351
|
Zhou M, Deng L, Lacoste V, Park HU, Pumfery A, Kashanchi F, Brady JN, Kumar A. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. J Virol 2004; 78:13522-33. [PMID: 15564463 PMCID: PMC533906 DOI: 10.1128/jvi.78.24.13522-13533.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat protein recruits positive transcription elongation factor b (P-TEFb) to the transactivation response (TAR) RNA structure to facilitate formation of processive transcription elongation complexes (TECs). Here we examine the role of the Tat/TAR-specified cyclin-dependent kinase 9 (CDK9) kinase activity in regulation of HIV-1 transcription elongation and histone methylation. In HIV-1 TECs, P-TEFb phosphorylates the RNA polymerase II (RNAP II) carboxyl-terminal domain (CTD) and the transcription elongation factors SPT5 and Tat-SF1 in a Tat/TAR-dependent manner. Using in vivo chromatin immunoprecipitation analysis, we demonstrate the following distinct properties of the HIV-1 transcription complexes. First, the RNAP II CTD is phosphorylated at Ser 2 and Ser 5 near the promoter and at downstream coding regions. Second, the stable association of SPT5 with the TECs is dependent upon P-TEFb kinase activity. Third, P-TEFb kinase activity is critical for the induction of methylation of histone H3 at lysine 4 and lysine 36 on HIV-1 genes. Flavopiridol, a potent P-TEFb kinase inhibitor, inhibits CTD phosphorylation, stable SPT5 binding, and histone methylation, suggesting that its potent antiviral activity is due to its ability to inhibit several critical and unique steps in HIV-1 transcription elongation.
Collapse
Affiliation(s)
- Meisheng Zhou
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Gerber M, Eissenberg JC, Kong S, Tenney K, Conaway JW, Conaway RC, Shilatifard A. In vivo requirement of the RNA polymerase II elongation factor elongin A for proper gene expression and development. Mol Cell Biol 2004; 24:9911-9. [PMID: 15509793 PMCID: PMC525478 DOI: 10.1128/mcb.24.22.9911-9919.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of transcription factors that increase the catalytic rate of mRNA synthesis by RNA polymerase II (Pol II) have been purified from higher eukaryotes. Among these are the ELL family, DSIF, and the heterotrimeric elongin complex. Elongin A, the largest subunit of the elongin complex, is the transcriptionally active subunit, while the smaller elongin B and C subunits appear to act as regulatory subunits. While much is known about the in vitro properties of elongin A and other members of this class of elongation factors, the physiological role(s) of these proteins remain largely unclear. To elucidate in vivo functions of elongin A, we have characterized its Drosophila homologue (dEloA). dEloA associates with transcriptionally active puff sites within Drosophila polytene chromosomes and exhibits many of the expected biochemical and cytological properties consistent with a Pol II-associated elongation factor. RNA interference-mediated depletion of dEloA demonstrated that elongin A is an essential factor that is required for proper metamorphosis. Consistent with this observation, dEloA expression peaks during the larval stages of development, suggesting that this factor may be important for proper regulation of developmental events during these stages. The discovery of the role of elongin A in an in vivo model system defines the novel contribution played by RNA polymerase II elongation machinery in regulation of gene expression that is required for proper development.
Collapse
Affiliation(s)
- Mark Gerber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
353
|
Kurosu T, Zhang F, Peterlin BM. Transcriptional activity and substrate recognition of cyclin T2 from P-TEFb. Gene 2004; 343:173-9. [PMID: 15563843 DOI: 10.1016/j.gene.2004.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/09/2004] [Accepted: 08/25/2004] [Indexed: 11/23/2022]
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) is regulated by the positive transcription elongation factor b (P-TEFb), which contains Cdk9 and a C-type cyclin (CycT1, CycT2a, CycT2b, or CycK). Whereas their N-terminal cylin boxes are almost identical, the C-terminal sequences of CycT1 and CycT2 are divergent. Previously, a histidine-rich stretch in CycT1 was found to bind the CTD of RNAPII and direct the transcriptional activity of this P-TEFb complex when tethered artificially to DNA. The global repressor PIE-1 from C. elegans blocked its effects. In this study, C-terminal truncations of CycT2 past its histidine-rich stretch, to a leucine-rich region next to its cyclin boxes, still maintained appreciable transcriptional activity. Moreover, this domain bound RNAPII via its CTD and PIE-1 blocked its effects. Thus, CycT2 not only contains two domains that target RNAPII but this substrate recognition is necessary for its transcriptional activity via DNA.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Department of Medicine, Rosalind Russell Medical Research Center, University of California at San Francisco, San Francisco, CA 94143-0703, USA
| | | | | |
Collapse
|
354
|
Abstract
Ubiquitin, the peptide 'tag' that targets eukaryotic proteins for degradation by the proteasome, has also been implicated in transcriptional activation. The mechanism of gene activation might include recruitment of a transcriptional elongation factor by ubiquitinated activators.
Collapse
Affiliation(s)
- Francisco J Herrera
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
355
|
Sanchez V, McElroy AK, Yen J, Tamrakar S, Clark CL, Schwartz RA, Spector DH. Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122-123 and UL37 immediate-early transcripts and at later times for virus production. J Virol 2004; 78:11219-32. [PMID: 15452241 PMCID: PMC521808 DOI: 10.1128/jvi.78.20.11219-11232.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection leads to dysregulation of multiple cell cycle-regulatory proteins. In this study, we examined the effects of inhibition of cyclin-dependent kinase (cdk) activity on viral replication. With the drug Roscovitine, a specific inhibitor of cyclin-dependent kinases 1, 2, 5, 7, and 9, we have shown that during the first 6 h of infection, cyclin-dependent kinase-dependent events occurred that included the regulated processing and accumulation of the immediate-early (IE) UL122-123 transcripts and UL36-37 transcripts. Altered processing of UL122-123 led to a loss of IE1-72 and an increase in IE2-86. The ratio of spliced to unspliced UL37 transcripts also changed. These effects did not require de novo protein synthesis or degradation of proteins by the proteasome. Addition of Roscovitine at the beginning of the infection was also associated with inhibition of expression of selected viral early gene products, viral DNA replication, and late viral gene expression. When Roscovitine was added after the first 6 h of infection, the effects on IE gene expression were no longer observed and viral replication proceeded through the late phase, but viral titers were reduced. The reduction in viral titer was observed even when Roscovitine was first added at 48 h postinfection, indicating that cyclin-dependent kinase activity is required at both IE and late times. Flavopiridol, another specific inhibitor of cyclin-dependent kinases, had similar effects on IE and early gene expression. These results underscore the importance of accurate RNA processing and reiterate the significant role of cell cycle-regulatory factors in HCMV infection.
Collapse
Affiliation(s)
- Veronica Sanchez
- Molecular Biology Section, Mail Code 0366, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0366, USA
| | | | | | | | | | | | | |
Collapse
|
356
|
Bouchoux C, Hautbergue G, Grenetier S, Carles C, Riva M, Goguel V. CTD kinase I is involved in RNA polymerase I transcription. Nucleic Acids Res 2004; 32:5851-60. [PMID: 15520468 PMCID: PMC528809 DOI: 10.1093/nar/gkh927] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA polymerase II carboxy terminal domain (CTD) kinases are key elements in the control of mRNA synthesis. Yeast CTD kinase I (CTDK-I), is a non-essential complex involved in the regulation of mRNA synthesis at the level of transcription elongation, pre-mRNA 3' formation and nuclear export. Here, we report that CTDK-I is also involved in ribosomal RNA synthesis. We show that CTDK-I is localized in part in the nucleolus. In its absence, nucleolar structure and RNA polymerase I transcription are affected. In vitro experiments show an impairment of the Pol I transcription machinery. Remarkably, RNA polymerase I co-precipitates from cellular extracts with Ctk1, the kinase subunit of the CTDK-I complex. In vitro analysis further demonstrates a direct interaction between RNA polymerase I and Ctk1. The results suggest that CTDK-I might participate in the regulation of distinct nuclear transcriptional machineries, thus playing a role in the adaptation of the global transcriptional response to growth signalling.
Collapse
Affiliation(s)
- Céline Bouchoux
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, 91191 Gif/Yvette, France
| | | | | | | | | | | |
Collapse
|
357
|
Abstract
Over the past decade and a half, the paradigm has emerged of cardiac hypertrophy and ensuing heart failure as fundamentally a problem in signal transduction, impinging on the altered expression or function of gene-specific transcription factors and their partners, which then execute the hypertrophic phenotype. Strikingly, RNA polymerase II (RNAPII) is itself a substrate for two protein kinases—the cyclin-dependent kinases Cdk7 and Cdk9—that are activated by hypertrophic cues. Phosphorylation of RNAPII in the carboxyl terminal domain (CTD) of its largest subunit controls a number of critical steps subsequent to transcription initiation, among them enabling RNAPII to overcome its stalling in the promoter-proximal region and to engage in efficient transcription elongation. Here, we summarize our current understanding of the RNAPII-directed protein kinases in cardiac hypertrophy. Cdk9 activation is essential in tissue culture for myocyte enlargement and sufficient in transgenic mice for hypertrophy to occur and yet is unrelated to the “fetal” gene program that is typical of pathophysiological heart growth. Although this trophic effect of Cdk9 appears benign superficially, pathophysiological levels of Cdk9 activity render myocardium remarkably susceptible to apoptotic stress. Cdk9 interacts adversely with Gq-dependent pathways for hypertrophy, impairing the expression of numerous genes for mitochondrial proteins, and, in particular, suppressing master regulators of mitochondrial biogenesis and function, perioxisome proliferator-activated receptor-γ coactivator-1 (PGC-1), and nuclear respiratory factor-1 (NRF-1). Given the dual transcriptional roles of Cdk9 in hypertrophic growth and mitochondrial dysfunction, we suggest the potential usefulness of Cdk9 as a target in heart failure drug discovery.
