351
|
Rodriguez TA, Srinivas S, Clements MP, Smith JC, Beddington RSP. Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 2005; 132:2513-20. [PMID: 15857911 DOI: 10.1242/dev.01847] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The anterior visceral endoderm (AVE) is an extra-embryonic tissue required for specifying anterior pattern in the mouse embryo. The AVE is induced at the distal tip of the 5.5 dpc embryo and then migrates to the prospective anterior, where it imparts anterior identity upon the underlying epiblast (the tissue that gives rise to the embryo proper). Little is known about how the AVE is induced and what directs its migration. In this paper, we describe an essential role for another extra-embryonic tissue, the extra-embryonic ectoderm (ExE), in patterning the AVE and epiblast. Removal of the ExE in pre-gastrulation embryos leads to ectopic AVE formation, to a failure of AVE cell migration and to the assumption by the entire epiblast of an anterior identity. Ectopic transplantation of ExE cells inhibits AVE formation and leads to an expansion of the posterior epiblast marker T. These results demonstrate that the ExE restricts the induction of the AVE to the distal tip of the mouse embryo and is required to initiate the migration of these cells to the prospective anterior. Together, these data reveal a novel role for the ExE in the specification of the anteroposterior axis of the mouse embryo.
Collapse
Affiliation(s)
- Tristan A Rodriguez
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.
| | | | | | | | | |
Collapse
|
352
|
Ekonomou A, Kazanis I, Malas S, Wood H, Alifragis P, Denaxa M, Karagogeos D, Constanti A, Lovell-Badge R, Episkopou V. Neuronal migration and ventral subtype identity in the telencephalon depend on SOX1. PLoS Biol 2005; 3:e186. [PMID: 15882093 PMCID: PMC1110909 DOI: 10.1371/journal.pbio.0030186] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 03/24/2005] [Indexed: 11/18/2022] Open
Abstract
Little is known about the molecular mechanisms and intrinsic factors that are responsible for the emergence of neuronal subtype identity. Several transcription factors that are expressed mainly in precursors of the ventral telencephalon have been shown to control neuronal specification, but it has been unclear whether subtype identity is also specified in these precursors, or if this happens in postmitotic neurons, and whether it involves the same or different factors. SOX1, an HMG box transcription factor, is expressed widely in neural precursors along with the two other SOXB1 subfamily members, SOX2 and SOX3, and all three have been implicated in neurogenesis. SOX1 is also uniquely expressed at a high level in the majority of telencephalic neurons that constitute the ventral striatum (VS). These neurons are missing in Sox1-null mutant mice. In the present study, we have addressed the requirement for SOX1 at a cellular level, revealing both the nature and timing of the defect. By generating a novel Sox1-null allele expressing beta-galactosidase, we found that the VS precursors and their early neuronal differentiation are unaffected in the absence of SOX1, but the prospective neurons fail to migrate to their appropriate position. Furthermore, the migration of non-Sox1-expressing VS neurons (such as those expressing Pax6) was also affected in the absence of SOX1, suggesting that Sox1-expressing neurons play a role in structuring the area of the VS. To test whether SOX1 is required in postmitotic cells for the emergence of VS neuronal identity, we generated mice in which Sox1 expression was directed to all ventral telencephalic precursors, but to only a very few VS neurons. These mice again lacked most of the VS, indicating that SOX1 expression in precursors is not sufficient for VS development. Conversely, the few neurons in which Sox1 expression was maintained were able to migrate to the VS. In conclusion, Sox1 expression in precursors is not sufficient for VS neuronal identity and migration, but this is accomplished in postmitotic cells, which require the continued presence of SOX1. Our data also suggest that other SOXB1 members showing expression in specific neuronal populations are likely to play continuous roles from the establishment of precursors to their final differentiation.
Collapse
Affiliation(s)
- Antigoni Ekonomou
- 1Mammalian Neurogenesis Group, MRC Clinical Sciences CentreImperial College School of Medicine, Hammersmith Hospital Campus, LondonUnited Kingdom
| | - Ilias Kazanis
- 1Mammalian Neurogenesis Group, MRC Clinical Sciences CentreImperial College School of Medicine, Hammersmith Hospital Campus, LondonUnited Kingdom
| | - Stavros Malas
- 1Mammalian Neurogenesis Group, MRC Clinical Sciences CentreImperial College School of Medicine, Hammersmith Hospital Campus, LondonUnited Kingdom
| | - Heather Wood
- 1Mammalian Neurogenesis Group, MRC Clinical Sciences CentreImperial College School of Medicine, Hammersmith Hospital Campus, LondonUnited Kingdom
| | - Pavlos Alifragis
- 1Mammalian Neurogenesis Group, MRC Clinical Sciences CentreImperial College School of Medicine, Hammersmith Hospital Campus, LondonUnited Kingdom
| | - Myrto Denaxa
- 2Medical School and Institute of Molecular Biology and Biotechnology, University of CreteHeraklionGreece
| | - Domna Karagogeos
- 2Medical School and Institute of Molecular Biology and Biotechnology, University of CreteHeraklionGreece
| | - Andrew Constanti
- 3Department of Pharmacology, The School of PharmacyLondonUnited Kingdom
| | - Robin Lovell-Badge
- 4Division of Developmental Genetics, National Institute of Medical ResearchLondonUnited Kingdom
| | - Vasso Episkopou
- 1Mammalian Neurogenesis Group, MRC Clinical Sciences CentreImperial College School of Medicine, Hammersmith Hospital Campus, LondonUnited Kingdom
| |
Collapse
|
353
|
Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L, de Sanctis U, Salt A, Collin JRO, Vivian AJ, Free SL, Thompson P, Williamson KA, Sisodiya SM, van Heyningen V, Fitzpatrick DR. SOX2anophthalmia syndrome. Am J Med Genet A 2005; 135:1-7; discussion 8. [PMID: 15812812 DOI: 10.1002/ajmg.a.30642] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heterozygous, de novo, loss-of-function mutations in SOX2 have been shown to cause bilateral anophthalmia. Here we provide a detailed description of the clinical features associated with SOX2 mutations in the five individuals with reported mutations and four newly identified cases (including the first reported SOX2 missense mutation). The SOX2-associated ocular malformations are variable in type, but most often bilateral and severe. Of the nine patients, six had bilateral anophthalmia and two had anophthalmia with contralateral microphthalmia with sclerocornea. The remaining case had anophthalmia with contralateral microphthalmia, posterior cortical cataract and a dysplastic optic disc, and was the only patient to have measurable visual acuity. The relatively consistent extraocular phenotype observed includes: learning disability, seizures, brain malformation, specific motor abnormalities, male genital tract malformations, mild facial dysmorphism, and postnatal growth failure. Identifying SOX2 mutations from large cohorts of patients with structural eye defects has delineated a new, clinically-recognizable, multisystem disorder and has provided important insight into the developmental pathways critical for morphogenesis of the eye, brain, and male genital tract.
Collapse
Affiliation(s)
- Nicola K Ragge
- Adnexal Service, Moorfields Eye Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Mukhopadhyay P, Greene RM, Zacharias W, Weinrich MC, Singh S, Young WW, Pisano MM. Developmental gene expression profiling of mammalian, fetal orofacial tissue. ACTA ACUST UNITED AC 2005; 70:912-26. [PMID: 15578713 DOI: 10.1002/bdra.20095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The embryonic orofacial region is an excellent developmental paradigm that has revealed the centrality of numerous genes encoding proteins with diverse and important biological functions in embryonic growth and morphogenesis. DNA microarray technology presents an efficient means of acquiring novel and valuable information regarding the expression, regulation, and function of a panoply of genes involved in mammalian orofacial development. METHODS To identify differentially expressed genes during mammalian orofacial ontogenesis, the transcript profiles of GD-12, GD-13, and GD-14 murine orofacial tissue were compared utilizing GeneChip arrays from Affymetrix. Changes in gene expression were verified by TaqMan quantitative real-time PCR. Cluster analysis of the microarray data was done with the GeneCluster 2.0 Data Mining Tool and the GeneSpring software. RESULTS Expression of >50% of the approximately 12,000 genes and expressed sequence tags examined in this study was detected in GD-12, GD-13, and GD-14 murine orofacial tissues and the expression of several hundred genes was up- and downregulated in the developing orofacial tissue from GD-12 to GD-13, as well as from GD-13 to GD-14. Such differential gene expression represents changes in the expression of genes encoding growth factors and signaling molecules; transcription factors; and proteins involved in epithelial-mesenchymal interactions, extracellular matrix synthesis, cell adhesion, proliferation, differentiation, and apoptosis. Following cluster analysis of the microarray data, eight distinct patterns of gene expression during murine orofacial ontogenesis were selected for graphic presentation of gene expression patterns. CONCLUSIONS This gene expression profiling study identifies a number of potentially unique developmental participants and serves as a valuable aid in deciphering the complex molecular mechanisms crucial for mammalian orofacial development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular Cellular and Craniofacial Biology, University of Louisville School of Dentistry, Louisville, Kentucky, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
355
|
Solomon NM, Ross SA, Morgan T, Belsky JL, Hol FA, Karnes PS, Hopwood NJ, Myers SE, Tan AS, Warne GL, Forrest SM, Thomas PQ. Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3. J Med Genet 2005; 41:669-78. [PMID: 15342697 PMCID: PMC1735898 DOI: 10.1136/jmg.2003.016949] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Array comparative genomic hybridisation (array CGH) is a powerful method that detects alteration of gene copy number with greater resolution and efficiency than traditional methods. However, its ability to detect disease causing duplications in constitutional genomic DNA has not been shown. We developed an array CGH assay for X linked hypopituitarism, which is associated with duplication of Xq26-q27. METHODS We generated custom BAC/PAC arrays that spanned the 7.3 Mb critical region at Xq26.1-q27.3, and used them to search for duplications in three previously uncharacterised families with X linked hypopituitarism. RESULTS Validation experiments clearly identified Xq26-q27 duplications that we had previously mapped by fluorescence in situ hybridisation. Array CGH analysis of novel XH families identified three different Xq26-q27 duplications, which together refine the critical region to a 3.9 Mb interval at Xq27.2-q27.3. Expression analysis of six orthologous mouse genes from this region revealed that the transcription factor Sox3 is expressed at 11.5 and 12.5 days after conception in the infundibulum of the developing pituitary and the presumptive hypothalamus. DISCUSSION Array CGH is a robust and sensitive method for identifying X chromosome duplications. The existence of different, overlapping Xq duplications in five kindreds indicates that X linked hypopituitarism is caused by increased gene dosage. Interestingly, all X linked hypopituitarism duplications contain SOX3. As mutation of this gene in human beings and mice results in hypopituitarism, we hypothesise that increased dosage of Sox3 causes perturbation of pituitary and hypothalamic development and may be the causative mechanism for X linked hypopituitarism.
