351
|
Moghaddam SJ, Li H, Cho SN, Dishop MK, Wistuba II, Ji L, Kurie JM, Dickey BF, Demayo FJ. Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model. Am J Respir Cell Mol Biol 2008; 40:443-53. [PMID: 18927348 DOI: 10.1165/rcmb.2008-0198oc] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. In addition to genetic abnormalities induced by cigarette smoke, several epidemiologic studies have found that smokers with chronic obstructive pulmonary disease (COPD), an inflammatory disease of the lungs, have an increased risk of lung cancer (1.3- to 4.9-fold) compared to smokers without COPD. This suggests a link between chronic airway inflammation and lung carcinogenesis, independent of tobacco smoke exposure. We studied this association by assaying the inflammatory impact of products of nontypeable Haemophilus influenzae, which colonizes the airways of patients with COPD, on lung cancer promotion in mice with an activated K-ras mutation in their airway epithelium. Two new mouse models of lung cancer were generated by crossing mice harboring the LSL-K-ras(G12D) allele with mice containing Cre recombinase inserted into the Clara cell secretory protein (CCSP) locus, with or without the neomycin cassette excised (CCSP(Cre) and CCSP(Cre-Neo), respectively). Lung lesions in CCSP(Cre-Neo)/LSL-K-ras(G12D) and CCSP(Cre)/LSL-K-ras(G12D) mice appeared at 4 and 1 month of age, respectively, and were classified as epithelial hyperplasia of the bronchioles, adenoma, and adenocarcinoma. Weekly exposure of CCSP(Cre)/LSL-K-ras(G12D) mice to aerosolized nontypeable Haemophilus influenzae lysate from age 6-14 weeks resulted in neutrophil/macrophage/CD8 T-cell-associated COPD-like airway inflammation, a 3.2-fold increase in lung surface tumor number (156 +/- 9 versus 45 +/- 7), and an increase in total lung tumor burden. We conclude that COPD-like airway inflammation promotes lung carcinogenesis in a background of a G12D-activated K-ras allele in airway secretory cells.
Collapse
Affiliation(s)
- Seyed Javad Moghaddam
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, 2121 W. Holcombe Boulevard, Suite 703F, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Lin W, Wu RT, Wu T, Khor TO, Wang H, Kong AN. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol 2008; 76:967-73. [PMID: 18755157 PMCID: PMC2577694 DOI: 10.1016/j.bcp.2008.07.036] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 01/14/2023]
Abstract
Sulforaphane (SFN) is a natural isothiocyanate that is present in cruciferous vegetables such as broccoli and cabbage. Previous studies have shown that SFN is effective in preventing carcinogenesis induced by carcinogens in rodents, which is related in part to its potent anti-inflammation properties. In the present study, we compared the anti-inflammatory effect of SFN on LPS-stimulated inflammation in primary peritoneal macrophages derived from Nrf2 (+/+) and Nrf2 (-/-) mice. Pretreatment of SFN in Nrf2 (+/+) primary peritoneal macrophages potently inhibited LPS-stimulated mRNA expression, protein expression and production of TNF-alpha, IL-1beta, COX-2 and iNOS. HO-1 expression was significantly augmented in LPS-stimulated Nrf2 (+/+) primary peritoneal macrophages by SFN. Interestingly, the anti-inflammatory effect was attenuated in Nrf2 (-/-) primary peritoneal macrophages. We concluded that SFN exerts its anti-inflammatory activity mainly via activation of Nrf2 in mouse peritoneal macrophages.
Collapse
Affiliation(s)
- Wen Lin
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
353
|
Kundu JK, Hwang DM, Lee JC, Chang EJ, Shin YK, Fujii H, Sun B, Surh YJ. Inhibitory effects of oligonol on phorbol ester-induced tumor promotion and COX-2 expression in mouse skin: NF-kappaB and C/EBP as potential targets. Cancer Lett 2008; 273:86-97. [PMID: 18848748 DOI: 10.1016/j.canlet.2008.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 05/15/2008] [Accepted: 07/28/2008] [Indexed: 12/18/2022]
Abstract
Plant polyphenols possess anti-oxidant and anti-inflammatory activities and are hence potential candidates for preventing cancer. The present study was aimed at evaluating the anti-inflammatory and anti-tumor promoting activity of oligonol, a formulation of catechin-type oligomers, in mouse skin stimulated with a proto-type tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Pretreatment of mouse skin with oligonol significantly inhibited TPA-induced expression of cyclooxygenase-2 (COX-2). Oligonol diminished nuclear translocation and DNA binding of nuclear factor-kappaB (NF-kappaB) via blockade of phosphorylation and subsequent degradation of IkappaB alpha in TPA-treated mouse skin. Moreover, oligonol suppressed TPA-induced DNA binding of CCAAT/enhancer-binding protein (C/EBP) in mouse skin. Oligonol pretreatment also attenuated the phosphorylation and/or catalytic activities of extracellular signal-regulated protein kinase-1/2 (ERK1/2) and p38 mitogen-activated protein (MAP) kinase. Moreover, p38 MAP kinase inhibitor SB203580, but not the MEK inhibitor U0126, negated TPA-induced DNA binding of C/EBP. In addition, oligonol reduced the incidence and the multiplicity of papillomas and squamous cell carcinomas in 7,12-dimethylbenz[a]anthracene (DMBA)-initiated and TPA-promoted mouse skin, and prolonged the survival of tumor-bearing mice. Pretreatment with oligonol diminished the levels of proliferating cell nuclear antigen and expression of COX-2 in papillomas and carcinomas, respectively, as compared to DMBA plus TPA treatment alone. Taken together, the above findings suggest that oligonol inhibits TPA-induced COX-2 expression by blocking the activation of NF-kappaB and C/EBP via modulation of MAP kinases and suppresses chemically induced mouse skin tumorigenesis.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shillim-dong, Kwanak-ku, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
354
|
Naschberger E, Croner RS, Merkel S, Dimmler A, Tripal P, Amann KU, Kremmer E, Brueckl WM, Papadopoulos T, Hohenadl C, Hohenberger W, Stürzl M. Angiostatic immune reaction in colorectal carcinoma: Impact on survival and perspectives for antiangiogenic therapy. Int J Cancer 2008; 123:2120-9. [PMID: 18697200 DOI: 10.1002/ijc.23764] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiogenesis and inflammation are the 2 major stroma reactions in colorectal carcinoma (CRC). Guanylate binding protein-1 (GBP-1) is a key mediator of angiostatic effects of inflammation. Therefore, we hypothesized that GBP-1 may be a biomarker of intrinsic angiostasis associated with an improved outcome in CRC patients. GBP-1 was strongly expressed in endothelial cells and immune cells in the desmoplastic stroma of 32% of CRC as determined by immunohistochemical investigation of 388 sporadic CRC. Cancer-related 5-year survival was highly significant (p < 0.001) increased (16.2%) in patients with GBP-1-positive CRC. Multivariate analysis showed that GBP-1 is an independent prognostic factor indicating a reduction of the relative risk of cancer-related death by the half (p = 0.032). A comparative transcriptome analysis (22,215 probe sets) of GBP-1-positive (n = 12) and -negative (n = 12) tumors showed that particularly IFN-gamma-induced genes including the major antiangiogenic chemokines CXCL9, CXCL10 and CXCL11 were coexpressed with GBP-1. Altogether our findings indicated that GBP-1 may be a novel biomarker and an active component of a Th-1-like angiostatic immune reaction in CRC. This reaction may affect patient's response to antiangiogenic therapy and the identification of such tumors may provide a novel criterion for patient selection. Moreover, the induction of a Th-1-like angiostatic immune reaction may be a promising approach for the clinical treatment of CRC.
Collapse
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Schwabachanlage 10, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Lai CS, Li S, Chai CY, Lo CY, Dushenkov S, Ho CT, Pan MH, Wang YJ. Anti-inflammatory and antitumor promotional effects of a novel urinary metabolite, 3',4'-didemethylnobiletin, derived from nobiletin. Carcinogenesis 2008; 29:2415-24. [DOI: 10.1093/carcin/bgn222] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
356
|
Dumont P, Berton A, Nagy N, Sandras F, Tinton S, Demetter P, Mascart F, Allaoui A, Decaestecker C, Salmon I. Expression of galectin-3 in the tumor immune response in colon cancer. J Transl Med 2008; 88:896-906. [PMID: 18542048 DOI: 10.1038/labinvest.2008.54] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The role of tumor-associated macrophages (TAMs) is controversial. Although most studies on different cancer types associate them with a poorer prognosis, interestingly in colon cancer, most articles indicate that TAMs prevent tumor development; patients with high TAMs have better prognosis and survival rate. M1-polarized macrophages produce high level of tumor necrosis factor-alpha, interleukin-1 beta or reactive oxygen species, which can effectively kill susceptible tumor cells. In contrast, M2-polarized macrophages can secrete different factors that promote tumor cell growth and survival or favor angiogenesis and tissue invasion. Considering the beneficial role of TAMs in colon cancer, we speculated that they may not display the M2 polarization commonly observed in tumor microenvironment, but rather develop M1 properties. Therefore, we used an in vitro model to analyze the effects of supernatants from M1-polarized macrophages on DLD-1 colon cancer cells. Our data indicate that the conditioned medium from LPS-activated macrophages (CM-LAM) contains a high level of granulocyte-macrophage colony-stimulating factor, interleukins-1 beta, -6, -8 and tumor necrosis factor-alpha, and that it exerts a marked growth inhibitory activity on DLD-1 cells. Prolonged exposure to CM-LAM results in cell death by apoptosis. Such exposure to CM-LAM leads to the modulation of gal-3 expression: we observed a marked downregulation of gal-3 mRNA and protein expression following CM-LAM treatment. We also describe that the knockdown of gal-3 sensitizes DLD-1 cells to CM-LAM. These data suggest an involvement of gal-3 in the response of colon cancer cells to proinflammatory stimuli, such as the conditioned medium from activated macrophages.