Collapse
Affiliation(s)
- Motoaki Sano
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
358
|
Garriga J, Graña X. Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 2004; 337:15-23. [PMID: 15276198 DOI: 10.1016/j.gene.2004.05.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/12/2004] [Accepted: 05/06/2004] [Indexed: 11/24/2022]
Abstract
The family of Cyclin-Dependent Kinases (CDKs) can be subdivided into two major functional groups based on their roles in cell cycle and/or transcriptional control. This review is centered on CDK9, which is activated by T-type cyclins and cyclin K generating distinct Positive-Transcription Elongation Factors termed P-TEFb. P-TEFb positively regulates transcriptional elongation by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (RNA pol II), as well as negative elongation factors, which block elongation by RNA pol II shortly after the initiation of transcription. Work over the past few years has led to a dramatic increase in our understanding of how productive transcriptional elongation occurs. This review will briefly describe the mechanisms regulating the activity of T-type cyclin/CDK9 complexes and discuss how these complexes regulate gene expression. For further information, the reader is directed to excellent existing reviews on transcriptional elongation and HIV transcription.
Collapse
Affiliation(s)
- Judit Garriga
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, USA
| | | |
Collapse
|
359
|
Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between transcription and splicing. RNA (NEW YORK, N.Y.) 2004; 10:1489-98. [PMID: 15383674 PMCID: PMC1370635 DOI: 10.1261/rna.7100104] [Citation(s) in RCA: 367] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Ciudad Universitaria, Pabellón II (C1428EHA) Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
360
|
Bird G, Zorio DAR, Bentley DL. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3'-end formation. Mol Cell Biol 2004; 24:8963-9. [PMID: 15456870 PMCID: PMC517882 DOI: 10.1128/mcb.24.20.8963-8969.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 04/20/2004] [Accepted: 07/28/2004] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of RNA polymerase II (pol II) carboxy-terminal domain (CTD) phosphorylation in pre-mRNA processing coupled and uncoupled from transcription in Xenopus oocytes. Inhibition of CTD phosphorylation by the kinase inhibitors 5,6-dichloro-1beta-D-ribofuranosyl-benzimidazole and H8 blocked transcription-coupled splicing and poly(A) site cleavage. These experiments suggest that pol II CTD phosphorylation is required for efficient pre-mRNA splicing and 3'-end formation in vivo. In contrast, processing of injected pre-mRNA was unaffected by either kinase inhibitors or alpha-amanitin-induced depletion of pol II. pol II therefore does not appear to participate directly in posttranscriptional processing, at least in frog oocytes. Together these experiments show that the influence of the phosphorylated CTD on pre-mRNA splicing and 3'-end processing is mediated by transcriptional coupling.
Collapse
Affiliation(s)
- Gregory Bird
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center at Fitzsimons, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
361
|
Guo Z, Stiller JW. Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics 2004; 5:69. [PMID: 15380029 PMCID: PMC521075 DOI: 10.1186/1471-2164-5-69] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 09/20/2004] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) are a large family of proteins that function in a variety of key regulatory pathways in eukaryotic cells, including control over the cell cycle and gene transcription. Among the most important and broadly studied of these roles is reversible phosphorylation of the C-terminal domain (CTD) of RNA polymerase II, part of a complex array of CTD/protein interactions that coordinate the RNAP II transcription cycle. The RNAP CTD is strongly conserved in some groups of eukaryotes, but highly degenerate or absent in others; the reasons for these differences in stabilizing selection on CTD structure are not clear. Given the importance of reversible phosphorylation for CTD-based transcription, the distribution and evolutionary history of CDKs may be a key to understanding differences in constraints on CTD structure; however, the origins and evolutionary relationships of CTD kinases have not been investigated thoroughly. Moreover, although the functions of most CDKs are reasonably well studied in mammals and yeasts, very little is known from most other eukaryotes. RESULTS Here we identify 123 CDK family members from animals, plants, yeasts, and four protists from which genome sequences have been completed, and 10 additional CDKs from incomplete genome sequences of organisms with known CTD sequences. Comparative genomic and phylogenetic analyses suggest that cell-cycle CDKs are present in all organisms sampled in this study. In contrast, no clear orthologs of transcription-related CDKs are identified in the most putatively ancestral eukaryotes, Trypanosoma or Giardia. Kinases involved in CTD phosphorylation, CDK7, CDK8 and CDK9, all are recovered as well-supported and distinct orthologous families, but their relationships to each other and other CDKs are not well-resolved. Significantly, clear orthologs of CDK7 and CDK8 are restricted to only those organisms belonging to groups in which the RNAP II CTD is strongly conserved. CONCLUSIONS The apparent origins of CDK7 and CDK8, or at least their conservation as clearly recognizable orthologous families, correlate with strong stabilizing selection on RNAP II CTD structure. This suggests co-evolution of the CTD and these CTD-directed CDKs. This observation is consistent with the hypothesis that CDK7 and CDK8 originated at about the same time that the CTD was canalized as the staging platform RNAP II transcription. Alternatively, extensive CTD phosphorylation may occur in only a subset of eukaryotes and, when present, this interaction results in greater stabilizing selection on both CTD and CDK sequences. Overall, our results suggest that transcription-related kinases originated after cell-cycle related CDKs, and became more evolutionarily and functionally diverse as transcriptional complexity increased.
Collapse
Affiliation(s)
- Zhenhua Guo
- Department of Biology, East Carolina University, Howell Science Complex N 108, Greenville, NC 27858, USA
| | - John W Stiller
- Department of Biology, East Carolina University, Howell Science Complex N 108, Greenville, NC 27858, USA
| |
Collapse
|
362
|
Kim HJ, Jeong SH, Heo JH, Jeong SJ, Kim ST, Youn HD, Han JW, Lee HW, Cho EJ. mRNA capping enzyme activity is coupled to an early transcription elongation. Mol Cell Biol 2004; 24:6184-93. [PMID: 15226422 PMCID: PMC434235 DOI: 10.1128/mcb.24.14.6184-6193.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
One of the temperature-sensitive alleles of CEG1, a guanylyltransferase subunit of the Saccharomyces cerevisiae capping enzyme, showed 6-azauracil (6AU) sensitivity at the permissive growth temperature, which is a phenotype that is correlated with a transcription elongation defect. This temperature-sensitive allele, ceg1-63, has an impaired ability to induce PUR5 in response to 6AU treatment and diminished enzyme-GMP formation activity. However, this cellular and molecular defect is not primarily due to the preferential degradation of the transcript attributed to a lack of cap structure. Our data suggest that the guanylyltransferase subunit of the capping enzyme plays a role in transcription elongation as well as cap formation. First, in addition to the 6AU sensitivity, ceg1-63 is synthetically lethal with elongation-defective mutations in RNA polymerase II. Secondly, it produces a prolonged steady-state level of GAL1 mRNA after glucose shutoff. Third, it decreases the transcription read through a tandem array of promoter-proximal pause sites in an orientation-dependent manner. Taken together, we present direct evidence that suggests a role of capping enzyme in an early transcription. Capping enzyme ensures the early transcription checkpoint by capping of the nascent transcript in time and allowing it to extend further.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University, Suwon, Kyonggi-do 440-746, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Pinhero R, Liaw P, Yankulov K. A uniform procedure for the purification of CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1. Biol Proced Online 2004; 6:163-172. [PMID: 15328539 PMCID: PMC514536 DOI: 10.1251/bpo86] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 07/30/2004] [Accepted: 08/06/2004] [Indexed: 11/24/2022] Open
Abstract
We have established a uniform procedure for the expression and purification of the cyclin-dependent kinases CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1. We attach a His6-tag to one of the subunits of each complex and then co-express it together with the other subunits in Spodoptera frugiperda insect cells. The CDK complexes are subsequently purified by Ni2+-NTA and Mono S chromatography. This approach generates large amounts of active recombinant kinases that are devoid of contaminating kinase activities. Importantly, the properties of these recombinant kinases are similar to their natural counterparts (Pinhero et al. 2004, Eur J Biochem 271:1004-14). Our protocol provides a novel systematic approach for the purification of these three (and possibly other) recombinant CDKs.
