstrated that Rosmarinic Acid (RA) treatment and activating Signal transducer and activator of transcription 3 (STAT3) signaling pathway have protective effects on mitochondrial dysfunction in cardiomyocyte, but there is little data regarding cardiomyocyte under condition of high-glucose. The present study was undertaken to determine the relationship between RA and STAT3 activation, as well as their effects on high glucose-induced mitochondrial injury and apoptosis in H9c2 cardiomyocyte. Our results revealed that RA pretreatment suppressed high glucose-induced apoptosis in H9c2 cells. Moreover, the effect of RA on apoptosis was related with improved mitochondrial function, which was demonstrated by that RA attenuated high glucose-induced ROS generation, inhibited mitochondrial permeability transition pore (MPTP) activation, suppressed cytochrome c release and caspase-3 activation. In addition, the phosphorylation of STAT3 in H9c2 cells was inhibited under condition of high-glucose, but RA improved STAT3 phosphorylation. Importantly, inhibition of STAT3 expression by using STAT3-siRNA partly suppressed the effect of RA on high glucose-induced apoptosis. Taken together, pretreatment with RA suppressed high glucose-induced apoptosis in cardiomyocyte by ameliorating mitochondrial function and activating STAT3.
Collapse
Affiliation(s)
- Jiayu Diao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Rui Yan
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xin Liu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Qing Li
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Lin Lin
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yanhe Zhu
- Key Laboratory of Trace Elements and Endemic Disease of Ministry of Health, Xi'an Jiaotong University School of Medicine, Shaanxi 710061, China
| | - Hong Li
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
363
|
Kahlberg N, Qin CX, Anthonisz J, Jap E, Ng HH, Jelinic M, Parry LJ, Kemp-Harper BK, Ritchie RH, Leo CH. Adverse vascular remodelling is more sensitive than endothelial dysfunction to hyperglycaemia in diabetic rat mesenteric arteries. Pharmacol Res 2016; 111:325-335. [DOI: 10.1016/j.phrs.2016.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/15/2016] [Accepted: 06/26/2016] [Indexed: 11/26/2022]
|
364
|
Wang Y, Ma R, Ding G, Hou D, Li Z, Yin L, Zhang M. Left Ventricular Energy Loss Assessed by Vector Flow Mapping in Patients with Prediabetes and Type 2 Diabetes Mellitus. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1730-1740. [PMID: 27126237 DOI: 10.1016/j.ultrasmedbio.2016.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/20/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to assess left ventricular (LV) energy loss (EL) using vector flow mapping in patients with prediabetes (pre-DM) and type 2 diabetes mellitus (DM). Thirty pre-DM patients, 51 DM patients, and 38 controls were studied by transthoracic echocardiography. EL-total, EL-base, EL-mid and EL-apex climaxed at different phases. Compared with controls, pre-DM and DM patients showed increased EL-total during slow ejection, isovolumic relaxation, rapid filling and slow filling (p < 0.05). Similarly, EL-base, EL-mid and EL-apex increased during certain phases. Stepwise multiple regression analysis revealed that the early transmitral valve blood flow velocity E, the late transmitral valve blood flow velocity A, the ratio of E/A, LV peak torsion, diastolic untwisting velocity, vortex circulation and area were independently associated with EL during different phases (all p < 0.05). Our study suggests that LV EL is increased during diastole and certain phases of systole in DM patients compared with controls. The changes in LV vortex and deformation mechanics were correlated with EL.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Ultrasound Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Shandong University Qilu Hospital, Shandong, China
| | - Rongchuan Ma
- Department of Medical Imaging, Shandong Chest Hospital of Shandong University, Shandong, China
| | - Geqi Ding
- Institute of Ultrasound Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan, China
| | - Dailun Hou
- Department of Medical Imaging, Shandong Chest Hospital of Shandong University, Shandong, China
| | - Zhaohuan Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Shandong University Qilu Hospital, Shandong, China
| | - Lixue Yin
- Institute of Ultrasound Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan, China
| | - Mei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Shandong University Qilu Hospital, Shandong, China.
| |
Collapse
|
365
|
Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol Cell Biochem 2016; 420:65-72. [PMID: 27443845 DOI: 10.1007/s11010-016-2767-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/09/2016] [Indexed: 01/01/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a dreadful complication of diabetes responsible for 80 % mortality in diabetic patients, but unfortunately its pharmacotherapy is still incomplete. Rutin is a naturally occurring flavonoid having a long history of use in nutritional supplements for its action against oxidative stress, inflammation, and hyperglycemia, the key players involved in the progression of DCM, but remains unexplored for its role in DCM. This study was conducted to address this lacuna. It was performed in 4-week-old Streptozotocin-induced (45 mg/kg) diabetic rats for a period of 24 weeks to mimic the cardiotoxic effect of chronic hyperglycemia in diabetic patient's heart and to investigate the effect of rutin (50 mg/kg/day) in ameliorating these effects. Heart of the diabetic rats showed altered ECG parameters, reduced total antioxidant capacity, increased inflammatory assault, and degenerative changes. Interestingly, rutin treatment significantly ameliorated these changes with decrease in blood glucose level (p > 0.001), % HbA1c (p > 0.001) and reduced expression of TNF-α (p < 0.001), CRP (p < 0.001), and BNP (p < 0.01) compared to diabetic control rats. In addition, rutin provided significant protection against diabetes associated oxidative stress (p < 0.05), prevented degenerative changes in heart, and improved ECG parameters compared to diabetic control rats. The heart-to-body weight ratio was significantly reduced in rutin treatment group compared to diabetic control rats (p < 0.001). In conclusion, this study implicates that oxidative stress and inflammation are the central players involved in the progression of DCM and rutin ameliorates DCM through its antioxidant and anti-inflammatory actions on heart.
Collapse
|
366
|
Johnson PK, Ferguson MA, Zachariah JP. In-Clinic Blood Pressure Prediction of Normal Ambulatory Blood Pressure Monitoring in Pediatric Hypertension Referrals. CONGENIT HEART DIS 2016; 11:309-14. [PMID: 27205889 DOI: 10.1111/chd.12374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Since younger patients have low pretest probability of hypertension and are susceptible to reactive and masked hypertension, ambulatory blood pressure monitoring (ABPM) can be useful. To better target use in referred patients, we sought to define in-clinic systolic blood pressure (SBP) measures that predicted normal ABPM and target end organ damage. DESIGN, SETTING, PATIENTS, OUTCOME MEASURES Data were collected on consecutive patients referred for high BP undergoing an ambulatory BP monitor from 2010 to 2013 (n = 248, 33.9% female, mean age 15.5 ± 3.6 years). Candidate in-clinic predictors were systolic maximum, minimum, or average BPs obtained by auscultative, oscillometric, or both. Multivariable logistic regression models were used to determine the prediction of normal ABPM by in-clinic BP predictors. Separate models considered predicting left ventricular hypertrophy (LVH) by in-clinic SBP vs. ABPM-defined hypertension. Identified predictor utility was tested with receiver operator characteristic curves. RESULTS Maximum (OR 0.97 [95% CI 0.94-0.99]; P = .047), minimum (0.96 [0.94-0.99]; P = .002), and average (0.97 [0.95-1.00]; P = .04) in-clinic auscultative SBP predicted normal ABPM. Each had a c-statistic of 0.58. LVH was associated with in-clinic auscultative minimum SBP treated continuously (1.05, [1.01-1.10], P = .01) or dichotomized at the 90th percentile (8.23, [1.48-45.80], P = .02), as well as ABPM-defined hypertension (3.31, [1.23-8.91], P = .02). Both predictors had poor sensitivity and specificity. CONCLUSION In youth, normal auscultative in-clinic systolic blood pressure indices weakly predicted normal ambulatory blood pressure and target end organ damage.
