351
|
Priya SG, Jungvid H, Kumar A. Skin tissue engineering for tissue repair and regeneration. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:105-18. [PMID: 18454637 DOI: 10.1089/teb.2007.0318] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue-engineered skin is a significant advance in the field of wound healing. It has mainly been developed because of limitations associated with the use of autografts and allografts where the donor site suffers from pain, infection, and scarring. Recently, tissue-engineered skin replacements have been finding widespread application, especially in the case of burns, where the major limiting factor is the availability of autologous skin. The development of a bioartificial skin facilitates the treatment of patients with deep burns and various skin-related disorders. The present review gives a comprehensive overview of the developments and future prospects of scaffolds as skin substitutes for tissue repair and regeneration.
Collapse
Affiliation(s)
- S Geetha Priya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | | | | |
Collapse
|
352
|
Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials 2008; 29:3521-30. [PMID: 18533254 DOI: 10.1016/j.biomaterials.2008.05.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 05/12/2008] [Indexed: 12/13/2022]
Abstract
Self-aggregation is key to hair follicle (HF) induction ability of dermal papilla (DP) cells and neogenesis of HF can be achieved by transplanting DP microtissues. However, there is currently lack of a suitable system that allows efficient production of DP microtissues and analysis of DP self-aggregation in vitro. We demonstrate that, at a higher seeding cell density, poly(ethylene-co-vinyl alcohol) (EVAL) membranes facilitate DP self-assembly into many compact spheroidal microtissues that are able to induce new HFs. This self-assembling process is associated with an enhanced cell movement and a declined cell-substrate adhesivity on EVAL. A compromised cell growth is also revealed on EVAL. On the contrary, a more adherent surface allows faster cell expansion but maintains DP cells in a flat morphology. Dynamically, cell migration, intercellular collision and intercellular adhesion contribute to DP microtissue formation on EVAL. Our results suggest that, for large-scale production of DP microtissues for HF regeneration, an adhesive surface is needed for quick cell expansion and a biomaterial with a lower adhesivity is required for self-aggregation. In addition, this system can be a model for investigation of DP self-aggregation in vitro.
Collapse
|
353
|
Patzelt A, Knorr F, Blume-Peytavi U, Sterry W, Lademann J. Hair follicles, their disorders and their opportunities. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.ddmec.2008.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
354
|
Eichberger T, Kaser A, Pixner C, Schmid C, Klingler S, Winklmayr M, Hauser-Kronberger C, Aberger F, Frischauf AM. GLI2-specific transcriptional activation of the bone morphogenetic protein/activin antagonist follistatin in human epidermal cells. J Biol Chem 2008; 283:12426-37. [PMID: 18319260 PMCID: PMC2430996 DOI: 10.1074/jbc.m707117200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 02/14/2008] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (HH) signaling in the epidermis is primarily mediated by the zinc finger transcription factors GLI1 and GLI2. Exquisite regulation of HH/GLI signaling is crucial for proper specification of the epidermal lineage and development of its derivatives, whereas dysregulation of HH/GLI signaling disrupts tissue homeostasis and causes basal cell carcinoma (BCC). Similarly, bone morphogenetic proteins (BMPs) and activins have been described as key signaling factors in the complex regulation of epidermal fate decisions, although their precise interplay with HH/GLI is largely elusive. Here we show that, in human epidermal cells, expression of the activin/BMP antagonist follistatin (FST) is predominantly up-regulated by the HH effector GLI2. Consistently, we found strong FST expression in the outer root sheath of human hair follicles and BCC. Detailed promoter analysis showed that two sequences with homology to the GLI consensus binding site are required for GLI2-mediated activation. Interestingly, activation of the FST promoter is highly GLI2-specific, because neither GLI1 nor GLI3 can significantly increase FST transcription. GLI2 specificity requires the presence of a 518-bp fragment in the proximal FST promoter region. On the protein level, sequences C-terminal to the zinc finger are responsible for GLI2-specific activation of FST transcription, pointing to the existence of GLI-interacting cofactors that modulate GLI target specificity. Our results reveal a key role of GLI2 in activation of the activin/BMP antagonist FST in response to HH signaling and provide new evidence for a regulatory interaction between HH and activin/BMP signaling in hair follicle development and BCC.
Collapse
Affiliation(s)
- Thomas Eichberger
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Hes1 Regulates Corneal Development and the Function of Corneal Epithelial Stem/Progenitor Cells. Stem Cells 2008; 26:1265-74. [DOI: 10.1634/stemcells.2007-1067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
356
|
Abstract
The hair follicle contributes cells to the interfollicular epidermis after wounding, but the functional role of these cells has not been resolved. To address this question, Langton et al. (this issue, 2008) take advantage of the Edaradd mutant mouse, which lacks hair follicles on its tail. They discover an initial sluggish response of the hairless tail epidermis to wounding that is rapidly compensated for by recruitment of epidermal cells from outside the normally responsive area. This suggests that the hair follicle is important but not necessary for normal wound healing.
Collapse
Affiliation(s)
- Mayumi Ito
- Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - George Cotsarelis
- Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
357
|
Abstract
Single hair follicles go through regeneration and involution cycles. In a population, hair follicles may affect each other during anagen re-entry, thus forming propagating regenerative hair waves. We review these regenerative hair waves and complex hair cycle domains, which were recently reported in transgenic mice. Two non-invasive methods to track the propagating hair wave in large populations of hair follicles in vivo are described. We also reviewed early accounts of "hair growth patterns" from classical literature. We decipher the "behavior rules" that dictate how dynamic hair waves lead to complex hair cycle domains. In general, a single domain expands when a regenerative hair wave reaches a responsive region and boundaries form when the wave reaches a non-responsive region. As mice age, multiple hair cycle domains form, each with its own regeneration rhythm. Domain patterns can be reset by physiological events such as pregnancy and lactation. Longitudinal sections across domains show arrays of follicles in a continuum of hair cycle stages. Hair cycle domains are different from regional specificity domains. Regenerative hair waves are different from the developmental wave of newly forming hair follicles. The study provides insights into the dynamic states of adult skin and physiological regulation of organ regeneration.