Collapse
Affiliation(s)
- N M Solomon
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Kiernan AE, Pelling AL, Leung KKH, Tang ASP, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KSE. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 2005; 434:1031-5. [PMID: 15846349 DOI: 10.1038/nature03487] [Citation(s) in RCA: 421] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 02/07/2005] [Indexed: 11/08/2022]
Abstract
Sensory hair cells and their associated non-sensory supporting cells in the inner ear are fundamental for hearing and balance. They arise from a common progenitor, but little is known about the molecular events specifying this cell lineage. We recently identified two allelic mouse mutants, light coat and circling (Lcc) and yellow submarine (Ysb), that show hearing and balance impairment. Lcc/Lcc mice are completely deaf, whereas Ysb/Ysb mice are severely hearing impaired. We report here that inner ears of Lcc/Lcc mice fail to establish a prosensory domain and neither hair cells nor supporting cells differentiate, resulting in a severe inner ear malformation, whereas the sensory epithelium of Ysb/Ysb mice shows abnormal development with disorganized and fewer hair cells. These phenotypes are due to the absence (in Lcc mutants) or reduced expression (in Ysb mutants) of the transcription factor SOX2, specifically within the developing inner ear. SOX2 continues to be expressed in the inner ears of mice lacking Math1 (also known as Atoh1 and HATH1), a gene essential for hair cell differentiation, whereas Math1 expression is absent in Lcc mutants, suggesting that Sox2 acts upstream of Math1.
Collapse
MESH Headings
- Alleles
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Cell Differentiation
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Ear, Inner/abnormalities
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Ear, Inner/pathology
- Hair Cells, Auditory, Inner/abnormalities
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Mice
- Mice, Mutant Strains
- Mutation/genetics
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- SOXB1 Transcription Factors
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Amy E Kiernan
- MRC Institute of Hearing Research, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Kawauchi S, Beites CL, Crocker CE, Wu HH, Bonnin A, Murray R, Calof AL. Molecular signals regulating proliferation of stem and progenitor cells in mouse olfactory epithelium. Dev Neurosci 2005; 26:166-80. [PMID: 15711058 DOI: 10.1159/000082135] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 06/14/2004] [Indexed: 11/19/2022] Open
Abstract
To understand how signaling molecules regulate the generation of neurons from proliferating stem cells and neuronal progenitors in the developing and regenerating nervous system, we have studied neurogenesis in a model neurogenic epithelium, the olfactory epithelium (OE) of the mouse. Our studies have employed a candidate approach to test signaling molecules of potential importance in regulating neurogenesis and have utilized methods that include tissue culture, in situ hybridization and mouse genetics. Using these approaches, we have identified three distinct stages of stem and transit amplifying progenitor cells in the differentiation pathway of olfactory receptor neurons (ORNs) and have identified mechanisms by which the development of each of these progenitor cell types is regulated by signals produced both within the OE itself and by its underlying stroma. Our results indicate that regulation of olfactory neurogenesis is critically dependent on multiple signaling molecules from two different polypeptide growth factor superfamilies, the fibroblast growth factors and the transforming growth factor beta (TGF-beta) group. In addition, they indicate that these signaling molecules interact in at least two important ways: first, opposing signals converge on cells at specific developmental stages in the ORN pathway to regulate proliferation and differentiation; and second, these signaling molecules--particularly the TGF-betas and their antagonists--play key roles in feedback loops that regulate the size of progenitor cell pools and thereby neuron number, during development and regeneration.
Collapse
Affiliation(s)
- Shimako Kawauchi
- Department of Anatomy and Neurobiology and the Developmental Biology Center, University of California, Irvine, CA 92697-1275, USA
| | | | | | | | | | | | | |
Collapse
|
358
|
Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 2005; 26:148-65. [PMID: 15711057 DOI: 10.1159/000082134] [Citation(s) in RCA: 560] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 02/22/2004] [Indexed: 11/19/2022] Open
Abstract
Multipotent neural stem cells are present throughout the development of the central nervous system (CNS), persist into adulthood in defined locations and can be derived from more primitive embryonic stem cells. We show that SOX2, an HMG box transcription factor, is expressed in multipotent neural stem cells at all stages of mouse ontogeny. We have generated transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the endogenous locus-regulatory regions of the Sox2 gene to prospectively identify neural stem/progenitor cells in vivo and in vitro. Fluorescent cells coexpress SOX2 protein, and EGFP fluorescence is detected in proliferating neural progenitor cells of the entire anterior-posterior axis of the CNS from neural plate stages to adulthood. SOX2-EGFP cells can form neurospheres that can be passaged repeatedly and can differentiate into neurons, astrocytes and oligodendrocytes. Moreover, prospective clonal analysis of SOX2-EGFP-positive cells shows that all neurospheres, whether isolated from the embryonic CNS or the adult CNS, express SOX2-EGFP. In contrast, the pattern of SOX2-EGFP expression using randomly integrated Sox2 promoter/reporter construct differs, and neurospheres are heterogeneous for EGFP expression. These studies demonstrate that SOX2 may meet the requirements of a universal neural stem cell marker and provides a means to identify cells which fulfill the basic criteria of a stem cell: self-renewal and multipotent differentiation.
Collapse
Affiliation(s)
- Pam Ellis
- Neuroscience Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Lickert H, Cox B, Wehrle C, Taketo MM, Kemler R, Rossant J. Dissecting Wnt/beta-catenin signaling during gastrulation using RNA interference in mouse embryos. Development 2005; 132:2599-609. [PMID: 15857914 DOI: 10.1242/dev.01842] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Differential gene regulation integrated in time and space drives developmental programs during embryogenesis. To understand how the program of gastrulation is regulated by Wnt/beta-catenin signaling, we have used genome-wide expression profiling of conditional beta-catenin mutant embryos. Known Wnt/beta-catenin target genes, known components of other signaling pathways, as well as a number of uncharacterized genes were downregulated in these mutants. To further narrow down the set of differentially expressed genes, we used whole-mount in situ screening to associate gene expression with putative domains of Wnt activity. Several potential novel target genes were identified by this means and two, Grsf1 and Fragilis2, were functionally analyzed by RNA interference (RNAi) in completely embryonic stem (ES) cell-derived embryos. We show that the gene encoding the RNA-binding factor Grsf1 is important for axial elongation, mid/hindbrain development and axial mesoderm specification, and that Fragilis2, encoding a transmembrane protein, regulates epithelialization of the somites and paraxial mesoderm formation. Intriguingly, the knock-down phenotypes recapitulate several aspects of Wnt pathway mutants, suggesting that these genes are components of the downstream Wnt response. This functional genomic approach allows the rapid identification of functionally important components of embryonic development from large datasets of putative targets.