Collapse
Affiliation(s)
- Philip K Johnson
- Department of Pediatrics, Harvard Medical School, Boston, Mass, USA.,Department of Cardiology, Boston Children's Hospital, Boston, Mass, USA
| | - Michael A Ferguson
- Department of Pediatrics, Harvard Medical School, Boston, Mass, USA.,Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, Mass, USA
| | - Justin P Zachariah
- Section of Pediatric Cardiology, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex, USA
| |
Collapse
|
367
|
Li W, Li X, Wang B, Chen Y, Xiao A, Zeng D, Ou D, Yan S, Li W, Zheng Q. ZLN005 protects cardiomyocytes against high glucose-induced cytotoxicity by promoting SIRT1 expression and autophagy. Exp Cell Res 2016; 345:25-36. [PMID: 27208585 DOI: 10.1016/j.yexcr.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy increases the risk for the development of heart failure independent of coronary artery disease and hypertension. Either type 1 or type 2 diabetes is often accompanied by varying degrees of hyperglycemia, which has been proven to induce myocardial apoptosis in animal models. Recently, a novel small molecule, ZLN005, has been reported to show antidiabetic efficacy in a mouse model, possibly by induction of PGC-1α expression. In this study, we investigated whether ZLN005 protects cardiomyocytes against high glucose-induced cytotoxicity and the mechanisms involved. Neonatal mouse cardiomyocytes were incubated with media containing 5.5 or 33mM glucose for 24h in the presence or absence of ZLN005. ZLN005 treatment led to ameliorated cardiomyocyte oxidative injury, enhanced cell viability, and reduced apoptosis in the high glucose environment. Western blot analysis revealed that high glucose suppressed cardiomyocyte autophagy, whereas ZLN005 increased the expression of autophagy marker proteins ATG5, beclin1, and LC3 II/LC3 I; this increase was accompanied by increased expression of SIRT1. Furthermore, EX527, a SIRT1-specific inhibitor, weakened the protective effects of ZLN005 on cardiomyocytes subjected to high glucose. Taken together, these results suggest that ZLN005 suppresses high glucose-induced cardiomyocyte injury by promoting SIRT1 expression and autophagy.
Collapse
Affiliation(s)
- Wenju Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Xiaoli Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Bin Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Yan Chen
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Aiping Xiao
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Di Zeng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Dongbo Ou
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Song Yan
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Wei Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China
| | - Qiangsun Zheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, China.
| |
Collapse
|
368
|
Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem 2016; 417:87-96. [PMID: 27160937 DOI: 10.1007/s11010-016-2716-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
Diabetic cardiomyopathy, characterized by the presence of diastolic and/or systolic myocardial dysfunction, is one of the major causes of heart failure. Nobiletin, which is extracted from the fruit peel of citrus, is reported to possess anti-inflammatory, anti-oxidative, and hypolipidemic properties. The purpose of this study was to investigate whether nobiletin exerts the therapeutic effect on streptozotocin-induced diabetic cardiomyopathy (DCM) in mice. 80 experimental male C57BL mice were randomly assigned into four groups: sham + vehicle (VEH/SH), sham + nobiletin (NOB/SH), DCM + vehicle (VEH/DM), and DCM + nobiletin (NOB/DM). Nobiletin treatment ameliorated cardiac dysfunction in the DCM group, as shown by the result of echocardiography and hemodynamic measurements. Nobiletin treatment also blunted the mRNA expression of NADPH oxidase isoforms p67(phox), p22(phox), and p91(phox), and abated oxidative stress. Although administration of diabetic mice with nobiletin did not significantly effect the level of blood glucose, it decreased the TGF-β1, CTGF, fibronectin, and collagen Iα expressions and blunted cardiac fibrosis. In addition, nobiletin inhibited the activation of c-Jun NH2-terminal kinase (JNK), P38, and NF-κB in the cardiac tissue of diabetic mice. Collectively, our study indicates that treatment with nobiletin mitigates cardiac dysfunction and interstitial fibrosis, and these beneficial of nobiletin may belong to the suppression of JNK, P38, and NF-κB signaling pathways.
Collapse
|
369
|
Korkmaz-Icöz S, Al Said S, Radovits T, Li S, Brune M, Hegedűs P, Atmanli A, Ruppert M, Brlecic P, Lehmann LH, Lahrmann B, Grabe N, Yoshikawa Y, Yasui H, Most P, Karck M, Szabó G. Oral treatment with a zinc complex of acetylsalicylic acid prevents diabetic cardiomyopathy in a rat model of type-2 diabetes: activation of the Akt pathway. Cardiovasc Diabetol 2016; 15:75. [PMID: 27153943 PMCID: PMC4858866 DOI: 10.1186/s12933-016-0383-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type-2 diabetics have an increased risk of cardiomyopathy, and heart failure is a major cause of death among these patients. Growing evidence indicates that proinflammatory cytokines may induce the development of insulin resistance, and that anti-inflammatory medications may reverse this process. We investigated the effects of the oral administration of zinc and acetylsalicylic acid, in the form of bis(aspirinato)zinc(II)-complex Zn(ASA)2, on different aspects of cardiac damage in Zucker diabetic fatty (ZDF) rats, an experimental model of type-2 diabetic cardiomyopathy. METHODS Nondiabetic control (ZL) and ZDF rats were treated orally with vehicle or Zn(ASA)2 for 24 days. At the age of 29-30 weeks, the electrical activities, left-ventricular functional parameters and left-ventricular wall thicknesses were assessed. Nitrotyrosine immunohistochemistry, TUNEL-assay, and hematoxylin-eosin staining were performed. The protein expression of the insulin-receptor and PI3K/AKT pathway were quantified by Western blot. RESULTS Zn(ASA)2-treatment significantly decreased plasma glucose concentration in ZDF rats (39.0 ± 3.6 vs 49.4 ± 2.8 mM, P < 0.05) while serum insulin-levels were similar among the groups. Data from cardiac catheterization showed that Zn(ASA)2 normalized the increased left-ventricular diastolic stiffness (end-diastolic pressure-volume relationship: 0.064 ± 0.008 vs 0.084 ± 0.014 mmHg/µl; end-diastolic pressure: 6.5 ± 0.6 vs 7.9 ± 0.7 mmHg, P < 0.05). Furthermore, ECG-recordings revealed a restoration of prolonged QT-intervals (63 ± 3 vs 83 ± 4 ms, P < 0.05) with Zn(ASA)2. Left-ventricular wall thickness, assessed by echocardiography, did not differ among the groups. However histological examination revealed an increase in the cardiomyocytes' transverse cross-section area in ZDF compared to the ZL rats, which was significantly decreased after Zn(ASA)2-treatment. Additionally, a significant fibrotic remodeling was observed in the diabetic rats compared to ZL rats, and Zn(ASA)2-administered ZDF rats showed a similar collagen content as ZL animals. In diabetic hearts Zn(ASA)2 significantly decreased DNA-fragmentation, and nitro-oxidative stress, and up-regulated myocardial phosphorylated-AKT/AKT protein expression. Zn(ASA)2 reduced cardiomyocyte death in a cellular model of oxidative stress. Zn(ASA)2 had no effects on altered myocardial CD36, GLUT-4, and PI3K protein expression. CONCLUSIONS We demonstrated that treatment of type-2 diabetic rats with Zn(ASA)2 reduced plasma glucose-levels and prevented diabetic cardiomyopathy. The increased myocardial AKT activation could, in part, help to explain the cardioprotective effects of Zn(ASA)2. The oral administration of Zn(ASA)2 may have therapeutic potential, aiming to prevent/treat cardiac complications in type-2 diabetic patients.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Samer Al Said
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Tamás Radovits
- />Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Shiliang Li
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Maik Brune
- />Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 671, 69120 Heidelberg, Germany
| | - Péter Hegedűs
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Ayhan Atmanli
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Mihály Ruppert
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- />Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Paige Brlecic
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Lorenz Heyne Lehmann
- />Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Bernd Lahrmann
- />Hamamatsu Tissue Imaging and Analysis Center (TIGA), Bioquant, University of Heidelberg, 69120 Heidelberg, Germany
- />Steinbeis Transfer Center for Medical Systems Biology, 69124 Heidelberg, Germany
| | - Niels Grabe
- />Hamamatsu Tissue Imaging and Analysis Center (TIGA), Bioquant, University of Heidelberg, 69120 Heidelberg, Germany
- />Steinbeis Transfer Center for Medical Systems Biology, 69124 Heidelberg, Germany
- />Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yutaka Yoshikawa
- />Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414 Japan
| | - Hiroyuki Yasui
- />Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414 Japan
| | - Patrick Most
- />Molecular and Translational Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg Germany
| | - Matthias Karck
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Gábor Szabó
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
370
|
Liu Y, Li B, Li M, Yu Y, Wang Z, Chen S. Improvement of cardiac dysfunction by bilateral surgical renal denervation in animals with diabetes induced by high fructose and high fat diet. Diabetes Res Clin Pract 2016; 115:140-9. [PMID: 26997210 DOI: 10.1016/j.diabres.2015.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/28/2015] [Accepted: 12/26/2015] [Indexed: 02/07/2023]
Abstract
AIMS Insulin resistance (IR) and sympathetic over-activation play a critical role in diabetic cardiomyopathy (DCM). Percutaneous renal sympathetic denervation (RDN) was tested to treat refractory hypertension. However, the benefits of RDN for DCM and IR still remain unknown. The present study aimed to investigate the effect and associated mechanisms of bilateral surgical RDN (bsRDN) on cardiac function and glucose metabolism in animals with diabetes. METHODS Thirty-two male New Zealand white rabbits were randomly assigned to Chow (n=8, normal diet) and TEST (n=24, high-fructose fat diet [HFD]) groups. At 48 weeks after HFD feeding, animals in the TEST group were randomized to the Sham, HFD, and RDN subgroups and were fed a HFD for an additional 8 weeks. Repeated measurements of cardiac function, IR, apoptosis/autophagy, and histopathological assessment were performed at 48 and 56 weeks. RESULTS HFD feeding for 56 weeks induced IR and diastolic cardiac dysfunction with hypertrophy in septum but well preserved eject fraction in the animals. Impaired IR further deteriorated over the time in the RDN group, featured by a more profound reduction in GLUT4 mRNA and its translocation to the plasma membrane. Successful denervation was associated with improvement of cardiac function via preventing myocardial fibrosis and over-expression of procollagen III, mammalian target of rapamycin, and cardiac apoptosis. Cardiac autophagy, assessed by either electron microscopy or Western blot, was enhanced by bsRDN. CONCLUSIONS Renal sympathetic denervation led to a significant improvement of HFD-induced cardiac dysfunction by shifting the cardiac apoptosis to autophagy, but worsening IR. Further study is required to identify the clinical benefits of RDN.
