351
|
Rodrigues C, Vandenberghe LPDS, de Oliveira J, Soccol CR. New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol 2011; 32:263-73. [DOI: 10.3109/07388551.2011.615297] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
352
|
Wen BQ, Xing MQ, Zhang H, Dai C, Xue HW. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:869-78. [PMID: 21951842 DOI: 10.1111/j.1744-7909.2011.01075.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling.
Collapse
Affiliation(s)
- Bi-Qing Wen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
353
|
Gou J, Ma C, Kadmiel M, Gai Y, Strauss S, Jiang X, Busov V. Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate above- and below-ground biomass growth through control of bioactive GA concentrations. THE NEW PHYTOLOGIST 2011; 192:626-39. [PMID: 21819406 DOI: 10.1111/j.1469-8137.2011.03837.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Here, we studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. • PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. • The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted paralogous gene pair. Although RNAi suppression of both paralogous pairs led to changes in wood development, they were much greater in the transgenics with suppressed PtGA2ox4 and PtGA2ox5. The degree of gene suppression in independent events was strongly associated with phenotypes, demonstrating dose-dependent control of growth by GA2ox RNA concentrations. • The expression and transgenic modifications reported here show that shoot- and leaf-expressed PtGA2ox4 and PtGA2ox5 specifically restrain aerial shoot growth, while root-expressed PtGA2ox2 and PtGA2ox7 promote root development.
Collapse
Affiliation(s)
- Jiqing Gou
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931-1295, USA
| | | | | | | | | | | | | |
Collapse
|
354
|
Gupta V, Kumar M, Brahmbhatt H, Reddy CRK, Seth A, Jha B. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1259-1263. [PMID: 22000048 DOI: 10.1016/j.plaphy.2011.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/11/2011] [Indexed: 05/28/2023]
Abstract
A simple and rapid HPLC-based method was developed for simultaneous determination of major classes of plant growth regulators (PGRs) in Monostroma and different species of Ulva. The plant growth regulators determined included gibberellic acid (GA(3)), indole-3-acetic acid (IAA), abscisic acid (ABA), indole-3-butyric acid (IBA), salicylic acid and kinetin riboside (KR) and their respective elution time was 2.75, 3.3, 3.91, 4.95, 5.39 and 6.59 min. The parameters optimized for distinct separation of PGRs were mobile phase (60:40 methanol and 0.6% acetic acid in water), column temperature (35°C) and flow rate (1ml/min). This method presented an excellent linearity (0.2-100μg/ml) with limit of detection (LOD) as 0.2μg/ml for ABA, 0.5μg/ml for KR and salicylic acid, and 1μg/ml for IAA, IBA and GA(3). The precision and accuracy of the method was evaluated after inter and intra day analysis in triplicates. The effect of plant matrix was compensated after spiking and the resultant recoveries estimated were in the range of 80-120%. Each PGR thereby detected were further characterized by ESI-MS analysis. The method optimized in this study determined IBA along with IAA for the first time in the seaweed species investigated except Ulva linza where the former was not detected. In all the species studied, ABA level was detected to be the highest while kinetin riboside was the lowest. In comparison to earlier methods of PGR analysis, sample preparation and analysis time were substantially reduced while allowing determination of more classes of PGRs simultaneously.
Collapse
Affiliation(s)
- Vishal Gupta
- Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), Bhavnagar 364021, India
| | | | | | | | | | | |
Collapse
|
355
|
Characterization of grape Gibberellin Insensitive1 mutant alleles in transgenic Arabidopsis. Transgenic Res 2011; 21:725-41. [DOI: 10.1007/s11248-011-9565-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/27/2011] [Indexed: 10/15/2022]
|
356
|
Sarvepalli K, Nath U. Interaction of TCP4-mediated growth module with phytohormones. PLANT SIGNALING & BEHAVIOR 2011; 6:1440-3. [PMID: 21904111 PMCID: PMC3256365 DOI: 10.4161/psb.6.10.17097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/05/2011] [Indexed: 05/19/2023]
Abstract
TCP4 and related members of class II TCP genes regulate leaf morphogenesis. We earlier demonstrated that level of TCP4 activity determines leaf size and aspects of plant maturity. The mechanism of TCP function and their target genes remain unidentified, limiting our understanding of TCP-mediated growth control. As leaf growth is influenced simultaneously by multiple phytohormones, we have studied if TCP4 interacts with any of the hormone-response pathways. Our analyses indicate a role for auxin, gibberellic acid and abscisic acid in TCP4-mediated control of leaf growth.
Collapse
Affiliation(s)
- Kavitha Sarvepalli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
357
|
Mauriat M, Sandberg LG, Moritz T. Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:805-16. [PMID: 21569133 DOI: 10.1111/j.1365-313x.2011.04635.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bioactive gibberellins (GAs) are involved in many developmental aspects in the life cycle of plants, acting either directly or through interaction with other hormones. One way to study the role of GA in specific mechanisms is to modify the levels of bioactive GA in specific tissues. We increased GA catabolism in different parts of the vascular tissue by overexpressing two different GA 2-oxidase genes that encode oxidases with affinity for C₂₀- or C₁₉-GA. We show that, irrespective of their localization in the vascular tissue, the expression of different members of this gene family leads to similar modifications in the primary and secondary growth of the stem of hybrid aspen. We also show that the precise localization of bioactive GA downregulation is important for the proper control of other developmental aspects, namely leaf shape and bud dormancy. Expression under the control of one of the studied promoters significantly affected both the shape of the leaves and the number of sylleptic branches. These phenotypic defects were correlated with alterations in the levels and repartitioning of auxins. We conclude that a precise localization of bioactive GA in the vasculature of the apex is necessary for the normal development of the plant through the effect of GAs on auxin transport.
Collapse
Affiliation(s)
- Mélanie Mauriat
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
358
|
The genes for gibberellin biosynthesis in wheat. Funct Integr Genomics 2011; 12:199-206. [PMID: 21853379 DOI: 10.1007/s10142-011-0243-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/11/2011] [Accepted: 07/17/2011] [Indexed: 10/17/2022]
Abstract
The gibberellin biosynthesis pathway is well defined in Arabidopsis and features seven key enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase, GA 3-oxidase, and GA 2-oxidase. The Arabidopsis genes were used to identify their counterparts in wheat and the TaCPS, TaKS, TaKO, and TaKAO genes were cloned from Chinese Spring wheat. In order to determine their chromosome locations, expression patterns and feedback regulations, three TaCPS genes, three TaKS genes, three TaKO genes, and three TaKAO genes were cloned from Chinese Spring wheat. They are mainly located on chromosomes 7A, 7B, 7D and 2A, 2B and 2D. The expression patterns of TaCPS, TaKS, TaKO, and TaKAO genes in wheat leaves, young spikes, peduncles, the third and forth internodes were investigated using quantitative PCR. The results showed that all the genes were constitutively expressed in wheat, but their relative expression levels varied in different tissues. They were mainly transcribed in stems, secondly in leaves and spikes, and the least in peduncles. Feedback regulation of the TaCPS, TaKS, TaKO, and TaKAO genes was not evident. These results indicate that all the genes and their homologs may play important roles in the developmental processes of wheat, but each of the homologs may function differently in different tissues or during different developmental stages.