Collapse
Affiliation(s)
- Reena Pinhero
- Department of Molecular Biology and Genetics, University of Guelph. Guelph, Ontario N1G 2W1. Canada
| | - Peter Liaw
- Department of Molecular Biology and Genetics, University of Guelph. Guelph, Ontario N1G 2W1. Canada
| | - Krassimir Yankulov
- Department of Molecular Biology and Genetics, University of Guelph. Guelph, Ontario N1G 2W1. Canada
| |
Collapse
|
364
|
Liou LY, Herrmann CH, Rice AP. Human immunodeficiency virus type 1 infection induces cyclin T1 expression in macrophages. J Virol 2004; 78:8114-9. [PMID: 15254183 PMCID: PMC446126 DOI: 10.1128/jvi.78.15.8114-8119.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tat protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication and activates RNA polymerase II transcriptional elongation through the association with a cellular protein kinase composed of Cdk9 and cyclin T1. Tat binds to this kinase complex through a direct protein-protein interaction with cyclin T1. Monocytes/macrophages are important targets of HIV-1 infection, and previous work has shown that cyclin T1 but not Cdk9 protein expression is low in monocytes isolated from blood. While Cdk9 expression is expressed at a high level during monocyte differentiation to macrophages in vitro, cyclin T1 expression is induced during the first few days of differentiation and is shut off after 1 to 2 weeks. We show here that the shutoff of cyclin T1 expression in late-differentiated macrophages involves proteasome-mediated proteolysis. We also show that cyclin T1 can be reinduced by a number of pathogen-associated molecular patterns that activate macrophages, indicating that up-regulation of cyclin T1 is part of an innate immune response. Furthermore, we found that HIV-1 infection early in macrophage differentiation results in sustained cyclin T1 expression, while infection at late times in differentiation results in the reinduction of cyclin T1. Expression of the viral Nef protein from an adenovirus vector suggests that Nef contributes to the HIV-1 induction of cyclin T1. These findings suggest that HIV-1 infection hijacks a component of the innate immune response in macrophages that results in enhancement rather than inhibition of viral replication.
Collapse
Affiliation(s)
- Li-Ying Liou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
365
|
Sano M, Wang SC, Shirai M, Scaglia F, Xie M, Sakai S, Tanaka T, Kulkarni PA, Barger PM, Youker KA, Taffet GE, Hamamori Y, Michael LH, Craigen WJ, Schneider MD. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J 2004; 23:3559-69. [PMID: 15297879 PMCID: PMC516624 DOI: 10.1038/sj.emboj.7600351] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 07/08/2004] [Indexed: 11/09/2022] Open
Abstract
Hypertrophy allows the heart to adapt to workload but culminates in later pump failure; how it is achieved remains uncertain. Previously, we showed that hypertrophy is accompanied by activation of cyclin T/Cdk9, which phosphorylates the C-terminal domain of the large subunit of RNA polymerase II, stimulating transcription elongation and pre-mRNA processing; Cdk9 activity was required for hypertrophy in culture, whereas heart-specific activation of Cdk9 by cyclin T1 provoked hypertrophy in mice. Here, we report that alphaMHC-cyclin T1 mice appear normal at baseline yet suffer fulminant apoptotic cardiomyopathy when challenged by mechanical stress or signaling by the G-protein Gq. At pathophysiological levels, Cdk9 activity suppresses many genes for mitochondrial proteins including master regulators of mitochondrial function (peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), nuclear respiratory factor-1). In culture, cyclin T1/Cdk9 suppresses PGC-1, decreases mitochondrial membrane potential, and sensitizes cardiomyocytes to apoptosis, effects rescued by exogenous PGC-1. Cyclin T1/Cdk9 inhibits PGC-1 promoter activity and preinitiation complex assembly. Thus, chronic activation of Cdk9 causes not only cardiomyocyte enlargement but also defective mitochondrial function, via diminished PGC-1 transcription, and a resulting susceptibility to apoptotic cardiomyopathy.
Collapse
Affiliation(s)
- Motoaki Sano
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sam C Wang
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Manabu Shirai
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Min Xie
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Satoshi Sakai
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Toru Tanaka
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Prathit A Kulkarni
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Philip M Barger
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Winters Center for Heart Failure Research, Baylor College of Medicine, Houston, TX, USA
| | - Keith A Youker
- The Methodist Hospital-DeBakey Heart Center, Baylor College of Medicine, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - George E Taffet
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- The Methodist Hospital-DeBakey Heart Center, Baylor College of Medicine, Houston, TX, USA
| | - Yasuo Hamamori
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lloyd H Michael
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- The Methodist Hospital-DeBakey Heart Center, Baylor College of Medicine, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Michael D Schneider
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Center for Cardiovascular Development, Baylor College of Medicine, One Baylor Plaza, Room 506D, Houston, TX 77030, USA. Tel.: +1 713 798 6683; Fax: +1 713 798 7437; E-mail:
| |
Collapse
|
366
|
Reyes N, Reyes I, Tiwari R, Geliebter J. Effect of linoleic acid on proliferation and gene expression in the breast cancer cell line T47D. Cancer Lett 2004; 209:25-35. [PMID: 15145518 DOI: 10.1016/j.canlet.2003.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2003] [Revised: 12/05/2003] [Accepted: 12/08/2003] [Indexed: 12/15/2022]
Abstract
Human and animal studies have linked n-6 polyunsaturated fatty acids with mammary carcinogenesis. We investigated the cellular and molecular effects of linoleic acid on the human breast cancer cell line T47D. Linoleic acid had a stimulatory effect on the growth of T47D cells, associated with an increase in the proportion of cells in the S phase of the cell cycle. Microarray, functional group and quantitative PCR analyses indicate that linoleic acid may affect T47D cell growth by modulation of the estrogen receptor (ERalpha), the G13alpha G protein, and p38 MAP kinase gene expression as well genes involved in RNA transcription and cell cycle regulation.
Collapse
Affiliation(s)
- Niradiz Reyes
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
367
|
Yik JHN, Chen R, Pezda AC, Samford CS, Zhou Q. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol 2004; 24:5094-105. [PMID: 15169877 PMCID: PMC419863 DOI: 10.1128/mcb.24.12.5094-5105.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HEXIM1 protein inhibits the kinase activity of P-TEFb (CDK9/cyclin T) to suppress RNA polymerase II transcriptional elongation in a process that specifically requires the 7SK snRNA, which mediates the interaction of HEXIM1 with P-TEFb. In an attempt to define the sequence requirements for HEXIM1 to interact with 7SK and inactivate P-TEFb, we have identified the first 18 amino acids within the previously described nuclear localization signal (NLS) of HEXIM1 as both necessary and sufficient for binding to 7SK in vivo and in vitro. This 7SK-binding motif was essential for HEXIM1's inhibitory action, as the HEXIM1 mutants with this motif replaced with a foreign NLS failed to interact with 7SK and P-TEFb and hence were unable to inactivate P-TEFb. The 7SK-binding motif alone, however, was not sufficient to inhibit P-TEFb. A region C-terminal to this motif was also required for HEXIM1 to associate with P-TEFb and suppress P-TEFb's kinase and transcriptional activities. The 7SK-binding motif in HEXIM1 contains clusters of positively charged residues reminiscent of the arginine-rich RNA-binding motif found in a wide variety of proteins. Part of it is highly homologous to the TAR RNA-binding motif in the human immunodeficiency virus type 1 (HIV-1) Tat protein, which was able to restore the 7SK-binding ability of a HEXIM1 NLS substitution mutant. We propose that a similar RNA-protein recognition mechanism may exist to regulate the formation of both the Tat-TAR-P-TEFb and the HEXIM1-7SK-P-TEFb ternary complexes, which may help convert the inactive HEXIM1/7SK-bound P-TEFb into an active one for Tat-activated and TAR-dependent HIV-1 transcription.
Collapse
Affiliation(s)
- Jasper H N Yik
- Department of Molecular and Cellular Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | |
Collapse
|
368
|
Jiang Y, Liu M, Spencer CA, Price DH. Involvement of transcription termination factor 2 in mitotic repression of transcription elongation. Mol Cell 2004; 14:375-85. [PMID: 15125840 DOI: 10.1016/s1097-2765(04)00234-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Revised: 03/03/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
All nuclear transcription is interrupted during mitosis. We examined the role of human TTF2, an RNA polymerase (Pol) I and II termination factor, in mitotic repression of transcription elongation. We find that TTF2 levels rise in the cytoplasm in S and G2 and at the onset of mitosis TTF2 translocates into the nucleus. Consistent with a role in termination of all transcription, TTF2 is the only ATP-dependent termination activity associated with Pol II transcription elongation complexes, is largely unaffected by template position, and is impervious to the phosphorylation state of the polymerase. Cells in which TTF2 levels are knocked down showed dramatic retention of Ser2 phosphorylated Pol II on mitotic chromosomes and an increase in chromosome segregation defects.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
369
|
Monaco EA, Beaman-Hall CM, Mathur A, Vallano ML. Roscovitine, olomoucine, purvalanol: inducers of apoptosis in maturing cerebellar granule neurons. Biochem Pharmacol 2004; 67:1947-64. [PMID: 15130771 DOI: 10.1016/j.bcp.2004.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 02/02/2004] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) mediate proliferation and neuronal development, while aberrant CDK activity is associated with cancer and neurodegeneration. Consequently, pharmacologic inhibitors, such as 2,6,9-trisubstituted purines, which potently inhibit CDKs 1, 2, and 5, were developed to combat these pathologies. One agent, R-roscovitine (CYC202), has advanced to clinical trials as a potential cancer therapy. In primary neuronal cultures, these agents have been used to delineate the physiologic and pathologic functions of CDKs, and associated signaling pathways. Herein we demonstrate that three 2,6,9-trisubstituted purines: olomoucine, roscovitine, and purvalanol, used at concentrations ascribed by others to potently inhibit CDKs 1, 2, and 5, are powerful triggers of death in maturing cerebellar granule neurons, assessed by loss of mitochondrial reductive capacity and differential staining with fluorescent indicators of living/dead neurons. Based on several criteria, including delayed time course and establishment of an irreversible commitment point of death, pyknotic cell and nuclear morphology, and caspase-3 cleavage, the death process is apoptotic. However, pharmacological and biochemical data indicate that apoptosis is independent of CDK 1, 2, or 5 inhibition. This is based on the pattern of changes in c-jun mRNA, c-Jun protein, and Ca(2+)/cAMP response element binding protein (CREB) phosphorylation, and also, the ineffectiveness of structurally distinct CDK 1, 2, and 5 inhibitors butyrolactone-1 and PNU112445A to induce apoptosis. Collectively, our results, and those of others, indicate that the CDK regulation of transcription (CDKs 7 and 9) should be examined as a target of these agents, and as an indirect mediator of neuronal fate.