Collapse
Affiliation(s)
- Maksim V. Plikus
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
358
|
Rendl M, Polak L, Fuchs E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev 2008; 22:543-57. [PMID: 18281466 DOI: 10.1101/gad.1614408] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hair follicle (HF) formation is initiated when epithelial stem cells receive cues from specialized mesenchymal dermal papilla (DP) cells. In culture, DP cells lose their HF-inducing properties, but during hair growth in vivo, they reside within the HF bulb and instruct surrounding epithelial progenitors to orchestrate the complex hair differentiation program. To gain insights into the molecular program that maintains DP cell fate, we previously purified DP cells and four neighboring populations and defined their cell-type-specific molecular signatures. Here, we exploit this information to show that the bulb microenvironment is rich in bone morphogenetic proteins (BMPs) that act on DP cells to maintain key signature features in vitro and hair-inducing activity in vivo. By employing a novel in vitro/in vivo hybrid knockout assay, we ablate BMP receptor 1a in purified DP cells. When DPs cannot receive BMP signals, they lose signature characteristics in vitro and fail to generate HFs when engrafted with epithelial stem cells in vivo. These results reveal that BMP signaling, in addition to its key role in epithelial stem cell maintenance and progenitor cell differentiation, is essential for DP cell function, and suggest that it is a critical feature of the complex epithelial-mesenchymal cross-talk necessary to make hair.
Collapse
Affiliation(s)
- Michael Rendl
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
359
|
Waghmare SK, Bansal R, Lee J, Zhang YV, McDermitt DJ, Tumbar T. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO J 2008; 27:1309-20. [PMID: 18401343 DOI: 10.1038/emboj.2008.72] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 03/17/2008] [Indexed: 12/23/2022] Open
Abstract
Regulation of stem cell (SC) proliferation is central to tissue homoeostasis, injury repair, and cancer development. Accumulation of replication errors in SCs is limited by either infrequent division and/or by chromosome sorting to retain preferentially the oldest 'immortal' DNA strand. The frequency of SC divisions and the chromosome-sorting phenomenon are difficult to examine accurately with existing methods. To address this question, we developed a strategy to count divisions of hair follicle (HF) SCs over time, and provide the first quantitative proliferation history of a tissue SC during its normal homoeostasis. We uncovered an unexpectedly high cellular turnover in the SC compartment in one round of activation. Our study provides quantitative data in support of the long-standing infrequent SC division model, and shows that HF SCs do not retain the older DNA strands or sort their chromosome. This new ability to count divisions in vivo has relevance for obtaining basic knowledge of tissue kinetics.
Collapse
Affiliation(s)
- Sanjeev K Waghmare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | | | |
Collapse
|
360
|
Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 2008; 28:2261-73. [PMID: 18305259 DOI: 10.1523/jneurosci.4372-07.2008] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mechanosensory hair cells within the zebrafish lateral line spontaneously regenerate after aminoglycoside-induced death. Exposure of 5-d-old larvae to 400 microM neomycin for 1 h results in death of almost all lateral line hair cells. Regeneration of new hair cells is observed by 24 h after neomycin treatment with nearly complete replacement by 72 h. Using bromodeoxyuridine incorporation, we show that the majority of new hair cells are generated from a transient increase in support cell proliferation that occurs between 12 and 21 h after neomycin damage. Additional observations reveal two distinct subsets of proliferating support cells within the neuromasts that differ in position, morphology, and temporal pattern of proliferation in response to neomycin exposure. We hypothesize that proliferative hair cell progenitors are located centrally within the neuromasts, whereas peripheral support cells may have a separate function. Expression of Notch signaling pathway members notch3, deltaA, and atoh1a transcripts are all upregulated within the first 24 h after neomycin treatment, during the time of maximum proliferation of support cells and hair cell progenitor formation. Treatment with a gamma-secretase inhibitor results in excess regenerated hair cells by 48 h after neomycin-induced death but has no effect without previous damage. Excess hair cells result from increased support cell proliferation. These results suggest a model where Notch signaling limits the number of hair cells produced during regeneration by regulating support cell proliferation.
Collapse
|
361
|
Jensen UB, Yan X, Triel C, Woo SH, Christensen R, Owens DM. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J Cell Sci 2008; 121:609-17. [PMID: 18252795 PMCID: PMC2963074 DOI: 10.1242/jcs.025502] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bulge region of adult murine hair follicles harbors epidermal stem cells with multipotent capacity; however, the restricted contributions of these cells under homeostatic conditions indicates that additional stem or progenitor cell populations may be required to maintain squamous and sebaceous lineages. We have identified a distinct population of murine hair follicle keratinocytes residing in the upper isthmus (UI) between the infundibulum and bulge regions that are distinguished by low alpha6 integrin levels and are negative for CD34 and Sca-1. Purified UI cells give rise to long-term, stable epidermal, follicular and sebaceous lineages and can self-renew in vivo. These cells are non-quiescent and possess a unique transcript profile compared with bulge stem cells and may represent a distinct reservoir of epidermal stem or progenitor cells.
Collapse
Affiliation(s)
- Uffe Birk Jensen
- Institute of Human Genetics, University of Aarhus, DK8000 Aarhus C., Denmark
- Department of Clinical Genetics, Aarhus University Hospital, DK8000 Aarhus C., Denmark
| | - Xiaohong Yan
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Charlotte Triel
- Institute of Human Genetics, University of Aarhus, DK8000 Aarhus C., Denmark
| | - Seung-Hyun Woo
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Rikke Christensen
- Institute of Human Genetics, University of Aarhus, DK8000 Aarhus C., Denmark
| | - David M. Owens
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
362
|
Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 2008; 7:131-42. [PMID: 18079756 DOI: 10.1038/nrd2403] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although great progress has been made in the isolation and culture of stem cells, the future of stem-cell-based therapies and their productive use in drug discovery and regenerative medicine depends on two key factors: finding reliable sources of multipotent and pluripotent cells and the ability to control their differentiation to generate desired derivatives. It is essential for clinical applications to establish reliable sources of pathogen-free human embryonic stem cells (ESCs) and develop suitable differentiation techniques. Here, we address some of the problems associated with the sourcing of human ESCs and discuss the current status of stem-cell differentiation technology.
Collapse
|
363
|
Osorio KM, Lee SE, McDermitt DJ, Waghmare SK, Zhang YV, Woo HN, Tumbar T. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development 2008; 135:1059-68. [PMID: 18256199 DOI: 10.1242/dev.012799] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.