Collapse
Affiliation(s)
- YanRong Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Bing Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - MingHui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - YiHui Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - ZhiMei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China
| | - ShaoLiang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, China.
| |
Collapse
|
371
|
Zhang L, Ding WY, Wang ZH, Tang MX, Wang F, Li Y, Zhong M, Zhang Y, Zhang W. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J Transl Med 2016; 14:109. [PMID: 27121077 PMCID: PMC4848862 DOI: 10.1186/s12967-016-0849-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/31/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Trimetazidine, as an anti-ischemic and antioxidant agent, has been demonstrated to have many cardioprotective effects. However, whether early administration of trimetazidine has an effect on diabetic cardiomyopathy and the mechanisms underlying the effect have not yet been elucidated. METHODS We established a type 2 DCM rat model by high-fat diet and low-dose streptozotocin. Rats were separated into different groups: control, diabetes, and diabetes + trimetazidine (n = 6, each). Cardiac autophagy, cardiac functions, and cardiomyocyte apoptosis were monitored. RESULTS Rats with type 2 DCM showed severe insulin resistance, left ventricular dysfunction, increased cardiomyocyte apoptosis, and reduced cardiac autophagy. Collagen volume fraction (CVF) and perivascular collagen area/luminal area (PVCA/LA) ratio were significantly higher in the diabetic group than the control group. We found that trimetazidine treatment ameliorated metabolic disturbance and insulin resistance, reduced cardiomyocyte apoptosis, and restored cardiac autophagy. CVF and PVCA/LA ratio were also lower in the diabetes + trimetazidine group than the diabetic group (CVF, 4.75 ± 0.52 % vs. 11.04 ± 1.67 %, p < 0.05; PVCA/LA, 8.37 ± 0.51 vs. 17.97 ± 2.66, p < 0.05). Furthermore, trimetazidine inhibited phosphorylation of ERK and P38 MAPK to reduce myocardial fibrosis. Inhibited phosphorylation of AMPK was restored and the interaction between Bcl-2 and Beclin1 was enhanced in diabetes + trimetazidine group, resulting in the initiation of autophagy and alleviation of apoptosis. CONCLUSIONS Early administration of trimetazidine could ameliorate diabetic cardiomyopathy by inhibiting myocardial fibrosis and cardiomyocyte apoptosis and enhancing autophagy. Therefore, trimetazidine may be a good choice in the prevention of diabetic cardiomyopathy if applied at the early stage of diabetes.
Collapse
Affiliation(s)
- Lei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People's Republic of China.,Department of Cardiology, Qilu Hospital of Shandong University, No.107 Wenhua West Road, Jinan, 250012, People's Republic of China
| | - Wen-Yuan Ding
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Zhi-Hao Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Meng-Xiong Tang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Feng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People's Republic of China.,Department of Cardiology, Qilu Hospital of Shandong University, No.107 Wenhua West Road, Jinan, 250012, People's Republic of China
| | - Ya Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People's Republic of China.,Department of Cardiology, Qilu Hospital of Shandong University, No.107 Wenhua West Road, Jinan, 250012, People's Republic of China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People's Republic of China.,Department of Cardiology, Qilu Hospital of Shandong University, No.107 Wenhua West Road, Jinan, 250012, People's Republic of China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People's Republic of China.,Department of Cardiology, Qilu Hospital of Shandong University, No.107 Wenhua West Road, Jinan, 250012, People's Republic of China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, People's Republic of China. .,Department of Cardiology, Qilu Hospital of Shandong University, No.107 Wenhua West Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
372
|
Tan X, Chua K, Ravishankar Ram M, Kuppusamy U. Monoterpenes: Novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes. Food Chem 2016; 196:242-50. [DOI: 10.1016/j.foodchem.2015.09.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023]
|
373
|
Faramoushi M, Amir Sasan R, Sari Sarraf V, Karimi P. Cardiac fibrosis and down regulation of GLUT4 in experimental diabetic cardiomyopathy are ameliorated by chronic exposures to intermittent altitude. J Cardiovasc Thorac Res 2016; 8:26-33. [PMID: 27069564 PMCID: PMC4827136 DOI: 10.15171/jcvtr.2016.05] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/03/2016] [Indexed: 12/15/2022] Open
Abstract
Introduction: Chronic intermittent hypoxia is considered as a preconditioning status in cardiovascular health to inducing resistance to the low oxygen supply. Diabetic cardiomyopathy leads to inability of the heart to effective circulation of blood preventing of consequent tissue damages so; the aim of this study was elucidation of effect of chronic exposure to hypoxia on Cardiac fibrosis and expression of GLUT4 in experimental diabetic cardiomyopathy.
Methods: A total number of 30 rats were randomly divided into three groups; 1: Normoxia control group (NN, n = 10). 2: Normoxia diabetic group (ND, n = 10) that took fat diet for 2 weeks then were injected by streptozotocin (37 mg/kg) and 3: Hypoxia diabetic group (HD, n = 10): that were exposed to chronic intermittent hypoxia (CIH) (altitude ≈3400 m, 14% oxygen for 8 weeks). After hypoxia challenge, plasma metabolic parameters including: fasting blood glucose (FBS), triglyceride (TG) and total cholesterol (TC) were measured by colorimetric assay. Cardiac expression of GLUT4 protein and cardiac collagen accumulation were determined in the excised left ventricle by western blotting, and Masson trichrome staining respectively.
Results: Based on resultant data, FBS, TG and TC were significantly (P < 0.05) decreased in HD vs. ND. Homeostasis Model Assessment (HOMA) were also significantly attenuated after exposed to CIH in HD group compared to ND group (P < 0.05). Significant increase in packed cell volume and hemoglobin concentration was observed in HD group compared to ND group (P < 0.05). Comparison of heart wet weight between three groups showed a significant difference (P < 0.05) with lower amount in HD and ND versus NN. Myocardial fibrosis was significantly more pronounced in ND when compared to NN. Eight weeks exposure to hypoxia ameliorated this increase in HD group. Intermittent hypoxia significantly increased GLUT4 protein expression in HD compared to ND group (P < 0.05).