Collapse
Affiliation(s)
- Patrick Dumont
- Laboratory of Pathology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 2008; 283:14230-41. [PMID: 18281274 PMCID: PMC2386946 DOI: 10.1074/jbc.m800061200] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/13/2008] [Indexed: 12/21/2022] Open
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin and leptin sensitivity. PTP1B overexpression in adipose tissue and skeletal muscle of humans and rodents may contribute to insulin resistance and obesity. The mechanisms mediating PTP1B overexpression in obese and diabetic states have been unclear. We find that adipose tissue inflammation and the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) regulate PTP1B expression in vivo. High fat feeding of mice increased PTP1B expression 1.5- to 7-fold in adipose tissue, liver, skeletal muscle, and arcuate nucleus of hypothalamus. PTP1B overexpression in high fat-fed mice coincided with increased adipose tissue expression of the macrophage marker CD68 and TNFalpha, which is implicated in causing obesity-induced insulin resistance. TNFalpha increased PTP1B mRNA and protein levels by 2- to 5-fold in a dose- and time-dependent manner in adipocyte and hepatocyte cell lines. TNFalpha administration in mice increased PTP1B mRNA 1.4- to 4-fold in adipose tissue, liver, skeletal muscle, and hypothalamic arcuate nucleus and PTP1B protein 2-fold in liver. Actinomycin D treatment blocked, and high dose salicylate treatment inhibited by 80%, TNFalpha-induced PTP1B expression in adipocyte cell lines, suggesting TNFalpha may induce PTP1B transcription via nuclear factor kappaB (NFkappaB) activation. Chromatin immunoprecipitation from adipocyte cell lines and liver of mice demonstrated TNFalpha-induced recruitment of NFkappaB subunit p65 to the PTP1B promoter in vitro and in vivo. In mice with diet-induced obesity, TNFalpha deficiency also partly blocked PTP1B overexpression in adipose tissue. Our data suggest that PTP1B overexpression in multiple tissues in obesity is regulated by inflammation and that PTP1B may be a target of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Janice M Zabolotny
- Division of Endocrinology, Diabetes, and Metabolism and Cancer Biology Program, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
358
|
Heikkilä K, Ebrahim S, Lawlor DA. Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer 2008; 44:937-45. [PMID: 18387296 DOI: 10.1016/j.ejca.2008.02.047] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 02/29/2008] [Accepted: 02/29/2008] [Indexed: 12/20/2022]
Abstract
Our aim was to systematically review the epidemiologic evidence for an association of circulating interleukin-6 (IL-6), an inflammatory cytokine and cancer. We systematically searched electronic databases Embase, Medline and Web of Science for the studies of circulating IL-6 and any form of cancer. We identified and reviewed 189 discrete studies, consisting of 177 prevalent studies and three prospective studies. Cancer patients' IL-6 concentrations were higher than healthy controls' in most studies, but the results of investigations comparing IL-6 in cancer patients and individuals with benign diseases were less consistent. Due to the small number of prospective studies it is impossible to determine whether IL-6 is causally related to cancer. Large prospective studies of circulating IL-6 or studies using the functional variants of the IL-6 gene as instruments for circulating IL-6 concentrations would provide information on possible aetiological links between IL-6 and malignancy.
Collapse
|
359
|
Laconi E, Doratiotto S, Vineis P. The microenvironments of multistage carcinogenesis. Semin Cancer Biol 2008; 18:322-9. [PMID: 18456510 DOI: 10.1016/j.semcancer.2008.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 12/19/2022]
Abstract
Overt neoplasia is often the result of a chronic disease process encompassing an extended segment of the lifespan of any species. A common pathway in the natural history of the disease is the appearance of focal proliferative lesions that are known to act as precursors for cancer development. It is becoming increasingly apparent that the emergence of such lesions is not a cell-autonomous phenomenon, but is heavily dependent on microenvironmental cues derived from the surrounding tissue. Specific alterations in the tissue microenvironment that can foster the selective growth of focal lesions are discussed herein. Furthermore, we argue that a fundamental property of focal lesions as it relates to their precancerous nature lies in their altered growth pattern as compared to the tissue where they reside. The resulting altered tissue architecture translates into the emergence of a unique tumor microenvironment inside these lesions, associated with altered blood vessels and/or blood supply which in turn can trigger biochemical and metabolic changes fueling tumor progression. A deeper understanding of the role(s) of tissue and tumor microenvironments in the pathogenesis of cancer is essential to design more effective strategies for the management of this disease.
Collapse
Affiliation(s)
- Ezio Laconi
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Patologia Sperimentale, Università di Cagliari, 09125 Cagliari, Italy.
| | | | | |
Collapse
|
360
|
Gonzalez-Moles MA, Scully C, Gil-Montoya JA. Oral lichen planus: controversies surrounding malignant transformation. Oral Dis 2008; 14:229-43. [PMID: 18298420 DOI: 10.1111/j.1601-0825.2008.01441.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Studies of the malignant potential of oral lichen planus (OLP) have been hampered by inconsistencies in the diagnostic criteria used for OLP, the criteria adopted to identify a true case of malignant transformation in OLP, the risk factors for malignant transformation and the optimum management of patients to ensure the early diagnosis of transformation. Consensus remains elusive, and leading workers in this field have recently published conflicting reports on the malignant potential of OLP and on the important question of the advisability of excluding patients with epithelial dysplasia or a tobacco habit from studies on this issue. The present review outlines these debates and proposes a possible a molecular basis for the malignant transformation in this disease.
Collapse
Affiliation(s)
- M A Gonzalez-Moles
- Oral Medicine Department, Faculty of Dentistry, University of Granada, Granada, Spain.
| | | | | |
Collapse
|
361
|
Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G. Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells. Oncogene 2008; 27:225-33. [PMID: 18176604 DOI: 10.1038/sj.onc.1210907] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer could be deemed as an abnormal and uncontrolled tissue repair process. Therefore, it would not be surprising that factors that function in the tissue repair process, such as cytokines, chemokines, growth factors and Toll-like receptor (TLR) ligands, as well as growth signals for compensatory proliferation, would also be key factors in regulating and enhancing cancer progression. The TLR pathways, which play a critical role in tissue repair, are also key regulators in cancer progression as well as chemoresistance. TLRs serve as cell surface sensors that can initiate pathways leading to proliferation and chemoresistance; as well as mediators that are able to regulate the infiltrating immune cells to provide further support for cancer progression.
Collapse
Affiliation(s)
- R Chen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
362
|
Ebrahimi M, Boldrup L, Coates PJ, Wahlin YB, Bourdon JC, Nylander K. Expression of novel p53 isoforms in oral lichen planus. Oral Oncol 2008; 44:156-61. [PMID: 17418619 PMCID: PMC2691586 DOI: 10.1016/j.oraloncology.2007.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/17/2007] [Accepted: 01/17/2007] [Indexed: 11/17/2022]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease of unknown origin, showing little spontaneous regression. WHO classifies OLP as a premalignant condition, however, the underlying mechanisms initiating development of cancer in OLP lesions are not understood. The p53 tumour suppressor plays an important role in many tumours, and an increased expression of p53 protein has been seen in OLP lesions. Recently it was shown that the human TP53 gene encodes at least nine different isoforms. Another member of the p53 family, p63, comprises six different isoforms and plays a crucial role in the formation of oral mucosa, salivary glands, teeth and skin. It has also been suggested that p63 is involved in development of squamous cell carcinoma of the head and neck (SCCHN). In contrast to p53, a decreased expression of p63 protein has been seen in OLP lesions. In this study, we mapped the expression of five novel p53 isoforms at RNA and protein levels in OLP and matched normal controls. In the same samples we also measured levels of p63 isoforms using quantitative RT-PCR. Results showed p53 to be expressed in all OLP lesions and normal tissues. The p53 beta and delta 133p53 isoforms were expressed in the majority of samples whereas the remaining three novel isoforms analysed were expressed in only a few samples. Levels of p63 isoforms were lower in OLP lesions compared with normal tissue, however, changes were not statistically significant.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Department of Odontology, Umeå University, SE - 901 85 Umeå, Sweden. <>
| | | | | | | | | | | |
Collapse
|
363
|
Ho C, Ochsenbein AF, Gautschi O, Davies AM. Early Clinical Trial Experience with Vaccine Therapies in Non–Small-Cell Lung Cancer. Clin Lung Cancer 2008; 9 Suppl 1:S20-7. [DOI: 10.3816/clc.2008.s.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
364
|
Abstract
Most of the current experimental cancer models do not reflect the pathophysiology of real-life cancer. Cancer usually occurs sporadically and is clonal in origin. Between tumor initiation and progression, clinically unapparent pre-malignant cells may persist for years or decades in humans. Recently, mouse models of sporadic cancer have been developed. The mouse germ-line can be engineered with high precision so that defined genes can be switched on and off in the adult organism in a targeted manner. Analysis of the immune response against sporadic tumors requires the knowledge of a tumor antigen. Ideally, a silent oncogene, for which the mice are not tolerant, is stochastically activated in individual cells. This approach offers the opportunity to analyze the adaptive immune response throughout the long process of malignant transformation and most closely resembles cancer in humans. In such a model with the highly immunogenic SV40 large T antigen as a dormant oncogene, we discovered that sporadic cancer is recognized by the adaptive immune system at the pre-malignant stage, concomitant with the induction of tumor antigen-specific tolerance. These results demonstrated that even highly immunogenic sporadic tumors are unable to induce functional cytotoxic T lymphocytes. Based on this model, we conclude that immunosurveillance plays little or no role against sporadic cancer and that tumors must not escape immune recognition or destruction.