Collapse
|
359
|
|
360
|
Ma (马谦) Q, Hedden P, Zhang (张启发) Q. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. PLANT PHYSIOLOGY 2011; 156:1905-20. [PMID: 21693671 PMCID: PMC3149939 DOI: 10.1104/pp.111.178046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/19/2011] [Indexed: 05/06/2023]
Abstract
Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA₂₉ but negatively correlated with that of GA₁₉. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.
Collapse
Affiliation(s)
| | | | - Qifa Zhang (张启发)
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China (Q.M., Q.Z.); Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (P.H.)
| |
Collapse
|
361
|
Sarvepalli K, Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:595-607. [PMID: 21518050 DOI: 10.1111/j.1365-313x.2011.04616.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Collapse
Affiliation(s)
- Kavitha Sarvepalli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | |
Collapse
|
362
|
Gao S, Xie X, Yang S, Chen Z, Wang X. The changes of GA level and signaling are involved in the regulation of mesocotyl elongation during blue light mediated de-etiolation in Sorghum bicolor. Mol Biol Rep 2011; 39:4091-100. [DOI: 10.1007/s11033-011-1191-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/11/2011] [Indexed: 12/17/2022]
|
363
|
Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M, Fernie AR, Rathjen JP, Botella MA, Valpuesta V, Medina-Escobar N. Gibberellin biosynthesis and signalling during development of the strawberry receptacle. THE NEW PHYTOLOGIST 2011; 191:376-390. [PMID: 21443649 DOI: 10.1111/j.1469-8137.2011.03700.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The enlargement of receptacle cells during strawberry (Fragaria × ananassa) fruit development is a critical factor determining fruit size, with the increase in cell expansion being one of the most important physiological processes regulated by the phytohormone gibberellin (GA). Here, we studied the role of GA during strawberry fruit development by analyzing the endogenous content of bioactive GAs and the expression of key components of GA signalling and metabolism. Bioactive GA(1) , GA(3) and GA(4) were monitored during fruit development, with the content of GA(4) being extremely high in the receptacle, peaking at the white stage of development. •Genes with high homology to genes encoding GA pathway components, including receptors (FaGID1(GIBBERELLIN-INSENSITIVE DWARF1)b and FaGID1c), DELLA (FaRGA(REPRESSOR OF GA) and FaGAI(GA-INSENSITIVE)), and enzymes involved in GA biosynthesis (FaGA3ox) and catabolism (FaGA2ox), were identified, and their expression in different tissues and developmental stages of strawberry fruit was studied in detail. The expression of all of these genes showed a stage-specific pattern during fruit development and was highest in the receptacle. FaGID1c bound GA in vitro, interacted with FaRGA in vitro and in vivo, and increased GA responses when ectopically expressed in Arabidopsis. This study thus reveals key elements of GA responses in strawberry and points to a critical role for GA in the development of the receptacle.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, 29071 Málaga, Spain
| | - Sonia Osorio
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Jun Kitamura
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo 113-8657, Japan
| | - Patrick Giavalisco
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo 113-8657, Japan
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Miguel A Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, 29071 Málaga, Spain
| | - Victoriano Valpuesta
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, 29071 Málaga, Spain
| | - Nieves Medina-Escobar
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, 29071 Málaga, Spain
| |
Collapse
|
364
|
Zhang Y, Zhang B, Yan D, Dong W, Yang W, Li Q, Zeng L, Wang J, Wang L, Hicks LM, He Z. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:342-53. [PMID: 21457373 DOI: 10.1111/j.1365-313x.2011.04596.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The rice gene ELONGATED UPPERMOST INTERNODE1 (EUI1) encodes a P450 monooxygenase that epoxidizes gibberellins (GAs) in a deactivation reaction. The Arabidopsis genome contains a tandemly duplicated gene pair ELA1 (CYP714A1) and ELA2 (CYP714A2) that encode EUI homologs. In this work, we dissected the functions of the two proteins. ELA1 and ELA2 exhibited overlapping yet distinct gene expression patterns. We showed that while single mutants of ELA1 or ELA2 exhibited no obvious morphological phenotype, simultaneous elimination of ELA1 and ELA2 expression in ELA1-RNAi/ela2 resulted in increased biomass and enlarged organs. By contrast, transgenic plants constitutively expressing either ELA1 or ELA2 were dwarfed, similar to those overexpressing the rice EUI gene. We also discovered that overexpression of ELA1 resulted in a severe dwarf phenotype, while overexpression of ELA2 gave rise to a breeding-favored semi-dwarf phenotype in rice. Consistent with the phenotypes, we found that the ELA1-RNAi/ela2 plants increased amounts of biologically active GAs that were decreased in the internodes of transgenic rice with ELA1 and ELA2 overexpression. In contrast, the precursor GA(12) slightly accumulated in the transgenic rice, and GA(19) highly accumulated in the ELA2 overexpression rice. Taken together, our study strongly suggests that the two Arabidopsis EUI homologs subtly regulate plant growth most likely through catalyzing deactivation of bioactive GAs similar to rice EUI. The two P450s may also function in early stages of the GA biosynthetic pathway. Our results also suggest that ELA2 could be an excellent tool for molecular breeding for high yield potential in cereal crops.
Collapse
Affiliation(s)
- Yingying Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Gao Y, Chen J, Zhao Y, Li T, Wang M. Molecular cloning and expression analysis of a RGA-like gene responsive to plant hormones in Brassica napus. Mol Biol Rep 2011; 39:1957-62. [PMID: 21643957 DOI: 10.1007/s11033-011-0943-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/26/2011] [Indexed: 01/04/2023]
Abstract
DELLA proteins are negative regulators of GA-induced growth. DELLA protein family is characterized by a DELLA domain essential for GA-dependent proteasomal degradation of DELLA repressors. A full-length cDNA encoding a putative DELLA protein with high sequence homology to Arabidopsis thaliana RGA (AtRGA), designated as BnRGA, was isolated from Brassica napus. The full-length cDNA of BnRGA contained a 1,740 bp open reading frame (ORF) encoding a precursor protein of 579 amino acid residues. Comparative and bioinformatics analyses revealed that BnRGA showed a high degree of homology with DELLA proteins and contained the DELLA domain, TVHYNP domain, VHIID domain and RVER domain. Using real-time PCR, the expression patterns of BnRGA and two our previously isolated genes, BnGID1a and BnSLY1 in B. napus, were analyzed by adding exogenous gibberellins acid-3 (GA(3)), GA biosynthetic inhibitor paclobutrazol (PAC) and abscisic acid (ABA). The results showed that the expression of BnGID1a and BnSLY1 was down-regulated after treated by GA(3) and induced by PAC and ABA. These results suggest that the expression of BnGID1a and BnSLY1 may be negatively regulated by the level of endogenous GA in B. napus. Moreover, BnRGA was not significantly regulated by GA(3), PAC and ABA in the low concentrations. These suggest that GA-GID1-SCF-DELLA complex may have a mechanism of self-regulation, thereby preserving the stability of the expression level of BnRGA in B. napus.