Conclusion: Data suggested that CIH might potentiate to improve glucose homeostasis and cardiac tissue structural damages created in type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Mahdi Faramoushi
- Department of Physical Education and Sport, Tabriz Islamic Art University, Tabriz, Iran
| | - Ramin Amir Sasan
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Vahid Sari Sarraf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Pouran Karimi
- Neuroscience Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
374
|
Adebiyi OA, Adebiyi OO, Owira PMO. Naringin Reduces Hyperglycemia-Induced Cardiac Fibrosis by Relieving Oxidative Stress. PLoS One 2016; 11:e0149890. [PMID: 26967518 PMCID: PMC4788433 DOI: 10.1371/journal.pone.0149890] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/06/2016] [Indexed: 12/27/2022] Open
Abstract
Introduction Hyperglycemia promotes myocardial fibrotic lesions through upregulation of PKC and p38 in response to redox changes. The effects of naringin on hyperglycemia-induced myocardial fibrotic changes and its putative effects on PKC-β and p38 protein expression in type 1 rat model of diabetes are hereby investigated. Methods Male Sprague-Dawley rats were divided into six groups I-VI. Groups I and II, were orally treated with distilled water {3.0 ml/kg body weight (BW)} and naringin (50 mg/kg BW), respectively. Groups III, IV, V and VI were rendered diabetic by a single intraperitoneal injection of streptozotocin (60 mg/kg, BW) and were similarly treated with subcutaneous insulin (8.0 I.U/kg BW, twice daily), naringin (50 mg/kg BW), distilled water (3.0 ml/Kg BW) and ramipril (3.0 mg/kg/BW), respectively. The animals were sacrificed after 56 days by halothane overdose; blood and heart samples removed for further analysis. Results The untreated diabetic rats exhibited significantly increased oxidative stress, NADPH oxidase activity, increased cardiac fibrosis, PKC-β and p38 mitogen activated protein kinase expression compared to controls. Naringin treatment significantly ameliorated these changes in diabetic rats compared to the untreated diabetic controls. Conclusions Naringin’s amelioration of myocardial fibrosis by modulating p38 and PKC-β protein expression possibly through its known antioxidant actions and may therefore be useful in retarding the progression of fibrosis in a diabetic heart.
Collapse
Affiliation(s)
- Olubunmi A. Adebiyi
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Oluwafeyisetan O. Adebiyi
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter M. O. Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
- * E-mail:
| |
Collapse
|
375
|
Cheng YS, Dai DZ, Dai Y, Zhu DD, Liu BC. Exogenous hydrogen sulphide ameliorates diabetic cardiomyopathy in rats by reversing disordered calcium-handling system in sarcoplasmic reticulum. ACTA ACUST UNITED AC 2016; 68:379-88. [PMID: 26968978 DOI: 10.1111/jphp.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/13/2015] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Hydrogen sulphide (H2 S) has been found to be involved in cardiovascular diseases, but the exact mechanism has not been clarified. The purpose of this study was to investigate whether sodium hydrogen sulphide (NaHS), the donor of H2 S, can improve diabetic cardiomyopathy by reversing disordered calcium-handling system in sarcoplasmic reticulum (SR). METHODS Sprague Dawley rats were injected with streptozotocin (STZ, 60 mg/kg, i.p.) to build diabetic model. Treatment groups included: aminoguanidine group (AG, 100 mg/kg, p.o.) and NaHS group (5 mg/kg per day, s.c.). KEY FINDINGS Cardiac dysfunction and myocardial hypertrophy were found in diabetic model (DM) group, along with increased ROS levels and upregulated mRNA and protein expressions of NADPH p22(phox) , endothelin A receptor (ETA ) and protein kinase Cε (PKCε). Expressions of calcium-handling proteins in SR including FK506-binding proteins (FKBP12.6), sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) and calsequestrin 2 (CASQ2) were downregulated in DM group, accompanied by elevated concentration of diastolic free calcium in high glucose-incubated cardiomyocytes, indicating of calcium leak. After treated by NaHS, these abnormalities were attenuated significantly. CONCLUSIONS Exogenous H2 S played a protective role in diabetic cardiomyopathy by inhibiting abnormal calcium-handling system in SR and ET-NADPH oxidase-PKCε pathway.
Collapse
Affiliation(s)
- Yu-Si Cheng
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, Nanjing, China
| | - De-Zai Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yin Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Dong-Dong Zhu
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
376
|
Abstract
Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin- resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin-angiotensin-aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| |
Collapse
|
377
|
Accardi G, Aiello A, Gambino CM, Virruso C, Caruso C, Candore G. Mediterranean nutraceutical foods: Strategy to improve vascular ageing. Mech Ageing Dev 2016; 159:63-70. [PMID: 26879630 DOI: 10.1016/j.mad.2016.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 01/06/2023]
Abstract
Ageing is characterized by a decline in all systemic functions. A greater susceptibility to apoptosis and senescence may contribute to proliferative and functional impairment of endothelial progenitor cells. They play an important role in neo-angiogenesis and endothelial repair. Vascular ageing is associated with changes in the structure and functions of vessels' wall. There are many possible causes of this damage. For sure, inflammation and oxidative stress play a fundamental role in the pathogenesis of endothelial dysfunction, commonly attributed to a reduced availability of nitric oxide. Inflammageing, the chronic low-grade inflammation that characterizes elderly people, aggravates vascular pathology and provokes atherosclerosis, the major cardiovascular disease. Nutraceutical and molecular biology represent new insights in this field. In fact, the first could represent a possible treatment in the prevention or delay of vascular ageing; the second could offer new possible targets for potential therapeutic interventions. In this review, we pay attention on the causes of vascular ageing and on the effects of nutraceuticals on it.
Collapse
Affiliation(s)
- Giulia Accardi
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Anna Aiello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Caterina Maria Gambino
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Claudia Virruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giuseppina Candore
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| |
Collapse
|
378
|
Yu H, Zhen J, Yang Y, Gu J, Wu S, Liu Q. Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J Cell Mol Med 2016; 20:623-31. [PMID: 26869403 PMCID: PMC5125941 DOI: 10.1111/jcmm.12739] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/18/2015] [Indexed: 12/21/2022] Open
Abstract
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Haitao Yu
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Juan Zhen
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Yang
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinning Gu
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Suisheng Wu
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Quan Liu
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
379
|
High concentrations of H2O2 trigger hypertrophic cascade and phosphatase and tensin homologue (PTEN) glutathionylation in H9c2 cardiomyocytes. Exp Mol Pathol 2016; 100:199-206. [DOI: 10.1016/j.yexmp.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/17/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
|
380
|
Sverdlov AL, Elezaby A, Qin F, Behring JB, Luptak I, Calamaras TD, Siwik DA, Miller EJ, Liesa M, Shirihai OS, Pimentel DR, Cohen RA, Bachschmid MM, Colucci WS. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease. J Am Heart Assoc 2016; 5:e002555. [PMID: 26755553 PMCID: PMC4859372 DOI: 10.1161/jaha.115.002555] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/22/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. METHODS AND RESULTS Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. CONCLUSION Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Catalase/genetics
- Catalase/metabolism
- Diet, High-Fat
- Dietary Sucrose
- Disease Models, Animal
- Electron Transport Complex I/metabolism
- Electron Transport Complex II/genetics
- Electron Transport Complex II/metabolism
- Energy Metabolism
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondrial Diseases/etiology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/pathology
- Mitochondrial Diseases/physiopathology
- Mitochondrial Diseases/prevention & control
- Mutation
- Oxidation-Reduction
- Oxidative Stress
- Protein Processing, Post-Translational
- Reactive Oxygen Species/metabolism
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
Collapse
Affiliation(s)
| | - Aly Elezaby
- Myocardial Biology UnitBoston University School of MedicineBostonMA
| | - Fuzhong Qin
- Myocardial Biology UnitBoston University School of MedicineBostonMA
| | | | - Ivan Luptak
- Myocardial Biology UnitBoston University School of MedicineBostonMA
| | | | - Deborah A. Siwik
- Myocardial Biology UnitBoston University School of MedicineBostonMA
| | - Edward J. Miller
- Myocardial Biology UnitBoston University School of MedicineBostonMA
| | - Marc Liesa
- Obesity and Nutrition SectionMitochondria ARCBoston University School of MedicineBostonMA
| | - Orian S. Shirihai
- Obesity and Nutrition SectionMitochondria ARCBoston University School of MedicineBostonMA
| | | | - Richard A. Cohen
- Vascular Biology SectionBoston University School of MedicineBostonMA
| | | | | |
Collapse
|
381
|
Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B. Update on RAAS Modulation for the Treatment of Diabetic Cardiovascular Disease. J Diabetes Res 2016; 2016:8917578. [PMID: 27652272 PMCID: PMC5019930 DOI: 10.1155/2016/8917578] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Since the advent of insulin, the improvements in diabetes detection and the therapies to treat hyperglycemia have reduced the mortality of acute metabolic emergencies, such that today chronic complications are the major cause of morbidity and mortality among diabetic patients. More than half of the mortality that is seen in the diabetic population can be ascribed to cardiovascular disease (CVD), which includes not only myocardial infarction due to premature atherosclerosis but also diabetic cardiomyopathy. The importance of renin-angiotensin-aldosterone system (RAAS) antagonism in the prevention of diabetic CVD has demonstrated the key role that the RAAS plays in diabetic CVD onset and development. Today, ACE inhibitors and angiotensin II receptor blockers represent the first line therapy for primary and secondary CVD prevention in patients with diabetes. Recent research has uncovered new dimensions of the RAAS and, therefore, new potential therapeutic targets against diabetic CVD. Here we describe the timeline of paradigm shifts in RAAS understanding, how diabetes modifies the RAAS, and what new parts of the RAAS pathway could be targeted in order to achieve RAAS modulation against diabetic CVD.