Collapse
Affiliation(s)
- Gerald Willimsky
- Institute of Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
365
|
Shareef MM, Cui N, Burikhanov R, Gupta S, Satishkumar S, Shajahan S, Mohiuddin M, Rangnekar VM, Ahmed MM. Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res 2008; 67:11811-20. [PMID: 18089811 DOI: 10.1158/0008-5472.can-07-0722] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, ionizing radiation (IR)-induced bystander effects were investigated in two lung cancer cell lines. A549 cells were found to be more resistant to radiation-conditioned medium (RCM) obtained from A549 cells when compared with the H460 exposed to RCM procured from H460 cells. Significant release of tumor necrosis factor-alpha (TNF-alpha) was observed in A549 cells after IR/RCM exposure, and the survival was reversed with neutralizing antibody against TNF-alpha. In H460 cells, significant release of TNF-related apoptosis-inducing ligand (TRAIL), but not TNF-alpha, was observed in response to IR, RCM exposure, or RCM + 2Gy, and neutralizing antibody against TRAIL diminished clonogenic inhibition. Mechanistically, TNF-alpha present in RCM of A549 was found to mediate nuclear factor-kappaB (NF-kappaB) translocation to nucleus, whereas the soluble TRAIL present in RCM of H460 cells mobilized the nuclear translocation of PAR-4 (a proapoptotic protein). Analysis of IR-inducible early growth response-1 (EGR-1) function showed that EGR-1 was functional in A549 cells but not in H460 cells. A significant decrease in RCM-mediated apoptosis was observed in both A549 cells stably expressing small interfering RNA EGR-1 and EGR-1(-/-) mouse embryonic fibroblast cells. Thus, the high-dose IR-induced bystander responses in A549 may be dependent on the EGR-1 function and its target gene TNF-alpha. These findings show that the reduced bystander response in A549 cells is due to activation of NF-kappaB signaling by TNF-alpha, whereas enhanced response to IR-induced bystander signaling in H460 cells was due to release of TRAIL associated with nuclear translocation of PAR-4.
Collapse
Affiliation(s)
- Mohammed M Shareef
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
366
|
|
367
|
Activation of IkappaB kinase and NF-kappaB is essential for Helicobacter pylori-induced chronic gastritis in Mongolian gerbils. Infect Immun 2007; 76:781-7. [PMID: 18070894 DOI: 10.1128/iai.01046-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Mongolian gerbil model of Helicobacter pylori infection resembles human gastritis. In this study, we investigated the role of NF-kappaB activation in H. pylori-infected gerbils. Activated macrophages were significantly increased in H. pylori-infected gastric mucosa and were identified as being important cells with potent activation of NF-kappaB, which plays an important part in producing proinflammatory cytokines. Macrophage depletion by the administration of clodronate resulted in milder inflammation in gerbils infected with H. pylori. In macrophages, the inhibition of IkappaB kinase beta (IKKbeta), which is a critical kinase for NF-kappaB activation, resulted in lower proinflammatory cytokine expression caused by heat-killed H. pylori cells. Furthermore, treatment with IKKbeta inhibitor resulted in milder inflammation in gerbils with H. pylori gastritis. Collectively, our data suggest that H. pylori-mediated gastric inflammation critically depends on the efficient recruitment and activation of macrophages, with sufficient NF-kappaB activation.
Collapse
|
368
|
Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 2007; 86:8-16. [PMID: 17675260 DOI: 10.1532/ijh97.06230] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence suggests that mesenchymal stem cells (MSC) selectively home to tumors, where they contribute to the formation of tumor-associated stroma. This effect can be opposed by genetically modifying MSC to produce high levels of anti-cancer agents that blunt tumor growth kinetics and inhibit the growth of tumors in situ. In this review article, we describe the biological properties of MSC within the tumor microenvironment and discuss the potential use of MSC and other bone marrow-derived cell populations as delivery vehicles for antitumor proteins.
Collapse
Affiliation(s)
- Brett Hall
- Department of Pediatrics, The Ohio State University and Center for Childhood Cancer, Columbus Children's Research Institute, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
369
|
Hoeft B, Becker N, Deeg E, Beckmann L, Nieters A. Joint effect between regular use of non-steroidal anti-inflammatory drugs, variants in inflammatory genes and risk of lymphoma. Cancer Causes Control 2007; 19:163-73. [PMID: 18038187 DOI: 10.1007/s10552-007-9082-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/10/2007] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Limited evidence suggests the importance of inflammatory processes for the etiology of lymphomas. To further research in this area, we investigated the role of genetic variants in key inflammatory factors, non-steroidal anti-inflammatory drug [NSAID] use, and their joint effect in lymphomagenesis. METHODS The study comprised 710 case-control pairs, matched for gender, age, and study region. We examined the association of regular NSAID use and polymorphisms in prostaglandin-endoperoxide synthase-2 (COX2), prostaglandin E synthase (PTGES), interleukin-1 alpha (IL1A), IL-1 beta (IL1B), and IL-1 receptor antagonist (IL1RA), and lymphoma risk by applying logistic regression to calculate odds ratios (OR) and 95% confidence intervals (95% CI). RESULTS Regular NSAID use was associated with a slightly reduced risk of B-NHL (OR = 0.8, 95% CI = 0.6-1.1). For T-NHL, the COX2 rs2745557 A-allele conferred a 2.2-fold (95% CI = 1.1-4.5) and homozygosis for the IL1RN rs454078 T-allele was associated with a 4.5-fold (95% CI = 1.4-13.9) elevated risk, however, based on sparse data. IL1 haplotype 5 was associated with a statistically significant 43% increased risk for B-NHL among non-regular users of NSAIDs, but a 70% decreased risk for regular users (p-value for interaction < 0.001). CONCLUSIONS These results suggest the relevance of joint effects between NSAID use and IL1 haplotypes on the risk of B-NHL.
Collapse
Affiliation(s)
- Birgit Hoeft
- Molecular Tumour Epidemiology, Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
370
|
Tian F, Grimaldo S, Fujita M, Fugita M, Cutts J, Vujanovic NL, Li LY. The endothelial cell-produced antiangiogenic cytokine vascular endothelial growth inhibitor induces dendritic cell maturation. THE JOURNAL OF IMMUNOLOGY 2007; 179:3742-51. [PMID: 17785811 DOI: 10.4049/jimmunol.179.6.3742] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Angiogenesis is an essential component of chronic inflammation that is linked to carcinogenesis. In this study, we report that human vascular endothelial growth inhibitor (VEGI, TNF superfamily 15), an endothelial cell-produced antiangiogenic cytokine, induces mouse dendritic cell (DC) maturation, a critical event in inflammation-initiated immunity. VEGI-stimulated bone marrow-derived immature DCs display early activation of maturation signaling molecules NF-kappaB, STAT3, p38, and JNK, and cytoskeleton reorganization and dendrite formation. The activation signals are partially inhibited by using a neutralizing Ab against death domain-containing receptor-3 (DR3) or a truncated form of DR3 consisting of the extracellular domain, indicating an involvement of DR3 in the transmission of VEGI activity. A VEGI isoform, TL1A, does not induce similar activities under otherwise identical experimental conditions. Additionally, the cells reveal significantly enhanced expression of mature DC-specific marker CD83, secondary lymphoid tissue-directing chemokine receptor CCR7, the MHC class-II protein (MHC-II), and costimulatory molecules CD40, CD80, and CD86. Functionally, the cells exhibit decreased Ag endocytosis, increased cell surface distribution of MHC-II, and increased secretion of IL-12 and TNF. Moreover, VEGI-stimulated DCs are able to facilitate the differentiation of CD4+ naive T cells in cocultures. These findings suggest that the anticancer activity of VEGI arises from coupling the inhibition of endothelial cell growth with the promotion of the adaptive immune mechanisms through the stimulation of DC maturation.