Collapse
Affiliation(s)
- Karen M Osorio
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | | | | | |
Collapse
|
364
|
Myers SR, Leigh IM, Navsaria H. Epidermal repair results from activation of follicular and epidermal progenitor keratinocytes mediated by a growth factor cascade. Wound Repair Regen 2008; 15:693-701. [PMID: 17971015 DOI: 10.1111/j.1524-475x.2007.00297.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reepithelialization of human suction blister wounds was examined in five normal human volunteers over a period of 14 days postwounding to understand the control of keratinocyte migration, proliferation, and differentiation in acute wound healing in a controlled model. The hypothesis that morphological changes and progenitor activation result from altered cytokines and growth factor expression [in particular interleukin-1 beta (IL-1beta), interleukin-6 (IL-6), transforming growth factor alpha (TGF-alpha), TGF-beta 1, and keratinocyte growth factor] was tested using semiquantitative immunohistochemistry combined with reverse transcriptase-polymerase chain reaction of samples from the blister roof, edge, and base. Parallel changes in keratin expression were examined using a wide range of well-established antibodies to multiple keratins and in situ hybridization for keratin 16 (K16), a marker of the hyperproliferative (mucoregenerative) phenotype. Longitudinal morphological, semiquantitative cytokine and growth factor expression, and histometric histone and cytokeratin profiles suggest three phases to reepithelialization: phase 1, or the acute activation phase, early in the first 24 hours postwounding is characterized by epidermal expression of IL-1beta and IL-6, and dermal expression of TGF-beta1, as basal, upper outer root sheath, and putative interfollicular transit amplifying keratinocytes become committed to mitosis; phase 2, or the early activation phase, late in the second 24 hours postwounding, characterized by epidermal expression of TGF-alpha and IL-6 with concurrent suprabasal K16 expression and migration with continued proliferation, and dermal expression of keratinocyte growth factor and IL-6; and phase 3 or restitution over the following 2 weeks, characterized by the return of normal homeostasis, including bulge activation as evidenced by K19 expression.
Collapse
Affiliation(s)
- Simon R Myers
- Centre for Cutaneous Research, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, London, United Kingdom.
| | | | | |
Collapse
|
365
|
Kloepper J, Hendrix S, Bodó E, Tiede S, Humphries M, Philpott M, Fässler R, Paus R. Functional role of β1 integrin-mediated signalling in the human hair follicle. Exp Cell Res 2008; 314:498-508. [DOI: 10.1016/j.yexcr.2007.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 10/02/2007] [Accepted: 10/23/2007] [Indexed: 12/17/2022]
|
366
|
Asplund A, Gry Björklund M, Sundquist C, Strömberg S, Edlund K, Östman A, Nilsson P, Pontén F, Lundeberg J. Expression profiling of microdissected cell populations selected from basal cells in normal epidermis and basal cell carcinoma. Br J Dermatol 2008; 158:527-38. [DOI: 10.1111/j.1365-2133.2007.08418.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
367
|
Herdrich B, Lind R, Liechty K. Multipotent adult progenitor cells: their role in wound healing and the treatment of dermal wounds. Cytotherapy 2008; 10:543-50. [DOI: 10.1080/14653240802345820] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
368
|
Xu X, Mannik J, Kudryavtseva E, Lin KK, Flanagan LA, Spencer J, Soto A, Wang N, Lu Z, Yu Z, Monuki ES, Andersen B. Co-factors of LIM domains (Clims/Ldb/Nli) regulate corneal homeostasis and maintenance of hair follicle stem cells. Dev Biol 2007; 312:484-500. [PMID: 17991461 PMCID: PMC2494569 DOI: 10.1016/j.ydbio.2007.09.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/18/2007] [Accepted: 09/12/2007] [Indexed: 12/28/2022]
Abstract
The homeostasis of both cornea and hair follicles depends on a constant supply of progeny cells produced by populations of keratin (K) 14-expressing stem cells localized in specific niches. To investigate the potential role of Co-factors of LIM domains (Clims) in epithelial tissues, we generated transgenic mice expressing a dominant-negative Clim molecule (DN-Clim) under the control of the K14 promoter. As expected, the K14 promoter directed high level expression of the transgene to the basal cells of cornea and epidermis, as well as the outer root sheath of hair follicles. In corneal epithelium, the transgene expression causes decreased expression of adhesion molecule BP180 and defective hemidesmosomes, leading to detachment of corneal epithelium from the underlying stroma, which in turn causes blisters, wounds and an inflammatory response. After a period of epithelial thinning, the corneal epithelium undergoes differentiation to an epidermis-like structure. The K14-DN-Clim mice also develop progressive hair loss due to dysfunctional hair follicles that fail to generate hair shafts. The number of hair follicle stem cells is decreased by at least 60% in K14-DN-Clim mice, indicating that Clims are required for hair follicle stem cell maintenance. In addition, Clim2 interacts with Lhx2 in vivo, suggesting that Clim2 is an essential co-factor for the LIM homeodomain factor Lhx2, which was previously shown to play a role in hair follicle stem cell maintenance. Together, these data indicate that Clim proteins play important roles in the homeostasis of corneal epithelium and hair follicles.
Collapse
Affiliation(s)
- Xiaoman Xu
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Jaana Mannik
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Elena Kudryavtseva
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Kevin K. Lin
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Lisa A. Flanagan
- Department of Pathology, University of California, Irvine, California
| | - Joel Spencer
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Amelia Soto
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Ning Wang
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Zhongxian Lu
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Zhengquan Yu
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| | - Edwin S. Monuki
- Department of Pathology, University of California, Irvine, California
| | - Bogi Andersen
- Departments of Medicine and Biological Chemistry, Division of Endocrinology, University of California, Irvine, California
| |
Collapse
|
369
|
Martin AL, Irizarry-Rovira AR, Bevier DE, Glickman LG, Glickman NW, Hullinger RL. Histology of ferret skin: preweaning to adulthood. Vet Dermatol 2007; 18:401-11. [DOI: 10.1111/j.1365-3164.2007.00627.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
370
|
Trempus CS, Dang H, Humble MM, Wei SJ, Gerdes MJ, Morris RJ, Bortner CD, Cotsarelis G, Tennant RW. Comprehensive Microarray Transcriptome Profiling of CD34-Enriched Mouse Keratinocyte Stem Cells. J Invest Dermatol 2007; 127:2904-7. [PMID: 17581618 DOI: 10.1038/sj.jid.5700917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
371
|
Towards therapeutic application of ocular stem cells. Semin Cell Dev Biol 2007; 18:805-18. [DOI: 10.1016/j.semcdb.2007.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 12/18/2022]
|
372
|
An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol 2007; 128:1311-8. [PMID: 18037901 DOI: 10.1038/sj.jid.5701178] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hair follicles have been observed to provide a major cellular contribution to epidermal healing, with emigration of stem-derived cells from the follicles aiding in wound reepithelialization. However, the functional requirements for this hair follicle input are unknown. Here we have characterized the keratinocyte stem cell status of mutant mice that lack all hair follicle development on their tail, and analyzed the consequent alterations in epidermal wound healing rate and mechanisms. In analyzing stem cell behavior in embryonic skin we found that clonogenic keratinocytes are relatively frequent in the ectoderm prior to hair follicle formation. However, their frequency in the interfollicular epidermis drops sharply by birth, at which time the majority of stem cells are present within the hair follicles. We find that in the absence of hair follicles cutaneous wounds heal with an acute delay in reepithelialization. This delay is followed by expansion of the region of activated epidermis, beyond that seen in normal haired skin, followed by appropriate wound closure. JID Journal Club article: for questions, answers, and open discussion about this article please go to http://network.nature.com/group/jidclub.