Collapse
Affiliation(s)
- Heiko Lickert
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
360
|
Andrew Nesbit M, Bowl MR, Harding B, Schlessinger D, Whyte MP, Thakker RV. X-linked hypoparathyroidism region on Xq27 is evolutionarily conserved with regions on 3q26 and 13q34 and contains a novel P-type ATPase. Genomics 2005; 84:1060-70. [PMID: 15533723 DOI: 10.1016/j.ygeno.2004.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 08/03/2004] [Indexed: 11/19/2022]
Abstract
X-linked hypoparathyroidism (HPT) has been mapped to a 988-kb region on chromosome Xq27 that contains three genes, MCF2/DBL, SOX3, and U7snRNA homologue, and a partial cDNA, AS6. We isolated the full-length AS6 cDNA, determined its genomic organization, and sought for abnormalities in HPT patients. AS6 was identified as the 3' UTR of ATP11C, a novel member of the P-type ATPases, which consists of 31 exons with alternative transcripts. The colocalization of ATP11C with SOX3 and MCF2/DBL on Xq27 mirrors that of ATP11A with SOX1 and MCF2L on 13q34 and ATP11B with SOX2 on 3q26. These colocalizations are evolutionarily conserved in mouse, and analyses indicate that SOX2 divergence likely occurred before the separation of SOX1 and SOX3. Analyses of ATP11C, MCF2, SOX3, and U7snRNA in HPT patients did not reveal mutations, implicating regulatory changes or mutation of an as yet unidentified gene in the etiology of X-linked hypoparathyroidism.
Collapse
Affiliation(s)
- M Andrew Nesbit
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | | | | | | | | | | |
Collapse
|
361
|
Bernadt CT, Nowling T, Rizzino A. Transcription factor Sox-2 inhibits co-activator stimulated transcription. Mol Reprod Dev 2005; 69:260-7. [PMID: 15349837 DOI: 10.1002/mrd.20168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have shown that transcription of the fibroblast growth factor-4 (FGF-4) gene by early embryonic cells is dependent upon a powerful distal enhancer located 3 kb downstream of the transcription start site within the untranslated region of the last exon. The transcription factors Sox-2 and Oct-3 cooperatively bind to critical cis-regulatory elements within the enhancer to synergistically activate transcription. Moreover, the co-activator p300 can mediate the synergistic activity of Sox-2 and Oct-3, and p300 associates with the FGF-4 enhancer in vivo. Embryonal carcinoma (EC) cells have been used extensively as a model system to study the regulation of the FGF-4 gene during early development. Recently, it has been suggested that suboptimal levels of Sox-2 expression in F9 EC cells limit the transcription of the FGF-4 gene. The studies presented in this report argue that Sox-2 levels are not limiting in F9 EC cells. Moreover, overexpression of Sox-2 in F9 EC cells decreases FGF-4 promoter activity. In addition, overexpression of Sox-2 in these cells inhibits activation by the co-activators p300, CBP, and OCA-B in a manner that requires the transactivation domain of Sox-2. These findings suggest that Sox-2 levels in F9 EC cells are regulated carefully to avoid interference with the transcription of critical genes.
Collapse
Affiliation(s)
- Cory T Bernadt
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
362
|
Uchikawa M, Takemoto T, Kamachi Y, Kondoh H. Efficient identification of regulatory sequences in the chicken genome by a powerful combination of embryo electroporation and genome comparison. Mech Dev 2005; 121:1145-58. [PMID: 15296978 DOI: 10.1016/j.mod.2004.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/15/2004] [Accepted: 05/17/2004] [Indexed: 11/26/2022]
Abstract
Recently expanded knowledge of gene regulation clearly indicates that the regulatory sequences of a gene, usually identified as enhancers, are widely distributed in the gene locus, revising the classical view that they are clustered in the vicinity of genes. To identify regulatory sequences for Sox2 expression governing early neurogenesis, we scanned the 50-kb region of the chicken Sox2 locus for enhancer activity utilizing embryo electroporation, resulting in identification of a number of enhancers scattered throughout the analyzed genomic span. The 'pan-neural' Sox2 expression in early embryos is actually brought about by the composite activities of five separate enhancers with distinct spatio-temporal specificities. These and other functionally defined enhancers exactly correspond to extragenic sequence blocks that are conspicuously conserved between the chicken and mammalian genomes and that are embedded in sequences with a wide range of sequence conservation between humans and mice. The sequences conserved between amniotes and teleosts correspond to subregions of the enhancer subsets which presumably represent core motifs of the enhancers, and the limited conservation partly reflects divergent expression patterns of the gene. The phylogenic distance between the chicken and mammals appears optimal for identifying a battery of genetic regulatory elements as conserved sequence blocks, and chicken embryo electroporation facilitates functional characterization of these elements.
Collapse
Affiliation(s)
- Masanori Uchikawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
363
|
Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 2005; 8:288-96. [PMID: 15696161 DOI: 10.1038/nn1402] [Citation(s) in RCA: 600] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 01/14/2005] [Indexed: 02/07/2023]
Abstract
We demonstrate directed differentiation of telencephalic precursors from mouse embryonic stem (ES) cells using optimized serum-free suspension culture (SFEB culture). Treatment with Wnt and Nodal antagonists (Dkk1 and LeftyA) during the first 5 d of SFEB culture causes nearly selective neural differentiation in ES cells ( approximately 90%). In the presence of Dkk1, with or without LeftyA, SFEB induces efficient generation ( approximately 35%) of cells expressing telencephalic marker Bf1. Wnt3a treatment during the late culture period increases the pallial telencephalic population (Pax6(+) cells yield up to 75% of Bf1(+) cells), whereas Shh promotes basal telencephalic differentiation (into Nkx2.1(+) and/or Islet1/2(+) cells) at the cost of pallial telencephalic differentiation. Thus, in the absence of caudalizing signals, floating aggregates of ES cells generate naive telencephalic precursors that acquire subregional identities by responding to extracellular patterning signals.
Collapse
Affiliation(s)
- Kiichi Watanabe
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Abstract
Resident among the highly structured adult nervous system, a few cells, referred to as neural progenitors or stem cells, maintain the ability to self-renew or differentiate. From the time of their specification during neural induction and throughout the building of the nervous system, neural progenitor cells preserve their broad developmental potential and replicative capacity to be able to produce the vast array of neuronal and glial cell types of the mature nervous system as, and when, required. Recently, considerable attention has been focused on identifying the molecular mechanisms responsible for maintaining neural progenitor or stem cell fate throughout ontogeny. The expression of a subset of SOX transcription factors is initiated concomitant with the acquisition of neural progenitor identity and is then maintained in the entire progenitor population of the developing and adult nervous system. Strikingly, studies in the central and peripheral nervous system of chick and mouse have revealed that SOX factors are key regulators of neural progenitor identity, promoting self-renewal in a context-dependent manner by sustaining the undifferentiated state of progenitor cells and maintaining their ability to either proliferate or differentiate.
Collapse
Affiliation(s)
- Larysa Pevny
- Department of Genetics, Neuroscience Center, University of North Carolina CB 7264, 103 Mason Farm Road, Chapel Hill, North Carolina, NC 27599, USA.
| | | |
Collapse
|
365
|
Zhao S, Nichols J, Smith AG, Li M. SoxB transcription factors specify neuroectodermal lineage choice in ES cells. Mol Cell Neurosci 2005; 27:332-42. [PMID: 15519247 DOI: 10.1016/j.mcn.2004.08.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 07/22/2004] [Accepted: 08/03/2004] [Indexed: 01/03/2023] Open
Abstract
Knowledge of lineage decision machinery in pluripotent embryonic stem (ES) cells may shed light on the process of germ layer segregation in the mammalian embryo and enable directed differentiation in vitro for biomedical applications. We have investigated the contribution of Class B1 Sox transcription factors to lineage choice during ES cell differentiation. We report that forced expression of Sox1 or Sox2 did not impair propagation of undifferentiated ES cells, but upon release from self-renewal promoted differentiation into neuroectoderm at the expense of mesoderm and endoderm. The efficient specification of a primary lineage by transcription factor manipulation provides a paradigm for instructing differentiation of ES cells for biopharmaceutical screening and cell therapy applications.
Collapse
Affiliation(s)
- Suling Zhao
- Institute for Stem Cell Research, University of Edinburgh, Edinburgh, EH9 3JQ, United Kingdom
| | | | | | | |
Collapse
|
366
|
Fernandez EL, Svenson C, Dencker L, Gustafson AL. Disturbing endoderm signaling to anterior neural plate of vertebrates by the teratogen cadmium. Reprod Toxicol 2005; 18:653-60. [PMID: 15219627 DOI: 10.1016/j.reprotox.2004.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 02/17/2004] [Accepted: 03/12/2004] [Indexed: 11/29/2022]
Abstract
Cadmium accumulation in the mouse gut endoderm occurs until the closure of the vitelline duct (day 9 post-coitus; p.c.), producing anterior neural tube defects (NTD). The anterior part of the primitive endoderm, designated as the primary signaling center for anterior patterning, expresses several transcription factors of importance for head formation. Here, we studied the expression levels of some of these transcription factors (Hesx1, HNF3beta, Cerl, Otx2 and Sox2), and cell death induced after single cadmium administration to dams on days 7, 8 and 9 p.c. Stage specific down-regulation of Hesx1, Cerl, and Sox2, and an up-regulation of HNF3beta were observed. No effect was seen in Otx2 expression levels. Cell death was increased in the neuroepithelium of the cranial neural folds, and in areas where neural crest cells migrate, but not in the gut endoderm. It is proposed that cadmium-induced NTD is due to interference with head-inductive signals from the endoderm to the adjacent layers.