Collapse
Affiliation(s)
- Fang Tian
- University of Pittsburgh Cancer Institute and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
371
|
Gillison ML. Current topics in the epidemiology of oral cavity and oropharyngeal cancers. Head Neck 2007; 29:779-92. [PMID: 17230556 DOI: 10.1002/hed.20573] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral cancer incidence rates rose dramatically during the twentieth century in the United States and Europe, especially among individuals under the age of 60 years. Although influenced by age, sex, and country of origin, incidence trends were most strongly affected by elevated risk among individuals born after approximately 1915. This cohort effect was indicative of strong behavioral influences on oral cancer risk. In this article, associations between oral cancer risk and established behavioral risk factors including alcohol and tobacco use are reviewed. Additionally, possible associations between oral cancer risk and oral hygiene, diet, nutritional status, and sexual behavior as well as the influence of genetic factors on oral cancer risk are considered. Special emphasis is placed on evaluating possible risk differences in individuals above and below the age of 45 and in users and nonusers of alcohol and tobacco.
Collapse
Affiliation(s)
- Maura L Gillison
- Division of Viral Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA.
| |
Collapse
|
372
|
Goswami B, Rajappa M, Sharma M, Sharma A. Inflammation: its role and interplay in the development of cancer, with special focus on gynecological malignancies. Int J Gynecol Cancer 2007; 18:591-9. [PMID: 17944921 DOI: 10.1111/j.1525-1438.2007.01089.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between inflammation and cancer is intriguing. Mechanisms contributing to the pathobiology of carcinogenesis are multiple and complex. Many aspects still elude researchers and are subjects of intense speculation and debate, for example, the triggering factor for malignant transformation in inflammation. A comprehensive literature search was conducted from the Web sites of the National Library of Medicine and Pubmed Central, the US National Library of Medicine's digital archive of life sciences literature. The data were accessed from books and journals that published recent articles in this field. Several recent studies have identified nuclear factor-kappa B as a key modulator in driving inflammation to cancers. An inflammatory microenvironment inhabiting various inflammatory cells and a network of signaling molecules is essential for the malignant progression of transformed cells. This is attributed to the mutagenic predisposition of persistent infection-fighting agents at sites of chronic inflammation. The appreciation of the role of inflammation in carcinogenesis provides a mechanistic framework to understand clinical benefits of newer therapeutic strategies An in-depth knowledge about various pathogenic mechanisms involved in cancer will help clinicians in better management of the disease.
Collapse
Affiliation(s)
- B Goswami
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | | | | | | |
Collapse
|
373
|
Muto S, Katsuki M, Horie S. Decreased c-kit function inhibits enhanced skin carcinogenesis in c-Ha-ras protooncogene transgenic mice. Cancer Sci 2007; 98:1549-56. [PMID: 17683512 PMCID: PMC11158865 DOI: 10.1111/j.1349-7006.2007.00577.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously showed that rasH2 transgenic mice carrying the human c-Ha-ras protooncogene are highly susceptible to chemical skin carcinogenesis. In the dermis of rasH2 mice, mast cells are recruited constitutively, and the number of mast cells increases more than in wild-type mice in response to treatment with 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate. To determine whether enhanced skin tumor development in rasH2 mice is dependent on the recruitment of mast cells, we generated rasH2 KIT(W/Wv) mice by crossing rasH2 mice and W or W(v) KIT mutants, and examined the chemical skin carcinogenesis. In rasH2 KIT(W/Wv) mice, mast cells were not found in the dermis either before or after treatment with 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate. Papilloma multiplicity was up to 4.6-fold higher in rasH2 KIT(+/+) mice compared with their rasH2 KIT(W/Wv) siblings. At 12 weeks after the experiment began, the volumes of tumors were significantly smaller in rasH2 KIT(W/Wv) relative to rasH2 KIT(+/+) mice (rasH2 KIT(W/Wv): 29.2 +/- 19.9 mm(3) versus rasH2 KIT(+/+): 179.6 +/- 726.6 mm(3); P = 0.0153). There was no difference in the latency or multiplicity of papillomas between mice without the rasH2 transgene, KIT(W/Wv) mice and their wild-type littermates. Western blot analysis showed that expression of H-RAS protein in the skin was equivalent in rasH2 KIT(W/Wv) and rasH2 KIT(+/+) mice. In conclusion, the inhibition of c-kit decreased H-ras-induced skin carcinogenesis. The suppression of c-kit may be a unique and effective target as a preclinical model of cancer treatment where the activation of H-ras has a significant role. Targeting mast cells could also be a potential strategy for treating malignancies.
Collapse
Affiliation(s)
- Satoru Muto
- Department of Urology, Teikyo University, Tokyo 173-8605, Japan
| | | | | |
Collapse
|
374
|
Heikkilä K, Ebrahim S, Lawlor DA. A systematic review of the association between circulating concentrations of C reactive protein and cancer. J Epidemiol Community Health 2007; 61:824-33. [PMID: 17699539 PMCID: PMC2703800 DOI: 10.1136/jech.2006.051292] [Citation(s) in RCA: 298] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2006] [Indexed: 12/22/2022]
Abstract
The objective of this study was to review and summarise the published evidence for an association between circulating concentrations of C reactive protein (CRP) and cancer through a systematic review. 90 discrete studies were identified. 81 (90%) were prevalent case-control or cross-sectional studies, and only 9 studies had a prospective design. In most prevalent studies, CRP concentrations were found to be higher in patients with cancer than in healthy controls or controls with benign conditions. Of the nine large prospective studies identified in this review, four reported no relationship between circulating CRP levels and breast, prostate or colorectal cancers, and five studies found that CRP was associated with colorectal or lung cancers. Most of the studies evaluating CRP as a diagnostic marker of cancer did not present relevant statistical analyses. Furthermore, any association reported in the prevalent studies might reflect reverse causation, survival bias or confounding. The prospective studies provided no strong evidence for a causal role of CRP in cancer. Instead of further prevalent studies, more large prospective studies and CRP gene-cancer association studies would be valuable in investigating the role of CRP in cancer.
Collapse
Affiliation(s)
- Katriina Heikkilä
- Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol, UK.
| | | | | |
Collapse
|
375
|
Abstract
Cohesive scientific evidence from molecular, animal, and human investigations supports the hypothesis that aberrant induction of COX-2 and up-regulation of the prostaglandin cascade play a significant role in carcinogenesis, and reciprocally, blockade of the process has strong potential for cancer prevention and therapy. Supporting evidence includes the following: [1] expression of constitutive COX-2-catalyzed prostaglandin biosynthesis is induced by most cancer-causing agents including tobacco smoke and its components (polycylic aromatic amines, heterocyclic amines, nitrosamines), essential polyunsaturated fatty acids (unconjugated linoleic acid), mitogens, growth factors, proinflammatory cytokines, microbial agents, tumor promoters, and other epigenetic factors, [2] COX-2 expression is a characteristic feature of all premalignant neoplasms, [3] COX-2 expression is a characteristic feature of all malignant neoplasms, and expression intensifies with stage at detection and cancer progression and metastasis, [4] all essential features of carcinogenesis (mutagenesis, mitogenesis, angiogenesis, reduced apoptosis, metastasis, and immunosuppression) are linked to COX-2-driven prostaglandin (PGE-2) biosynthesis, [5] animal studies show that COX-2 up-regulation (in the absence of genetic mutations) is sufficient to stimulate the transformation of normal cells to invasive cancer and metastatic disease, [6] non-selective COX-2 inhibitors, such as aspirin and ibuprofen, reduce the risk of human cancer and precancerous lesions, and [7] selective COX-2 inhibitors, such as celecoxib, reduce the risk of human cancer and precancerous lesions at all anatomic sites thus far investigated. Results confirming that COX-2 blockade is effective for both cancer prevention and therapy have been tempered by observations that some COX2 inhibitors pose a risk to the cardiovascular system, and more studies are needed in order to determine if certain of these drugs can be taken at dosages that prevent cancer without increasing cardiovascular risk. It is emphasized that the "inflammogenesis model of cancer" is not mutually exclusive and may in fact be synergistic with the accumulation of somatic mutations in tumor suppressor genes and oncogenes or epigenetic factors in the development of cancer.
Collapse
Affiliation(s)
- Randall E Harris
- College of Medicine and School of Public Health, Center of Molecular Epidemiology and Environmental Health, The Ohio State University Medical Center, 310 West 10th Avenue, Columbus, Ohio 43210-1240, USA
| |
Collapse
|
376
|
|
377
|
Li S, Sang S, Pan MH, Lai CS, Lo CY, Yang CS, Ho CT. Anti-inflammatory property of the urinary metabolites of nobiletin in mouse. Bioorg Med Chem Lett 2007; 17:5177-81. [PMID: 17644380 DOI: 10.1016/j.bmcl.2007.06.096] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Nobiletin, a major component of polymethoxyflavones in citrus fruits, has a broad spectrum of health beneficial properties including anti-inflammatory and anti-carcinogenic activities. The metabolite identification of nobiletin in mouse urine has concluded that it undergoes mono-demethylation (3'- and 4'-demethylnobiletin) and di-demethylation (3',4'-didemethylnobiletin) metabolic pathway. Biological screening of nobiletin and its metabolites has revealed that the metabolites possess more potent anti-inflammatory activity than their parent compound. Therefore, this letter reports the identification of nobiletin metabolites and their anti-inflammatory activity against LPS-induced NO production and iNOS, COX-2 protein expression in RAW264.7 macrophage.