Collapse
Affiliation(s)
- Stella Bernardi
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- Division of Medicina Clinica, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- *Stella Bernardi:
| | - Andrea Michelli
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| | - Giulia Zuolo
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| | - Riccardo Candido
- Diabetes Centre, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Via Puccini, 34100 Trieste, Italy
| | - Bruno Fabris
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- Division of Medicina Clinica, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| |
Collapse
|
382
|
Zhou Y, He X, Chen Y, Huang Y, Wu L, He J. Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation. Biochem Biophys Res Commun 2015; 468:394-9. [PMID: 26519882 DOI: 10.1016/j.bbrc.2015.09.179] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/29/2015] [Indexed: 12/29/2022]
|
383
|
Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol 2015; 93:162-74. [PMID: 26562414 DOI: 10.1016/j.yjmcc.2015.11.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is one of the major components of the healing mechanism following any injury of the heart and as such may contribute to both systolic and diastolic dysfunction in a range of pathophysiologic conditions. Canonically, it can occur as part of the remodeling process that occurs following myocardial infarction or that follows as a response to pressure overload. Integrins are cell surface receptors which act in both cellular adhesion and signaling. Most importantly, in the context of the continuously contracting myocardium, they are recognized as mechanotransducers. They have been implicated in the development of fibrosis in several organs, including the heart. This review will focus on the involvement of integrins and integrin-related proteins, in cardiac fibrosis, outlining the roles of these proteins in the fibrotic responses in specific cardiac pathologies, discuss some of the common end effectors (angiotensin II, transforming growth factor beta 1 and mechanical stress) through which integrins function and finally discuss how manipulation of this set of proteins may lead to new treatments which could prove useful to alter the deleterious effects of cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ruixia Li
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
384
|
Mátyás C, Németh BT, Oláh A, Hidi L, Birtalan E, Kellermayer D, Ruppert M, Korkmaz-Icöz S, Kökény G, Horváth EM, Szabó G, Merkely B, Radovits T. The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovasc Diabetol 2015; 14:145. [PMID: 26520063 PMCID: PMC4628236 DOI: 10.1186/s12933-015-0309-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/24/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) leads to the development of diabetic cardiomyopathy, which is associated with altered nitric oxide (NO)--soluble guanylate cyclase (sGC)--cyclic guanosine monophosphate (cGMP) signalling. Cardioprotective effects of elevated intracellular cGMP-levels have been described in different heart diseases. In the current study we aimed at investigating the effects of pharmacological activation of sGC in diabetic cardiomyopathy. METHODS Type-1 DM was induced in rats by streptozotocin. Animals were treated either with the sGC activator cinaciguat (10 mg/kg/day) or with placebo orally for 8 weeks. Left ventricular (LV) pressure-volume (P-V) analysis was used to assess cardiac performance. Additionally, gene expression (qRT-PCR) and protein expression analysis (western blot) were performed. Cardiac structure, markers of fibrotic remodelling and DNA damage were examined by histology, immunohistochemistry and TUNEL assay, respectively. RESULTS DM was associated with deteriorated cGMP signalling in the myocardium (elevated phosphodiesterase-5 expression, lower cGMP-level and impaired PKG activity). Cardiomyocyte hypertrophy, fibrotic remodelling and DNA fragmentation were present in DM that was associated with impaired LV contractility (preload recruitable stroke work (PRSW): 49.5 ± 3.3 vs. 83.0 ± 5.5 mmHg, P < 0.05) and diastolic function (time constant of LV pressure decay (Tau): 17.3 ± 0.8 vs. 10.3 ± 0.3 ms, P < 0.05). Cinaciguat treatment effectively prevented DM related molecular, histological alterations and significantly improved systolic (PRSW: 66.8 ± 3.6 mmHg) and diastolic (Tau: 14.9 ± 0.6 ms) function. CONCLUSIONS Cinaciguat prevented structural, molecular alterations and improved cardiac performance of the diabetic heart. Pharmacological activation of sGC might represent a new therapy approach for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Balázs Tamás Németh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - László Hidi
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Ede Birtalan
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Dalma Kellermayer
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Sevil Korkmaz-Icöz
- Experimental Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, INF 326. OG 2, 69120, Heidelberg, Germany.
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary.
| | - Eszter Mária Horváth
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó u. 37-47., Budapest, 1094, Hungary.
| | - Gábor Szabó
- Experimental Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, INF 326. OG 2, 69120, Heidelberg, Germany.
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary. .,Experimental Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, INF 326. OG 2, 69120, Heidelberg, Germany.
| |
Collapse
|
385
|
Gu H, Liu Y, Mei S, Wang B, Sun G, Wang X, Xiao Y, Staup M, Gregoire FM, Chng K, Wang YJ. Left ventricular diastolic dysfunction in nonhuman primate model of dysmetabolism and diabetes. BMC Cardiovasc Disord 2015; 15:141. [PMID: 26518730 PMCID: PMC4628306 DOI: 10.1186/s12872-015-0133-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetes is one of the major risk factors for cardiomyopathy and heart failure with reduced ejection fraction (EF) and highly associated with left ventricular (LV) dysfunction in human. This study aimed 1) to noninvasively assess cardiac function using echocardiography; 2) to test the hypothesis that like diabetic human, cardiac function may also be compromised; in spontaneously developed obese, dysmetabolic and diabetic nonhuman primates (NHPs). METHODS Cardiovascular functions were measured by noninvasive echocardiography in 28 control, 20 dysmetabolic/pre-diabetic and 41 diabetic cynomolgus monkeys based on fasting blood glucose and other metabolic status. RESULTS The LV end-systolic volume (ESV) was higher while end-diastolic volume (EDV, 12 ± 5.7 mL) and EF (63 ± 12.8 %) significantly lower in the diabetic compared to control (14 ± 7 mL and 68 ± 9.8 %) group, respectively. The E/A ratio of LV trans-mitral peak flow rate during early (E) over late (A) diastole was significantly lower in the diabetic (1.19 ± 0.45) than control (1.44 ± 0.48) group. E-wave deceleration time (E DT) was prolonged in the diabetic (89 ± 41 ms) compared to control (78 ± 26 ms) group. Left atrial (LA) maximal dimension (LADmax) was significantly greater in the diabetic (1.3 ± 0.17 cm) than control (1.1 ± 0.16 cm) group. Biochemical tests showed that total cholesterol and LDL were significant higher in the diabetic (167 ± 63 and 69 ± 37 mg/dL) than both pre-diabetic (113 ± 37 and 41 ± 23 mg/dL) and control (120 ± 28 and 41 ± 17 mg/dL) groups, respectively. Multivariable logistic regression analysis demonstrated that LV systolic (reduced EF) and diastolic (abnormal E/A ratio) dysfunctions are significantly correlated with aging and hyperglycemia. Histopathology examination of the necropsy heart revealed inflammatory infiltration, cardiomyocyte hypertrophy and fragmentation, indicating the myocardial ischemia and remodeling which is consistent with the LV dysfunction phenotype. CONCLUSIONS Using noninvasive echocardiography, the present study demonstrated for the first time that dysmetabolic and diabetic NHPs are associated with LV systolic (increased ESV, decreased EF, etc.) and diastolic (decreased EDV and E/A ratio, prolonged E DT, etc.) dysfunctions, accompanied by LA hypertrophic remodeling (increased LADmax), the phenotypes similarly to those found in diabetic patients. Thus, spontaneously developed dysmetabolic and diabetic NHPs is a highly translatable model to human diseases not only in the pathogenic mechanisms but also can be used for testing novel therapies for cardiometabolic disorders.