Collapse
Affiliation(s)
- Edward A Monaco
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
370
|
Michels AA, Fraldi A, Li Q, Adamson TE, Bonnet F, Nguyen VT, Sedore SC, Price JP, Price DH, Lania L, Bensaude O. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J 2004; 23:2608-19. [PMID: 15201869 PMCID: PMC449783 DOI: 10.1038/sj.emboj.7600275] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 05/24/2004] [Indexed: 11/08/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) plays a pivotal role in productive elongation of nascent RNA molecules by RNA polymerase II. Core active P-TEFb is composed of CDK9 and cyclin T. In addition, mammalian cell extracts contain an inactive P-TEFb complex composed of four components, CDK9, cyclin T, the 7SK snRNA and the MAQ1/HEXIM1 protein. We now report an in vitro reconstitution of 7SK-dependent HEXIM1 association to purified P-TEFb and subsequent CDK9 inhibition. Yeast three-hybrid tests and gel-shift assays indicated that HEXIM1 binds 7SK snRNA directly and a 7SK snRNA-recognition motif was identified in the central part of HEXIM1 (amino acids (aa) 152-155). Data from yeast two-hybrid and pull-down assay on GST fusion proteins converge to a direct binding of P-TEFb to the HEXIM1 C-terminal domain (aa 181-359). Consistently, point mutations in an evolutionarily conserved motif (aa 202-205) were found to suppress P-TEFb binding and inhibition without affecting 7SK recognition. We propose that the RNA-binding domain of HEXIM1 mediates its association with 7SK and that P-TEFb then enters the complex through association with HEXIM1.
Collapse
Affiliation(s)
- Annemieke A Michels
- UMR 8541 CNRS, Ecole Normale Supérieure, Régulation de l'Expression Génétique, Paris, France
| | - Alessandro Fraldi
- Dipartimento di Genetica, Biologia Generale e Molecolare, Università di Napoli ‘Federico II', Napoli, Italy
| | - Qintong Li
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Todd E Adamson
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - François Bonnet
- UMR 8541 CNRS, Ecole Normale Supérieure, Régulation de l'Expression Génétique, Paris, France
| | - Van Trung Nguyen
- UMR 8541 CNRS, Ecole Normale Supérieure, Régulation de l'Expression Génétique, Paris, France
| | - Stanley C Sedore
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Jason P Price
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Luigi Lania
- Dipartimento di Genetica, Biologia Generale e Molecolare, Università di Napoli ‘Federico II', Napoli, Italy
| | - Olivier Bensaude
- UMR 8541 CNRS, Ecole Normale Supérieure, Régulation de l'Expression Génétique, Paris, France
- Laboratoire de Régulation de l'Expression Génétique, UMR 8541 CNRS, Ecole Normale Supérieure, 46, rue d Ulm, 75230 Paris Cedex 05, France. Tel.: +33 1 4432 3410; Fax: +33 1 4432 3941; E-mail:
| |
Collapse
|
371
|
Park NJ, Tsao DC, Martinson HG. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain. Mol Cell Biol 2004; 24:4092-103. [PMID: 15121832 PMCID: PMC400489 DOI: 10.1128/mcb.24.10.4092-4103.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxyl-terminal repeat domain (CTD) of RNA polymerase II is thought to help coordinate events during RNA metabolism. The mammalian CTD consists of 52 imperfectly repeated heptads followed by 10 additional residues at the C terminus. The CTD is required for cleavage and polyadenylation in vitro. We studied poly(A)-dependent termination in vivo using CTD truncation mutants. Poly(A)-dependent termination occurs in two steps, pause and release. We found that the CTD is required for release, the first 25 heptads being sufficient. Neither the final 10 amino acids nor the variant heptads of the second half of the CTD were required. No part of the CTD was required for poly(A)-dependent pausing--the poly(A) signal could communicate directly with the body of the polymerase. By removing the CTD, pausing could be observed without being obscured by release. Poly(A)-dependent pausing appeared to operate by slowing down the polymerase, such as by down-regulation of a positive elongation factor. Although the first 25 heptads supported undiminished poly(A)-dependent termination, they did not efficiently support events near the promoter involved in abortive elongation. However, the second half of the CTD, including the final 10 amino acids, was sufficient for these functions.
Collapse
Affiliation(s)
- Noh Jin Park
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
372
|
Kurosu T, Peterlin BM. VP16 and Ubiquitin. Curr Biol 2004; 14:1112-6. [PMID: 15203006 DOI: 10.1016/j.cub.2004.06.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 04/21/2004] [Accepted: 04/29/2004] [Indexed: 11/16/2022]
Abstract
Acidic or type IIB transcriptional activation domains (AADs) increase rates of initiation as well as elongation of transcription. For the former effects, AADs bind general transcription factors and larger coactivator complexes, which position RNA polymerase II (RNAPII) at sites of initiation of transcription. For the latter effects, their ubiquitylation plays an important role. In this study, this posttranslational modification increased the binding between a prototypic AAD and the positive transcription elongation factor b (P-TEFb), which contains a C-type cyclin (CycT1, CycT2, or CycK) and Cdk9. By phosphorylating negative elongation factors and the C-terminal domain of RNAPII, P-TEFb modifies the transcription complex for efficient elongation and cotranscriptional processing of mRNA. Indeed, the activation domain of VP16 and ubiquitin bound the cyclin boxes and the C terminus in CycT1, respectively. Moreover, the artificial fusion of ubiquitin with VP16 not only increased its activity via DNA and RNA, which was reflected in increased ratios of elongated to initiated transcripts, but rescued the deleterious substitution of alanine for phenylalanine at position 442 in its AAD. Thus, the ubiquitylation of AADs increases their interaction with P-TEFb and augments rates of elongation of transcription.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | | |
Collapse
|
373
|
Thomas D, Blakqori G, Wagner V, Banholzer M, Kessler N, Elliott RM, Haller O, Weber F. Inhibition of RNA polymerase II phosphorylation by a viral interferon antagonist. J Biol Chem 2004; 279:31471-7. [PMID: 15150262 DOI: 10.1074/jbc.m400938200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many viruses subvert the cellular interferon (IFN) system with so-called IFN antagonists. Bunyamwera virus (BUNV) belongs to the family Bunyaviridae and is transmitted by arthropods. We have recently identified the nonstructural protein NSs of BUNV as a virulence factor that inhibits IFN-beta gene expression in the mammalian host. Here, we demonstrate that NSs targets the RNA polymerase II (RNAP II) complex. The C-terminal domain (CTD) of RNAP II consists of 52 repeats of the consensus sequence YSPTSPS. Phosphorylation at serine 5 is required for efficient initiation of transcription, and subsequent phosphorylation at serine 2 is required for mRNA elongation and 3'-end processing. In BUNV-infected mammalian cells, serine 5 phosphorylation occurred normally. Furthermore, RNAP II was able to bind to the IFN-beta gene promoter as revealed by chromatin immunoprecipitation analysis, indicating that the initiation of transcription was not disturbed by NSs. However, NSs prevented CTD phosphorylation at serine 2, suggesting a block in transition from initiation to elongation. Surprisingly, no interference with CTD phosphorylation was observed in insect cells. Our results indicate that BUNV uses an unconventional mechanism to block IFN synthesis in the mammalian host by directly dysregulating RNAP II. Moreover, by inducing a general transcriptional block, NSs may contribute to the lytic infection observed in mammalian cells as opposed to persistent infection in the insect host.