Collapse
Affiliation(s)
- Shiming Li
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | | | | | |
Collapse
|
378
|
Maeda S, Hikiba Y, Shibata W, Ohmae T, Yanai A, Ogura K, Yamada S, Omata M. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-associated cancer. Biochem Biophys Res Commun 2007; 360:394-400. [PMID: 17599806 DOI: 10.1016/j.bbrc.2007.06.065] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 06/11/2007] [Indexed: 02/07/2023]
Abstract
High-mobility group box 1 (HMGB1) is a nuclear factor released extracellularly as a proinflammatory cytokine. We measured the HMGB1 concentration in the sera of mice with chemically induced colitis (DSS; dextran sulfate sodium salt) and found a marked increase. Inhibition of HMGB1 by neutralizing anti-HMGB1 antibody resulted in reduced inflammation in DSS-treated colons. In macrophages, HMGB1 induces several proinflammatory cytokines, such as IL-6, which are regulated by NF-kappaB activation. Two putative sources of HMGB1 were explored: in one, bacterial factors induce HMGB1 secretion from macrophages and in the other, necrotic epithelial cells directly release HMGB1. LPS induced a small amount of HMGB1 in macrophages, but macrophages incubated with supernatant prepared from necrotic cells and containing large amounts of HMGB1 activated NF-kappaB and induced IL-6. Using the colitis-associated cancer model, we demonstrated that neutralizing anti-HMGB1 antibody decreases tumor incidence and size. These observations suggest that HMGB1 is a potentially useful target for IBD treatment and the prevention of colitis-associated cancer.
Collapse
Affiliation(s)
- Shin Maeda
- Division of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation, 1-6-1 Marunouchi, Chiyoda-ku, Tokyo 100-0005, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Schlaepfer DD, Hou S, Lim ST, Tomar A, Yu H, Lim Y, Hanson DA, Uryu SA, Molina J, Mitra SK. Tumor necrosis factor-alpha stimulates focal adhesion kinase activity required for mitogen-activated kinase-associated interleukin 6 expression. J Biol Chem 2007; 282:17450-17459. [PMID: 17438336 DOI: 10.1074/jbc.m610672200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that promotes cell migration, survival, and gene expression. Here we show that FAK signaling is important for tumor necrosis factor-alpha (TNFalpha)-induced interleukin 6 (IL-6) mRNA and protein expression in breast (4T1), lung (A549), prostate (PC-3), and neural (NB-8) tumor cells by FAK short hairpin RNA knockdown and by comparisons of FAK-null (FAK(-/-)) and FAK(+/+) mouse embryo fibroblasts. FAK promoted TNFalpha-stimulated MAPK activation needed for maximal IL-6 production. FAK was not required for TNFalpha-mediated nuclear factor-kappaB or c-Jun N-terminal kinase activation. TNFalpha-stimulated FAK catalytic activation and IL-6 production were inhibited by FAK N-terminal but not FAK C-terminal domain overexpression. Analysis of FAK(-/-) fibroblasts stably reconstituted with wild type or various FAK point mutants showed that FAK catalytic activity, Tyr-397 phosphorylation, and the Pro-712/713 proline-rich region of FAK were required for TNFalpha-stimulated MAPK activation and IL-6 production. Constitutively activated MAPK kinase-1 (MEK1) expression in FAK(-/-) and A549 FAK short hairpin RNA-expressing cells rescued TNFalpha-stimulated IL-6 production. Inhibition of Src protein-tyrosine kinase activity or mutation of Src phosphorylation sites on FAK (Tyr-861 or Tyr-925) did not affect TNFalpha-stimulated IL-6 expression. Moreover, analyses of Src(-/-), Yes(-/-), and Fyn(-/-) fibroblasts showed that Src expression was inhibitory to TNFalpha-stimulated IL-6 production. These studies provide evidence for a novel Src-independent FAK to MAPK signaling pathway regulating IL-6 expression with potential importance to inflammation and tumor progression.
Collapse
Affiliation(s)
- David D Schlaepfer
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
McSorley MA, Alberg AJ, Allen DS, Allen NE, Brinton LA, Dorgan JF, Pollak M, Tao Y, Helzlsouer KJ. C-reactive protein concentrations and subsequent ovarian cancer risk. Obstet Gynecol 2007; 109:933-41. [PMID: 17400857 DOI: 10.1097/01.aog.0000257126.68803.03] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To estimate the association between prediagnostic levels of C-reactive protein (CRP), a marker of chronic systemic inflammation, and subsequent development of ovarian cancer. METHODS A multicenter, nested, case-control study was conducted, including women who developed ovarian cancer (case patients) and women who were cancer-free (controls) from the following cohorts: CLUE ("Give us a CLUE to cancer and heart disease") cohorts of Washington County, Maryland, the Columbia, Missouri Serum Bank, and the Island of Guernsey Prospective Study, United Kingdom. A total of 167 incident invasive epithelial ovarian cancer cases were identified and each matched to an average of two controls on cohort, age, race, menopausal status, time since last menstrual period, current hormone use, date of recruitment, and time of day of blood draw. Baseline serum samples were assayed for CRP concentrations, and estimates of risk associated with CRP levels were assessed using conditional logistic regression. RESULTS Ovarian cancer risk was positively associated with increasing CRP concentrations. The risk of developing ovarian cancer among women in the highest third of the distribution of CRP compared with those in the lowest third was 1.72 (95% confidence interval 1.06-2.77), with evidence of an increasing risk with increasing concentration of CRP (P trend=0.02). Similar associations were observed using established clinical CRP cutpoints for heart disease risk (odds ratio 2.03, 95% confidence interval 1.20-3.47 for 3-10 mg/L compared with less than 1 mg/L, P trend=.008). If this association is causal, roughly 23% of ovarian cancer cases are attributed to chronic inflammation as indicated by elevated CRP concentrations. CONCLUSION Higher circulating CRP concentrations in women who subsequently developed ovarian cancer support the hypothesized role of chronic inflammation in ovarian carcinogenesis. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Meghan A McSorley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21202, USA, and Academic Oncology Unit, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Costa C, Incio J, Soares R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 2007; 10:149-66. [PMID: 17457680 DOI: 10.1007/s10456-007-9074-0] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/20/2007] [Indexed: 12/19/2022]
Abstract
Evidence has been gathered regarding the association between angiogenesis and inflammation in pathological situations. These two phenomena have long been coupled together in many chronic inflammatory disorders with distinct etiopathogenic origin, including psoriasis, rheumatoid arthritis, Crohn's disease, diabetes, and cancer. Lately, this concept has further been substantiated by the finding that several previously established non-inflammatory disorders, such as osteoarthritis and obesity, display both inflammation and angiogenesis in an exacerbated manner. In addition, the interplay between inflammatory cells, endothelial cells and fibroblasts in chronic inflammation sites, together with the fact that inflammation and angiogenesis can actually be triggered by the same molecular events, further strengthen this association. Therefore, elucidating the underlying cellular and molecular mechanisms that gather together the two processes is mandatory in order to understand their synergistic effect, and to develop new therapeutic approaches for the management of these disorders that cause a great deal of discomfort, disability, and in some cases death.