Collapse
Affiliation(s)
- Yong Gao
- College of Bioscience and Biotechnology, Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
366
|
Song J, Guo B, Song F, Peng H, Yao Y, Zhang Y, Sun Q, Ni Z. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene 2011; 482:34-42. [PMID: 21640170 DOI: 10.1016/j.gene.2011.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022]
Abstract
Gibberellin (GA) is an essential phytohormone that controls many aspects of plant development. To enhance our understanding of GA metabolism in maize, we intensively screened and identified 27 candidate genes encoding the seven GA metabolic enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox), using all available public maize databases. The results indicate that maize genome contains three CPS, four KS, two KO and one KAO genes, and most of them are arranged separately on the maize genome, which differs from that in rice. In addition, the enzymes catalyzing the later steps (ZmGA20ox, ZmGA3ox and ZmGA2ox) are also encoded by gene families in maize, but GA3ox enzyme is likely to be encoded by single gene. Expression profiling analysis exhibited that transcripts of 15 GA metabolic genes could be detected during maize seed germination, which provides further evidence for the notion that increased synthesis of active GA in the embryo is required for triggering germination events. Moreover, a variety of temporal genes expression patterns of GA metabolic genes were detected, which revealed the complexity of underlying mechanism for GA regulated seed germination.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
367
|
DeMason DA, Chetty VJ. Interactions between GA, auxin, and UNI expression controlling shoot ontogeny, leaf morphogenesis, and auxin response in Pisum sativum (Fabaceae): or how the uni-tac mutant is rescued. AMERICAN JOURNAL OF BOTANY 2011; 98:775-91. [PMID: 21613058 DOI: 10.3732/ajb.1000358] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Leaf morphogenesis, including that of compound leaves, provides the basis for the great diversity of leaf form among higher plants. Leaf form is an important character by which plants adapt to their environment. The common garden pea provides a developmental model system for understanding leaf development in the legumes and a contrasting one for other groups of plants. METHODS We used genetic, tissue culture, and physiological methods, as well as DR5::GUS expression and qRT-PCR, to explore the interactions between the hormones gibberellic acid (GA) and auxin and Unifoliata ( UNI ) gene expression that control leaf morphogenesis in pea. KEY RESULTS Rate of increase in leaf complexity during shoot ontogeny (i.e., heteroblasty) and adult leaf complexity are controlled by GA through UNI . Leaves on greenhouse-grown uni-tac mutants are rescued by weekly GA or auxin applications. Auxin responsiveness is reduced in uni-tac shoot and root tips and in wild-type shoot tips treated with auxin transport inhibitors. GA and auxin increase UNI mRNA levels in uni-tac as well as that of other transcription factors. CONCLUSIONS GA and auxin positively promote leaf dissection during leaf morphogenesis in pea by prolonging the time during which acropetally initiated pinna pairs are produced. GA-generated elaboration of leaf morphogenesis is in distinct contrast to that in other species, such as tomato and Cardamine . Instead, GA and auxin play common and supportive roles in pea leaf morphogenesis as they do in many other aspects of plant development
Collapse
Affiliation(s)
- Darleen A DeMason
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California 29521, USA.
| | | |
Collapse
|
368
|
Sun TP. The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Curr Biol 2011; 21:R338-45. [DOI: 10.1016/j.cub.2011.02.036] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
369
|
Xiang H, Takeuchi H, Tsunoda Y, Nakajima M, Murata K, Ueguchi-Tanaka M, Kidokoro SI, Kezuka Y, Nonaka T, Matsuoka M, Katoh E. Thermodynamic characterization of OsGID1-gibberellin binding using calorimetry and docking simulations. J Mol Recognit 2011; 24:275-82. [PMID: 21360613 DOI: 10.1002/jmr.1049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gibberellins (GAs) are phytohormones regulating various developmental processes in plants. In rice, the initial GA-signaling events involve the binding of a GA to the soluble GA receptor protein, GID1. Although X-ray structures for certain GID1/GA complexes have recently been determined, an examination of the complexes does not fully clarify how GID1s discriminate among different GAs. Herein, we present a study aimed at defining the types of forces important to binding via a combination of isothermal titration calorimetry (ITC) and computational docking studies that employed rice GID1 (OsGID1), OsGID1 mutants, which were designed to have a decreased possible number of hydrogen bonds with bound GA, and GA variants. We find that, in general, GA binding is enthalpically driven and that a hydrogen bond between the phenolic hydroxyl of OsGID1 Tyr134 and the C-3 hydroxyl of a GA is a defining structural element. A hydrogen-bond network that involves the C-6 carboxyl of a GA that directly hydrogen bonds the hydroxyl of Ser198 and indirectly, via a two-water-molecule network, the phenolic hydroxyl of Tyr329 and the NH of the amide side-chain of Asn255 is also important for GA binding. The binding of OsGID1 by GA(1) is the most enthalpically driven association found for the biologically active GAs evaluated in this study. This observation might be a consequence of a hydrogen bond formed between the hydroxyl at the C-13 position of GA(1) and the main chain carbonyl of OsGID1 Phe245. Our results demonstrate that by combining ITC experiments and computational methods much can be learned about the thermodynamics of ligand/protein binding.
Collapse
Affiliation(s)
- Hongyu Xiang
- Division of Plant Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Fambrini M, Mariotti L, Parlanti S, Picciarelli P, Salvini M, Ceccarelli N, Pugliesi C. The extreme dwarf phenotype of the GA-sensitive mutant of sunflower, dwarf2, is generated by a deletion in the ent-kaurenoic acid oxidase1 (HaKAO1) gene sequence. PLANT MOLECULAR BIOLOGY 2011; 75:431-50. [PMID: 21279813 DOI: 10.1007/s11103-011-9740-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 01/15/2011] [Indexed: 05/25/2023]
Abstract
A dwarf mutant, dw arf 2 (dw2), was isolated from sunflower (Helianthus annuus). The most obvious alterations of dw2 plants were the lack of stem growth, reduced size of leaves, petioles and flower organs, retarded flower development. Pollen and ovules were produced but the filaments failed to extrude the anthers from the corolla. The dw2 phenotype was mainly because of reduced cell size. In dw2 leaves, the dark-green color was not so much due to higher pigment content, but was correlated with a changed leaf morphology. The mutant responded to the application of bioactive gibberellins (GAs). The levels of ent-7α-hydroxykaurenoic acid, GA(19), GA(20) and GA(1) in dw2 seedlings were severely decreased relative to those in its wild type (WT). ent-Kaurenoic acid was actively converted to ent-7α-hydroxykaurenoic acid in WT plants but quite poorly in dw2 plants. All together these data suggested that the dw2 mutation severely reduced the flux through the biosynthetic pathway leading to active GAs by hampering the conversion of ent-kaurenoic acid to GA(12). Two ent-kaurenoic acid oxidase (KAO) genes were identified. HaKAO1 was expressed everywhere in sunflower organs, while HaKAO2 was mainly expressed in roots. We demonstrated that a DNA deletion in HaKAO1 of dw2 generated aberrant mRNA-splicing, causing a premature stop codon in the amino acid sequence. In dw2 calli, Agrobacterium-mediated transfer of WT HaKAO1 cDNA restored the WT endogenous levels of GAs. In segregating BC(1) progeny, the deletion co-segregated with the dwarf phenotype. The deletion was generated near to a breakpoint of a more complex chromosome rearrangement.