Collapse
Affiliation(s)
- Haihua Gu
- Crown Bioscience, Inc. at David H. Murdoch Research Institute, 150 N Research Campus drive, Kannapolis, NC, USA.
| | - Yongqiang Liu
- Cardiovascular and metabolic diseases division, Crown Bioscience, Inc., 6 West Beijing road, Taicang, Jiangsu, China.
| | - Shuang Mei
- Crown Bioscience, Inc. at David H. Murdoch Research Institute, 150 N Research Campus drive, Kannapolis, NC, USA.
| | - Bingdi Wang
- Cardiovascular and metabolic diseases division, Crown Bioscience, Inc., 6 West Beijing road, Taicang, Jiangsu, China.
| | - Guofeng Sun
- Cardiovascular and metabolic diseases division, Crown Bioscience, Inc., 6 West Beijing road, Taicang, Jiangsu, China.
| | - Xiaoli Wang
- Cardiovascular and metabolic diseases division, Crown Bioscience, Inc., 6 West Beijing road, Taicang, Jiangsu, China.
| | - Yongfu Xiao
- Cardiovascular and metabolic diseases division, Crown Bioscience, Inc., 6 West Beijing road, Taicang, Jiangsu, China.
| | - Michael Staup
- Cardiovascular and metabolic diseases division, Crown Bioscience, Inc., 6 West Beijing road, Taicang, Jiangsu, China.
| | - Francine M Gregoire
- Crown Bioscience, Inc. at David H. Murdoch Research Institute, 150 N Research Campus drive, Kannapolis, NC, USA.
| | - Keefe Chng
- Crown Bioscience, Inc. at David H. Murdoch Research Institute, 150 N Research Campus drive, Kannapolis, NC, USA.
| | - Yixin Jim Wang
- Cardiovascular and metabolic diseases division, Crown Bioscience, Inc., 6 West Beijing road, Taicang, Jiangsu, China. .,Crown Bioscience, Inc. at David H. Murdoch Research Institute, 150 N Research Campus drive, Kannapolis, NC, USA.
| |
Collapse
|
386
|
Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int J Mol Sci 2015; 16:25234-63. [PMID: 26512646 PMCID: PMC4632800 DOI: 10.3390/ijms161025234] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.
Collapse
Affiliation(s)
- Yosuke Kayama
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Uwe Raaz
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Ann Jagger
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Matti Adam
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Isabel N Schellinger
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Masaya Sakamoto
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minatoku, Tokyo 105-0003, Japan.
| | - Hirofumi Suzuki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minatoku, Tokyo 105-0003, Japan.
| | - Kensuke Toyama
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
387
|
Cardiomyocyte–fibroblast interaction contributes to diabetic cardiomyopathy in mice: Role of HMGB1/TLR4/IL-33 axis. Biochim Biophys Acta Mol Basis Dis 2015. [DOI: 10.1016/j.bbadis.2015.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
388
|
De Blasio MJ, Huynh K, Qin C, Rosli S, Kiriazis H, Ayer A, Cemerlang N, Stocker R, Du XJ, McMullen JR, Ritchie RH. Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling. Free Radic Biol Med 2015; 87:137-47. [PMID: 25937176 DOI: 10.1016/j.freeradbiomed.2015.04.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/11/2023]
Abstract
Diabetes-induced cardiac complications include left ventricular (LV) dysfunction and heart failure. We previously demonstrated that LV phosphoinositide 3-kinase p110α (PI3K) protects the heart against diabetic cardiomyopathy, associated with reduced NADPH oxidase expression and activity. Conversely, in dominant negative PI3K(p110α) transgenic mice (dnPI3K), reduced cardiac PI3K signaling exaggerated diabetes-induced cardiomyopathy, associated with upregulated NADPH oxidase. The goal was to examine whether chronic supplementation with the antioxidant coenzyme Q(10) (CoQ(10)) could attenuate LV superoxide and diabetic cardiomyopathy in a setting of impaired PI3K signaling. Diabetes was induced in 6-week-old nontransgenic and dnPI3K male mice via streptozotocin. After 4 weeks of diabetes, CoQ(10) supplementation commenced (10 mg/kg ip, 3 times/week, 8 weeks). At study end (12 weeks of diabetes), markers of LV function, cardiomyocyte hypertrophy, collagen deposition, NADPH oxidase, oxidative stress (3-nitrotyrosine), and concentrations of CoQ(9) and CoQ(10) were determined. LV NADPH oxidase (Nox2 gene expression and activity, and lucigenin-enhanced chemiluminescence), as well as oxidative stress, were increased by diabetes, exaggerated in diabetic dnPI3K mice, and attenuated by CoQ(10). Diabetes-induced LV diastolic dysfunction (prolonged deceleration time, elevated end-diastolic pressure, impaired E/A ratio), cardiomyocyte hypertrophy and fibrosis, expression of atrial natriuretic peptide, connective tissue growth factor, and β-myosin heavy chain were all attenuated by CoQ(10). Chronic CoQ(10) supplementation attenuates aspects of diabetic cardiomyopathy, even in a setting of reduced cardiac PI3K protective signaling. Given that CoQ(10) supplementation has been suggested to have positive outcomes in heart failure patients, chronic CoQ(10) supplementation may be an attractive adjunct therapy for diabetic heart failure.
Collapse
Affiliation(s)
- Miles J De Blasio
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004
| | - Karina Huynh
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004; Department of Physiology, Monash University, Clayton, Victoria Australia 3004
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004
| | - Sarah Rosli
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004
| | - Helen Kiriazis
- Experimental Cardiology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004
| | - Anita Ayer
- Victor Chang Cardiac Research Institute, and University of New South Wales, Sydney New South Wales Australia 2010
| | - Nelly Cemerlang
- Cardiac Hypertrophy, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, and University of New South Wales, Sydney New South Wales Australia 2010
| | - Xiao-Jun Du
- Experimental Cardiology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004; Department of Medicine, Monash University, Clayton, Victoria Australia 3004
| | - Julie R McMullen
- Department of Physiology, Monash University, Clayton, Victoria Australia 3004; Cardiac Hypertrophy, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004; Department of Medicine, Monash University, Clayton, Victoria Australia 3004
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria Australia 3004; Department of Medicine, Monash University, Clayton, Victoria Australia 3004.
| |
Collapse
|
389
|
Yu L, Liang H, Dong X, Zhao G, Jin Z, Zhai M, Yang Y, Chen W, Liu J, Yi W, Yang J, Yi D, Duan W, Yu S. Reduced silent information regulator 1 signaling exacerbates myocardial ischemia-reperfusion injury in type 2 diabetic rats and the protective effect of melatonin. J Pineal Res 2015; 59:376-90. [PMID: 26327197 DOI: 10.1111/jpi.12269] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
Diabetes mellitus (DM) increases myocardial oxidative stress and endoplasmic reticulum (ER) stress. Melatonin confers cardioprotective effect by suppressing oxidative damage. However, the effect and mechanism of melatonin on myocardial ischemia-reperfusion (MI/R) injury in type 2 diabetic state are still unknown. In this study, we developed high-fat diet-fed streptozotocin (HFD-STZ) rat, a well-known type 2 diabetic model, to evaluate the effect of melatonin on MI/R injury with a focus on silent information regulator 1 (SIRT1) signaling, oxidative stress, and PERK/eIF2α/ATF4-mediated ER stress. HFD-STZ treated rats were exposed to melatonin treatment in the presence or the absence of sirtinol (a SIRT1 inhibitor) and subjected to MI/R surgery. Compared with nondiabetic animals, type 2 diabetic rats exhibited significantly decreased myocardial SIRT1 signaling, increased apoptosis, enhanced oxidative stress, and ER stress. Additionally, further reduced SIRT1 signaling, aggravated oxidative damage, and ER stress were found in diabetic animals subjected to MI/R surgery. Melatonin markedly reduced MI/R injury by improving cardiac functional recovery and decreasing myocardial apoptosis in type 2 diabetic animals. Melatonin treatment up-regulated SIRT1 expression, reduced oxidative damage, and suppressed PERK/eIF2α/ATF4 signaling. However, these effects were all attenuated by SIRT1 inhibition. Melatonin also protected high glucose/high fat cultured H9C2 cardiomyocytes against simulated ischemia-reperfusion injury-induced ER stress by activating SIRT1 signaling while SIRT1 siRNA blunted this action. Taken together, our study demonstrates that reduced cardiac SIRT1 signaling in type 2 diabetic state aggravates MI/R injury. Melatonin ameliorates reperfusion-induced oxidative stress and ER stress via activation of SIRT1 signaling, thus reducing MI/R damage and improving cardiac function.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongliang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaochao Dong
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guolong Zhao
- Department of Cardiovascular Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
390
|
Menazza S, Aponte A, Sun J, Gucek M, Steenbergen C, Murphy E. Molecular Signature of Nitroso-Redox Balance in Idiopathic Dilated Cardiomyopathies. J Am Heart Assoc 2015; 4:e002251. [PMID: 26396203 PMCID: PMC4599508 DOI: 10.1161/jaha.115.002251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/19/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Idiopathic dilated cardiomyopathy is one of the most common types of cardiomyopathy. It has been proposed that an increase in oxidative stress in heart failure leads to a decrease in nitric oxide signaling, leading to impaired nitroso-redox signaling. To test this hypothesis, we investigated the occurrence of protein S-nitrosylation (SNO) and oxidation in biopsies from explanted dilated cardiomyopathy and nonfailing donor male and female human hearts. METHODS AND RESULTS Redox-based resin-assisted capture for oxidation and SNO proteomic analysis was used to measure protein oxidation and SNO, respectively. In addition, 2-dimensional difference gel electrophoresis using maleimide sulfhydryl-reactive fluors was used to identify the SNO proteins. Protein oxidation increased in dilated cardiomyopathy biopsies in comparison with those from healthy donors. Interestingly, we did not find a consistent decrease in SNO in failing hearts; we found that some proteins showed an increase in SNO and others showed a decrease, and there were sex-specific differences in the response. We found 10 proteins with a significant decrease in SNO and 4 proteins with an increase in SNO in failing female hearts. Comparing nonfailing and failing male hearts, we found 9 proteins with a significant decrease and 12 proteins with a significant increase. We also found an increase in S-glutathionylation of endothelial nitric oxide synthase in failing female versus male hearts, suggesting an increase in uncoupled nitric oxide synthase in female hearts. CONCLUSION These findings highlight the importance of nitroso-redox signaling in both physiological and pathological conditions, suggesting a potential target to treat heart failure.