Collapse
Affiliation(s)
- Carla Costa
- Laboratory for Molecular Cell Biology, Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | | | | |
Collapse
|
382
|
Ribeiro R, Araújo A, Lopes C, Medeiros R. Immunoinflammatory mechanisms in lung cancer development: is leptin a mediator? J Thorac Oncol 2007; 2:105-8. [PMID: 17410023 DOI: 10.1016/s1556-0864(15)30035-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This is a short review focusing on leptin immunoinflammatory mechanisms that ultimately may contribute to lung cancer development. We explored the complex and intricate interaction of leptin with immune cells to propose a pathway of inflammation-associated lung cancer development.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Molecular Oncology--CI, Portuguese Institute of Oncology, Porto, Portugal
| | | | | | | |
Collapse
|
383
|
Roberts SJ, Ng BY, Filler RB, Lewis J, Glusac EJ, Hayday AC, Tigelaar RE, Girardi M. Characterizing tumor-promoting T cells in chemically induced cutaneous carcinogenesis. Proc Natl Acad Sci U S A 2007; 104:6770-5. [PMID: 17412837 PMCID: PMC1871860 DOI: 10.1073/pnas.0604982104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Indexed: 01/30/2023] Open
Abstract
There is a longstanding but poorly understood epidemiologic link between inflammation and cancer. Consistent with this, we previously showed that alphabeta T cell deficiency can increase resistance to chemical carcinogenesis initiated by 7,12-dimethylbenz[a]anthracene and promoted by phorbol 12-myristate 13-acetate. This provoked the hypothesis that alphabeta T cell deficiency removed T regulatory cells that limit the anti-tumor response or removed a specific tumor-promoting (T-pro) T cell population. Here we provide evidence for the latter, identifying a novel CD8(+) subset that is a candidate for T-pro cells. We demonstrate that CD8 cell-deficient mice show substantially less tumor incidence and progression to carcinoma, whereas susceptibility is restored by CD8(+) cell reconstitution. To characterize the putative T-pro cells, tumor-infiltrating lymphocytes were isolated from normal and CD4(-/-) mice, revealing an activated population of T cell receptor alphabeta(+)CD8(+)CD44(+)CD62L(-) cells expressing the inflammatory mediators IFNgamma, TNFalpha, and cyclooxygenase-2, but deficient in perforin, relative to recirculating cells of equivalent phenotype. This novel population of CD8(+) T cells has intriguing similarities with other lymphocytes that have been associated with tissue growth and invasiveness and has implications for inflammation-associated carcinogenesis, models of cancer immunosurveillance, and immunotherapeutic strategies.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/metabolism
- Immunologic Deficiency Syndromes/pathology
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Skin Neoplasms/chemically induced
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Scott J. Roberts
- *Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059; and
| | - Bernice Y. Ng
- *Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059; and
| | - Renata B. Filler
- *Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059; and
| | - Julia Lewis
- *Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059; and
| | - Earl J. Glusac
- *Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059; and
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, King's College School of Medicine at Guy's Hospital, London SE1 9RT, United Kingdom
| | - Robert E. Tigelaar
- *Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059; and
| | - Michael Girardi
- *Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059; and
| |
Collapse
|
384
|
Deorukhkar AA, Chander R, Pandey R, Sainis KB. A novel N-alkylated prodigiosin analogue induced death in tumour cell through apoptosis or necrosis depending upon the cell type. Cancer Chemother Pharmacol 2007; 61:355-63. [PMID: 17429627 DOI: 10.1007/s00280-007-0475-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Accepted: 03/16/2007] [Indexed: 01/28/2023]
Abstract
PURPOSE To investigate the mechanism of cell death induced by the N-alkylated prodigiosin analogue, 2,2'-[3-methoxy-1'amyl-5'-methyl-4-(1''-pyrryl)] dipyrryl-methene (MAMPDM) in S-180 and EL-4 tumour cell lines. METHODS Effect of MAMPDM on cell viability was assessed by MTT dye conversion. Induction of apoptosis was assessed by monitoring caspase 3 activity using a fluorogenic substrate, fragmentation of DNA by gel electrophoresis and sub-diploid DNA containing cells by flowcytometry. Necrosis was estimated by flowcytometric analysis of the uptake of propidium iodide. RESULTS MAMPDM inhibited the proliferation of murine fibrosarcoma, S-180 cells and induced cell death. Investigations into the mechanism of cell death by MAMPDM in S-180 cells showed absence of hallmarks of apoptotic cell death such as activation of caspase 3, DNA fragmentation and presence of cells with sub-diploid DNA content. However, there was a rapid loss of membrane integrity as assessed by uptake of propidium iodide, which is characteristic of necrosis. In contrast to induction of necrosis in S-180 cells, MAMPDM induced apoptotic cell death in EL-4 cells as evident by activation of caspase 3, fragmentation of DNA and sub-diploid DNA containing cells. CONCLUSIONS MAMPDM could induce cell death by either apoptosis or necrosis depending upon the cell type. This would be of advantage in elimination of tumor cells defective in apoptotic pathway and therefore, refractory to the conventional therapies.
Collapse
Affiliation(s)
- Amit A Deorukhkar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | | | |
Collapse
|
385
|
Bachmeier B, Nerlich AG, Iancu CM, Cilli M, Schleicher E, Vené R, Dell'Eva R, Jochum M, Albini A, Pfeffer U. The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell Physiol Biochem 2007; 19:137-52. [PMID: 17310108 DOI: 10.1159/000099202] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2007] [Indexed: 11/19/2022] Open
Abstract
Dissemination of metastatic cells probably occurs long before diagnosis of the primary tumor. Metastasis during early phases of carcinogenesis in high risk patients is therefore a potential prevention target. The plant polyphenol Curcumin has been proposed for dietary prevention of cancer. We therefore examined its effects on the human breast cancer cell line MDA-MB-231 in vitroand in a mouse metastasis model. Curcumin strongly induces apoptosis in MDA-MB-231 cells in correlation with reduced activation of the survival pathway NFkappaB, as a consequence of diminished IotakappaB and p65 phosphorylation. Curcumin also reduces the expression of major matrix metalloproteinases (MMPs) due to reduced NFkappa B activity and transcriptional downregulation of AP-1. NFkappa B/p65 silencing is sufficient to downregulate c-jun and MMP expression. Reduced NFkappa B/AP-1 activity and MMP expression lead to diminished invasion through a reconstituted basement membrane and to a significantly lower number of lung metastases in immunodeficient mice after intercardiac injection of 231 cells (p=0.0035). 68% of Curcumin treated but only 17% of untreated animals showed no or very few lung metastases, most likely as a consequence of down-regulation of NFkappa B/AP-1 dependent MMP expression and direct apoptotic effects on circulating tumor cells but not on established metastases. Dietary chemoprevention of metastases appears therefore feasible.
Collapse
Affiliation(s)
- Beatrice Bachmeier
- Department of Clinical Chemistry and Clinical Biochemistry, Surgical Hospital, Ludwig-Maximilians-University Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Arias JI, Aller MA, Sánchez-Patan F, Arias J. Inflammation and cancer: is trophism the link? Surg Oncol 2007; 15:235-42. [PMID: 17400443 DOI: 10.1016/j.suronc.2007.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/26/2007] [Accepted: 02/22/2007] [Indexed: 01/21/2023]
Abstract
The pathophysiological mechanisms of the inflammatory response can be common to wound repair and tumor development. We propose that this response evolves in three phases, the nervous or immediate phase, the immune or intermediate phase, and the endocrine or late phase. In wound repair and in these phases, the interstitial space successively presents edema due to ischemia-revascularization and nutrition by diffusion (nervous phase), infiltration by leukocytes, which would mediate the nutrition of damaged neighbor cells (immune phase) and by angiogenesis, nutrition mediated by the capillaries that favor regeneration or scarring (endocrine phase). At the same time, in tumor development, it is considered that the cancerous cell successively occupies the interstitial space, expressing three different phenotypes: the hypoxia-reperfusion phenotype, with anaerobic glycolisis, oxidative stress and edema (dormant stage); the immune phenotype that expresses the functions corresponding to leukocytes, including the hyperproduction of pro-inflammatory mediators, lymphangiogenesis, the invasion of lymph nodes (N stage) and systemic inflammatory response syndrome; and lastly, the endocrine phenotype, in which the appearance of both local (tumor or T stage) and systemic (metastasis or M stage) angiogenesis induce a growing disease.
Collapse
|
387
|
|
388
|
Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 2007; 32:577-95. [PMID: 16944320 PMCID: PMC1970866 DOI: 10.1007/s11064-006-9128-5] [Citation(s) in RCA: 626] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2006] [Indexed: 12/14/2022]
Abstract
Deciphering what governs inflammation and its effects on tissues is vital for understanding many pathologies. The recent discovery that glycogen synthase kinase-3 (GSK3) promotes inflammation reveals a new component of its well-documented actions in several prevalent diseases which involve inflammation, including mood disorders, Alzheimer's disease, diabetes, and cancer. Involvement in such disparate conditions stems from the widespread influences of GSK3 on many cellular functions, with this review focusing on its regulation of inflammatory processes. GSK3 promotes the production of inflammatory molecules and cell migration, which together make GSK3 a powerful regulator of inflammation, while GSK3 inhibition provides protection from inflammatory conditions in animal models. The involvement of GSK3 and inflammation in these diseases are highlighted. Thus, GSK3 may contribute not only to primary pathologies in these diseases, but also to the associated inflammation, suggesting that GSK3 inhibitors may have multiple effects influencing these conditions.
Collapse
Affiliation(s)
- Richard S Jope
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 1057, 1720 Seventh Avenue South, Birmingham, AL 35294-0017, USA.
| | | | | |
Collapse
|
389
|
Chen R, Alvero AB, Silasi DA, Mor G. Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway. Am J Reprod Immunol 2007; 57:93-107. [PMID: 17217363 DOI: 10.1111/j.1600-0897.2006.00441.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The association between chronic inflammation and cancer has long been observed. Furthermore, NF-kappaB activation and the subsequent production of cytokines, chemokines, growth factors, and antiapoptotic proteins has been found to be involved in cancer progression and chemoresistance. However, the signals inducing NF-kappaB in cancer cells are still not well understood. Here, we reviewed the association between chronic inflammation and cancer, the role of NF-kappaB and its inhibitors as potential anticancer drugs, and Toll-like receptors as possible signal initiators for NF-kappaB activation and inflammation-induced carcinogenesis and chemoresistance. Furthermore, we propose that, the stimulation of Toll-like receptors by microbial components and/or endogenous ligands may represent the initial signal promoting a proinflammatory environment that will enhance tumor growth and chemoresistance.