Collapse
Affiliation(s)
- Estíbaliz L Fernandez
- Department of Pharmaceutical Biosciences, Division of Toxicology, Biomedical Center, Uppsala University, Box 594, S-75124 Uppsala, Sweden
| | | | | | | |
Collapse
|
367
|
Mori T, Buffo A, Götz M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol 2005; 69:67-99. [PMID: 16243597 DOI: 10.1016/s0070-2153(05)69004-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most frequent cell type in the adult mammalian brain, and the number and range of their diverse functions are still increasing. One of their most striking roles is their function as adult neural stem cells and contribution to neurogenesis. This chapter discusses first the role of the ubiquitous glial cell type in the developing nervous system, the radial glial cells. Radial glial cells share several features with neuroepithelial cells, but also with astrocytes in the mature brain, which led to the name "radial glia." At the end of neurogenesis in the mammalian brain, radial glial cells disappear, and a subset of them transforms into astroglial cells. Interestingly, only some astrocytes maintain their neurogenic potential and continue to generate neurons throughout life. We discuss the current knowledge about the differences between the adult astroglial cells that remain neurogenic and act as neural stem cells and the majority of other astroglial cells that have apparently lost the capacity to generate neurons. Additionally, we review the changes in glial cells upon brain lesion, their dedifferentiation and recapitulation of radial glial properties, and the conditions under which reactive glia may reinitiate some neurogenic potential. Given that the astroglial cells are not only the most frequent cell type in an adult mammalian brain, but also the key cell type in the wound reaction of the brain to injury, it is essential to further understand their heterogeneity and molecular specification, with the final aim of using this unique source for neuronal replacement. Therefore, one of the key advances in the field of neurobiology is the discovery that astroglial cells can generate neurons not only during development, but also throughout adult life and potentially even after brain lesion.
Collapse
Affiliation(s)
- Tetsuji Mori
- Institute for Stem Cell Research, GSF-National Research Center for Environment and Health, D-85764 Neuherberg/Munich, Germany
| | | | | |
Collapse
|
368
|
Abstract
Intermediate-filament Nestin and group B1 SOX transcription factors (SOX1/2/3) are often employed as markers for neural primordium, suggesting their regulatory link. We have identified adjacent and essential SOX and POU factor binding sites in the Nestin neural enhancer. The 30-bp sequence of the enhancer including these sites (Nes30) showed a nervous system-specific and SOX-POU-dependent enhancer activity in multimeric forms in transfection assays and was utilized in assessing the specificity of the synergism; combinations of either group B1 or group C SOX (SOX11) with class III POU proved effective. In embryonic day 13.5 mouse spinal cord, Nestin was expressed in the cells with nuclei in the ventricular and subventricular zones. SOX1/2/3 expression was confined to the nuclei of the ventricular zone; SOX11 localized to the nuclei of both subventricular (high-level expression) and intermediate (low-level expression) zones. Class III POU (Brn2) was expressed at high levels, localizing to the nucleus in the ventricular and subventricular zones; moderate expression was observed in the intermediate zone, distributed in the cytoplasm. These data support the model that synergic interactions between group B1/C SOX and class III POU within the nucleus determine Nestin expression. Evidence also suggests that such interactions are involved in the regulation of neural primordial cells.
Collapse
|
369
|
Okada Y, Shimazaki T, Sobue G, Okano H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol 2004; 275:124-42. [PMID: 15464577 DOI: 10.1016/j.ydbio.2004.07.038] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 07/19/2004] [Accepted: 07/21/2004] [Indexed: 12/23/2022]
Abstract
Retinoic acid (RA) is one of the most important morphogens, and its embryonic distribution correlates with neural differentiation and positional specification in the developing central nervous system. To investigate the concentration-dependent effects of RA on neural differentiation of mouse embryonic stem cells (ES cells), we investigated the precise expression profiles of neural and regional specific genes by ES cells aggregated into embryoid bodies (EBs) exposed to various concentrations of RA or the BMP antagonist Noggin. RA promoted both neural differentiation and caudalization in a concentration-dependent manner, and the concentration of RA was found to regulate dorso-ventral identity, i.e., higher concentrations of RA induced a dorsal phenotype, and lower concentrations of RA induced a more ventral phenotype. The induction of the more ventral phenotype was due to the higher expression level of the N-terminus of sonic hedgehog protein (Shh-N) when treated with low concentration RA, as it was abrogated by an inhibitor of Shh signaling, cyclopamine. These findings suggest that the concentration of RA strictly and simultaneously regulates the neuralization and positional specification during differentiation of mouse ES cells and that it may be possible to use it to establish a strategy for controlling the identity of ES-cell-derived neural cells.
Collapse
Affiliation(s)
- Yohei Okada
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
370
|
Tanaka S, Kamachi Y, Tanouchi A, Hamada H, Jing N, Kondoh H. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol Cell Biol 2004; 24:8834-46. [PMID: 15456859 PMCID: PMC517870 DOI: 10.1128/mcb.24.20.8834-8846.2004] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intermediate-filament Nestin and group B1 SOX transcription factors (SOX1/2/3) are often employed as markers for neural primordium, suggesting their regulatory link. We have identified adjacent and essential SOX and POU factor binding sites in the Nestin neural enhancer. The 30-bp sequence of the enhancer including these sites (Nes30) showed a nervous system-specific and SOX-POU-dependent enhancer activity in multimeric forms in transfection assays and was utilized in assessing the specificity of the synergism; combinations of either group B1 or group C SOX (SOX11) with class III POU proved effective. In embryonic day 13.5 mouse spinal cord, Nestin was expressed in the cells with nuclei in the ventricular and subventricular zones. SOX1/2/3 expression was confined to the nuclei of the ventricular zone; SOX11 localized to the nuclei of both subventricular (high-level expression) and intermediate (low-level expression) zones. Class III POU (Brn2) was expressed at high levels, localizing to the nucleus in the ventricular and subventricular zones; moderate expression was observed in the intermediate zone, distributed in the cytoplasm. These data support the model that synergic interactions between group B1/C SOX and class III POU within the nucleus determine Nestin expression. Evidence also suggests that such interactions are involved in the regulation of neural primordial cells.
Collapse
Affiliation(s)
- Shinya Tanaka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
371
|
Kovacevic Grujicic N, Mojsin M, Krstic A, Stevanovic M. Functional characterization of the human SOX3 promoter: identification of transcription factors implicated in basal promoter activity. Gene 2004; 344:287-97. [PMID: 15656994 DOI: 10.1016/j.gene.2004.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/06/2004] [Accepted: 11/05/2004] [Indexed: 10/26/2022]
Abstract
SRY-related HMG-box genes (Sox genes) constitute a large family of developmentally regulated genes involved in the decision of cell fates during development and implicated in the control of diverse developmental processes. Sox3, an X-linked member of the family, is expressed in the central nervous system (CNS) from the earliest stages of development. It is considered to be one of the earliest neural markers in vertebrates playing the role in specifying neuronal fate. The aim of this study has been to determine and characterize the promoter of the human SOX3 gene and to elucidate molecular mechanisms underlying the regulation of its expression. In this study, we have isolated and performed the first characterization of the human SOX3 promoter. We have identified the transcription start point (tsp) and carried out the structural and functional analysis of the regulatory region responsible for SOX3 expression in NT2/D1 cell line. Using promoter-reporter constructs, we have determined the minimal SOX3 promoter region that confers the basal promoter activity, as well as two regulatory elements which have positive effects on the promoter activity. We have investigated in detail the functional properties of three conserved motifs within the core promoter sequence that bind transcription factors specificity protein 1 (Sp1), upstream stimulatory factor (USF) and nuclear factor Y (NF-Y). By mutational analysis, we have shown that all three sites are of functional relevance for constitutive SOX3 expression in NT2/D1 cells. We have also shown that, besides the TATA motif, at least one other essential regulatory element is required for the basal transcription of the human SOX3. Taken together, data presented in this paper suggest that transcription factors such as Sp1, USF and NF-Y could function as key regulators for the basal activation of the human SOX3 gene.
Collapse
Affiliation(s)
- Natasa Kovacevic Grujicic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. BOX 23, 11010 Belgrade, Serbia and Montenegro
| | | | | | | |
Collapse
|
372
|
Rossant J. Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Semin Cell Dev Biol 2004; 15:573-81. [PMID: 15271303 DOI: 10.1016/j.semcdb.2004.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The early events of mouse embryogenesis lead to the formation of three distinct cell lineages by the blastocyst: the pluripotent epiblast and the two extraembryonic lineages, the trophoblast and primitive endoderm. Segregation of the lineages depends on the relative levels of expression of key transcription factors, whose localized expression must be controlled by the earlier events of compaction and polarization of the morula. Soon after lineage specification, the two extraembryonic lineages show evidence of early polarities that may relate to the polarity of the postimplantation embryo at gastrulation. The exact relationship between lineage segregation, preimplantation polarities and the postimplantation axes remain to be determined but are now open to molecular and cellular investigation.