Collapse
Affiliation(s)
- Daniel Thomas
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
374
|
Demidenko ZN, Blagosklonny MV. Flavopiridol Induces p53 via Initial Inhibition of Mdm2 and p21 and, Independently of p53, Sensitizes Apoptosis-Reluctant Cells to Tumor Necrosis Factor. Cancer Res 2004; 64:3653-60. [PMID: 15150125 DOI: 10.1158/0008-5472.can-04-0204] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flavopiridol (FP) inhibits gene expression and causes apoptosis, and these effects cannot be explained by inhibition of cyclin-dependent kinases that govern cell cycle. The simple and established notion that FP is an inhibitor of transcription predicts its effects. Because Mdm-2 targets p53 for degradation, FP, as predicted, dramatically induced p53 by inhibiting Mdm-2. Once p53 was induced, restoration of transcription (by removal of FP) resulted in superinduction of p21 and Mdm-2. Similarly, low concentrations of FP (50 nm) induced p21 and Mdm-2 because of their initial down-regulation. A sustained decrease of Mdm-2/p21 expression and accumulation of p53 coincided with near-maximal cytotoxicity of FP at concentrations >100 nm. Induction of p53 was a marker, not a cause, of cytotoxicity. FP caused rapid apoptosis (caspase-dependent cell death) in p53-null leukemia cells. In these cells, FP-induced apoptosis was converted to growth arrest by inhibitors of caspases. In apoptosis-reluctant A549 and PC3M cancer cells, FP inhibited cell proliferation but did not cause apoptosis. Like typical inhibitors of transcription, FP sensitized cells to apoptotic stimuli, allowing tumor necrosis factor to cause rapid and massive apoptosis in otherwise apoptosis-reluctant cells. We discuss that, as a reversible inhibitor of transcription, FP can be used clinically in novel rational drug combinations.
Collapse
Affiliation(s)
- Zoya N Demidenko
- Brander Cancer Research Institute and Department of Medicine, New York Medical College, Valhalla, New York, USA
| | | |
Collapse
|
375
|
Affiliation(s)
- T Keith Blackwell
- CBR Institute for Biomedical Research, and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
376
|
Cabart P, Chew HK, Murphy S. BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II. Oncogene 2004; 23:5316-29. [PMID: 15107825 DOI: 10.1038/sj.onc.1207684] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The tumor suppressor gene product BRCA1 is a component of the RNA polymerase II (pol II) holoenzyme that is involved, through binding to various regulatory proteins, in either activation or repression of transcription. Using a yeast two-hybrid screen, we have identified a human zinc-finger-containing protein NUFIP that interacts with BRCA1. The ubiquitous, stably expressed, nuclear protein NUFIP specifically stimulates activator-independent pol II transcription in vitro and in vivo. Immunodepletion of the endogenous NUFIP causes a marked decrease of pol II transcription, which is then shown to be restored by stable complex of ectopically produced NUFIP and associated factors. NUFIP not only interacts with BRCA1 but also associates with the positive elongation factor P-TEFb through interaction with the regulatory Cyclin T1 subunit. Cyclin T1 is required for BRCA1- and NUFIP-dependent synergistic activation of pol II transcription in 293 cells. Mutation of the zinc-finger domain abolishes the NUFIP-mediated transcriptional activation. We show that NUFIP is associated with preinitiation complexes, open transcription complexes, and elongation complexes. In addition, NUFIP facilitates ATP-dependent dissociation of hyperphosphorylated pol II from open transcription complexes in vitro.
Collapse
Affiliation(s)
- Pavel Cabart
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
377
|
Ainbinder E, Amir-Zilberstein L, Yamaguchi Y, Handa H, Dikstein R. Elongation inhibition by DRB sensitivity-inducing factor is regulated by the A20 promoter via a novel negative element and NF-kappaB. Mol Cell Biol 2004; 24:2444-54. [PMID: 14993282 PMCID: PMC355833 DOI: 10.1128/mcb.24.6.2444-2454.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A20 is an immediate-early NF-kappaB target gene. Prior to NF-kappaB stimulation, the A20 promoter is bound by the polymerase II machinery to allow rapid transcription activation. Here we show that the basal A20 transcription is repressed at the level of elongation in a promoter-specific fashion. Immunodepletion in vitro and RNA interference in cultured cells suggest that the basal elongation inhibition is conferred by DRB sensitivity-inducing factor (DSIF). We have identified a negative upstream promoter element called ELIE that controls DSIF activity. Remarkably, following NF-kappaB stimulation, inhibition of the A20 promoter by DSIF persists, but it is now regulated by NF-kappaB rather than ELIE. Similar regulation by DSIF is shown for another NF-kappaB-responsive gene, the IkappaBalpha gene. These findings reveal an intimate and dynamic relationship between DSIF inhibition of elongation and promoter-bound transcription factors. The potential significance of the differential regulation of DSIF activity by cis-acting elements is discussed.
Collapse
Affiliation(s)
- Elena Ainbinder
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
378
|
Han Z, Saam JR, Adams HP, Mango SE, Schumacher JM. The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription. Curr Biol 2004; 13:1921-9. [PMID: 14614817 DOI: 10.1016/j.cub.2003.10.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Tousled kinases comprise an evolutionarily conserved family of proteins that have been previously implicated in chromatin remodeling, DNA replication, and DNA repair. Here, we used RNA mediated interference (RNAi) to determine the function of the C. elegans Tousled kinase (TLK-1) during embryonic development. RESULTS TLK-1-deficient embryos arrested with a phenotype reminiscent of embryos that are broadly defective in transcription, and the expression of several reporter genes was dramatically reduced in tlk-1(RNAi) embryos. Furthermore, posttranslational modifications of RNA polymerase II (RNAPII) and histone H3 that have been correlated with transcription elongation, phosphorylation of the RNAPII CTD at Serine 2, and methylation of histone H3 at Lysine 36 were found at significantly reduced levels in tlk-1(RNAi) embryos as compared to wild-type. CONCLUSIONS These results reveal a surprising requirement for a Tousled-like kinase in transcriptional regulation during development, likely during the elongation phase. In addition, our results confirm that the link between RNAPII phosphorylation and histone H3 methylation previously observed in budding yeast is functionally conserved in metazoans.
Collapse
Affiliation(s)
- Zhenbo Han
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
379
|
Das C, Edgcomb SP, Peteranderl R, Chen L, Frankel AD. Evidence for conformational flexibility in the Tat-TAR recognition motif of cyclin T1. Virology 2004; 318:306-17. [PMID: 14972556 DOI: 10.1016/j.virol.2003.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 10/08/2003] [Accepted: 10/08/2003] [Indexed: 11/16/2022]
Abstract
Cyclin T1 (CycT1) is a cellular transcription elongation factor that also participates in Tat-mediated activation of several lentiviral promoters. In human immunodeficiency virus (HIV), CycT1 is required for Tat to bind tightly to TAR and interacts in the ternary complex via its Tat-TAR recognition motif (TRM). In the related bovine immunodeficiency virus (BIV), Tat recognizes its cognate TAR element with high affinity and specificity in the absence of CycT1. At both promoters, CycT1 recruits the Cdk9 kinase, which phosphorylates RNA polymerase II to generate processive transcription complexes. To examine the physical properties of CycT1, we purified a functional domain corresponding to residues 1-272 and found that it possesses a stably folded core, as judged by partial proteolysis and circular dichroism experiments. Interestingly, the C-terminal 20 residues corresponding to the TRM appear conformationally flexible or disordered. The TRM of the bovine CycT1 (bCycT1) is similarly sensitive to proteolysis yet differs in sequence from the human protein. In particular, bCycT1 lacks a cysteine at residue 261 known to be critical for HIV but not BIV ternary complex formation, and mutagenesis data are consistent with a proposed role for this cysteine in metal binding. The apparent flexibility of the TRM suggests that conformational rearrangements may accompany formation of CycT1-Tat-TAR ternary complexes and may contribute to different TAR recognition strategies in different lentiviruses.
Collapse
Affiliation(s)
- Chandreyee Das
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2280, USA
| | | | | | | | | |
Collapse
|
380
|
Kolakofsky D, Le Mercier P, Iseni F, Garcin D. Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology 2004; 318:463-73. [PMID: 15015496 DOI: 10.1016/j.virol.2003.10.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in tht the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template.