Collapse
Affiliation(s)
- Rui Chen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
390
|
Lv L, Kerzic P, Lin G, Schnatter AR, Bao L, Yang Y, Zou H, Fu H, Ye X, Gross SA, Armstrong TW, Irons RD. The TNF-alpha 238A polymorphism is associated with susceptibility to persistent bone marrow dysplasia following chronic exposure to benzene. Leuk Res 2007; 31:1479-85. [PMID: 17367855 DOI: 10.1016/j.leukres.2007.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 11/28/2022]
Abstract
Chronic exposure to benzene can result in transient hematotoxicity (benzene poisoning, BP) or persistent bone marrow pathology including dysplasia and/or acute myeloid leukemia. We recently described a persistent bone marrow dysplasia with unique dysplastic and inflammatory features developing in individuals previously exposed to benzene (BID) [Irons RD, Lv L, Gross SA, Ye X, Bao L, Wang XQ, et al. Chronic exposure to benzene results in a unique form of dysplasia. Leuk Res 2005;29:1371-80]. In this study we investigated the association of single nucleotide polymorphisms (SNP) (-863 (C-->A), -857 (C-->T), -308 (G-->A), -238 (G-->A)) in the promoter region of the cytokine, tumor necrosis factor-alpha (TNF-alpha) on the development of BP, persistent BID and de novo myelodysplastic syndrome (MDS) in 394 individuals. Only the -238 (G-->A) polymorphism was significantly associated with the development of BID (odds ratio (OR)=7.4; 95% C.I. 1.23-44.7) and was specific for BID and not de novo MDS or BP. These findings are consistent with a role for inflammation in the development of BID and suggest that cell-specific alterations in TNF-alpha expression may promote clonal selection in the evolution of neoplastic hematopoietic disease.
Collapse
Affiliation(s)
- Ling Lv
- International Clinical and Molecular Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Lee JC, Kundu JK, Hwang DM, Na HK, Surh YJ. Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-κB and AP-1: IκB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis 2007; 28:1491-8. [PMID: 17372274 DOI: 10.1093/carcin/bgm054] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Humulone, a bitter acid derived from hop (Humulus lupulus L.), possesses antioxidative, anti-inflammatory and other biologically active activities. Although humulone has been reported to inhibit chemically induced mouse skin tumor promotion, the underlying mechanisms are yet to be elucidated. Since an inappropriate over-expression of cyclooxygenase-2 (COX-2) is implicated in carcinogenesis, we investigated effects of humulone on COX-2 expression in mouse skin stimulated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical application of humulone (10 mumol) significantly inhibited TPA-induced epidermal COX-2 expression. Humulone also diminished TPA-induced DNA binding of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1). Pre-treatment with humulone attenuated TPA-induced phosphorylation of p65 and nuclear translocation of NF-kappaB subunit proteins. Humulone blunted TPA-induced activation of inhibitory kappaB (IkappaB) kinase (IKK) in mouse skin, which accounts for its suppression of phosphorylation and subsequent degradation of IkappaBalpha. An in vitro kinase assay revealed that humulone could directly inhibit the catalytic activity of IKKbeta. Humulone suppressed the activation of mitogen-activated protein kinases (MAPKs) in TPA-treated mouse skin. The roles of extracellular signal-regulated protein kinase-1/2 and p38 MAPK in TPA-induced activation of NF-kappaB in mouse skin had been defined in our previous studies. The present study revealed that topical application of SP600125, a pharmacological inhibitor of c-Jun-N-terminal kinase (JNK), abrogated the activation of AP-1 and the expression of COX-2 in TPA-treated mouse skin. Taken together, humulone suppressed TPA-induced activation of NF-kappaB and AP-1 and subsequent expression of COX-2 by blocking upstream kinases IKK and JNK, respectively, which may account for its antitumor-promoting effects on mouse skin carcinogenesis.
Collapse
Affiliation(s)
- Jung-Chul Lee
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shillim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|
392
|
Huang HY, Thuita L, Strickland P, Hoffman SC, Comstock GW, Helzlsouer KJ. Frequencies of single nucleotide polymorphisms in genes regulating inflammatory responses in a community-based population. BMC Genet 2007; 8:7. [PMID: 17355643 PMCID: PMC1838428 DOI: 10.1186/1471-2156-8-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 03/14/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Allele frequencies reported from public databases or articles are mostly based on small sample sizes. Differences in genotype frequencies by age, race and sex have implications for studies designed to examine genetic susceptibility to disease. In a community-based cohort of 9,960 individuals, we compared the allele frequencies of 49 single nucleotide polymorphisms (SNPs) of genes involved in inflammatory pathways to the frequencies reported on public databases, and examined the genotypes frequencies by age and sex. The genes in which SNPs were analyzed include CCR2, CCR5, COX1, COX2, CRP, CSF1, CSF2, IFNG, IL1A, IL1B, IL2, IL4, IL6, IL8, IL10, IL13, IL18, LTA, MPO, NOS2A, NOS3, PPARD, PPARG, PPARGC1 and TNF. RESULTS Mean(SD) age was 53.2(15.5); 98% were Caucasians and 62% were women. Only 1 out of 33 SNPs differed from the SNP500Cancer database in allele frequency by >10% in Caucasians (n = 9,831), whereas 12 SNPs differed by >10% (up to 50%) in African Americans (n = 105). Two out of 15 SNPs differed from the dbSNP database in allele frequencies by >10% in Caucasians, and 5 out of 15 SNPs differed by >10% in African Americans. Age was similar across most genotype groups. Genotype frequencies did not differ by sex except for TNF(rs1799724), IL2(rs2069762), IL10(rs1800890), PPARG(rs1801282), and CRP(rs1800947) with differences of less than 4%. CONCLUSION When estimating the size of samples needed for a study, particularly if a reference sample is used, one should take into consideration the size and ethnicity of the reference sample. Larger sample size is needed for public databases that report allele frequencies in non-Caucasian populations.
Collapse
Affiliation(s)
- Han-Yao Huang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lucy Thuita
- Department of Biostatistics & Epidemiology/Wb4, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Paul Strickland
- Department of Environmental Health Sciences, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Sandra C Hoffman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - George W Comstock
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kathy J Helzlsouer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Prevention and Research Center, Women's Center for Health & Medicine, Mercy Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
393
|
Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 2007; 25:387-408. [PMID: 17043764 DOI: 10.1007/s10555-006-9004-4] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-1 (IL-1) includes a family of closely related genes; the two major agonistic proteins, IL-1alpha and IL-1beta, are pleiotropic and affect mainly inflammation, immunity and hemopoiesis. The IL-1Ra antagonist is a physiological inhibitor of pre-formed IL-1. Recombinant IL-1alpha and IL-1beta bind to the same receptors and induce the same biological functions. As such, the IL-1 molecules have been considered identical in normal homeostasis and in disease. However, the IL-1 molecules differ in their compartmentalization within the producing cell or the microenvironment. Thus, IL-1beta is solely active in its secreted form, whereas IL-1alpha is mainly active in cell-associated forms (intracellular precursor and membrane-bound IL-1alpha) and only rarely as a secreted cytokine, as it is secreted only in a limited manner. IL-1 is abundant at tumor sites, where it may affect the process of carcinogenesis, tumor growth and invasiveness and also the patterns of tumor-host interactions. Here, we review the effects of microenvironment- and tumor cell-derived IL-1 on malignant processes in experimental tumor models and in cancer patients. We propose that membrane-associated IL-1alpha expressed on malignant cells stimulates anti-tumor immunity, while secretable IL-1beta, derived from the microenvironment or the malignant cells, activates inflammation that promotes invasiveness and also induces tumor-mediated suppression. Inhibition of the function of IL-1 by the IL-1Ra, reduces tumor invasiveness and alleviates tumor-mediated suppression, pointing to its feasibility in cancer therapy. Differential manipulation of IL-1alpha and IL-1beta in malignant cells or in the tumor's microenvironment can open new avenues for using IL-1 in cancer therapy.
Collapse
Affiliation(s)
- Ron N Apte
- Department of Microbiology and Immunology, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Krelin Y, Voronov E, Dotan S, Elkabets M, Reich E, Fogel M, Huszar M, Iwakura Y, Segal S, Dinarello CA, Apte RN. Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res 2007; 67:1062-71. [PMID: 17283139 DOI: 10.1158/0008-5472.can-06-2956] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of microenvironment interleukin 1 (IL-1) on 3-methylcholanthrene (3-MCA)-induced carcinogenesis was assessed in IL-1-deficient mice, i.e., IL-1beta(-/-), IL-1alpha(-/-), IL-1alpha/beta(-/-) (double knockout), and mice deficient in the naturally occurring inhibitor of IL-1, the IL-1 receptor antagonist (IL-1Ra). Tumors developed in all wild-type (WT) mice, whereas in IL-1beta-deficient mice, tumors developed slower and only in some of the mice. In IL-1Ra-deficient mice, tumor development was the most rapid. Tumor incidence was similar in WT and IL-1alpha-deficient mice. Histologic analyses revealed fibrotic structures forming a capsule surrounding droplets of the carcinogen in olive oil, resembling foreign body-like granulomas, which appeared 10 days after injection of 3-MCA and persisted until the development of local tumors. A sparse leukocyte infiltrate was found at the site of carcinogen injection in IL-1beta-deficient mice, whereas in IL-1Ra-deficient mice, a dense neutrophilic infiltrate was observed. Treatment of IL-1Ra-deficient mice with recombinant IL-1Ra but not with an inhibitor of tumor necrosis factor abrogated the early leukocytic infiltrate. The late leukocyte infiltrate (day 70), which was dominated by macrophages, was also apparent in WT and IL-1alpha-deficient mice, but was nearly absent in IL-1beta-deficient mice. Fibrosarcoma cell lines, established from 3-MCA-induced tumors from IL-1Ra-deficient mice, were more aggressive and metastatic than lines from WT mice; cell lines from IL-1-deficient mice were the least invasive. These observations show the crucial role of microenvironment-derived IL-1beta, rather than IL-1alpha, in chemical carcinogenesis and in determining the invasive potential of malignant cells.