Collapse
|
373
|
Tiede S, Kloepper JE, Whiting DA, Paus R. The ‘follicular trochanter’: an epithelial compartment of the human hair follicle bulge region in need of further characterization. Br J Dermatol 2007; 157:1013-6. [PMID: 17714535 DOI: 10.1111/j.1365-2133.2007.08138.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent articles on hair follicle stem cells have summarized the current state of knowledge of what has been termed the hair follicle 'bulge'. During the course of immunohistological studies aimed at characterizing the expression of selected extracellular matrix proteins in the - as yet insufficiently characterized - niche of human bulge hair follicle stem cells, we have recently come across a largely forgotten, peculiar epithelial protrusion of the outer root sheath, which was visible in only a minority of all examined hair follicles. The morphology and immunoreactivity patterns of this structure, the 'follicular trochanter', are described herein.
Collapse
Affiliation(s)
- S Tiede
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | |
Collapse
|
374
|
Segrelles C, Moral M, Lorz C, Santos M, Lu J, Cascallana JL, Lara MF, Carbajal S, Martínez-Cruz AB, García-Escudero R, Beltran L, Segovia JC, Bravo A, DiGiovanni J, Paramio JM. Constitutively active Akt induces ectodermal defects and impaired bone morphogenetic protein signaling. Mol Biol Cell 2007; 19:137-49. [PMID: 17959825 DOI: 10.1091/mbc.e07-08-0764] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aberrant activation of the Akt pathway has been implicated in several human pathologies including cancer. However, current knowledge on the involvement of Akt signaling in development is limited. Previous data have suggested that Akt-mediated signaling may be an essential mediator of epidermal homeostasis through cell autonomous and noncell autonomous mechanisms. Here we report the developmental consequences of deregulated Akt activity in the basal layer of stratified epithelia, mediated by the expression of a constitutively active Akt1 (myrAkt) in transgenic mice. Contrary to mice overexpressing wild-type Akt1 (Akt(wt)), these myrAkt mice display, in a dose-dependent manner, altered development of ectodermally derived organs such as hair, teeth, nails, and epidermal glands. To identify the possible molecular mechanisms underlying these alterations, gene profiling approaches were used. We demonstrate that constitutive Akt activity disturbs the bone morphogenetic protein-dependent signaling pathway. In addition, these mice also display alterations in adult epidermal stem cells. Collectively, we show that epithelial tissue development and homeostasis is dependent on proper regulation of Akt expression and activity.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit, Division of Biomedicine, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
|
376
|
Strachan LR, Scalapino KJ, Lawrence HJ, Ghadially R. Rapid adhesion to collagen isolates murine keratinocytes with limited long-term repopulating ability in vivo despite high clonogenicity in vitro. Stem Cells 2007; 26:235-43. [PMID: 17932419 DOI: 10.1634/stemcells.2007-0534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A prevalent belief in epidermal biology is that stem cells are highly clonogenic; that is, they have the ability to produce many large colonies in vitro. However, it has been well-established in hematology, and recently suggested in epithelial biology, that short-term in vitro clonogenic assays may not be reliable predictors of long-term in vivo repopulating ability. Numerous groups have shown that rapid adhesion to collagen selects for highly clonogenic keratinocytes, but it has not been demonstrated whether this subpopulation is enriched in stem cells as defined by long-term repopulating ability in vivo. We found that although rapid adhesion to collagen (within 5 minutes) selected for cells with increased short-term colony forming ability in vitro, these cells were not enriched in long-term proliferative ability in vitro or in repopulating ability in vivo after 9 weeks. Conversely, keratinocytes that did not adhere to collagen (after 20 minutes) were less clonogenic in short-term assays but possessed equivalent long-term proliferative ability in vitro and superior long-term repopulating ability in vivo. Both the rapidly adherent cell and not rapidly adherent cell populations contained small, noncomplex basaloid cells, expressed integrin alpha2 (a collagen IV receptor), and expressed the putative epidermal stem cell phenotype integrin alpha6(hi)CD71(lo). Our results indicate that the superior short-term colony forming ability of collagen-adherent murine keratinocytes does not correlate with long-term repopulating ability in vitro or in vivo and that proliferation in vitro is not a reliable surrogate for stem cell behavior in vivo.
Collapse
Affiliation(s)
- Lauren R Strachan
- Department of Dermatology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
377
|
|
378
|
Sellheyer K. Mechanisms of Laser Hair Removal: Could Persistent Photoepilation Induce Vitiligo or Defects in Wound Repair? Dermatol Surg 2007; 33:1055-65. [PMID: 17760596 DOI: 10.1111/j.1524-4725.2007.33219.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Current laser hair removal modalities achieve a long-term but not persistent (irreversible) hair loss. OBJECTIVE This review highlights the mechanisms of the current laser hair removal technology and explores possible side effects. METHODS The literature is reviewed. RESULTS The hair shaft plays a key role in the mechanisms underlying current photoepilation procedures by acting as a vector for heat transfer. Together with inherent properties of the hair growth cycle and the anatomic specifics of the follicular stem cells located in the bulge, the crucial role of the hair shaft and its lack of complete destruction with present technology are also likely culprits for the nonpersistent nature of present laser hair removal. Future persistent photoepilation may be associated with vitiligo or vitiligolike changes. Disturbances in wound repair of previously lasered sites are less likely. CONCLUSIONS The currently available laser hair removal protocols are safe, not the least because they achieve long-term but not persistent epilation. The adverse effects of persistent laser hair removal technology possibly available in the future are potentially problematic.
Collapse
Affiliation(s)
- Klaus Sellheyer
- Department of Dermatology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| |
Collapse
|
379
|
Abstract
One challenge faced by stem cell biologists is the bioengineering of an organ. Ehama et al. (2007, this issue) used cells derived from human and rodent epidermis and dermal papilla to reconstitute hair-follicle mini-organs. Some result in hair follicles; others are hair follicle-like. The challenge calls for the development of a set of criteria to define a hair follicle so that bioengineered products in the future can be evaluated.