Collapse
Affiliation(s)
- Daniel Kolakofsky
- Department of Genetics and Microbiology, University of Geneva School of Medicine, Switzerland.
| | | | | | | |
Collapse
|
381
|
Schneider A, Fischer A, Krüger C, Aronowski J. Identification of regulated genes during transient cortical ischemia in mice by restriction-mediated differential display (RMDD). ACTA ACUST UNITED AC 2004; 124:20-8. [PMID: 15093682 DOI: 10.1016/j.molbrainres.2004.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2004] [Indexed: 01/07/2023]
Abstract
Cerebral ischemia induces transcriptional changes in a number of pathophysiologically important genes. Here we have systematically studied gene expression changes in the cortex after 150 min of focal cortical ischemia and 2 and 6 h reperfusion in the mouse by a fragment display technique (restriction-mediated differential display, RMDD). We identified 57 transcriptionally altered genes, of which 46 were known genes, and 11 unknown sequences. Of note, 14% of the regulated genes detected at 2 h reperfusion time were co-regulated in the contralateral cortex. Four genes were verified to be upregulated by quantitative PCR. These were Metallothionein-II (mt2), Receptor (calcitonin)-activity modifying protein 2 (ramp2), Mitochondrial phosphoprotein 65 (MIPP65), and the transcription elongation factor B2/elongin B (tceb). We could identify several genes that are known to be induced by cerebral ischemia, such as the metallothioneins and c-fos. Many of the genes identified provide hints to potential new mechanisms in ischemic pathophysiology. We discuss the identity of the regulated genes in view of their possible usefulness for pharmacological intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Armin Schneider
- Department of Molecular Neurology and Technology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
382
|
Jones JC, Phatnani HP, Haystead TA, MacDonald JA, Alam SM, Greenleaf AL. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J Biol Chem 2004; 279:24957-64. [PMID: 15047695 PMCID: PMC2680323 DOI: 10.1074/jbc.m402218200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II is composed of tandem heptad repeats with consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. In yeast, this heptad sequence is repeated about 26 times, and it becomes hyperphosphorylated during transcription predominantly at serines 2 and 5. A network of kinases and phosphatases combine to determine the CTD phosphorylation pattern. We sought to determine the positional specificity of phosphorylation by yeast CTD kinase-I (CTDK-I), an enzyme implicated in various nuclear processes including elongation and pre-mRNA 3'-end formation. Toward this end, we characterized monoclonal antibodies commonly employed to study CTD phosphorylation patterns and found that the H5 monoclonal antibody reacts with CTD species phosphorylated at Ser2 and/or Ser5. We therefore used antibody-independent methods to study CTDK-I, and we found that CTDK-I phosphorylates Ser5 of the CTD if the CTD substrate is either unphosphorylated or prephosphorylated at Ser2. When Ser5 is already phosphorylated, CTDK-I phosphorylates Ser2 of the CTD. We also observed that CTDK-I efficiently generates doubly phosphorylated CTD repeats; CTD substrates that already contain Ser2-PO(4) or Ser5-PO(4) are more readily phosphorylated CTDK-I than unphosphorylby ated CTD substrates.
Collapse
Affiliation(s)
- Janice C. Jones
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Hemali P. Phatnani
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Timothy A. Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Justin A. MacDonald
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - S. Munir Alam
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Arno L. Greenleaf
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- To whom correspondence should be addressed. Tel.: 919-684-4030; Fax: 919-684-8885; E-mail:
| |
Collapse
|
383
|
Marcello A, Lusic M, Pegoraro G, Pellegrini V, Beltram F, Giacca M. Nuclear organization and the control of HIV-1 transcription. Gene 2004; 326:1-11. [PMID: 14729258 DOI: 10.1016/j.gene.2003.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event of significant pathological relevance, which recapitulates general concepts of cellular transcription with some peculiarities. The viral promoter is embedded in a chromatin structure that exerts powerful repression on transcription; activation of gene expression relies on the combined activity of a series of cellular factors that respond to different external stimuli, and on the function of a single viral regulatory protein, the Tat transactivator. Transcriptional activation is consequent to both chromatin remodeling and to the recruitment of elongation-competent RNA polymerase II complexes onto the integrated promoter, two events that require the coordinate, but transient, assembly of different protein complexes. Application of optical imaging techniques now allows us to appreciate the spatial and temporal evolvement of these reactions in vivo. The picture that is emerging is not only descriptive, but also relevant to the understanding of the regulation of the process. In particular, it appears that the confinement of biomolecules within specific subcellular compartments represents a way to control and coordinate the assembly of functional complexes that regulate viral gene expression.
Collapse
Affiliation(s)
- Alessandro Marcello
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
384
|
Chiu YL, Cao H, Jacque JM, Stevenson M, Rana TM. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 2004; 78:2517-29. [PMID: 14963154 PMCID: PMC369228 DOI: 10.1128/jvi.78.5.2517-2529.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human positive transcription elongation factor P-TEFb is composed of two subunits, cyclin T1 (hCycT1) and CDK9, and is involved in transcriptional regulation of cellular genes as well as human immunodeficiency virus type 1 (HIV-1) mRNA. Replication of HIV-1 requires the Tat protein, which activates elongation of RNA polymerase II at the HIV-1 promoter by interacting with hCycT1. To understand the cellular functions of P-TEFb and to test whether suppression of host proteins such as P-TEFb can modulate HIV infectivity without causing cellular toxicity or lethality, we used RNA interference (RNAi) to specifically knock down P-TEFb expression by degrading hCycT1 or CDK9 mRNA. RNAi-mediated gene silencing of P-TEFb in HeLa cells was not lethal and inhibited Tat transactivation and HIV-1 replication in host cells. We also found that CDK9 protein stability depended on hCycT1 protein levels, suggesting that the formation of P-TEFb CDK-cyclin complexes is required for CDK9 stability. Strikingly, P-TEFb knockdown cells showed normal P-TEFb kinase activity. Our studies suggest the existence of a dynamic equilibrium between active and inactive pools of P-TEFb in the cell and indicate that this equilibrium shifts towards the active kinase form to sustain cell viability when P-TEFb protein levels are reduced. The finding that a P-TEFb knockdown was not lethal and still showed normal P-TEFb kinase activity suggested that there is a critical threshold concentration of activated P-TEFb required for cell viability and HIV replication. These results provide new insights into the regulation of P-TEFb function and suggest the possibility that similar mechanisms for monitoring protein levels to modulate the activity of proteins may exist for the regulation of a variety of other enzymatic pathways.
Collapse
Affiliation(s)
- Ya-Lin Chiu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
385
|
Shilatifard A. Transcriptional elongation control by RNA polymerase II: a new frontier. ACTA ACUST UNITED AC 2004; 1677:79-86. [PMID: 15020049 DOI: 10.1016/j.bbaexp.2003.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 11/18/2003] [Accepted: 11/18/2003] [Indexed: 01/22/2023]
Abstract
The transcription elongation complex, once thought to be composed of merely the DNA template, RNA polymerase II and the nascent RNA transcript, is now burgeoning as a unit as multifaceted and complicated as the transcription initiation complex. Studies concentrated in defining the elongation stage of transcription during the past recent years have resulted in the discovery of a diverse collection of transcription elongation factors that are either directly involved in the regulation of the rate of the elongating RNA polymerase II or can modulate messenger RNA (mRNA) processing and transport. Such studies have demonstrated that the elongation stage of transcription is highly regulated and has opened a new era of studies defining the molecular role of such transcription elongation factors in cellular development, differentiation and disease progression. Recent studies on the role of RNA polymerase II elongation factors in regulating of the overall rate of transcription both in vitro and in vivo, histone modification by methylation and organismal development will be reviewed here.
Collapse
Affiliation(s)
- Ali Shilatifard
- Department of Biochemistry and the Cancer Center, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
386
|
Ni J, Gao Y, Liu H, Chen J. Candida albicansCdc37 interacts with the Crk1 kinase and is required for Crk1 production. FEBS Lett 2004; 561:223-30. [PMID: 15013782 DOI: 10.1016/s0014-5793(04)00172-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 12/11/2003] [Accepted: 12/15/2003] [Indexed: 11/29/2022]
Abstract
Crk1, a Cdc2-related protein kinase from the human pathogenic fungus Candida albicans, plays an important role in hyphal development and virulence. To address its regulatory mechanisms, we searched for Crk1 interacting proteins by two-hybrid screening. A CDC37 ortholog (CaCDC37) was cloned from the screening with the Crk1 kinase domain as the bait. The CaCdc37 interacted preferentially with the kinase domain of Crk1 (Crk1N) as shown by two-hybrid and immunoprecipitation experiments. CaCDC37 could complement a cdc37 thermosensitive mutant (cdc37-34) of Saccharomyces cerevisiae. Importantly, Crk1 protein was hardly detectable in the cdc37-34 mutant at restrictive temperature. However, upon expression of CaCdc37 in the cdc37 mutant, Crk1 protein was detected even at restrictive temperature. Our data suggested that CaCdc37 was required for the production of Crk1 kinase. Like Cdc37 proteins of S. cerevisiae and higher eukaryotes, CaCdc37 might function as a molecular chaperone that stabilized Crk1 and other protein kinases in C. albicans. In support of this, CaSTI1 was identified from a two-hybrid screen with the full-length Crk1 as the bait. CaSti1 showed two-hybrid interactions with both Crk1 and the CaCdc37.
Collapse
Affiliation(s)
- Jian Ni
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
387
|
Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 2004; 24:787-95. [PMID: 14701750 PMCID: PMC343783 DOI: 10.1128/mcb.24.2.787-795.2004] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The elongation of transcription is a highly regulated process that requires negative and positive effectors. By binding the double-stranded stem in the transactivation response (TAR) element, RD protein from the negative transcription elongation factor (NELF) inhibits basal transcription from the long terminal repeat of the human immunodeficiency virus type 1 (HIVLTR). Tat and its cellular cofactor, the positive transcription elongation factor b (P-TEFb), overcome this negative effect. Cdk9 in P-TEFb also phosphorylates RD at sites next to its RNA recognition motif. A mutant RD protein that mimics its phosphorylated form no longer binds TAR nor represses HIV transcription. In sharp contrast, a mutant RD protein that cannot be phosphorylated by P-TEFb functions as a dominant-negative effector and inhibits Tat transactivation. These results better define the transition from abortive to productive transcription and thus replication of HIV.