Collapse
Affiliation(s)
- Yakov Krelin
- Department of Microbiology and Immunology, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res 2007; 66:11580-4. [PMID: 17178849 DOI: 10.1158/0008-5472.can-06-3562] [Citation(s) in RCA: 421] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inflammatory bowel diseases, chronic inflammatory disorders, have been strongly linked with an increased risk of the development of colorectal cancer. Understanding the etiology of these diseases is pivotal for the improvement of currently available strategies to fight against inflammatory bowel disease, and more importantly, to prevent colorectal cancer. Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been known to be a transcriptional factor which plays a crucial role in cytoprotection against inflammation, as well as oxidative and electrophilic stresses. The aim of this study is to investigate the role of Nrf2 in the regulation of dextran sulfate sodium (DSS)-induced experimental colitis in mice. Nrf2-deficient mice were found to be more susceptible to DSS-induced colitis as shown by the increased severity of colitis following 1 week of oral administration of 1% DSS. The increased severity of colitis in Nrf2(-/-) mice was found to be associated with decreased expression of antioxidant/phase II detoxifying enzymes including heme-oxygenase-1, NAD(P)H-quinone reductase-1, UDP-glucurosyltransferase 1A1, and glutathione S-transferase Mu-1. In addition, proinflammatory mediators/cytokines such as COX-2, inducible nitric oxide, interleukin 1beta, interleukin 6, and tumor necrosis factor alpha were significantly increased in the colonic tissues of Nrf2(-/-) mice compared with their wild-type (Nrf2+/+) counterparts. In summary, we show for the first time that mice lacking Nrf2 are more susceptible to DSS-induced colitis. Our data suggests that Nrf2 could play an important role in protecting intestinal integrity, through regulation of proinflammatory cytokines and induction of phase II detoxifying enzymes.
Collapse
Affiliation(s)
- Tin Oo Khor
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
396
|
Liu YC, Ko CC, Cheng FC, Huang PT, Lou KL, Chow LP. Identification of a novel competitive inhibitor of p38alpha MAPK by a human PBMC screen. Biochem Biophys Res Commun 2007; 352:656-61. [PMID: 17141198 DOI: 10.1016/j.bbrc.2006.11.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/13/2006] [Indexed: 11/24/2022]
Abstract
The pro-inflammatory cytokines TNF-alpha and IL-1beta are two of the important mediators involved in the several chronic inflammatory diseases. We used the release of TNF-alpha and IL-1beta from lipopolysaccharide-stimulated human PBMC as inflammatory indexes to discover the potential anti-inflammatory candidates. Among near 500 chemical compounds, MT4 had the suppressive action on the release of TNF-alpha and IL-1beta in PBMC with IC50 values of 22 and 44 nM, respectively. After verified the MT4 inhibitory mechanism, the results revealed that p38alpha and p38beta MAPK activity was inhibited by MT4 with an IC50 value of 0.13 and 0.55 microM, respectively. Further characterization of enzyme kinetics showed the binding mode of MT4 was competitive with the ATP substrate-binding site of p38alpha MAPK.
Collapse
Affiliation(s)
- Yu-Chih Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
397
|
Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 2007:263-83. [PMID: 17554513 DOI: 10.1007/978-3-540-68976-8_12] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that mesenchymal stem cells (MSC) selectively proliferate to tumors and contribute to the formation of tumor-associated stroma. The biological rationale for tumor recruitment of MSC remains unclear but may represent an effort of the host to blunt tumor cell growth and improve survival. There is mounting experimental evidence that normal stromal cells can revert malignant cell behavior, and separate studies have demonstrated that stromal cells can enhance tumor progression after acquisition of tumor-like genetic lesions. Together, these observations support the rationale for modifying normal MSC to deliver therapeutic proteins directly into the tumor microenvironment. Modified MSC can produce high concentrations of antitumor proteins directly within the Tumor mass, which have been shown to blunt tumor growth kinetics in experimental animal model systems. In this chapter we will address the biological properties of MSC within the tumor microenvironment and discuss the potential use of MSC and other bone marrow-derived cell populations as delivery vehicles for antitumor proteins.
Collapse
Affiliation(s)
- B Hall
- Center for Childhood Cancer, Columbus Children's Research Institute, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | |
Collapse
|
398
|
Abstract
The association between chronic inflammation and cancer is now well established. This association has recently received renewed interest with the recognition that microbial pathogens can be responsible for the chronic inflammation observed in many cancers, particularly those originating in the gastrointestinal system. A prime example is Helicobacter pylori, which infects 50% of the world's population and is now known to be responsible for inducing chronic gastric inflammation that progresses to atrophy, metaplasia, dysplasia, and gastric cancer. This Review provides an overview of recent progress in elucidating the bacterial properties responsible for colonization of the stomach, persistence in the stomach, and triggering of inflammation, as well as the host factors that have a role in determining whether gastritis progresses to gastric cancer. We also discuss how the increased understanding of the relationship between inflammation and gastric cancer still leaves many questions unanswered regarding recommendations for prevention and treatment.
Collapse
Affiliation(s)
- James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
399
|
Elkahwaji JE, Zhong W, Hopkins WJ, Bushman W. Chronic bacterial infection and inflammation incite reactive hyperplasia in a mouse model of chronic prostatitis. Prostate 2007; 67:14-21. [PMID: 17075821 DOI: 10.1002/pros.20445] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Chronic inflammation is postulated to contribute to prostate carcinogenesis. We developed a mouse model of chronic prostatitis to test whether infection-induced chronic inflammation would incite reactive changes in prostatic epithelium. METHODS Prostate tissues harvested from either phosphate-buffered saline (PBS) or E. coli-infected mice were evaluated for histological changes and immunostained for markers of oxidative stress and epithelial cell proliferation. RESULTS As compared to PBS-treated controls, mice infected with E. coli bacteria for 5 days showed foci of uniformly acute inflammation in the glandular lumen and a persistent inflammation at 12 weeks post-inoculation in the stroma. Prostatic glands showing varying degrees of atypical hyperplasia and dysplasia had stronger staining for oxidative DNA damage and increased epithelial cell proliferation than normal prostatic glands. CONCLUSIONS These data demonstrate that chronic inflammation induces reactive hyperplasia associated with oxidative stress injury and support the proposed linkage among inflammation, oxidative DNA damage, and prostate carcinogenesis.
Collapse
Affiliation(s)
- Johny E Elkahwaji
- Department of Surgery, Division of Urology, University of Wisconsin School of Medicine and Public Health, 600, Highland Ave, Madison, WI 53792, USA.
| | | | | | | |
Collapse
|
400
|
Heterogeneity of mammary lesions represent molecular differences. BMC Cancer 2006; 6:275. [PMID: 17147824 PMCID: PMC1762020 DOI: 10.1186/1471-2407-6-275] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 12/05/2006] [Indexed: 11/26/2022] Open
Abstract
Background Human breast cancer is a heterogeneous disease, histopathologically, molecularly and phenotypically. The molecular basis of this heterogeneity is not well understood. We have used a mouse model of DCIS that consists of unique lines of mammary intraepithelial neoplasia (MIN) outgrowths, the premalignant lesion in the mouse that progress to invasive carcinoma, to understand the molecular changes that are characteristic to certain phenotypes. Each MIN-O line has distinguishable morphologies, metastatic potentials and estrogen dependencies. Methods We utilized oligonucleotide expression arrays and high resolution array comparative genomic hybridization (aCGH) to investigate whole genome expression patterns and whole genome aberrations in both the MIN-O and tumor from four different MIN-O lines that each have different phenotypes. From the whole genome analysis at 35 kb resolution, we found that chromosome 1, 2, 10, and 11 were frequently associated with whole chromosome gains in the MIN-Os. In particular, two MIN-O lines had the majority of the chromosome gains. Although we did not find any whole chromosome loss, we identified 3 recurring chromosome losses (2F1-2, 3E4, 17E2) and two chromosome copy number gains on chromosome 11. These interstitial deletions and duplications were verified with a custom made array designed to interrogate the specific regions at approximately 550 bp resolution. Results We demonstrated that expression and genomic changes are present in the early premalignant lesions and that these molecular profiles can be correlated to phenotype (metastasis and estrogen responsiveness). We also identified expression changes associated with genomic instability. Progression to invasive carcinoma was associated with few additional changes in gene expression and genomic organization. Therefore, in the MIN-O mice, early premalignant lesions have the major molecular and genetic changes required and these changes have important phenotypic significance. In contrast, the changes that occur in the transition to invasive carcinoma are subtle, with few consistent changes and no association with phenotype. Conclusion We propose that the early lesions carry the important genetic changes that reflect the major phenotypic information, while additional genetic changes that accumulate in the invasive carcinoma are less associated with the overall phenotype.
Collapse
|