Collapse
Affiliation(s)
- Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of
Southern California, Los Angeles, California, USA
| | - George Cotsarelis
- Department of Dermatology, University of Pennsylvania, Philadelphia,
Pennsylvania, USA
| | - Kurt Stenn
- Aderans Research Institute, Inc., Philadelphia, Pennsylvania,
USA
| |
Collapse
|
380
|
Mechanisms of Laser Hair Removal. Dermatol Surg 2007. [DOI: 10.1097/00042728-200709000-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
381
|
Frye M, Fisher AG, Watt FM. Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation. PLoS One 2007; 2:e763. [PMID: 17712411 PMCID: PMC1945016 DOI: 10.1371/journal.pone.0000763] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022] Open
Abstract
Activation of Myc induces epidermal stem cells to exit their niche and differentiate into sebocytes and interfollicular epidermis, a process that is associated with widespread changes in gene transcription. We have identified chromatin modifications that are characteristic of epidermal stem cells and investigated the effects of Myc activation. Quiescent stem cells in the interfollicular epidermis and the hair follicle bulge had high levels of tri-methylated histone H3 at lysine 9 and H4 at lysine 20. Chromatin in both stem cell populations was hypoacteylated at histone H4 and lacked mono-methylation of histone H4 at lysine 20. Myc-induced exit from the stem cell niche correlated with increased acetylation at histone H4 and transiently increased mono-methylation at lysine 20. The latter was replaced by epigenetic modifications that are largely associated with chromatin silencing: di-methylation at histone H3 lysine 9 and histone H4 lysine 20. These modifications correlated with changes in the specific histone methyltransferases Set8 and Ash-1. The Myc-induced switch from mono- to di-methylated H4K20 required HDAC activity and was blocked by the HDAC inhibitor trichostatin A (TSA). TSA treatment induced a similar epidermal phenotype to activation of Myc, and activation of Myc in the presence of TSA resulted in massive stimulation of terminal differentiation. We conclude that Myc-induced chromatin modifications play a major role in Myc-induced exit from the stem cell compartment.
Collapse
Affiliation(s)
- Michaela Frye
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda G. Fisher
- Lymphocyte Development Group, Imperial College School of Medicine, London, United Kingdom
| | - Fiona M. Watt
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
382
|
Everts HB, Sundberg JP, King LE, Ong DE. Immunolocalization of enzymes, binding proteins, and receptors sufficient for retinoic acid synthesis and signaling during the hair cycle. J Invest Dermatol 2007; 127:1593-604. [PMID: 17363914 DOI: 10.1038/sj.jid.5700753] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Retinoic acid (RA) is essential for maintenance of most epithelial tissues. One RA biosynthesis pathway consists of cellular retinol-binding protein (Crbp), retinol dehydrogenase (Dhrs9/eRoldh), retinal dehydrogenase 1-3 (Aldh1a1-3), and cellular RA-binding protein 2 (Crabp2). Previously, we localized Aldh1a2 and Aldh1a3 to both epithelial and mesenchymal cells within the hair follicle throughout the hair cycle. This study expands that observation by examining the complete pathway of RA biosynthesis and signaling via RA receptors alpha, beta, and gamma by immunohistochemistry in C57BL/6J mice wax-stripped to initiate and synchronize the cycle. This pathway of RA biosynthesis and signaling localized to the majority of layers of the hair follicle, sebaceous gland, and interfollicular epidermis in a hair cycle-dependent manner, suggesting that RA biosynthesis within the hair follicle is regulated in both a spatial and temporal manner. This localization pattern also revealed insights into epithelial-mesenchymal interactions and differentiation state differences within the RA biosynthesis and signaling pathway, as well as novel observations on nuclear versus cytoplasmic localization of Crabp2 and RA receptors. This complex pattern of RA biosynthesis and signaling identified by immunolocalization suggests that endogenous RA regulates specific aspects of hair follicle growth, differentiation, and cycling.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
383
|
Tiede S, Kloepper JE, Bodò E, Tiwari S, Kruse C, Paus R. Hair follicle stem cells: walking the maze. Eur J Cell Biol 2007; 86:355-76. [PMID: 17576022 DOI: 10.1016/j.ejcb.2007.03.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/20/2007] [Accepted: 03/21/2007] [Indexed: 12/17/2022] Open
Abstract
The discovery of epithelial stem cells (eSCs) in the bulge region of the outer root sheath of hair follicles in mice and man has encouraged research into utilizing the hair follicle as a therapeutic source of stem cells (SCs) for regenerative medicine, and has called attention to the hair follicle as a highly instructive model system for SC biology. Under physiological circumstances, bulge eSCs serve as cell pool for the cyclic regeneration of the anagen hair bulb, while they can also regenerate the sebaceous gland and the epidermis after injury. More recently, melanocyte SCs, nestin+, mesenchymal and additional, as yet ill-defined "stem cell" populations, have also been identified in or immediately adjacent to the hair follicle epithelium, including in the specialized hair follicle mesenchyme (connective tissue sheath), which is crucial to wound healing. Thus the hair follicle and its adjacent tissue environment contain unipotent, multipotent, and possibly even pluripotent SC populations of different developmental origin. It provides an ideal model system for the study of central issues in SC biology such as plasticity and SC niches, and for the identification of reliable, specific SC markers, which distinguish them from their immediate progeny (e.g. transient amplifying cells). The current review attempts to provide some guidance in this growing maze of hair follicle-associated SCs and their progeny, critically reviews potential or claimed hair follicle SC markers, highlights related differences between murine and human hair follicles, and defines major unanswered questions in this rapidly advancing field.
Collapse
Affiliation(s)
- Stephan Tiede
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
384
|
Barbaro V, Testa A, Di Iorio E, Mavilio F, Pellegrini G, De Luca M. C/EBPdelta regulates cell cycle and self-renewal of human limbal stem cells. ACTA ACUST UNITED AC 2007; 177:1037-49. [PMID: 17562792 PMCID: PMC2064364 DOI: 10.1083/jcb.200703003] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human limbal stem cells produce transit amplifying progenitors that migrate centripetally to regenerate the corneal epithelium. Coexpression of CCAAT enhancer binding protein δ (C/EBPδ), Bmi1, and ΔNp63α identifies mitotically quiescent limbal stem cells, which generate holoclones in culture. Upon corneal injury, a fraction of these cells switches off C/EBPδ and Bmi1, proliferates, and differentiates into mature corneal cells. Forced expression of C/EBPδ inhibits the growth of limbal colonies and increases the cell cycle length of primary limbal cells through the activity of p27Kip1 and p57Kip2. These effects are reversible; do not alter the limbal cell proliferative capacity; and are not due to apoptosis, senescence, or differentiation. C/EBPδ, but not ΔNp63α, indefinitely promotes holoclone self-renewal and prevents clonal evolution, suggesting that self-renewal and proliferation are distinct, albeit related, processes in limbal stem cells. C/EBPδ is recruited to the chromatin of positively (p27Kip1 and p57Kip2) and negatively (p16INK4A and involucrin) regulated gene loci, suggesting a direct role of this transcription factor in determining limbal stem cell identity.