Collapse
Affiliation(s)
- Janet Rossant
- Samuel Lunenfeld Research Institute, Mount Sinal Hospital, Toronto, Ont, Canada.
| |
Collapse
|
373
|
Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 2004; 18:1806-11. [PMID: 15289455 PMCID: PMC517401 DOI: 10.1101/gad.1208404] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Basic fibroblast growth factor (FGF2)-responsive definitive neural stem cells first appear in embryonic day 8.5 (E8.5) mouse embryos, but not in earlier embryos, although neural tissue exists at E7.5. Here, we demonstrate that leukemia inhibitory factor-dependent (but not FGF2-dependent) sphere-forming cells are present in the earlier (E5.5-E7.5) mouse embryo. The resultant clonal sphere cells possess self-renewal capacity and neural multipotentiality, cardinal features of the neural stem cell. However, they also retain some nonneural properties, suggesting that they are the in vivo cells' equivalent of the primitive neural stem cells that form in vitro from embryonic stem cells. The generation of the in vivo primitive neural stem cell was independent of Notch signaling, but the activation of the Notch pathway was important for the transition from the primitive to full definitive neural stem cell properties and for the maintenance of the definitive neural stem cell state.
Collapse
Affiliation(s)
- Seiji Hitoshi
- Department of Neurology, University of Tokyo, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
374
|
Catena R, Tiveron C, Ronchi A, Porta S, Ferri A, Tatangelo L, Cavallaro M, Favaro R, Ottolenghi S, Reinbold R, Schöler H, Nicolis SK. Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J Biol Chem 2004; 279:41846-57. [PMID: 15262984 DOI: 10.1074/jbc.m405514200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Sox2 transcription factor is expressed early in the stem cells of the blastocyst inner cell mass and, later, in neural stem cells. We previously identified a Sox2 5'-regulatory region directing transgene expression to the inner cell mass and, later, to neural stem cells and precursors of the forebrain. Here, we identify a core enhancer element able to specify transgene expression in forebrain neural precursors of mouse embryos, and we show that the same core element efficiently activates transcription in inner cell mass-derived embryonic stem (ES) cells. Mutation of POU factor binding sites, able to recognize the neural factors Brn1 and Brn2, shows that these sites contribute to transgene activity in neural cells. The same sites are also essential for activity in ES cells, where they bind different members of the POU family, including Oct4, as shown by gel shift assays and chromatin immunoprecipitation with anti-Oct4 antibodies. Our findings indicate a role for the same POU binding motifs in Sox2 transgene regulation in both ES and neural precursor cells. Oct4 might play a role in the regulation of Sox2 in ES (inner cell mass) cells and, possibly, at the transition between inner cell mass and neural cells, before recruitment of neural POU factors such as Brn1 and Brn2.
Collapse
Affiliation(s)
- Raffaella Catena
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano 20126, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Ferri ALM, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, DeBiasi S, Nicolis SK. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 2004; 131:3805-19. [PMID: 15240551 DOI: 10.1242/dev.01204] [Citation(s) in RCA: 556] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In many species, the Sox2 transcription factor is a marker of the nervous system from the beginning of its development, and we have previously shown that Sox2 is expressed in embryonic neural stem cells. It is also expressed in, and is essential for, totipotent inner cell mass stem cells and other multipotent cell lineages, and its ablation causes early embryonic lethality. To investigate the role of Sox2 in the nervous system, we generated different mouse mutant alleles: a null allele (Sox2beta-geo 'knock-in'), and a regulatory mutant allele (Sox2DeltaENH), in which a neural cell-specific enhancer is deleted. Sox2 is expressed in embryonic early neural precursors of the ventricular zone and, in the adult, in ependyma (a descendant of the ventricular zone). It is also expressed in the vast majority of dividing precursors in the neurogenic regions, and in a small proportion of differentiated neurones, particularly in the thalamus, striatum and septum. Compound Sox2(beta-geo/DeltaENH) heterozygotes show important cerebral malformations, with parenchymal loss and ventricle enlargement, and L-dopa-rescuable circling behaviour and epilepsy. We observed striking abnormalities in neurones; degeneration and cytoplasmic protein aggregates, a feature common to diverse human neurodegenerative diseases, are observed in thalamus, striatum and septum. Furthermore, ependymal cells show ciliary loss and pathological lipid inclusions. Finally, precursor cell proliferation and the generation of new neurones in adult neurogenic regions are greatly decreased, and GFAP/nestin-positive hippocampal cells, which include the earliest neurogenic precursors, are strikingly diminished. These findings highlight a crucial and unexpected role for Sox2 in the maintenance of neurones in selected brain areas, and suggest a contribution of neural cell proliferative defects to the pathological phenotype.
Collapse
Affiliation(s)
- Anna L M Ferri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Davis S, Miura S, Hill C, Mishina Y, Klingensmith J. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning. Dev Biol 2004; 270:47-63. [PMID: 15136140 DOI: 10.1016/j.ydbio.2004.01.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 01/20/2004] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
BMPRIA is a receptor for bone morphogenetic proteins with high affinity for BMP2 and BMP4. Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development. Recent work shows that BMP4 produced in extraembryonic tissues initiates gastrulation. Here we use a conditional allele of Bmpr1a to remove BMPRIA only in the epiblast, which gives rise to all embryonic tissues. Resulting embryos are mosaics composed primarily of cells homozygous null for Bmpr1a, interspersed with heterozygous cells. Although mesoderm and endoderm do not form in Bmpr1a null embryos, these tissues are present in the mosaics and are populated with mutant cells. Thus, BMPRIA signaling in the epiblast does not restrict cells to or from any of the germ layers. Cells lacking Bmpr1a also contribute to surface ectoderm; however, from the hindbrain forward, little surface ectoderm forms and the forebrain is enlarged and convoluted. Prechordal plate, early definitive endoderm, and anterior visceral endoderm appear to be expanded, likely due to defective morphogenesis. These data suggest that the enlarged forebrain is caused in part by increased exposure of the ectoderm to signaling sources that promote anterior neural fate. Our results reveal critical roles for BMP signaling in endodermal morphogenesis and ectodermal patterning.
Collapse
Affiliation(s)
- Shannon Davis
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, USA
| | | | | | | | | |
Collapse
|
377
|
Béland M, Pilon N, Houle M, Oh K, Sylvestre JR, Prinos P, Lohnes D. Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol Cell Biol 2004; 24:5028-38. [PMID: 15143193 PMCID: PMC416402 DOI: 10.1128/mcb.24.11.5028-5038.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Cdx1 gene product is essential for normal anterior-posterior vertebral patterning. Expression of Cdx1 is regulated by several pathways implicated in anterior-posterior patterning events, including retinoid and Wnt signaling. We have previously shown that retinoic acid plays a key role in early stages of Cdx1 expression at embryonic day 7.5 (E7.5), while both Wnt3a signaling and an autoregulatory loop, dependent on Cdx1 itself, are involved in later stages of expression (E8.5 to E9.5). This autoregulation is reflected by the ability of Cdx1 to affect expression from proximal Cdx1 promoter sequences in tissue culture. However, this region is devoid of a demonstrable Cdx response element(s). We have now found that Cdx1 and LEF1, a nuclear effector of Wnt signaling, synergize to induce expression from the Cdx1 promoter through previously documented LEF/T-cell factor response elements. We also found a direct physical interaction between the homeodomain of Cdx1 and the B box of LEF1, suggesting a basis for this synergy. Consistent with these observations, analysis of Cdx1 Wnt3a(vt) compound mutants demonstrated that Wnt and Cdx1 converged on Cdx1 expression and vertebral patterning in vivo. Further data suggest that Cdx-high-mobility group box interactions might be involved in a number of additional pathways.
Collapse
Affiliation(s)
- Mélanie Béland
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | | | | | |
Collapse
|
378
|
Kan L, Israsena N, Zhang Z, Hu M, Zhao LR, Jalali A, Sahni V, Kessler JA. Sox1 acts through multiple independent pathways to promote neurogenesis. Dev Biol 2004; 269:580-94. [PMID: 15110721 DOI: 10.1016/j.ydbio.2004.02.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 11/30/2022]
Abstract
Although Sox1, Sox2, and Sox3 are all part of the Sox-B1 group of transcriptional regulators, only Sox1 appears to play a direct role in neural cell fate determination and differentiation. We find that overexpression of Sox1 but not Sox2 or Sox3 in cultured neural progenitor cells is sufficient to induce neuronal lineage commitment. Sox1 binds directly to the Hes1 promoter and suppresses Hes1 transcription, thus attenuating Notch signaling. Sox1 also binds to beta-catenin and suppresses beta-catenin-mediated TCF/LEF signaling, thus potentially attenuating the wnt signaling pathway. The C-terminus of Sox1 is required for both of these interactions. Sox1 also promotes exit of cells from cell cycle and up-regulates transcription of the proneural bHLH transcription factor neurogenin 1 (ngn1). These observations suggest that Sox1 works through multiple independent pathways to promote neuronal cell fate determination and differentiation.
Collapse
Affiliation(s)
- Lixin Kan
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611-3008, USA.