Collapse
Affiliation(s)
- Sara Menazza
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| | - Angel Aponte
- Proteomic Core Facility, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| | - Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| | - Marjan Gucek
- Proteomic Core Facility, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| | | | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| |
Collapse
|
391
|
Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015; 16:18894-922. [PMID: 26274955 PMCID: PMC4581278 DOI: 10.3390/ijms160818894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.
Collapse
|
392
|
Waddingham MT, Edgley AJ, Tsuchimochi H, Kelly DJ, Shirai M, Pearson JT. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World J Diabetes 2015; 6:943-960. [PMID: 26185602 PMCID: PMC4499528 DOI: 10.4239/wjd.v6.i7.943] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients. Independent of hypertension and coronary artery disease, diabetes is associated with a specific cardiomyopathy, known as diabetic cardiomyopathy (DCM). Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease, beginning early after the onset of type 1 and type 2 diabetes, ahead of left ventricular remodeling and overt diastolic dysfunction. Although the molecular pathogenesis of early DCM still remains largely unclear, activation of protein kinase C appears to be central in driving the oxidative stress dependent and independent pathways in the development of contractile dysfunction. Multiple subcellular alterations to the cardiomyocyte are now being highlighted as critical events in the early changes to the rate of force development, relaxation and stability under pathophysiological stresses. These changes include perturbed calcium handling, suppressed activity of aerobic energy producing enzymes, altered transcriptional and posttranslational modification of membrane and sarcomeric cytoskeletal proteins, reduced actin-myosin cross-bridge cycling and dynamics, and changed myofilament calcium sensitivity. In this review, we will present and discuss novel aspects of the molecular pathogenesis of early DCM, with a special focus on the sarcomeric contractile apparatus.
Collapse
|
393
|
Uryash A, Bassuk J, Kurlansky P, Altamirano F, Lopez JR, Adams JA. Antioxidant Properties of Whole Body Periodic Acceleration (pGz). PLoS One 2015; 10:e0131392. [PMID: 26133377 PMCID: PMC4489838 DOI: 10.1371/journal.pone.0131392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
The recognition that oxidative stress is a major component of several chronic diseases has engendered numerous trials of antioxidant therapies with minimal or no direct benefits. Nanomolar quantities of nitric oxide released into the circulation by pharmacologic stimulation of eNOS have antioxidant properties but physiologic stimulation as through increased pulsatile shear stress of the endothelium has not been assessed. The present study utilized a non-invasive technology, periodic acceleration (pGz) that increases pulsatile shear stress such that upregulation of cardiac eNOS occurs, We assessed its efficacy in normal mice and mouse models with high levels of oxidative stress, e.g. Diabetes type 1 and mdx (Duchene Muscular Dystrophy). pGz increased protein expression and upregulated eNOS in hearts. Application of pGz was associated with significantly increased expression of endogenous antioxidants (Glutathioneperoxidase-1(GPX-1), Catalase (CAT), Superoxide, Superoxide Dismutase 1(SOD1). This led to an increase of total cardiac antioxidant capacity along with an increase in the antioxidant response element transcription factor Nrf2 translocation to the nucleus. pGz decreased reactive oxygen species in both mice models of oxidative stress. Thus, pGz is a novel non-pharmacologic method to harness endogenous antioxidant capacity.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Jorge Bassuk
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Paul Kurlansky
- Department of Surgery, Columbia University, New York, New York, United States of America
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Jose R. Lopez
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
- * E-mail:
| |
Collapse
|
394
|
Hoffmann M, Kujath P, Flemming A, Proß M, Begum N, Zimmermann M, Keck T, Kleemann M, Schloericke E. Survival of diabetes patients with major amputation is comparable to malignant disease. Diab Vasc Dis Res 2015; 12:265-71. [PMID: 25920914 DOI: 10.1177/1479164115579005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Almost all studies on diabetic foot syndrome focused on prevention of amputation and did not investigate long-term prognosis and survival of patients as a primary outcome parameter. METHODS We did a retrospective cohort study including 314 patients who had diabetic foot syndrome and underwent amputation between December 1995 and January 2001. RESULTS A total of 48% of patients received minor amputation (group I), 15% only major amputation (group II) and 36% initially underwent a minor amputation that was followed by a major amputation (group III). Statistically significant differences were observed in comparison of the median survival of group I to group II (51 vs. 40 months; p = 0.016) and of group II to group III (40 vs. 55 months; p = 0.003). DISCUSSION The prognosis of patients with major amputation due to diabetic foot syndrome is comparable to patients with malignant diseases. Vascular interventions did not improve the individual prognosis of patients.
Collapse
Affiliation(s)
| | - Peter Kujath
- University Clinic of Schleswig-Holstein, Luebeck, Germany
| | | | - Moritz Proß
- University Clinic of Schleswig-Holstein, Luebeck, Germany
| | - Nehara Begum
- University Clinic of Schleswig-Holstein, Luebeck, Germany
| | | | - Tobias Keck
- University Clinic of Schleswig-Holstein, Luebeck, Germany
| | | | | |
Collapse
|
395
|
Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015; 151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lucy Murfitt
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Gareth Whiteley
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Mohammad M Iqbal
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
396
|
Dória GAA, Santos AR, Bittencourt LS, Bortolin RC, Menezes PP, Vasconcelos BS, Souza RO, Fonseca MJV, Santos ADC, Saravanan S, Silva FA, Gelain DP, Moreira JCF, Prata APN, Quintans-Júnior LJ, Araújo AAS. Redox-Active Profile Characterization of Remirea maritima Extracts and Its Cytotoxic Effect in Mouse Fibroblasts (L929) and Melanoma (B16F10) Cells. Molecules 2015; 20:11699-718. [PMID: 26121396 PMCID: PMC6331889 DOI: 10.3390/molecules200711699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022] Open
Abstract
Remirea maritima is a tropical plant with a reticulated root system belonging to the family Cyperaceae, also known to have biologically active secondary metabolites. However, very few data on R. maritima’s biological actions are available and there are no reports regarding the redox-active profile of this plant. In this study, we examined the total phenolic content of Remirea maritima hydroalcoholic (RMHA) extracts, redox properties against different reactive species generated in vitro and their cytotoxic effect against fibroblasts (L929) and melanoma (B16F10) cells. Total reactive antioxidant potential index (TRAP) and total antioxidant reactivity (TAR) results revealed that RMHA at all concentrations tested showed significant antioxidant capacity. RMHA was also effective against hydroxyl radical formation, reduction of Fe3+ to Fe2+ and in scavenging nitric oxide (NO) radicals. In vitro, the level of lipid peroxidation was reduced by RMHA extract and the data showed significant oxidative damage protection. The RMHA cytotoxicity was evaluated by a neutral red assay in fibroblast (L929) and melanome (B16F10) cells. The obtained results showed that the RMHA (40 and 80 µg/mL, respectively) reduced 70% of the viable cells. In conclusion, this study represents the first report regarding the antioxidant and anti-proliferative potential of R. maritima against B16F10 melanoma cells.