Collapse
Affiliation(s)
- Vanessa Barbaro
- Epithelial Stem Cell Research Center, The Veneto Eye Bank Foundation, H. SS Giovanni and Paolo, 30100 Venice, Italy
| | | | | | | | | | | |
Collapse
|
385
|
Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 2007; 447:316-20. [PMID: 17507982 DOI: 10.1038/nature05766] [Citation(s) in RCA: 785] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 03/20/2007] [Indexed: 12/17/2022]
Abstract
The mammalian hair follicle is a complex 'mini-organ' thought to form only during development; loss of an adult follicle is considered permanent. However, the possibility that hair follicles develop de novo following wounding was raised in studies on rabbits, mice and even humans fifty years ago. Subsequently, these observations were generally discounted because definitive evidence for follicular neogenesis was not presented. Here we show that, after wounding, hair follicles form de novo in genetically normal adult mice. The regenerated hair follicles establish a stem cell population, express known molecular markers of follicle differentiation, produce a hair shaft and progress through all stages of the hair follicle cycle. Lineage analysis demonstrated that the nascent follicles arise from epithelial cells outside of the hair follicle stem cell niche, suggesting that epidermal cells in the wound assume a hair follicle stem cell phenotype. Inhibition of Wnt signalling after re-epithelialization completely abrogates this wounding-induced folliculogenesis, whereas overexpression of Wnt ligand in the epidermis increases the number of regenerated hair follicles. These remarkable regenerative capabilities of the adult support the notion that wounding induces an embryonic phenotype in skin, and that this provides a window for manipulation of hair follicle neogenesis by Wnt proteins. These findings suggest treatments for wounds, hair loss and other degenerative skin disorders.
Collapse
Affiliation(s)
- Mayumi Ito
- Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
386
|
Faurschou A, Haedersdal M, Poulsen T, Wulf HC. Squamous cell carcinoma induced by ultraviolet radiation originates from cells of the hair follicle in mice. Exp Dermatol 2007; 16:485-9. [PMID: 17518988 DOI: 10.1111/j.1600-0625.2007.00551.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Short-wave ultraviolet radiation (UVB) is the most carcinogenic part of the ultraviolet spectrum. The target cells of skin cancer are believed to be the bulge stem cells and/or their offspring, the transit-amplifying cells that reside in the epidermis. However, the amount of UVB penetrating epidermis and reaching the bulge cells is very low, which questions if these cells suffer sufficient DNA damage to transform into cancer stem cells. We performed this study to determine whether UV-induced squamous cell carcinoma (SCC) originates from the epidermis or the hair follicles in mice. Hairless mice had their epidermis removed at different levels using CO(2) laser ablation. Simulated solar irradiations were administered either preoperatively (in total 7 weeks) or pre- and postoperatively (in total 30 weeks). Control groups were untreated or treated only with solar-simulated radiation or with laser. Blinded clinical assessments of skin tumors were carried out weekly during 12 months observation. Only mice irradiated with solar-simulated radiation both pre- and postoperatively developed tumors. Median time to first, second and third tumor ranged from 19 to 20.5 weeks and was not significantly different between the non-laser and laser-treated groups (P > 0.05). The tumor response was thus similar in UV-exposed mice whether they had their epidermis removed or not. No tumors appeared in control groups. Hence, UV-induced SCC of mice originates from cells of the hair follicle, presumably the bulge stem cells, indicating that ultraviolet radiation penetrates epidermis sufficiently to cause irreversible DNA damage in cells located beneath the epidermis.
Collapse
|
387
|
Abstract
Androgenetic alopecia (AGA), or male pattern hair loss, affects approximately 50% of the male population. AGA is an androgen-related condition in genetically predisposed individuals. There is no treatment to completely reverse AGA in advanced stages, but with medical treatment (eg, finasteride, minoxidil, or a combination of both), the progression can be arrested and partly reversed in the majority of patients who have mild to moderate AGA. Combination with hair restoration surgery leads to best results in suitable candidates. Physicians who specialize in male health issues should be familiar with this common condition and all the available approved treatment options.
Collapse
Affiliation(s)
- Nina Otberg
- Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, BC V5Z 4E8, Canada
| | | | | |
Collapse
|
388
|
Trempus CS, Morris RJ, Ehinger M, Elmore A, Bortner CD, Ito M, Cotsarelis G, Nijhof JGW, Peckham J, Flagler N, Kissling G, Humble MM, King LC, Adams LD, Desai D, Amin S, Tennant RW. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res 2007; 67:4173-81. [PMID: 17483328 PMCID: PMC2121659 DOI: 10.1158/0008-5472.can-06-3128] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice.