Collapse
Affiliation(s)
- Marco Fambrini
- Dipartimento di Biologia delle Piante Agrarie, Sezione di Genetica, Università di Pisa, Via Matteotti 1B, 56124, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
371
|
Dornelas MC, Patreze CM, Angenent GC, Immink RGH. MADS: the missing link between identity and growth? TRENDS IN PLANT SCIENCE 2011; 16:89-97. [PMID: 21144794 DOI: 10.1016/j.tplants.2010.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/29/2010] [Accepted: 11/03/2010] [Indexed: 05/08/2023]
Abstract
Size and shape are intrinsic characteristics of any given plant organ and, therefore, are inherently connected with its identity. How the connection between identity and growth is established at the molecular level remains one of the key questions in developmental biology. The identity of floral organs is determined by a hierarchical combination of transcription factors, most of which belong to the MADS box family. Recent progress in finding the target genes of these master regulators reopened the debate about the missing link between identity and floral organ growth. Here, we review these novel findings and integrate them into a model, to show how MADS proteins, in concert with co-factors, could fulfill their role at later stages of floral organ development when size and shape are established.
Collapse
Affiliation(s)
- Marcelo C Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
372
|
Han KM, Dharmawardhana P, Arias RS, Ma C, Busov V, Strauss SH. Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:162-78. [PMID: 20573046 DOI: 10.1111/j.1467-7652.2010.00537.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We studied the effects on plant growth from insertion of five cisgenes that encode proteins involved in gibberellin metabolism or signalling. Intact genomic copies of PtGA20ox7, PtGA2ox2,Pt RGL1_1, PtRGL1_2 and PtGAI1 genes from the genome-sequenced Populus trichocarpa clone Nisqually-1 were transformed into Populus tremula × alba (clone INRA 717-1B4), and growth, morphology and xylem cell size characterized in the greenhouse. Each cisgene encompassed 1-2 kb of 5' and 1 kb of 3' flanking DNA, as well as all native exons and introns. Large numbers of independent insertion events per cisgene (19-38), including empty vector controls, were studied. Three of the cisgenic modifications had significant effects on plant growth rate, morphology or wood properties. The PtGA20ox7 cisgene increased rate of shoot regeneration in vitro, accelerated early growth, and variation in growth rate was correlated with PtGA20ox7 gene expression. PtRGL1_1 and PtGA2ox2 caused reduced growth, while PtRGL1_2 gave rise to plants that grew normally but had significantly longer xylem fibres. RT-PCR studies suggested that the lack of growth inhibition observed in PtRGL1_2 cisgenic plants was a result of co-suppression. PtGAI1 slowed regeneration rate and both PtGAI1 and PtGA20ox7 gave rise to increased variance among events for early diameter and volume index, respectively. Our work suggests that cisgenic insertion of additional copies of native genes involved in growth regulation may provide tools to help modify plant architecture, expand the genetic variance in plant architecture available to breeders and accelerate transfer of alleles between difficult-to-cross species.
Collapse
Affiliation(s)
- Katherine M Han
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | |
Collapse
|
373
|
Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang Y, Feng Y, Cheng Z, Yuan M, Chong K. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. THE PLANT CELL 2011; 23:628-40. [PMID: 21325138 PMCID: PMC3077781 DOI: 10.1105/tpc.110.081901] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 12/30/2010] [Accepted: 01/21/2011] [Indexed: 05/17/2023]
Abstract
The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant, gibberellin-deficient dwarf1 (gdd1), that has a phenotype of greatly reduced length of root, stems, spikes, and seeds. This reduced length is due to decreased cell elongation and can be rescued by exogenous gibberellic acid (GA₃) treatment. GDD1 was cloned by a map-based approach, was expressed constitutively, and was found to encode the kinesin-like protein BRITTLE CULM12 (BC12). Microtubule cosedimentation assays revealed that BC12/GDD1 bound to microtubules in an ATP-dependent manner. Whole-genome microarray analysis revealed the expression of ent-kaurene oxidase (KO2), which encodes an enzyme involved in GA biosynthesis, was downregulated in gdd1. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that GDD1 bound to the element ACCAACTTGAA in the KO2 promoter. In addition, GDD1 was shown to have transactivation activity. The level of endogenous GAs was reduced in gdd1, and the reorganization of cortical microtubules was altered. Therefore, BC12/GDD1, a kinesin-like protein with transcription regulation activity, mediates cell elongation by regulating the GA biosynthesis pathway in rice.
Collapse
Affiliation(s)
- Juan Li
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiafu Jiang
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yunyuan Xu
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cui Zhang
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Du
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Luo
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guoxing Zou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Mingluan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yunqing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhukuan Cheng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Kang Chong
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
374
|
Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, Martin CR, Davies KM. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. THE NEW PHYTOLOGIST 2011; 189:602-15. [PMID: 21039563 DOI: 10.1111/j.1469-8137.2010.03498.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pigment stripes associated with veins (venation) is a common flower colour pattern. The molecular genetics and function of venation were investigated in the genus Antirrhinum, in which venation is determined by Venosa (encoding an R2R3MYB transcription factor). Pollinator preferences were measured by field tests with Antirrhinum majus. Venosa function was examined using in situ hybridization and transient overexpression. The origin of the venation trait was examined by molecular phylogenetics. Venation and full-red flower colouration provide a comparable level of advantage for pollinator attraction relative to palely pigmented or white lines. Ectopic expression of Venosa confers pigmentation outside the veins. Venosa transcript is produced only in small areas of the corolla between the veins and the adaxial epidermis. Phylogenetic analyses suggest that venation patterning is an ancestral trait in Antirrhinum. Different accessions of three species with full-red pigmentation with or without venation patterning have been found. Epidermal-specific venation is defined through overlapping expression domains of the MYB (myoblastoma) and bHLH (basic Helix-Loop-Helix) co-regulators of anthocyanin biosynthesis, with the bHLH providing epidermal specificity and Venosa vein specificity. Venation may be the ancestral trait, with full-red pigmentation a derived, polyphyletic trait. Venation patterning is probably not fixed once species evolve full-red floral pigmentation.