Collapse
Affiliation(s)
- Koh Fujinaga
- Department of Medicine, Rosalind Russell Medical Research Center, University of California at San Francisco, 3rd and Parnassus Avenue, San Francisco, CA 94143-0703, USA.
| | | | | | | | | | | |
Collapse
|
388
|
Chen R, Yang Z, Zhou Q. Phosphorylated Positive Transcription Elongation Factor b (P-TEFb) Is Tagged for Inhibition through Association with 7SK snRNA. J Biol Chem 2004; 279:4153-60. [PMID: 14627702 DOI: 10.1074/jbc.m310044200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb), comprising CDK9 and cyclin T, stimulates transcription of cellular and viral genes by phosphorylating RNA polymerase II. A major portion of nuclear P-TEFb is sequestered and inactivated by the coordinated actions of the 7SK snRNA and the HEXIM1 protein, whose induced dissociation from P-TEFb is crucial for stress-induced transcription and pathogenesis of cardiac hypertrophy. The 7SK.P-TEFb interaction, which can occur independently of HEXIM1 and does not by itself inhibit P-TEFb, recruits HEXIM1 for P-TEFb inactivation. To study the control of this interaction, we established an in vitro system that reconstituted the specific interaction of P-TEFb with 7SK but not other snRNAs. Using this system, together with an in vivo binding assay, we show that the phosphorylation of CDK9, on possibly the conserved Thr-186 in the T-loop, was crucial for the 7SK.P-TEFb interaction. This phosphorylation was not caused by CDK9 autophosphorylation or the general CDK-activating kinase CAK, but rather by a novel HeLa nuclear kinase. Furthermore, the stress-induced disruption of the 7SK.P-TEFb interaction was not caused by any prohibitive changes in 7SK but by the dephosphorylation of P-TEFb, leading to the loss of the key phosphorylation important for 7SK binding. Thus, the phosphorylated P-TEFb is tagged for inhibition through association with 7SK. We discuss the implications of this mechanism in controlling P-TEFb activity during normal and stress-induced transcription.
Collapse
Affiliation(s)
- Ruichuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
389
|
Lin PS, Tremeau-Bravard A, Dahmus ME. The repetitive C-terminal domain of RNA polymerase II: multiple conformational states drive the transcription cycle. CHEM REC 2004; 3:235-45. [PMID: 14595832 DOI: 10.1002/tcr.10063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNA polymerase (RNAP) II is a complex multisubunit enzyme responsible for the synthesis of mRNA in eukaryotic cells. The largest subunit contains at its C-terminus a unique domain, designated the CTD, comprised of tandem repeats of the consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). This repeat occurs 52 times in mammalian RNAP II. The CTD is subject to extensive phosphorylation at specific points in the transcription cycle by distinct CTD kinases that phosphorylate certain positions within the consensus repeat. The level and pattern of phosphorylation is determined by the concerted action of CTD kinases and CTD phosphatases. The highly dynamic modification by multiple CTD kinases and phosphatases generate distinct conformations of the CTD that facilitate the recruitment of specific macromolecular assemblies to RNAP II. These CTD interacting proteins influence formation of a preinitiation complex at the promoter and couple processing of the primary transcript to the elongation complex.
Collapse
Affiliation(s)
- Patrick S Lin
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
390
|
Ouellet M, Barbeau B, Tremblay MJ. Protein tyrosyl phosphatases in T cell activation: implication for human immunodeficiency virus transcriptional activity. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:69-105. [PMID: 12882515 DOI: 10.1016/s0079-6603(03)01003-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protein tyrosine phosphatases (PTPs) superfamily is a large group of enzymes showing a wide diversity of structure and biological functions. Their implication in the regulation of signal transduction processes is critical for homeostasis and efficient cellular activation. Disturbance of the delicate balance between protein tyrosine kinase and protein tyrosine phosphatase activities is at the heart of a large number of diseases. Control of cellular activation is especially important for human immunodeficiency virus type 1 (HIV-1) since this retrovirus requires activated T cells in order to replicate efficiently. Identification of PTPs implicated in signaling pathways leading to upregulation of HIV-1 gene transcription therefore contributes to the general understanding of cellular factors needed for strong HIV-1 replication and progression to AIDS. The use of bisperoxovanadium compounds as potent, specific, and highly purified PTP inhibitors releases HIV-1 from PTP control and strongly increases HIV-1 gene expression. These inhibitors can thus be used to study signal transduction mechanisms regulated by PTP activity that are important for HIV-1 replication and provide new and interesting therapeutic avenues for the efficient control of this debilitating retroviral infection.
Collapse
Affiliation(s)
- Michel Ouellet
- Centre de Recherche en Infectiologie, Hôpital CHUL, Centre Hospitalier Universitaire de Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
391
|
Walker AK, Shi Y, Blackwell TK. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription. J Biol Chem 2004; 279:15339-47. [PMID: 14726532 DOI: 10.1074/jbc.m310731200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.
Collapse
Affiliation(s)
- Amy K Walker
- Section of Developmental and Stem Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
392
|
Palancade B, Marshall NF, Tremeau-Bravard A, Bensaude O, Dahmus ME, Dubois MF. Dephosphorylation of RNA Polymerase II by CTD-phosphatase FCP1 is Inhibited by Phospho-CTD Associating Proteins. J Mol Biol 2004; 335:415-24. [PMID: 14672652 DOI: 10.1016/j.jmb.2003.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversible phosphorylation of the repetitive C-terminal domain (CTD) of the largest RNA polymerase (RNAP) II subunit plays a key role in the progression of RNAP through the transcription cycle. The level of CTD phosphorylation is determined by multiple CTD kinases and a CTD phosphatase, FCP1. The phosphorylated CTD binds to a variety of proteins including the cis/trans peptidyl-prolyl isomerase (PPIase) Pin1 and enzymes involved in processing of the primary transcript such as the capping enzyme Hce1 and CA150, a nuclear factor implicated in transcription elongation. Results presented here establish that the dephosphorylation of hyperphosphorylated RNAP II (RNAP IIO) by FCP1 is impaired in the presence of Pin1 or Hce1, whereas CA150 has no influence on FCP1 activity. The inhibition of dephosphorylation is observed with free RNAP IIO generated by different CTD kinases as well as with RNAP IIO engaged in an elongation complex. These findings support the idea that specific phospho-CTD associating proteins can differentially modulate the dephosphorylation of RNAP IIO by steric hindrance and may play an important role in the regulation of gene expression.
Collapse
Affiliation(s)
- Benoît Palancade
- Génétique Moléculaire, UMR 8541 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
393
|
Ni Z, Schwartz BE, Werner J, Suarez JR, Lis JT. Coordination of Transcription, RNA Processing, and Surveillance by P-TEFb Kinase on Heat Shock Genes. Mol Cell 2004; 13:55-65. [PMID: 14731394 DOI: 10.1016/s1097-2765(03)00526-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) is a kinase that phosphorylates the carboxyl-terminal domain (CTD) of RNA Polymerase II (Pol II). Here, we show that flavopiridol, a highly specific P-TEFb kinase inhibitor, dramatically reduces the global levels of Ser2--but not Ser5--phosphorylated CTD at actively transcribed loci on Drosophila polytene chromosomes under both normal and heat shocked conditions. Brief treatment of Drosophila cells with flavopiridol leads to a reduction in the accumulation of induced hsp70 and hsp26 RNAs. Surprisingly, the density of transcribing Pol II and Pol II progression through hsp70 in vivo are nearly normal in flavopiridol-treated cells. The major defect in expression is at the level of 3' end processing. A similar but more modest 3' processing defect was also observed for hsp26. We propose that P-TEFb phosphorylation of Pol II CTD coordinates transcription elongation with 3' end processing, and failure to do so leads to rapid RNA degradation.
Collapse
Affiliation(s)
- Zhuoyu Ni
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
394
|
Ahn SH, Kim M, Buratowski S. Phosphorylation of Serine 2 within the RNA Polymerase II C-Terminal Domain Couples Transcription and 3′ End Processing. Mol Cell 2004; 13:67-76. [PMID: 14731395 DOI: 10.1016/s1097-2765(03)00492-1] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The largest subunit of RNA polymerase II contains a unique C-terminal domain important for coupling of transcription and mRNA processing. This domain consists of a repeated heptameric sequence (YSPTSPS) phosphorylated at serines 2 and 5. Serine 5 is phosphorylated during initiation and recruits capping enzyme. Serine 2 is phosphorylated during elongation by the Ctk1 kinase, a protein similar to mammalian Cdk9/P-TEFb. Chromatin immunoprecipitation was used to map positions of transcription elongation and mRNA processing factors in strains lacking Ctk1. Ctk1 is not required for association of elongation factors with transcribing polymerase. However, in ctk1Delta strains, the recruitment of polyadenylation factors to 3' regions of genes is disrupted and changes in 3' ends are seen. Therefore, Serine 2 phosphorylation by Ctk1 recruits factors for cotranscriptional 3' end processing in vivo.