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Rao RR, Stice SL. Gene expression profiling of embryonic stem cells leads to greater understanding of pluripotency and early developmental events. Biol Reprod 2004; 71:1772-8. [PMID: 15140800 DOI: 10.1095/biolreprod.104.030395] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells are characterized by their ability to propagate indefinitely in culture, maintaining a normal karyotype and their undifferentiated state. They have the potential of differentiating into any specialized cell type in the body. An understanding of the transcriptional profile related to pluripotency and early development is necessary to better tap their developmental potential and also maintain their undifferentiated phenotype. Currently, several techniques are in use to ascertain the gene expression profile of embryonic stem cells. This review summarizes the information generated using microarray and other approaches on the gene expression analyses of stem cells in both mouse and human cell lines. We also discuss specific approaches useful in future studies aimed at further deciphering the pluripotent nature of human embryonic stem cells.
Collapse
Affiliation(s)
- Raj R Rao
- Rhodes Animal Science Center, University of Georgia, Athens, Georgia 30602-2771, USA
| | | |
Collapse
|
380
|
Haegele L, Ingold B, Naumann H, Tabatabai G, Ledermann B, Brandner S. Wnt signalling inhibits neural differentiation of embryonic stem cells by controlling bone morphogenetic protein expression. Mol Cell Neurosci 2004; 24:696-708. [PMID: 14664819 DOI: 10.1016/s1044-7431(03)00232-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Wnt signalling plays an important role in both embryonic development and in tumourigenesis. Activation of the signalling cascade by wnt, but also mutations of the adenomatous polyposis coli (APC) protein and of the phosphorylation domain of beta-catenin, result in accumulation of active beta-catenin in the nucleus, where it binds to TCF/LEF transcription factors. We studied the effect of wnt signalling in embryonic stem cells by either inactivating APC or by introducing a dominant active form of beta-catenin. Both resulted in inhibition of neural differentiation in vitro and after brain grafting and in activation of downstream targets of wnt signalling, such as cyclins, c-myc, and bone morphogenetic proteins (BMP). Neural differentiation could be partially restored by the addition of the BMP antagonist noggin. This suggests a mechanism regulating the fate of differentiating embryonic stem cells.
Collapse
Affiliation(s)
- Lorenz Haegele
- Institute of Neuropathology, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
381
|
Miyagi S, Saito T, Mizutani KI, Masuyama N, Gotoh Y, Iwama A, Nakauchi H, Masui S, Niwa H, Nishimoto M, Muramatsu M, Okuda A. The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Mol Cell Biol 2004; 24:4207-20. [PMID: 15121842 PMCID: PMC400473 DOI: 10.1128/mcb.24.10.4207-4220.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 01/08/2004] [Accepted: 02/18/2004] [Indexed: 12/14/2022] Open
Abstract
The Sox-2 gene is expressed in embryonic stem (ES) cells and neural stem cells. Two transcription enhancer regions, Sox-2 regulatory region 1 (SRR1) and SRR2, were described previously based on their activities in ES cells. Here, we demonstrate that these regulatory regions also exert their activities in neural stem cells. Moreover, our data reveal that, as in ES cells, both SRR1 and SRR2 show their activities rather specifically in multipotent neural stem or progenitor cells but cease to function in differentiated cells, such as postmitotic neurons. Systematic deletion and mutation analyses showed that the same or at least overlapping DNA elements of SRR2 are involved in its activity in both ES and neural stem or progenitor cells. Thus, SRR2 is the first example of an enhancer in which a single regulatory core sequence is involved in multipotent-state-specific expression in two different stem cells, i.e., ES and neural stem cells.
Collapse
Affiliation(s)
- Satoru Miyagi
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical School, Saitama 350-1241, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Lang KJD, Rathjen J, Vassilieva S, Rathjen PD. Differentiation of embryonic stem cells to a neural fate: A route to re-building the nervous system? J Neurosci Res 2004; 76:184-92. [PMID: 15048916 DOI: 10.1002/jnr.20036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The many and varied proposed applications of cell replacement therapies in the treatment of human disease states, particularly those arising from cell loss or dysfunction, have been discussed widely in both the scientific and popular press. Although an attractive concept, cell therapies require the development of a readily available source of donor cells suitable for transplantation. Embryonic stem (ES) cells, with proven ability to differentiate to all cell populations of the embryo and adult in vitro, provide a potential source of therapeutic cells. The differentiation capability of mouse ES cells in vitro has been studied extensively over the last 20 years and the formation of neural precursors and neural cell lineages from mouse ES cells is well established. Cell populations highly enriched/homogenous in neural precursors have been achieved using a variety of chemical or biological inducing agents coupled with selective growth conditions. Preliminary reports suggest that similar neural enrichment is seen when these methodologies are applied to primate and human ES cells. ES cell-derived neural precursors have been analyzed in vitro and in vivo and found to be functionally normal and, after introduction into rodent models of human neurodegenerative diseases, capable of effecting measurable disease recovery. We review progress in the formation of neural precursors from mouse ES cells, particularly the recent reports of directed differentiation of ES in response to biological inductive factors, and assess the transfer of these approaches to human ES cells.
Collapse
Affiliation(s)
- Kenneth J D Lang
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
383
|
Gangemi RMR, Perera M, Corte G. Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J Neurochem 2004; 89:286-306. [PMID: 15056273 DOI: 10.1046/j.1471-4159.2004.02310.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.
Collapse
|
384
|
Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell-Badge R. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 2004; 36:247-55. [PMID: 14981518 DOI: 10.1038/ng1309] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 01/26/2004] [Indexed: 11/09/2022]
Abstract
The pituitary develops from the interaction of the infundibulum, a region of the ventral diencephalon, and Rathke's pouch, a derivative of oral ectoderm. Postnatally, its secretory functions are controlled by hypothalamic neurons, which also derive from the ventral diencephalon. In humans, mutations affecting the X-linked transcription factor SOX3 are associated with hypopituitarism and mental retardation, but nothing is known of their etiology. We find that deletion of Sox3 in mice leads to defects of pituitary function and of specific central nervous system (CNS) midline structures. Cells in the ventral diencephalon, where Sox3 is usually highly expressed, have altered properties in mutant embryos, leading to abnormal development of Rathke's pouch, which does not express the gene. Pituitary and hypothalamic defects persist postnatally, and SOX3 may also function in a subset of hypothalamic neurons. This study shows how sensitive the pituitary is to subtle developmental defects and how one gene can act at several levels in the hypothalamic-pituitary axis.
Collapse
Affiliation(s)
- Karine Rizzoti
- Division of Developmental Genetics, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
385
|
Smith A. Converting ES Cell into Neurons. STEM CELLS IN THE NERVOUS SYSTEM: FUNCTIONAL AND CLINICAL IMPLICATIONS 2004. [DOI: 10.1007/978-3-642-18883-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
386
|
Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, Jameson JL. Sox3 is required for gonadal function, but not sex determination, in males and females. Mol Cell Biol 2003; 23:8084-91. [PMID: 14585968 PMCID: PMC262333 DOI: 10.1128/mcb.23.22.8084-8091.2003] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sox3 is expressed in developing gonads and in the brain. Evolutionary evidence suggests that the X-chromosomal Sox3 gene may be the ancestral precursor of Sry, a sex-determining gene, and Sox3 has been proposed to play a role in sex determination. However, patients with mutations in SOX3 exhibit normal gonadal determination but are mentally retarded and have short stature secondary to growth hormone (GH) deficiency. We used Cre-LoxP targeted mutagenesis to delete Sox3 from mice. Null mice of both sexes had no overt behavioral deficits and exhibited normal GH gene expression. Low body weight was observed for some mice; overgrowth and misalignment of the front teeth was observed consistently. Female Sox3 null mice (-/-) developed ovaries but had excess follicular atresia, ovulation of defective oocytes, and severely reduced fertility. Pituitary (luteinizing hormone and follicle-stimulating hormone) and uterine functions were normal in females. Hemizygous male null mice (-/Y) developed testes but were hypogonadal. Testis weight was reduced by 42%, and there was extensive Sertoli cell vacuolization, loss of germ cells, reduced sperm counts, and disruption of the seminiferous tubules. We conclude that Sox3 is not required for gonadal determination but is important for normal oocyte development and male testis differentiation and gametogenesis.