Collapse
Affiliation(s)
- Yongjin Shang
- New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
375
|
Lee KP, Piskurewicz U, Turečková V, Strnad M, Lopez-Molina L. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci U S A 2010; 107:19108-13. [PMID: 20956298 PMCID: PMC2973907 DOI: 10.1073/pnas.1012896107] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Seed dormancy is an ecologically important adaptive trait in plants whereby germination is repressed even under favorable germination conditions such as imbibition with water. In Arabidopsis and most plant species, dormancy absolutely requires an unidentified seed coat germination-repressive activity and constitutively higher abscisic acid (ABA) levels upon seed imbibition. The mechanisms underlying these processes and their possible relationship are incompletely understood. We developed a "seed coat bedding" assay monitoring the growth of dissected embryos cultured on a layer of seed coats, allowing combinatorial experiments using dormant, nondormant, and various genetically modified seed coat and embryonic materials. This assay, combined with direct ABA measurements, revealed that, upon imbibition, dormant coats, unlike nondormant coats, actively produce and release ABA to repress embryo germination, whatever the embryo origin, i.e., from dormant, nondormant, or never dormant aba seeds, unable to synthesize ABA. The persistent high ABA levels in imbibed dormant seeds requires the permanent expression of the DELLA gene RGL2, where it remains insensitive to gibberellins (GA) unlike in nondormant seeds. These findings present the seed coat as an organ actively controlling germination upon seed imbibition and provide a framework to investigate how environmental factors break seed dormancy.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Département de Biologie Végétale, Université de Genève, 1211 Geneva 4, Switzerland; and
| | - Urszula Piskurewicz
- Département de Biologie Végétale, Université de Genève, 1211 Geneva 4, Switzerland; and
| | - Veronika Turečková
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 783 71 Olomouc, Czech Republic
| | - Luis Lopez-Molina
- Département de Biologie Végétale, Université de Genève, 1211 Geneva 4, Switzerland; and
| |
Collapse
|
376
|
Li W, Wu J, Weng S, Zhang Y, Zhang D, Shi C. Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. PLANTA 2010; 232:1383-96. [PMID: 20830595 DOI: 10.1007/s00425-010-1263-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/25/2010] [Indexed: 05/15/2023]
Abstract
A dwarf mutant, dwarf 62 (d62), was isolated from rice cultivar 93-11 by mutagenesis with γ-rays. Under normal growth conditions, the mutant had multiple abnormal phenotypes, such as dwarfism, wide and dark-green leaf blades, reduced tiller numbers, late and asynchronous heading, short roots, partial male sterility, etc. Genetic analysis indicated that the abnormal phenotypes were controlled by the recessive mutation of a single nuclear gene. Using molecular markers, the D62 gene was fine mapped in 131-kb region at the short arm of chromosome 6. Positional cloning of D62 gene revealed that it was the same locus as DLT/OsGRAS-32, which encodes a member of the GRAS family. In previous studies, the DLT/OsGRAS-32 is confirmed to play positive roles in brassinosteroid (BR) signaling. Sequence analysis showed that the d62 carried a 2-bp deletion in ORF region of D62 gene which led to a loss-of-function mutation. The function of D62 gene was confirmed by complementation experiment. RT-PCR analysis and promoter activity analysis showed that the D62 gene expressed in all tested tissues including roots, stems, leaves and panicles of rice plant. The d62 mutant exhibited decreased activity of α-amylase in endosperm and reduced content of endogenous GA(1). The expression levels of gibberellin (GA) biosynthetic genes including OsCPS1, OsKS1, OsKO1, OsKAO, OsGA20ox2/SD1 and OsGA2ox3 were significantly increased in d62 mutant. Briefly, these results demonstrated that the D62 (DLT/OsGRAS-32) not only participated in the regulation of BR signaling, but also influenced GA metabolism in rice.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | |
Collapse
|
377
|
Zhao XY, Zhu DF, Zhou B, Peng WS, Lin JZ, Huang XQ, He RQ, Zhuo YH, Peng D, Tang DY, Li MF, Liu XM. Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.). J Zhejiang Univ Sci B 2010; 11:471-81. [PMID: 20593511 DOI: 10.1631/jzus.b1000161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gibberellin 2-oxidase (GA 2-oxidase) plays very important roles in plant growth and development. In this study, the AtGA2ox8 gene, derived from Arabidopsis (Arabidopsis thaliana), was transformed and over-expressed in rapeseed (Brassica napus L.) to assess the role of AtGA2ox8 in biomass accumulation and lignification in plants. The transgenic plants, identified by resistant selection, polymerase chain reaction (PCR) and reverse-transcription PCR (RT-PCR) analyses, and green fluorescence examination, showed growth retardation, flowering delay, and dwarf stature. The fresh weight and dry weight in transgenic lines were about 21% and 29% lower than those in wild type (WT), respectively, and the fresh to dry weight ratios were higher than that of WT. Quantitative measurements demonstrated that the lignin content in transgenic lines decreased by 10%-20%, and histochemical staining results also showed reduced lignification in transgenic lines. Quantitative real-time PCR analysis indicated that the transcript levels of lignin biosynthetic genes in transgenic lines were markedly decreased and were consistent with the reduced lignification. These results suggest that the reduced biomass accumulation and lignification in the AtGA2ox8 over-expression rapeseed might be due to altered lignin biosynthetic gene expression.
Collapse
Affiliation(s)
- Xiao-ying Zhao
- Bioenergy and Biomaterial Research Center, Institute of Life Science and Technology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Pugliesi C, Fambrini M, Salvini M. Molecular Cloning and Expression Profile Analysis of Three Sunflower (Helianthus annuus) Diterpene Synthase Genes. Biochem Genet 2010; 49:46-62. [DOI: 10.1007/s10528-010-9384-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022]
|
379
|
Sun TP. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. PLANT PHYSIOLOGY 2010; 154:567-70. [PMID: 20921186 PMCID: PMC2949019 DOI: 10.1104/pp.110.161554] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/14/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Tai-ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
380
|
Ueguchi-Tanaka M, Matsuoka M. The perception of gibberellins: clues from receptor structure. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:503-8. [PMID: 20851040 DOI: 10.1016/j.pbi.2010.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/13/2010] [Accepted: 08/18/2010] [Indexed: 05/18/2023]
Abstract
The discovery of GID1, a soluble receptor for gibberellins (GAs), has revealed new insights into how GA is perceived. X-ray analysis has demonstrated similarities in the tertiary structure of GID1 to hormone sensitive lipase (HSL), and the GA-binding pocket of GID1 corresponds to the active site of HSL. X-ray analysis has also revealed the structural basis of the GA-GID1 interaction, and evolutionary aspects of GID1 have been discovered by comparison to GID1 from non-flowering plants. Recent studies have also demonstrated the complexity of GA signaling in Arabidopsis, which is mediated by three GID1 and five DELLA proteins. Finally, mechanistic and structural similarities for hormone signaling are compared for GA, auxin and abscisic acid, three hormones where the receptor protein structure was recently described.
Collapse
|
381
|
Sojikul P, Kongsawadworakul P, Viboonjun U, Thaiprasit J, Intawong B, Narangajavana J, Svasti MRJ. AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation. PHYSIOLOGIA PLANTARUM 2010; 140:189-198. [PMID: 20536786 DOI: 10.1111/j.1399-3054.2010.01389.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a root crop that accumulates large quantities of starch, and it is an important source of carbohydrate. Study on gene expressions during storage root development provides important information on storage root formation and starch accumulation as well as unlock new traits for improving of starch yield. cDNA-Amplified Fragment Length Polymorphism (AFLP) was used to compare gene expression profiles in fibrous and storage roots of cassava cultivar Kasetsart 50. Total of 155 differentially expressed transcript-derived fragments with undetectable or low expression in leaves were characterized and classified into 11 groups regarding to their functions. The four major groups were no similarity (20%), hypothetical or unknown proteins (17%), cellular metabolism and biosynthesis (17%) and cellular communication and signaling (14%). Interestingly, sulfite reductase (MeKD82), calcium-dependent protein kinase (CDPK) (MeKD83), ent-kaurene synthase (KS) (MeKD106) and hexose transporter (HT) (MeKD154) showed root-specific expression patterns. This finding is consistent with previously reported genes involved in the initiation of potato tuber. Semi-quantitative reverse transcription polymerase chain reaction of early-developed root samples confirmed that those four genes exhibited significant expression with similar pattern in the storage root initiation and early developmental stages. We proposed that KS and HT may involve in transient induction of CDPK expression, which may play an important role in the signaling pathway of storage root initiation. Sulfite reductase, on the other hand, may involve in storage root development by facilitating sulfur-containing protein biosynthesis or detoxifying the cyanogenic glucoside content through aspartate biosynthesis.
Collapse
Affiliation(s)
- Punchapat Sojikul
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | | | |
Collapse
|
382
|
Yaish MW, El-kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 2010; 6:e1001098. [PMID: 20838584 PMCID: PMC2936520 DOI: 10.1371/journal.pgen.1001098] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/28/2010] [Indexed: 11/18/2022] Open
Abstract
The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2) domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA) biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI) protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs) in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.