Collapse
Affiliation(s)
- Carol S Trempus
- Cancer Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
389
|
Ohyama M. Advances in the Study of Stem-Cell-Enriched Hair Follicle Bulge Cells: A Review Featuring Characterization and Isolation of Human Bulge Cells. Dermatology 2007; 214:342-51. [PMID: 17460410 DOI: 10.1159/000100889] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hair follicles repeatedly regress and reconstitute themselves, suggesting the presence of intrinsic tissue stem cells. Using label-retaining cell technique to detect slow-cycling stem cells, hair follicle stem cells were detected in the bulge region of the outer root sheath, which provides the insertion point for the arrector pili muscle and marks the bottom of the permanent portion of hair follicles. Later studies elucidated important stem cell characteristics of the bulge cells, including high proliferative capacity and multipotency to regenerate the pilosebaceous unit as well as epidermis. Isolation of living bulge cells is now feasible. In addition, microarray analyses revealed the global gene expression profile of the bulge cells. However, most of those studies were performed in mouse hair follicles and our understanding of human bulge cells has been limited. Recently, remarkable progress was made in human bulge cell biology. The morphologically ill-defined human bulge boundary was precisely determined by the distribution of label-retaining cells. Laser capture microdissection enabled accurate isolation of human bulge cells and control cell populations. Microarray comparison analyses between isolated bulge and nonbulge cells elucidated the molecular signature of human bulge cells and identified cell surface markers for living bulge cell isolation. Importantly, isolated living human bulge cells demonstrated stem cell characteristics in vitro. In this review, recent advances in hair follicle bulge cell research are summarized, especially focusing on the characterization and isolation of human bulge cells.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
390
|
Snykers S, Vinken M, Rogiers V, Vanhaecke T. Differential role of epigenetic modulators in malignant and normal stem cells: a novel tool in preclinical in vitro toxicology and clinical therapy. Arch Toxicol 2007; 81:533-44. [PMID: 17387455 DOI: 10.1007/s00204-007-0195-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/22/2007] [Indexed: 02/06/2023]
Abstract
Adult stem cells are primitive cells that undergo asymmetric division, thereby giving rise to one clonogenic, self-renewing cell and one cell able to undergo multipotent differentiation. Disturbance of this controlled process by epigenetic alterations, including imbalance of histone acetylation/histone deacetylation and DNA methylation/demethylation, may result in uncontrolled growth, formation of self-renewing malignant stem cells and eventually cancer. In view of this notion, several epigenetic modulators, in particular those with histone deacetylase inhibiting activity, are currently being tested in phase I and II clinical trials for their promising chemotherapeutic properties in cancer therapy. As chromatin modulation is also involved in regulation of differentiation, normal development, embryonic and adult stem cell functions and maintenance of their plasticity during embryonic organogenesis, the question can be raised whether predestined cell fate can be modified through epigenetic interference. And if so, could this strategy enforce adult stem cells to differentiate into different types of functional cells? In particular, functional hepatocytes seem important for preclinical toxicity screening of candidate drugs. This paper reviews the potential use and relevance of epigenetic modifiers, including inhibitors of histone deacetylases and DNA methyltransferases (1) to change cell fate and 'trans'differentiate normal adult stem cells into hepatocyte-like cells and (2) to cure disorders, caused by uncontrolled growth of malignant stem cells.
Collapse
Affiliation(s)
- Sarah Snykers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
391
|
Tiede S, Paus R. Lhx2--decisive role in epithelial stem cell maintenance, or just the "tip of the iceberg"? Bioessays 2007; 28:1157-60. [PMID: 17117482 DOI: 10.1002/bies.20506] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stem cell self renewal, maintenance and differentiation are influenced by the convergence of intrinsic cellular signals and extrinsic microenvironmental cues from the surrounding stem cell niche. However, the specific signals involved are often still poorly understood. This is also true for skin epithelial stem cells. Recently, by transcriptionally profiling of embryonic hair progenitors in mice, Rhee et al. have managed to define how murine hair follicle epithelial stem cells are specified and maintained in an undifferentiated state. These authors have identified Lhx2 as a transcription factor functionally positioned downstream of signals necessary to specify hair follicle stem cells such as p63 or NFkappaB, but upstream of signals like Wnt/beta-catenin, Bmp or Shh that are required to drive activated stem cells via the production of transient amplifying cells into terminal differentiation.
Collapse
Affiliation(s)
- Stephan Tiede
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Germany.
| | | |
Collapse
|
392
|
Castilho RM, Squarize CH, Patel V, Millar SE, Zheng Y, Molinolo A, Gutkind JS. Requirement of Rac1 distinguishes follicular from interfollicular epithelial stem cells. Oncogene 2007; 26:5078-85. [PMID: 17334398 DOI: 10.1038/sj.onc.1210322] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epithelial stem cells in the bulge region within the hair follicle maintain the cyclic hair growth, but whether these stem cells also contribute to the epidermal renewal remains unclear. Here, we observed that the conditional deletion of the Rac1 gene in the mouse skin, including the potential follicular and epidermal stem cell compartments, results in alopecia owing to defective hair development. Surprisingly, mice lacking the expression of this Rho GTPase do not display major alterations in the interfollicular skin. Furthermore, Rac1 excision from primary epithelial keratinocytes results in the inability to reconstitute hair follicles and sebaceous glands when grafted onto mice, but epithelial cells lacking Rac1 can nonetheless form a healthy epidermis. Together, these findings support the emerging view that the epidermis and the hair follicles are maintained by different epithelial stem cells, and provide evidence that the requirement for Rac1 function can distinguish these distinct stem cells populations.
Collapse
Affiliation(s)
- R M Castilho
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | | | | | | | | | |
Collapse
|
393
|
Humphreys BD, Bonventre JV. The contribution of adult stem cells to renal repair. Nephrol Ther 2007; 3:3-10. [PMID: 17383586 DOI: 10.1016/j.nephro.2006.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/28/2006] [Indexed: 02/01/2023]
Abstract
The kidney undergoes continuous, slow cellular turnover for tissue maintenance and rapid cell replacement after injury. The cellular origin of newly differentiated tubular epithelium remains controversial. In some non-renal organs, adult stem cells are recognized as the cell of origin for tissue replacement, such as the hematopoietic system, intestine and skin. These findings have prompted intense investigation for evidence of renal stem cells because of the great need for new therapeutic approaches to treat acute kidney injury and chronic kidney disease. Early excitement at reports that bone marrow-derived cells transdifferentiate into renal epithelial cells has been tempered by findings that show such events to be rare or potentially explained by cell fusion. More recent studies have focused on the possibility that renal progenitors exist within the kidney. In this review we compare data supporting the existence of adult renal stem cells with the body of evidence indicating that the kidney regenerates by self-duplication of differentiated cells. The identification of adult renal epithelial progenitor cells will ultimately determine the future direction of renal regenerative medicine.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute and Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA.
| | | |
Collapse
|
394
|
Hoffman RM. The potential of nestin-expressing hair follicle stem cells in regenerative medicine. Expert Opin Biol Ther 2007; 7:289-91. [PMID: 17309321 DOI: 10.1517/14712598.7.3.289] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hair follicle bulge area is an abundant, easily accessible source of actively growing pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, is also expressed in follicle stem cells and their immediate, differentiated progeny. Green fluorescent protein (GFP), whose expression is driven by the nestin regulatory element in transgenic mice, serves to mark hair follicle stem cells. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34, but negative for keratinocyte marker keratin 15, suggesting their relatively undifferentiated state. These cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. In vivo studies show that nestin-driven GFP hair follicle stem cells can differentiate into blood vessels and neural tissue after transplantation to the subcutis of nude mice. Hair follicle stem cells implanted into the gap region of a severed sciatic or tibial nerve greatly enhance the rate of nerve regeneration and the restoration of nerve function. The follicle cells transdifferentiate largely into Schwann cells, which are known to support neuron regrowth. The transplanted mice regain the ability to walk normally. Thus, hair follicle stem cells provide an effective, accessible, autologous source of stem cells for treatment of peripheral nerve injury.