Collapse
Affiliation(s)
- Jeffrey Weiss
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 251 East Huron Street, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
387
|
Tsukamoto T, Inada K, Tanaka H, Mizoshita T, Mihara M, Ushijima T, Yamamura Y, Nakamura S, Tatematsu M. Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdx1 and Cdx2: inverse correlation during progression from gastric/intestinal-mixed to complete intestinal metaplasia. J Cancer Res Clin Oncol 2003; 130:135-45. [PMID: 14655050 DOI: 10.1007/s00432-003-0519-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 10/09/2003] [Indexed: 12/17/2022]
Abstract
PURPOSE The molecular mechanisms underlying the development of intestinal metaplasia (IM) of the human stomach have yet to be clarified in detail. Besides ectopic expression of intestinal transcription factors, Cdx1 and Cdx2, little information is available regarding other regulatory factors. Hence, we here analyzed Sox2, a human homolog of a chicken gastric transcription factor, with reference to our new classification for gastric/intestinal (GI)-mixed type IM. METHODS Twenty specimens of surgically resected antral mucosa were subjected to a gland isolation technique. Isolated glands were classified into gastric (G), GI-mixed, and solely intestinal (I) types according to Alcian blue and paradoxical concanavalin A staining and were quantified for mRNA levels of gastrointestinal markers. RESULTS MUC5AC and MUC6 transcripts decreased with the progression of IM, while MUC2 and villin-1 were inversely correlated. Sox2 showed a gradual decrease from G, through GI, to the I type (G vs GI and GI vs I, P<0.01 and P<0.005, respectively). On the other hand, Cdx1 (G vs GI and GI vs I, P<0.0001 and P=0.337, respectively) and Cdx2 (G vs GI and GI vs I, P<0.0001 and P<0.05, respectively) appeared in IM. Immunohistochemical study confirmed decreased expression of Sox2 and ectopic emergence of Cdx2 protein in IM glands. CONCLUSION Down-regulation of Sox2, besides ectopic expression of Cdx genes, may be important factors for the development of IM.
Collapse
Affiliation(s)
- Tetsuya Tsukamoto
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Nagoya, Chikusa-ku, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Loebel DAF, Watson CM, De Young RA, Tam PPL. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003; 264:1-14. [PMID: 14623228 DOI: 10.1016/s0012-1606(03)00390-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of embryonic stem (ES) cells for generating healthy tissues has the potential to revolutionize therapies for human disease or injury, for which there are currently no effective treatments. Strategies for manipulating stem cell differentiation should be based on knowledge of the mechanisms by which lineage decisions are made during early embryogenesis. Here, we review current research into the factors influencing lineage differentiation in the mouse embryo and the application of this knowledge to in vitro differentiation of ES cells. In the mouse embryo, specification of tissue lineages requires cell-cell interactions that are influenced by coordinated cell migration and cellular neighborhood mediated by the key WNT, FGF, and TGFbeta signaling pathways. Mimicking the cellular interactions of the embryo by providing appropriate signaling molecules in culture has enabled the differentiation of ES cells to be directed predominately toward particular lineages. Multistep strategies incorporating the provision of soluble factors known to influence lineage choices in the embryo, coculture with other cells or tissues, genetic modification, and selection for desirable cell types have allowed the production of ES cell derivatives that produce beneficial effects in animal models. Increasing the efficiency of this process can only result from a better understanding of the molecular control of cell lineage determination in the embryo.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, NSW 2145, Australia
| | | | | | | |
Collapse
|
389
|
Corson LB, Yamanaka Y, Lai KMV, Rossant J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 2003; 130:4527-37. [PMID: 12925581 DOI: 10.1242/dev.00669] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling between tissues is essential to form the complex, three-dimensional organization of an embryo. Because many receptor tyrosine kinases signal through the RAS-MAPK pathway, phosphorylated ERK can be used as an indicator of when and where signaling is active during development. Using whole-mount immunohistochemistry with antibodies specific to phosphorylated ERK1 and ERK2, we analyzed the location, timing, distribution, duration and intensity of ERK signaling during mouse embryogenesis (5-10.5 days postcoitum). Spatial and temporal domains of ERK activation were discrete with well-defined boundaries, indicating specific regulation of signaling in vivo. Prominent, sustained domains of ERK activation were seen in the ectoplacental cone, extra-embryonic ectoderm, limb buds, branchial arches, frontonasal process, forebrain, midbrain-hindbrain boundary, tailbud, foregut and liver. Transient activation was seen in neural crest, peripheral nervous system, nascent blood vessels, and anlagen of the eye, ear and heart. In the contiguous domains of ERK signaling, phospho-ERK staining was cytoplasmic with no sign of nuclear translocation. With few exceptions, the strongest domains of ERK activation correlated with regions of known or suspected fibroblast growth factor (FGF) signaling, and brief incubation with an inhibitor of the fibroblast growth factor receptor (FGFR) specifically diminished the phospho-ERK staining in these regions. Although many domains of ERK activation were FGFR-dependent, not all domains of FGF signaling were phospho-ERK positive. These studies identify key domains of sustained ERK signaling in the intact mouse embryo, give significant insight into the regulation of this signaling in vivo and pinpoint regions where downstream target genes can be sought.
Collapse
Affiliation(s)
- Laura Beth Corson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | |
Collapse
|
390
|
Zhang C, Basta T, Jensen ED, Klymkowsky MW. The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 2003; 130:5609-24. [PMID: 14522872 DOI: 10.1242/dev.00798] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Xenopus laevis, beta-catenin-mediated dorsal axis formation can be suppressed by overexpression of the HMG-box transcription factor XSOX3. Mutational analysis indicates that this effect is due not to the binding of XSOX3 to beta-catenin nor to its competition with beta-catenin-regulated TCF-type transcription factors for specific DNA binding sites, but rather to SOX3 binding to sites within the promoter of the early VegT- and beta-catenin-regulated dorsal-mesoderm-inducing gene Xnr5. Although B1-type SOX proteins, such as XSOX3, are commonly thought to act as transcriptional activators, XSOX3 acts as a transcriptional repressor of Xnr5 in both the intact embryo and animal caps injected with VegT RNA. Expression of a chimeric polypeptide composed of XSOX3 and a VP16 transcriptional activation domain or morpholino-induced decrease in endogenous XSOX3 polypeptide levels lead to an increase in Xnr5 expression, as does injection of an anti-XSOX3 antibody that inhibits XSOX3 DNA binding. These observations indicate that maternal XSOX3 acts in a novel manner to restrict Xnr5 expression to the vegetal hemisphere.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
391
|
Aubert J, Stavridis MP, Tweedie S, O'Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason JO, Roy D, Smith A. Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11836-41. [PMID: 12923295 PMCID: PMC304095 DOI: 10.1073/pnas.1734197100] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcription factor Sox1 is the earliest and most specific known marker for mammalian neural progenitors. During fetal development, Sox1 is expressed by proliferating progenitor cells throughout the central nervous system and in no tissue but the lens. We generated a reporter mouse line in which egfp is inserted into the Sox1 locus. Sox1GFP animals faithfully recapitulate the expression of the endogenous gene. We have used the GFP reporter to purify neuroepithelial cells by fluorescence-activated cell sorting from embryonic day 10.5 embryos. RNAs prepared from Sox1GFP+ and Sox1GFP- embryo cells were then used to perform a pilot screen of subtracted cDNAs prepared from differentiating embryonic stem cells and arrayed on a glass chip. Fifteen unique differentially expressed genes were identified, all previously associated with fetal or adult neural tissue. Whole mount in situ hybridization against two genes of previously unknown embryonic expression, Lrrn1 and Musashi2, confirmed the selectivity of this screen for early neuroectodermal markers.
Collapse
Affiliation(s)
- Jerome Aubert
- Institute for Stem Cell Research, University of Edinburgh, King's Buildings, West Mains Road, EH9 3JQ Edinburgh, Scotland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
D'Amour KA, Gage FH. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11866-72. [PMID: 12923297 PMCID: PMC304100 DOI: 10.1073/pnas.1834200100] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cells (SCs) are functionally defined by their abilities to self-renew and generate differentiated cells. Although much effort has been focused on defining the common characteristics among various types of SCs, the genetic and functional differences between multipotent and pluripotent SCs have garnered less attention. We report a direct genetic and functional comparison of molecularly defined and clonally related populations of neural SCs (NSCs) and embryonic SCs (ESCs), using the Sox2 promoter for isolation of purified populations by fluorescence-activated cell sorting. A stringent expression profile comparison of promoter-defined NSCs and ESCs revealed a striking dissimilarity, and subsequent chimera analyses confirmed the fundamental differences in cellular potency between these populations. This direct comparison elucidates the molecular basis for the functional differences in pluripotent ESCs and multipotent NSCs.
Collapse
Affiliation(s)
- Kevin A D'Amour
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
393
|
Abstract
Neural progenitors of the vertebrate CNS are defined by generic cellular characteristics, including their pseudoepithelial morphology and their ability to divide and differentiate. SOXB1 transcription factors, including the three closely related genes Sox1, Sox2, and Sox3, universally mark neural progenitor and stem cells throughout the vertebrate CNS. We show here that constitutive expression of SOX2 inhibits neuronal differentiation and results in the maintenance of progenitor characteristics. Conversely, inhibition of SOX2 signaling results in the delamination of neural progenitor cells from the ventricular zone and exit from cell cycle, which is associated with a loss of progenitor markers and the onset of early neuronal differentiation markers. The phenotype elicited by inhibition of SOX2 signaling can be rescued by coexpression of SOX1, providing evidence for redundant SOXB1 function in CNS progenitors. Taken together, these data indicate that SOXB1 signaling is both necessary and sufficient to maintain panneural properties of neural progenitor cells.