Collapse
Affiliation(s)
- Mahmoud W. Yaish
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ashraf El-kereamy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tong Zhu
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina, United States of America
| | - Perrin H. Beatty
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Allen G. Good
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
383
|
Hong JK, Kim JS, Kim JA, Lee SI, Lim MH, Park BS, Lee YH. Identification and characterization of SHI family genes from Brassica rapa L. ssp. pekinensis. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0011-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
384
|
Hayashi KI, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander LN, Yamane H, Hasebe M, Nozaki H. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. PLANT PHYSIOLOGY 2010; 153:1085-97. [PMID: 20488896 PMCID: PMC2899919 DOI: 10.1104/pp.110.157909] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurene via ent-kaurenoic acid. GAs are ubiquitously present in seed plants. The GA signal is perceived and transduced by the GID1 GA receptor/DELLA repressor pathway. The lycopod Selaginella moellendorffii biosynthesizes GA and has functional GID1-DELLA signaling components. In contrast, no GAs or functionally orthologous GID1-DELLA components have been found in the moss Physcomitrella patens. However, P. patens produces ent-kaurene, a common precursor for GAs, and possesses a functional ent-kaurene synthase, PpCPS/KS. To assess the biological role of ent-kaurene in P. patens, we generated a PpCPS/KS disruption mutant that does not accumulate ent-kaurene. Phenotypic analysis demonstrates that the mutant has a defect in the protonemal differentiation of the chloronemata to caulonemata. Gas chromatography-mass spectrometry analysis shows that P. patens produces ent-kaurenoic acid, an ent-kaurene metabolite in the GA biosynthesis pathway. The phenotypic defect of the disruptant was recovered by the application of ent-kaurene or ent-kaurenoic acid, suggesting that ent-kaurenoic acid, or a downstream metabolite, is involved in protonemal differentiation. Treatment with uniconazole, an inhibitor of ent-kaurene oxidase in GA biosynthesis, mimics the protonemal phenotypes of the PpCPS/KS mutant, which were also restored by ent-kaurenoic acid treatment. Interestingly, the GA(9) methyl ester, a fern antheridiogen, rescued the protonemal defect of the disruption mutant, while GA(3) and GA(4), both of which are active GAs in angiosperms, did not. Our results suggest that the moss P. patens utilizes a diterpene metabolite from ent-kaurene as an endogenous developmental regulator and provide insights into the evolution of GA functions in land plants.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 2010; 20:1138-43. [PMID: 20605455 DOI: 10.1016/j.cub.2010.05.035] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/29/2010] [Accepted: 05/12/2010] [Indexed: 11/24/2022]
Abstract
Upon seed germination, apical meristems grow as cell division prevails over differentiation and reach their final size when division and differentiation reach a balance. In the Arabidopsis root meristem, this balance results from the interaction between cytokinin (promoting differentiation) and auxin (promoting division) through a regulatory circuit whereby the ARR1 cytokinin-responsive transcription factor activates the gene SHY2, which negatively regulates the PIN genes encoding auxin transport facilitators. However, it remains unknown how the final meristem size is set, i.e., how a change in the relative rates of cell division and differentiation is brought about to cause meristem growth to stop. Here, we show that during meristem growth, expression of SHY2 is driven by another cytokinin-response factor, ARR12, and that completion of growth is brought about by the upregulation of SHY2 caused by both ARR12 and ARR1: this leads to an increase in cell differentiation rate that balances it with division, thus setting root meristem size. We also show that gibberellins selectively repress expression of ARR1 at early stages of meristem development, and that the DELLA protein REPRESSOR OF GA 1-3 (RGA) mediates this negative control.
Collapse
|
386
|
Xi W, Liu C, Hou X, Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. THE PLANT CELL 2010; 22:1733-48. [PMID: 20551347 PMCID: PMC2910974 DOI: 10.1105/tpc.109.073072] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 04/18/2010] [Accepted: 05/27/2010] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) and gibberellin (GA) are two antagonistic phytohormones that regulate seed germination in response to biotic and abiotic environmental stresses. We demonstrate here that MOTHER OF FT AND TFL1 (MFT), which encodes a phosphatidylethanolamine-binding protein, regulates seed germination via the ABA and GA signaling pathways in Arabidopsis thaliana. MFT is specifically induced in the radical-hypocotyl transition zone of the embryo in response to ABA, and mft loss-of-function mutants show hypersensitivity to ABA in seed germination. In germinating seeds, MFT expression is directly regulated by ABA-INSENSITIVE3 (ABI3) and ABI5, two key transcription factors in ABA signaling pathway. MFT is also upregulated by DELLA proteins in the GA signaling pathway. MFT in turn provides negative feedback regulation of ABA signaling by directly repressing ABI5. We conclude that during seed germination, MFT promotes embryo growth by constituting a negative feedback loop in the ABA signaling pathway.
Collapse
Affiliation(s)
| | | | | | - Hao Yu
- Address correspondence to
| |
Collapse
|
387
|
Luo H, Sun C, Li Y, Wu Q, Song J, Wang D, Jia X, Li R, Chen S. Analysis of expressed sequence tags from the Huperzia serrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation. PHYSIOLOGIA PLANTARUM 2010; 139:1-12. [PMID: 20059733 DOI: 10.1111/j.1399-3054.2009.01339.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Huperzia serrata produces various types of lycopodium alkaloids, especially the huperzine A (HupA) that is a promising drug candidate for Alzheimer's disease. Despite the medicinal importance of H. serrata, little genomic or transcriptomic data are available from the public databases. A cDNA library was thus generated from RNA isolated from the leaves of H. serrata. A total of 4012 clones were randomly selected from the library, and 3451 high-quality expressed sequence tags (ESTs) were assembled to yield 1510 unique sequences with an average length of 712 bp. The majority (79.4%) of the unique sequences were assigned to the putative functions based on the BLAST searches against the public databases. The functions of these unique sequences covered a broad set of molecular functions, biological processes and biochemical pathways according to GO and KEGG assignments. The transcripts involved in the secondary metabolite biosynthesis of alkaloids, terpenoids and flavone/flavonoids, such as cytochrome P450, lysine decarboxylase (LDC), flavanone 3-hydroxylase, squalene synthetase and 2-oxoglutarate 3-dioxygenase, were well represented by 34 unique sequences in this EST dataset. The corresponding peptide sequence of the LDC contained the Pfam 03641 domain and was annotated as a putative LDC. The unique sequences encoding transcription factors, phytohormone biosynthetic enzymes and signaling components were also found in this EST collection. In addition, a total of 501 potential SSR-motif microsatellite loci were identified from the 393 H. serrata leaf unique sequences. This set of non-redundant ESTs and the molecular markers obtained in this study will establish valuable resources for a wide range of applications including gene discovery and identification, genetic mapping and analysis of genetic diversity, cultivar identification and marker-assisted selections in this important medicinal plant.