Collapse
Affiliation(s)
- Seong Hoon Ahn
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
395
|
Boehm AK, Saunders A, Werner J, Lis JT. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 2003; 23:7628-37. [PMID: 14560008 PMCID: PMC207607 DOI: 10.1128/mcb.23.21.7628-7637.2003] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uninduced Drosophila hsp70 gene is poised for rapid activation. Here we examine the rapid changes upon heat shock in levels and location of heat shock factor (HSF), RNA polymerase II (Pol II) and its phosphorylated forms, and the Pol II kinase P-TEFb on hsp70 in vivo by using both real-time PCR assays of chromatin immunoprecipitates and polytene chromosome immunofluorescence. These studies capture Pol II recruitment and progression along hsp70 and reveal distinct spatial and temporal patterns of serine 2 and serine 5 phosphorylation: in uninduced cells, the promoter-paused Pol II shows Ser5 but not Ser2 phosphorylation, and in induced cells the relative level of Ser2-P Pol II is lower at the promoter than at regions downstream. An early time point of heat shock activation captures unphosphorylated Pol II recruited to the promoter prior to P-TEFb, and during the first wave of transcription Pol II and the P-TEFb kinase can be seen tracking together across hsp70 with indistinguishable kinetics. Pol II distributions on several other genes with paused Pol II show a pattern of Ser5 and Ser2 phosphorylation similar to that of hsp70. These studies of factor choreography set important limits in modeling transcription regulatory mechanisms.
Collapse
Affiliation(s)
- Amber K Boehm
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
396
|
Abstract
The human BRCA1 tumor suppressor interacts with transcriptional machinery, including RNA polymerase II (RNA pol II). We demonstrated that interaction with RNA pol II is a conserved feature of BRCA1 proteins from several species. We found that full-length BRCA1 proteins universally fail to activate transcription in classic GAL4-UAS one-hybrid assays and that the activity associated with the human BRCA1 C terminus was poorly conserved in closely related homologs of the gene. Fractionation studies demonstrated that BRCA1 proteins from all species tested interacted specifically with hyperphosphorylated pol II (IIO), in preference to hypophosphorylated RNA pol II (IIA) expected at promoters. BRCA1-RNA pol II complexes showed evidence of a multiply phosphorylated heptad repeat domain in the catalytic subunit (p220) of RNA pol II, and the complex was highly functional in transcriptional run-off assays. Interestingly, endogenous BRCA1 associated with a large fraction of the processive RNA pol II activity present in undamaged cells, and the interaction was disrupted by DNA-damaging agents. Preferential interaction with processive RNA pol II in undamaged cells places BRCA1 in position to link late events in transcription with repair processes in eukaryotic cells.
Collapse
Affiliation(s)
- Susan A Krum
- Molecular Biology Institute, The David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
397
|
Haaland RE, Herrmann CH, Rice AP. Increased association of 7SK snRNA with Tat cofactor P-TEFb following activation of peripheral blood lymphocytes. AIDS 2003; 17:2429-36. [PMID: 14600513 DOI: 10.1097/00002030-200311210-00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This study was undertaken to determine whether 7SK small nuclear RNA (snRNA), which has been proposed to function as an inhibitor of Tat cofactor P-TEFb, plays a role in transcriptional latency in T cells. DESIGN AND METHODS The association of 7SK snRNA with P-TEFb was investigated in resting and activated peripheral blood lymphocytes (PBLs). Primary PBLs were isolated by standard methods and activated with phytohemagglutinin (PHA). Levels of 7SK snRNA were determined by Northern blotting and levels of the P-TEFb subunits cyclin-dependent kinase 9 and cyclin T1 were analyzed by immunoblotting. RESULTS The association of 7SK snRNA with P-TEFb complexes was specific. Following activation of PBLs, the levels of 7SK snRNA increased in a manner similar to U1 and U6 snRNA, sn RNAs involved in positive aspects of cellular gene expression. Unexpectedly, the association of 7SK snRNA with P-TEFb increased dramatically following lymphocyte activation. CONCLUSION Increased association of 7SK snRNA with P-TEFb in activated lymphocytes correlates with increased global transcription. This suggests that 7SK snRNA is unlikely to promote transcriptional latency in lymphocytes through an association with P-TEFb; it also suggests that the proposal that the association of 7SK snRNA with P-TEFb acts to inhibit transcriptional elongation needs to be re-evaluated.
Collapse
Affiliation(s)
- Richard E Haaland
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
398
|
Xu YX, Hirose Y, Zhou XZ, Lu KP, Manley JL. Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev 2003; 17:2765-76. [PMID: 14600023 PMCID: PMC280625 DOI: 10.1101/gad.1135503] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 09/17/2003] [Indexed: 01/01/2023]
Abstract
The C-terminal domain of the RNA polymerase (RNAP) II largest subunit (CTD) plays critical roles both in transcription of mRNA precursors and in the processing reactions needed to form mature mRNAs. The CTD undergoes dynamic changes in phosphorylation during the transcription cycle, and this plays a significant role in coordinating its multiple activities. But how these changes themselves are regulated is not well understood. Here we show that the peptidyl-prolyl isomerase Pin1 influences the phosphorylation status of the CTD in vitro by inhibiting the CTD phosphatase FCP1 and stimulating CTD phosphorylation by cdc2/cyclin B. This is reflected in vivo by accumulation of hypophosphorylated RNAP II in pin1-/- cells, and of a novel hyper-hyperphosphorylated form in cells induced to overexpress Pin1. This hyper-hyperphosphorylated form of RNAP II also accumulates in M-phase cells, in a Pin1-dependent manner, and associates specifically with Pin1. Functionally, we find that Pin1 overexpression specifically inhibits ongoing transcription of mRNA precursors in vivo and both transcription and RNAP II-stimulated pre-mRNA splicing in cell extracts. Pin1 thus plays a significant role in regulating RNAP II CTD structure and function.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
399
|
Tian Y, Ke S, Chen M, Sheng T. Interactions between the aryl hydrocarbon receptor and P-TEFb. Sequential recruitment of transcription factors and differential phosphorylation of C-terminal domain of RNA polymerase II at cyp1a1 promoter. J Biol Chem 2003; 278:44041-8. [PMID: 12917420 DOI: 10.1074/jbc.m306443200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the cytochrome P450 1A1 gene (cyp1a1) is regulated by the aryl hydrocarbon receptor (AhR), which is a ligand-activated transcription factor that mediates most toxic responses induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the nucleus, ligand-activated AhR binds to the xenobiotic response elements, initiating chromatin remodeling and recruitment of coregulators, leading to the formation of preinitiation complex followed by elongation. Here, we report that ligand-activated AhR recruits the positive transcription elongation factor (P-TEFb) and RNA polymerase II (RNA PII) to the cyp1a1 promoter with concomitant phosphorylation of the RNA PII carboxyl domain (CTD). Interestingly, the serine 2 and serine 5 of the heptapeptide repeats (YSPTSPS) were sequentially phosphorylated upon TCDD treatment. Inhibition of P-TEFb kinase activity by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) suppressed CTD phosphorylation (especially serine 2 phosphorylation) and abolished processive elongation without disrupting the assembly of the preinitiation complex at the cyp1a1 promoter. Remarkably, we found that activation of NF-kappaB by TNF-alpha selectively inhibited TCDD-induced serine 2 phosphorylation in mouse liver cells, suggesting that residue-specific phosphorylation of RNA PII CTD at the cyp1a1 promoter is an important regulatory point upon which signal "cross-talk" converges. Finally, we show that ligand-activated AhR associated with P-TEFb through the C terminus of cyclin T1, suggesting that AhR recruit the P-TEFb to the cyp1a1 promoter whereupon its kinase subunit phosphorylates the RNA PII CTD.
Collapse
Affiliation(s)
- Yanan Tian
- Department of Veterinary Physiology and Pharmacology, MS 4466, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
400
|
Palancade B, Bensaude O. Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. ACTA ACUST UNITED AC 2003; 270:3859-70. [PMID: 14511368 DOI: 10.1046/j.1432-1033.2003.03794.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphorylation of RNA polymerase II's largest subunit C-terminal domain (CTD) is a key event during mRNA metabolism. Numerous enzymes, including cell cycle-dependent kinases and TFIIF-dependent phosphatases target the CTD. However, the repetitive nature of the CTD prevents determination of phosphorylated sites by conventional biochemistry methods. Fortunately, a panel of monoclonal antibodies is available that distinguishes between phosphorylated isoforms of RNA polymerase II's (RNAP II) largest subunit. Here, we review how successful these tools have been in monitoring RNAP II phosphorylation changes in vivo by immunofluorescence, chromatin immunoprecipitation and immunoblotting experiments. The CTD phosphorylation pattern is precisely modified as RNAP II progresses along the genes and is involved in sequential recruitment of RNA processing factors. One of the most popular anti-phosphoCTD Igs, H5, has been proposed in several studies as a landmark of RNAP II molecules engaged in transcription. Finally, we discuss how global RNAP II phosphorylation changes are affected by the physiological context such as cell stress and embryonic development.
Collapse
Affiliation(s)
- Benoît Palancade
- Génétique Moléculaire, UMR 8541 CNRS, Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|