Collapse
|
395
|
Hair follicle bulge: a fascinating reservoir of epithelial stem cells. J Dermatol Sci 2007; 46:81-9. [PMID: 17207970 DOI: 10.1016/j.jdermsci.2006.12.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/29/2006] [Accepted: 12/06/2006] [Indexed: 12/17/2022]
Abstract
Hair follicles reconstitute themselves though the hair cycle, suggesting the presence of intrinsic stem cells. In contrast to the previous belief that stem cells reside in the bulbar region of hair follicles, stem cells were detected in the bulge area, a contiguous part of outer root sheath, that provides the insertion point for arrector pili muscle and marks the bottom of the permanent portion of hair follicles. The bulge cells are morphologically undifferentiated and slow-cycling under the normal conditions. Later, studies successively demonstrated that bulge cells possess stem cell properties such as high proliferative capacity and multipotency to regenerate not only hair follicles but also sebaceous glands and epidermis. Our knowledge of the bulge cell biology is rapidly increasing because of the identification of novel cell surface markers, the ability to isolate living bulge cells, and microarray analysis of multiple gene expression. Importantly, novel cell surface markers were identified on human bulge cells using precise laser capture microdissection and microarray analyses. Use of these markers enabled the successful enrichment of living human bulge cells, raising the possibility of future treatments of hair disorders using stem cells. Additional clinical relevance of bulge cell biology includes the importance of bulge cells as a gene therapy target and their possible roles in tumorigenesis.
Collapse
|
396
|
Abstract
Possibilities of using the skin for somatic gene therapy have been investigated for more than 20 years. Strategies have included both direct gene transfer into the skin and indirect gene transfer utilizing cultured cells as an intermediate step for gene manipulation. Viral as well as nonviral vectors have been used, and both gene addition and gene editing have been performed. Although cutaneous gene therapy has now begun translating into clinical medicine (as seen by the first clinical gene therapy project of an inherited skin disorder) further developments are still required.
Collapse
|
397
|
Massoumi R, Paus R. Cylindromatosis and theCYLD gene: new lessons on the molecular principles of epithelial growth control. Bioessays 2007; 29:1203-14. [DOI: 10.1002/bies.20677] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
398
|
Gu LH, Coulombe PA. Keratin expression provides novel insight into the morphogenesis and function of the companion layer in hair follicles. J Invest Dermatol 2006; 127:1061-73. [PMID: 17170733 DOI: 10.1038/sj.jid.5700673] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hair follicles cycle between stages of growth (anagen) and metabolic quiescence (telogen) throughout life. In mature follicles, transition from telogen back into anagen involves the activation, proliferation, and differentiation of epithelial stem cells located in the bulge, a specialization of the outer root sheath. Recent studies identified keratin 6a (K6a) transcripts as enriched in bulge epithelial stem cells in mouse skin. We used messenger RNA probes, antibodies, a LacZ reporter mouse model, and whole-mount staining assays to investigate the regulation of mK6a during mouse postnatal hair cycling, and compare it to mK75, a companion layer (Cl) marker. We find that mK75 regulation parallels that of inner root sheath (IRS) markers, with expression onset at anagen IIIa above the new hair bulb and subsequent spreading towards the bulge. Although also occurring in the Cl, mK6a expression begins at anagen IIIb in differentiating cells located proximal to the bulge, and subsequently spreads towards the hair bulb. mK6a and mK75 thus exhibit temporally distinct, and spatially opposed, expression patterns in the Cl during postnatal anagen. These findings provide novel insight into the morphogenesis and properties of the Cl, and raise the distinct possibility that it is an integral part of the IRS compartment.
Collapse
Affiliation(s)
- Li-Hong Gu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
399
|
Kurek D, Garinis GA, van Doorninck JH, van der Wees J, Grosveld FG. Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development 2006; 134:261-72. [PMID: 17151017 DOI: 10.1242/dev.02721] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor Gata3 is crucially involved in epidermis and hair follicle differentiation. Yet, little is known about how Gata3 co-ordinates stem cell lineage determination in skin, what pathways are involved and how Gata3 differentially regulates distinct cell populations within the hair follicle. Here, we describe a conditional Gata3-/- mouse (K14-Gata3-/-) in which Gata3 is specifically deleted in epidermis and hair follicles. K14-Gata3-/- mice show aberrant postnatal growth and development, delayed hair growth and maintenance, abnormal hair follicle organization and irregular pigmentation. After the first hair cycle, the germinative layer surrounding the dermal papilla was not restored; instead, proliferation was pronounced in basal epidermal cells. Transcriptome analysis of laser-dissected K14-Gata3-/- hair follicles revealed mitosis, epithelial differentiation and the Notch, Wnt and BMP signaling pathways to be significantly overrepresented. Elucidation of these pathways at the RNA and protein levels and physiologic endpoints suggests that Gata3 integrates diverse signaling networks to regulate the balance between hair follicle and epidermal cell fates.
Collapse
Affiliation(s)
- Dorota Kurek
- Department of Cell Biology, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
400
|
Nakamura T, Endo KI, Kinoshita S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells 2006; 25:628-38. [PMID: 17110619 DOI: 10.1634/stemcells.2006-0494] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study was undertaken to determine whether human oral keratinocyte stem cells characteristically express higher levels of the low-affinity neurotrophin receptor p75 and to elucidate the function of p75 in oral keratinocytes. Examination of their expression patterns and cell-cycling status in vivo showed that p75 was exclusively expressed in the basal cell layer of both the tips of the papillae and the deep rete ridges. These immunostaining patterns suggest a cluster organization; most p75(+) cells did not actively cycle in vivo. Cell sorting showed that cells in the p75(+) subset were smaller and possessed higher in vitro proliferative capacity and clonal growth potential than the p75(-) subset. Clonal analysis revealed that holoclone-type (stem cell compartment), meroclone-type (intermediate compartment), and paraclone-type (transient amplifying cell compartment) cells, previously identified in skin and the ocular surface, were present in human oral mucosal epithelium. Holoclone-type cells showed stronger p75 expression at both the mRNA and protein level than did meroclone- and paraclone-type cells. Among the several neurotrophins, nerve growth factor (NGF) and neurotrophin-3 stimulated p75(+) oral keratinocyte cell proliferation, and only NGF protected them from apoptosis. Our in vivo and in vitro findings indicate that p75 is a potential marker of oral keratinocyte stem/progenitor cells and that some neurotrophin/p75 signaling affects cell growth and survival.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-0841, Japan.
| | | | | |
Collapse
|