Collapse
Affiliation(s)
- Hongmei Luo
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, HaiDian District, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Pawłowski TA. Proteomic approach to analyze dormancy breaking of tree seeds. PLANT MOLECULAR BIOLOGY 2010; 73:15-25. [PMID: 20306286 DOI: 10.1007/s11103-010-9623-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 03/05/2010] [Indexed: 05/29/2023]
Abstract
In forest broadleaves from the temperate zone, a large number of species exhibit seed dormancy phenomena. Tree seeds show some of the most pronounced and complicated forms of dormancy in the plant kingdom. Many seeds are deeply physiologically dormant whatever their moisture level and age. However, dormancy can usually be overcome by a cold or warm stratification for several months. The transition from seed dormancy to germination is a multi-step process. In combination with the availability of genome sequence data, proteomics has opened up enormous possibilities for identifying the total set of expressed proteins as well as expression changes during dormancy breaking. The proteomic approach used for analysis of dormancy breaking of tree seeds offers new data allowing better understanding of the mechanism of deep physiological dormancy. The results of proteomic studies on dormancy breaking and the presence of abscisic and gibberellic acids in tree seeds (beech Fagus sylvatica L., Norway maple Acer platanoides L. and sycamore Acer pseudoplatanus L.), help to explain this process better. Most of the changes in protein expression were observed at the end of stratification and in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. The analysis of the proteins' function showed that the mechanism of seed dormancy breaking involves many processes. Energy metabolism, proteasome, transcription, protein synthesis, signal transduction and methionine metabolism proteins have a special importance.
Collapse
|
389
|
Iwamoto M, Baba-Kasai A, Kiyota S, Hara N, Takano M. ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. PLANT, CELL & ENVIRONMENT 2010; 33:805-15. [PMID: 20040065 DOI: 10.1111/j.1365-3040.2009.02106.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although reports on a gene for 1-amino-cyclopropane-1-carboxylate (ACC) oxidase (ACO1) in rice (Oryza sativa L.) suggest that high levels of its transcript are associated with internode elongation of deep-water rice during submergence, the role of ACO1 in rice development is largely unknown. The tissue-specificity of ACO1 expression indicated that its transcript significantly accumulated in lower parts of elongating internodes at the heading stage. Histochemical analysis and in situ hybridization showed that the ACO1 expression was localized in the basal parts of leaf sheaths immediately above nodes or the lower parts of elongating internodes. To further examine the role of ACO1, ACO1-deficient (aco1) and overexpressing (ACO1-OX) mutants were characterized. The total length of the elongated internodes of aco1 mutants was slightly shorter than that of wild-type plants and that of ACO1-OX mutants was longer. Interestingly, expression of the ACC synthase gene ACS1 and ethylene signalling gene OsEIN2 was up-regulated in the aco1 mutants. This study suggests that the ACO1 has a little effect on internode elongation at the heading stage, and that up-regulation of the ACS1 and OsEIN2 expression may attenuate inhibition of internode elongation.
Collapse
Affiliation(s)
- M Iwamoto
- Photobiology and Photosynthesis Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|
390
|
Molecular cloning and expression analysis of an F-box protein gene responsive to plant hormones in Brassica napus. Mol Biol Rep 2010; 37:1037-44. [PMID: 19757159 DOI: 10.1007/s11033-009-9822-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
F-box protein family is characterized by an F-box motif that has been shown to be critical for the controlled degradation of regulatory proteins. In plant, F-box protein plays an important role in signal pathways and involved in various signal transduction systems. A full-length cDNA encoding a putative F-box protein, designated as BnSLY1, was isolated from Brassica napus. The full-length cDNA of BnSLY1 was 809 bp containing a 438 bp open reading frame encoding a precursor protein of 138 amino acid residues. Comparative and bioinformatic analyses revealed that BnSLY1 showed high degree of homology with F-box proteins from other plant species and contained F-box, GGF and LSL conserved motifs. The expression of BnSLY1 under exogenous gibberellins acid-3 (GA3), abscisic acid (ABA) and GA biosynthetic inhibitor paclobutrazol (PAC) was analyzed using real-time PCR. The results showed that the expression of BnSLY1 was down-regulated after GA3 treatment and prominently induced by ABA in the low concentrations. Moreover, BnSLY1 was also induction in the high concentrations of PAC. These results suggest that the expression of BnSLY1 was regulated by the exogenous GA3, ABA and PAC and may be related to endogenous level of GA in B. napus.
Collapse
|
391
|
Guo R, Yu F, Gao Z, An H, Cao X, Guo X. GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Mol Biol Rep 2010; 38:49-58. [PMID: 20238169 DOI: 10.1007/s11033-010-0076-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 03/05/2010] [Indexed: 11/29/2022]
Abstract
WRKY proteins play important roles in plant defense responses. In the present study, a novel WRKY gene, nominated as GhWRKY3, was isolated from cotton (Gossypium hirsutum L.). The full-length cDNA of GhWRKY3 is 1,705 bp in length and encodes a protein with 507 amino acids containing two typical WRKY domains and two zinc finger motifs. Amino acid sequence alignment revealed that GhWRKY3 shares a high degree of identity with other higher plant WRKY proteins. The subcellular localization assay indicated that GhWRKY3 is localized to the nucleus. Analysis of 5'-flanking region of GhWRKY3 revealed a group of putative cis-acting elements. The results of expression analysis indicated that GhWRKY3 is constitutively expressed in roots, stems and leaves. Semi-quantitative RT-PCR showed that GhWRKY3 is up-regulated by application of various phytohormones including salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), gibberellins (GAs) and ethylene (ET). Furthermore, the transcripts of GhWRKY3 are enhanced after infection with Rhizoctonia solani, Colletotrichum gossypii and Fusarium oxysporum f. sp. vasinfectum, respectively. Also, GhWRKY3 can be induced by wounding treatment, but not by cytokinin (6-benzylaminopurine, 6-BA), auxin analogue, drought, NaCl, and cold (4°C). These data suggested that GhWRKY3 might play an important role in plant defense responses and fulfill a pivotal role in plant development.
Collapse
Affiliation(s)
- Ruoyu Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
392
|
Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. THE PLANT CELL 2010; 22:623-639. [PMID: 20354195 DOI: 10.1105/tpc.109.073239pmcid:150761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response.
Collapse
Affiliation(s)
- Jiqing Gou
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295, USA
| | | | | | | | | | | | | |
Collapse
|
393
|
Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. THE PLANT CELL 2010; 22:623-39. [PMID: 20354195 PMCID: PMC2861444 DOI: 10.1105/tpc.109.073239] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/17/2010] [Accepted: 03/11/2010] [Indexed: 05/18/2023]
Abstract
The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response.
Collapse
Affiliation(s)
- Jiqing Gou
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5752
| | - Chung Jui Tsai
- Warnell School of Forestry and Natural Resources, Department of Genetics, University of Georgia, Athens, Georgia 30602-2152
| | - Kai Fang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Yiru Chen
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Victor B. Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295
| |
Collapse
|
394
|
Meier I, Brkljacic J. The Arabidopsis nuclear pore and nuclear envelope. THE ARABIDOPSIS BOOK 2010; 8:e0139. [PMID: 22303264 PMCID: PMC3244964 DOI: 10.1199/tab.0139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and-through the nuclear envelope lumen-the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research-predominantly focusing on Arabidopsis as a model-is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration.