Collapse
Affiliation(s)
- Grace Anne A. Dória
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Anderson R. Santos
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Leonardo S. Bittencourt
- Departament of Biochemistry, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Rio Grande do Sul, Brazil; E-Mails: (L.S.B.); (R.C.B.); (D.P.G.); (J.C.F.M.)
| | - Rafael C. Bortolin
- Departament of Biochemistry, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Rio Grande do Sul, Brazil; E-Mails: (L.S.B.); (R.C.B.); (D.P.G.); (J.C.F.M.)
| | - Paula P. Menezes
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Bruno S. Vasconcelos
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Rebeca O. Souza
- Departament of Pharmacy, University of São Paulo, 14040-900 Ribeirão Preto, São Paulo, Brazil; E-Mails: (R.O.S.); (M.J.V.F.)
| | - Maria José V. Fonseca
- Departament of Pharmacy, University of São Paulo, 14040-900 Ribeirão Preto, São Paulo, Brazil; E-Mails: (R.O.S.); (M.J.V.F.)
| | - Alan Diego C. Santos
- Departament of Physiology and Chemistry, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (A.D.C.S.); (L.J.Q.-J.)
| | - Shanmugam Saravanan
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Francilene A. Silva
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Daniel P. Gelain
- Departament of Biochemistry, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Rio Grande do Sul, Brazil; E-Mails: (L.S.B.); (R.C.B.); (D.P.G.); (J.C.F.M.)
| | - José Cláudio F. Moreira
- Departament of Biochemistry, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Rio Grande do Sul, Brazil; E-Mails: (L.S.B.); (R.C.B.); (D.P.G.); (J.C.F.M.)
| | - Ana Paula N. Prata
- Departament of Biology, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mail:
| | - Lucindo J. Quintans-Júnior
- Departament of Physiology and Chemistry, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (A.D.C.S.); (L.J.Q.-J.)
| | - Adriano A. S. Araújo
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-79-21056841; Fax: +55-79-21056827
| |
Collapse
|
397
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
398
|
Roul D, Recchia FA. Metabolic alterations induce oxidative stress in diabetic and failing hearts: different pathways, same outcome. Antioxid Redox Signal 2015; 22:1502-14. [PMID: 25836025 PMCID: PMC4449624 DOI: 10.1089/ars.2015.6311] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Several authors have proposed a link between altered cardiac energy substrate metabolism and reactive oxygen species (ROS) generation. A cogent evidence of this association has been found in diabetic cardiomyopathy (dCM); however, experimental findings in animal models of heart failure (HF) and in human myocardium also seem to support the coexistence of the two alterations in HF. CRITICAL ISSUES Two important questions remain open: whether pathological changes in metabolism play an important role in enhancing oxidative stress and whether there is a common pathway linking altered substrate utilization and activation of ROS-generating enzymes, independently of the underlying cardiac pathology. In this regard, the comparison between dCM and HF is intriguing, in that these pathological conditions display very different cardiac metabolic phenotypes. RECENT ADVANCES Our literature review on this topic indicates that a vast body of knowledge is now available documenting the relationship between the metabolism of energy substrates and ROS generation in dCM. In some cases, biochemical mechanisms have been identified. On the other hand, only a few and relatively recent studies have explored this phenomenon in HF and their conclusions are not consistent. FUTURE DIRECTIONS Better methods of investigation, especially in vivo, will be necessary to test whether the metabolic fate of certain substrates is causally linked to ROS production. If successful, these studies will place a new emphasis on the potential clinical relevance of metabolic modulators, which might indirectly mitigate cardiac oxidative stress in dCM, HF, and, possibly, in other pathological conditions.
Collapse
Affiliation(s)
- David Roul
- 1Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Fabio A Recchia
- 1Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania.,2Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
399
|
Abdel-Hamid AAM, Firgany AEDL. Atorvastatin alleviates experimental diabetic cardiomyopathy by suppressing apoptosis and oxidative stress. J Mol Histol 2015; 46:337-45. [PMID: 26041576 DOI: 10.1007/s10735-015-9625-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/30/2015] [Indexed: 01/11/2023]
Abstract
Diabetic hazard on the myocardium is a complication of diabetes that intensifies its morbidity and increases its mortality. Therefore, alleviation of diabetic cardiomyopathy (DCM) by a reliable drug remains a matter of interest in experimental research. The aim of this study was to explore the structural alterations in the myocardium induced by atorvastatin (ATOR) in DCM, induced by streptozotocin (STZ), along with the associated changes occurring in apoptosis and oxidative stress markers. Thirty-two rats were divided into four groups; group A (control), group B (non-diabetic, received ATOR, orally, 50 mg/kg daily), group C (DCM, received STZ 70 mg/kg, single i.p. injection) and group D (DCM + ATOR). After 6 weeks, left ventricle (LV) specimens were prepared for histological and immunohistochemical study by hematoxlyin and eosin, Masson`s trichrome, anti-cleaved caspase-3 stains as well as for assays of oxidative stress markers. All data were measured morphometrically and statistically analyzed. The DCM group showed disorganization of the cardiomyocytes, interstitial edema, numerous fibroblasts, significant increases in the collagen volume fraction (p < 0.001), cleaved caspase-3 expression % area (p < 0.001) and, malondialdehyde in blood (p < 0.001), in LV (p < 0.05) compared with DCM + ATOR group. The latter has LV wall thickness, relative heart weight and antioxidant activities nearly similar to the control, independent from ATOR lipid-lowering effect. Therefore, ATOR can preserve myocardial structure in DCM nearly similar to normal. This may be achieved by suppressing apoptosis that parallels the correction of the antioxidant markers, which can be considered as non-lipid lowering benefit of statins.
Collapse
Affiliation(s)
- Ahmed A M Abdel-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt,
| | | |
Collapse
|
400
|
Towner RA, Smith N, Saunders D, Carrizales J, Lupu F, Silasi-Mansat R, Ehrenshaft M, Mason RP. In vivo targeted molecular magnetic resonance imaging of free radicals in diabetic cardiomyopathy within mice. Free Radic Res 2015; 49:1140-6. [PMID: 25968951 DOI: 10.3109/10715762.2015.1050587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Free radicals contribute to the pathogenesis of diabetic cardiomyopathy. We present a method for in vivo observation of free radical events within murine diabetic cardiomyopathy. This study reports on in vivo imaging of protein/lipid radicals using molecular MRI (mMRI) and immuno-spin trapping (IST) in diabetic cardiac muscle. To detect free radicals in diabetic cardiomyopathy, streptozotocin (STZ)-exposed mice were given 5,5-dimethyl-pyrroline-N-oxide (DMPO) and administered an anti-DMPO probe (biotin-anti-DMPO antibody-albumin-Gd-DTPA). For controls, non-diabetic mice were given DMPO (non-disease control), and administered an anti-DMPO probe; or diabetic mice were given DMPO but administered a non-specific IgG contrast agent instead of the anti-DMPO probe. DMPO administration started at 7 weeks following STZ treatment for 5 days, and the anti-DMPO probe was administered at 8 weeks for MRI detection. MRI was used to detect a significant increase (p < 0.001) in MRI signal intensity (SI) from anti-DMPO nitrone adducts in diabetic murine left-ventricular (LV) cardiac tissue, compared to controls. Regional increases in MR SI in the LV were found in the apical and upper-left areas (p < 0.01 for both), compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised cardiac tissues, which indicated elevated fluorescence only in cardiac muscle of mice administered the anti-DMPO probe. Oxidized lipids and proteins were also found to be significantly elevated (p < 0.05 for both) in diabetic cardiac muscle compared to controls. It can be concluded that diabetic mice have more heterogeneously distributed radicals in cardiac tissue than non-diabetic mice.
Collapse
Affiliation(s)
- R A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation , Oklahoma City, OK , USA
| | | | | | | | | | | | | | | |
Collapse
|