Collapse
Affiliation(s)
- Victoria Graham
- Neuroscience Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
394
|
Abstract
The numbers, types and locations of stem cells in the nervous system have been the subject of much discussion. This review summarizes data on the types of stem cell present at different stages of development and in the adult brain, and the markers suggested to distinguish between the various possibilities that have been reported. We present evidence that more than one class of stem cell is present in the developing and adult nervous systems, and that it might be possible to distinguish between stem-cell populations and to localize the cell of origin of a particular neurosphere, based on markers that persist in culture and by using universal stem-cell markers prospectively to identify stem cells in vivo.
Collapse
Affiliation(s)
- Larysa Pevny
- Department of Genetics, Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
395
|
Shimozaki K, Nakashima K, Niwa H, Taga T. Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development 2003; 130:2505-12. [PMID: 12702663 DOI: 10.1242/dev.00476] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oct3/4 plays a critical role in maintaining embryonic stem cell pluripotency. Regulatable transgene-mediated sustained Oct3/4 expression in ES cells cultured in serum-free LIF-deficient medium caused accelerated differentiation to neuroectoderm-like cells that expressed Sox2, Otx1 and Emx2 and subsequently differentiated into neurons. Neurogenesis of ES cells is promoted by SDIA (stromal cell-derived inducing activity), which accumulates on the PA6 stromal cell surface. Oct3/4 expression in ES cells was maintained by SDIA whereas without it expression was promptly downregulated. Suppression of Oct3/4 abolished neuronal differentiation even after stimulation by SDIA. In contrast, sustained upregulated Oct3/4 expression enhanced SDIA-mediated neurogenesis of ES cells. Therefore, Oct3/4 appears to promote neuroectoderm formation and subsequent neuronal differentiation from ES cells.
Collapse
Affiliation(s)
- Koji Shimozaki
- Department of Cell Fate Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | | | | | | |
Collapse
|
396
|
Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 2003; 4:509-19. [PMID: 12689590 DOI: 10.1016/s1534-5807(03)00088-1] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sox2 expression marks neural and sensory primordia at various stages of development. A 50 kb genomic region of chicken Sox2 was isolated and scanned for enhancer activity utilizing embryo electroporation, resulting in identification of a battery of enhancers. Although Sox2 expression in the early embryonic CNS appears uniform, it is actually pieced together by five separate enhancers with distinct spatio-temporal specificities, including the one activated by the neural induction signals emanating from Hensen's node. Enhancers for Sox2 expression in the lens and nasal/otic placodes and in the neural crest were also determined. These functionally identified Sox2 enhancers exactly correspond to the extragenic sequence blocks conspicuously conserved between chicken and mammals, which are not discernible by sequence comparison among mammals.
Collapse
MESH Headings
- Animals
- Central Nervous System/embryology
- Central Nervous System/metabolism
- Chick Embryo
- Chickens/genetics
- Chickens/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Ear/embryology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Embryonic Induction/genetics
- Enhancer Elements, Genetic/genetics
- Evolution, Molecular
- Gene Expression Regulation, Developmental/genetics
- Genes, Regulator/genetics
- Genes, Reporter/genetics
- Green Fluorescent Proteins
- HMGB Proteins
- Lens, Crystalline/embryology
- Lens, Crystalline/metabolism
- Luminescent Proteins
- Mammals/embryology
- Mammals/genetics
- Mammals/metabolism
- Molecular Sequence Data
- Nasal Mucosa/metabolism
- Neural Crest/embryology
- Neural Crest/metabolism
- Nose/embryology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phylogeny
- SOXB1 Transcription Factors
- Sequence Homology, Nucleic Acid
- Transcription Factors
Collapse
Affiliation(s)
- Masanori Uchikawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
397
|
Brown NL, Knott L, Halligan E, Yarram SJ, Mansell JP, Sandy JR. Microarray analysis of murine palatogenesis: temporal expression of genes during normal palate development. Dev Growth Differ 2003; 45:153-65. [PMID: 12752503 DOI: 10.1034/j.1600-0854.2004.00686.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mammalian face is assembled in utero in a series of complex and interdependent molecular, cell and tissue processes. The orofacial complex appears to be exquisitely sensitive to genetic and environmental influence and this explains why clefts of the lip and palate are the most common congenital anomaly in humans (one in 700 live births). In this study, microarray technology was used to identify genes that may play pivotal roles in normal murine palatogenesis. mRNA was isolated from murine embryonic palatal shelves oriented vertically (before elevation), horizontally (following elevation, before contact), and following fusion. Changes in gene expression between the three different stages were analyzed with GeneChip microarrays. A number of genes were upregulated or downregulated, and large changes were seen in the expression of loricrin, glutamate decarboxylase, gamma-amino butyric acid type A receptor beta3 subunit, frizzled, Wnt-5a, metallothionein, annexin VIII, LIM proteins, Sox1, plakophilin1, cathepsin K and creatine kinase. In this paper, the changes in genetic profile of the developing murine palate are presented, and the possible role individual genes/proteins may play during normal palate development are discussed. Candidate genes with a putative role in cleft palate are also highlighted.
Collapse
Affiliation(s)
- Nathan L Brown
- Division of Child Dental Health, University of Bristol Dental School, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | | | | | | | | | | |
Collapse
|
398
|
Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21:183-6. [PMID: 12524553 DOI: 10.1038/nbt780] [Citation(s) in RCA: 1128] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2002] [Accepted: 12/01/2002] [Indexed: 12/22/2022]
Abstract
Mouse embryonic stem (ES) cells are competent for production of all fetal and adult cell types. However, the utility of ES cells as a developmental model or as a source of defined cell populations for pharmaceutical screening or transplantation is compromised because their differentiation in vitro is poorly controlled. Specification of primary lineages is not understood and consequently differentiation protocols are empirical, yielding variable and heterogeneous outcomes. Here we report that neither multicellular aggregation nor coculture is necessary for ES cells to commit efficiently to a neural fate. In adherent monoculture, elimination of inductive signals for alternative fates is sufficient for ES cells to develop into neural precursors. This process is not a simple default pathway, however, but requires autocrine fibroblast growth factor (FGF). Using flow cytometry quantitation and recording of individual colonies, we establish that the bulk of ES cells undergo neural conversion. The neural precursors can be purified to homogeneity by fluorescence activated cell sorting (FACS) or drug selection. This system provides a platform for defining the molecular machinery of neural commitment and optimizing the efficiency of neuronal and glial cell production from pluripotent mammalian stem cells.
Collapse
Affiliation(s)
- Qi-Long Ying
- Institute for Stem Cell Research, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, United Kingdom
| | | | | | | | | |
Collapse
|
399
|
Abstract
Recent data show that the final events of mammalian brain organogenesis may depend in part on the direct control of neural stem cell (NSC) proliferation and survival. Environmental and intrinsic factors play a role throughout development and during adulthood to regulate NSC proliferation. The NSCs acquire new competences throughout development, including adulthood, and this change in competence is region-specific. The factors controlling NSC survival, undifferentiated state, proliferation, and cell-cycle number are beginning to be identified, but the links between them remain unclear. However, current knowledge should help to formulate an understanding of how a stem cell can generate a new stem cell.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Department of Ophthalmology, Jules Gonin Eye Hospital, Lusanne University Medical School, Switzerland.
| |
Collapse
|
400
|
Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D, Higashi Y. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 2003; 72:465-70. [PMID: 12522767 PMCID: PMC379238 DOI: 10.1086/346092] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2002] [Accepted: 10/29/2002] [Indexed: 12/21/2022] Open
Abstract
Recently, mutations in ZFHX1B, the gene that encodes Smad-interacting protein-1 (SIP1), were found to be implicated in the etiology of a dominant form of Hirschsprung disease-mental retardation syndrome in humans. To clarify the molecular mechanisms underlying the clinical features of SIP1 deficiency, we generated mice that bear a mutation comparable to those found in several human patients. Here, we show that Zfhx1b-knockout mice do not develop postotic vagal neural crest cells, the precursors of the enteric nervous system that is affected in patients with Hirschsprung disease, and they display a delamination arrest of cranial neural crest cells, which form the skeletomuscular elements of the vertebrate head. This suggests that Sip1 is essential for the development of vagal neural crest precursors and the migratory behavior of cranial neural crest in the mouse. Furthermore, we show that Sip1 is involved in the specification of neuroepithelium.
Collapse
Affiliation(s)
- Tom Van de Putte
- Department of Developmental Biology, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium; Laboratory of Developmental Biology, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Mitsuji Maruhashi
- Department of Developmental Biology, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium; Laboratory of Developmental Biology, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Annick Francis
- Department of Developmental Biology, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium; Laboratory of Developmental Biology, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Luc Nelles
- Department of Developmental Biology, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium; Laboratory of Developmental Biology, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Hisato Kondoh
- Department of Developmental Biology, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium; Laboratory of Developmental Biology, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Danny Huylebroeck
- Department of Developmental Biology, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium; Laboratory of Developmental Biology, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Yujiro Higashi
- Department of Developmental Biology, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium; Laboratory of Developmental Biology, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| |
Collapse
|