Collapse
Affiliation(s)
- Iris Meier
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
- Address correspondence to
| | - Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
| |
Collapse
|
395
|
Zimmermann R, Sakai H, Hochholdinger F. The Gibberellic Acid Stimulated-Like gene family in maize and its role in lateral root development. PLANT PHYSIOLOGY 2010; 152:356-65. [PMID: 19926801 PMCID: PMC2799369 DOI: 10.1104/pp.109.149054] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/17/2009] [Indexed: 05/18/2023]
Abstract
In an approach to study lateral root development in monocots, genome-wide searches for homologs of the Gibberellic Acid Stimulated Transcript-like (GAST-like) gene family in rice (Oryza sativa) and maize (Zea mays) were carried out. Six novel GAST-like genes in rice and 10 members of the gene family in maize, which were designated ZmGSL (for Z. mays Gibberellic Acid Stimulated-Like), were identified. The ZmGSL family encodes small proteins of 75 to 128 amino acids, which are characterized by a conserved 59 to 64 amino acid C-terminal domain. Within this domain, 17 amino acids, including 12 cysteines, are perfectly conserved. The transcript of the ZmGSL1 gene is differentially spliced into the alternative variants ZmGSL1a and ZmGSL1b, the latter of which is translated into a premature protein that lacks the C-terminal domain. The presence of an additional N-terminal cleavable signal sequence in eight of the 10 ZmGSL proteins suggests that they are secreted into the extracellular matrix. In-depth root-specific gene expression analyses carried out in the wild type and the lateral root mutants lrt1 and rum1 suggest a role for ZmGSL genes in early lateral root development, which is likely regulated by gibberellic acid. Expression patterns of ZmGSL1a and ZmGSL1b propose antagonistic functions of these splice variants during early lateral root formation.
Collapse
|
396
|
Singh DP, Filardo FF, Storey R, Jermakow AM, Yamaguchi S, Swain SM. Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis. PHYSIOLOGIA PLANTARUM 2010; 138:74-90. [PMID: 19825007 DOI: 10.1111/j.1399-3054.2009.01289.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have examined the role of gibberellins (GAs) in plant development by expression of the pea GA 2-oxidase2 (PsGA2ox2) cDNA, which encodes a GA inactivating enzyme, under the control of the MEDEA (MEA) promoter. Expression of MEA:PsGA2ox2 in Arabidopsis caused seed abortion, demonstrating that active GAs in the endosperm are essential for normal seed development. MEA:PsGA2ox2 plants had reduced ovule number per ovary and exhibited defects in phyllotaxy and leaf morphology which were partly suppressed by GA treatment. The leaf architecture and phyllotaxy defects of MEA:PsGA2ox2 plants were also restored by sly1-d which reduces DELLA protein stability to increase GA response. MEA:PsGA2ox2 seedlings had increased expression of the KNOTTED1-like homeobox (KNOX) genes, BP, KNAT2 and KNAT6, which are known to control plant architecture. The expression of KNOX genes is also altered in wild-type plants treated with GA. These results support the conclusion that GAs can suppress the effects of elevated KNOX gene expression, and raise the possibility that localized changes in GA levels caused by PsGA2ox2 alter the expression of KNOX genes to modify plant architecture.
Collapse
|
397
|
Zhou X, Cooke P, Li L. Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:357-67. [PMID: 19939886 PMCID: PMC2803205 DOI: 10.1093/jxb/erp308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/22/2009] [Accepted: 10/01/2009] [Indexed: 05/20/2023]
Abstract
Germination and early seedling development are coordinately regulated by glucose and phytohormones such as ABA, GA, and ethylene. However, the molecules that affect plant responses to glucose and phytohormones remain to be fully elucidated. Eukaryotic release factor 1 (eRF1) is responsible for the recognition of the stop codons in mRNAs during protein synthesis. Accumulating evidence indicates that eRF1 functions in other processes in addition to translation termination. The physiological role of eRF1-2, a member of the eRF1 family, in Arabidopsis was examined here. The eRF1-2 gene was found to be specifically induced by glucose. Arabidopsis plants overexpressing eRF1-2 were hypersensitive to glucose during germination and early seedling development. Such hypersensitivity to glucose was accompanied by a dramatic reduction of the expression of glucose-regulated genes, chlorophyll a/b binding protein and plastocyanin. The hypersensitive response was not due to the enhanced accumulation of ABA. In addition, the eRF1-2 overexpressing plants showed increased sensitivity to paclobutrazol, an inhibitor of GA biosynthesis, and exogenous GA restored their normal growth. By contrast, the loss-of-function erf1-2 mutant exhibited resistance to paclobutrazol, suggesting that eRF1-2 may exert a negative effect on the GA signalling pathway. Collectively, these data provide evidence in support of a novel role of eRF1-2 in affecting glucose and phytohormone responses in modulating plant growth and development.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Peter Cooke
- Microscopic Imaging, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Li Li
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
398
|
Bömke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. PHYTOCHEMISTRY 2009; 70:1876-93. [PMID: 19560174 DOI: 10.1016/j.phytochem.2009.05.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/05/2009] [Accepted: 05/23/2009] [Indexed: 05/07/2023]
Abstract
Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. GAs were first isolated as metabolites of a fungal rice pathogen, Gibberella fujikuroi, since renamed Fusarium fujikuroi. Although higher plants and the fungus produce structurally identical GAs, significant differences in their GA pathways, enzymes involved and gene regulation became apparent with the identification of GA biosynthetic genes in Arabidopsis thaliana and F. fujikuroi. Recent identifications of GA biosynthetic gene clusters in two other fungi, Phaeosphaeria spp. and Sphaceloma manihoticola, and the high conservation of GA cluster organization in these distantly related fungal species indicate that fungi evolved GA and other diterpene biosynthetic pathways independently from plants. Furthermore, the occurrence of GAs and recent identification of the first GA biosynthetic genes in the bacterium Bradyrhizobium japonicum make it possible to study evolution of GA pathways in general. In this review, we summarize our current understanding of the GA biosynthesis pathway, specifically the genes and enzymes involved as well as gene regulation and localization in the genomes of different fungi and compare it with that in higher and lower plants and bacteria.
Collapse
Affiliation(s)
- Christiane Bömke
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | | |
Collapse
|
399
|
Huang NC, Yu TS. The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:921-9. [PMID: 19453448 DOI: 10.1111/j.1365-313x.2009.03918.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In higher plants a number of physiological processes are regulated by systemic RNA signaling molecules. This phloem-mediated remote-control system provides specific and efficient regulation to fine-tune many plant developmental programs. However, the molecular mechanism underlying long-distance movement of RNA remains to be elucidated. To this end, we examined the long-distance movement of GA-insensitive (GAI) RNA by Arabidopsis inflorescence grafting and RT-PCR analysis. Our results demonstrated that long-distance movement of RNA only occurred in specific transcripts. In addition, the sequences of GAI RNA are necessary and sufficient to target GREEN FLUORESCENT PROTEIN (GFP) RNA for long-distance movement, which indicates that the trafficking of GAI RNA is mediated by specific RNA motifs. Further analyses revealed that the motifs at coding sequences and 3' untranslated regions of GAI RNA play important roles during RNA movement. In addition, the structure of the RNA rather than its specific sequence may also be important in GAI RNA trafficking. However, the secondary structure of GAI RNA is not the only factor to target RNA for long-distance movement, because recovery of the secondary structure of movement-defective GAI RNA only partially rescued RNA movement. Taken together, our results show that long-distance movement of non-cell autonomous RNA operates by specific RNA mobile elements.
Collapse
Affiliation(s)
- Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | |
Collapse
|
400
|
The relationship of differential expression of genes in GA biosynthesis and response pathways with heterosis of plant height in a wheat diallel cross. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0518-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|