351
|
Wintachai P, Prathom K. Stability analysis of SEIR model related to efficiency of vaccines for COVID-19 situation. Heliyon 2021; 7:e06812. [PMID: 33880423 PMCID: PMC8048396 DOI: 10.1016/j.heliyon.2021.e06812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
This work is aimed to formulate and analyze a mathematical modeling, SEIR model, for COVID-19 with the main parameters of vaccination rate, effectiveness of prophylactic and therapeutic vaccines. Global and local stability of the model are investigated and also numerical simulation. Local stability of equilibrium points are classified. A Lyapunov function is constructed to analyze global stability of the disease-free equilibrium. The simulation part is based on two situations, the US and India. In the US circumstance, the result shows that with the rate of vaccination 0.1% per day of the US population and at least 20% effectiveness of both prophylactic and therapeutic vaccines, the reproductive numbers R0 are reduced from 2.99 (no vaccine) to less than 1. The same result happens in India case where the maximum reproductive number R0 in this case is 3.38. To achieve the same infected level of both countries, the simulation shows that with the same vaccine's efficiency the US needs a higher vaccination rate per day. Without vaccines for this pandemic, the model shows that a few percentages of the populations will suffering from the disease in the long term.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- Division of Biology, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Kiattisak Prathom
- Division of Mathematics and Statistics, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
- Corresponding author.
| |
Collapse
|
352
|
Hoffmann M, Zhang L, Krüger N, Graichen L, Kleine-Weber H, Hofmann-Winkler H, Kempf A, Nessler S, Riggert J, Winkler MS, Schulz S, Jäck HM, Pöhlmann S. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Rep 2021; 35:109017. [PMID: 33857422 PMCID: PMC8018833 DOI: 10.1016/j.celrep.2021.109017] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023] Open
Abstract
Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to farmed mink has been observed in Europe and the US. In the infected animals, viral variants arose that harbored mutations in the spike (S) protein, the target of neutralizing antibodies, and these variants were transmitted back to humans. This raised concerns that mink might become a constant source of human infection with SARS-CoV-2 variants associated with an increased threat to human health and resulted in mass culling of mink. Here, we report that mutations frequently found in the S proteins of SARS-CoV-2 from mink are mostly compatible with efficient entry into human cells and its inhibition by soluble angiotensin-converting enzyme 2 (ACE2). In contrast, mutation Y453F reduces neutralization by an antibody with emergency use authorization for coronavirus disease 2019 (COVID-19) therapy and sera/plasma from COVID-19 patients. These results suggest that antibody responses induced upon infection or certain antibodies used for treatment might offer insufficient protection against SARS-CoV-2 variants from mink.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany.
| | - Lu Zhang
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hannah Kleine-Weber
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Heike Hofmann-Winkler
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Joachim Riggert
- Department of Transfusion Medicine, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Martin Sebastian Winkler
- Department of Anaesthesiology and Intensive Care Medicine, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany.
| |
Collapse
|
353
|
Maurin M, Fenollar F, Mediannikov O, Davoust B, Devaux C, Raoult D. Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms 2021; 9:868. [PMID: 33920724 PMCID: PMC8072559 DOI: 10.3390/microorganisms9040868] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.
Collapse
Affiliation(s)
- Max Maurin
- University Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France;
| | - Florence Fenollar
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Bernard Davoust
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Christian Devaux
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
- Centre National de la Recherche Scientifique, 13005 Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
354
|
Bessière P, Fusade-Boyer M, Walch M, Lèbre L, Brun J, Croville G, Boullier S, Cadiergues MC, Guérin JL. Household Cases Suggest That Cats Belonging to Owners with COVID-19 Have a Limited Role in Virus Transmission. Viruses 2021; 13:v13040673. [PMID: 33919936 PMCID: PMC8070925 DOI: 10.3390/v13040673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19 and spread rapidly following its emergence in Wuhan in 2019. Although cats are, among other domestic animals, susceptible to SARS-CoV-2 infection, little is known about their epidemiological role in the dynamics of a household infection. In this study, we monitored five cats for viral shedding daily. Each cat was confined with its COVID-19 positive owners in separate households. Low loads of viral nucleic acid were found in two cats, but only one developed anti-SARS-CoV-2 antibodies, which suggests that cats have a limited role in COVID-19 epidemiology.
Collapse
Affiliation(s)
- Pierre Bessière
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
- Correspondence:
| | - Maxime Fusade-Boyer
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| | - Mathilda Walch
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| | - Laetitia Lèbre
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| | - Jessie Brun
- Small Animal Clinic, Université de Toulouse, ENVT, 31300 Toulouse, France; (J.B.); (M.-C.C.)
| | - Guillaume Croville
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| | - Séverine Boullier
- InTheRes, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France;
| | - Marie-Christine Cadiergues
- Small Animal Clinic, Université de Toulouse, ENVT, 31300 Toulouse, France; (J.B.); (M.-C.C.)
- Infinity, Université de Toulouse, INSERM, CNRS, UT3, ENVT, 31300 Toulouse, France
| | - Jean-Luc Guérin
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| |
Collapse
|
355
|
Lv J, Gao J, Wu B, Yao M, Yang Y, Chai T, Li N. Aerosol Transmission of Coronavirus and Influenza Virus of Animal Origin. Front Vet Sci 2021; 8:572012. [PMID: 33928140 PMCID: PMC8078102 DOI: 10.3389/fvets.2021.572012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great harm to global public health, resulting in a large number of infections among the population. However, the epidemiology of coronavirus has not been fully understood, especially the mechanism of aerosol transmission. Many respiratory viruses can spread via contact and droplet transmission, but increasing epidemiological data have shown that viral aerosol is an essential transmission route of coronavirus and influenza virus due to its ability to spread rapidly and high infectiousness. Aerosols have the characteristics of small particle size, long-time suspension and long-distance transmission, and easy access to the deep respiratory tract, leading to a high infection risk and posing a great threat to public health. In this review, the characteristics of viral aerosol generation, transmission, and infection as well as the current advances in the aerosol transmission of zoonotic coronavirus and influenza virus are summarized. The aim of the review is to strengthen the understanding of viral aerosol transmission and provide a scientific basis for the prevention and control of these diseases.
Collapse
Affiliation(s)
- Jing Lv
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Center for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
- Center for Disease Control and Prevention, Taian, China
| | - Jing Gao
- Taian Central Hospital, Taian, China
| | - Bo Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Center for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Meiling Yao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Center for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yudong Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Center for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Tongjie Chai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Center for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Center for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
356
|
Yang Y, Yan W, Hall AB, Jiang X. Characterizing Transcriptional Regulatory Sequences in Coronaviruses and Their Role in Recombination. Mol Biol Evol 2021; 38:1241-1248. [PMID: 33146390 PMCID: PMC7665640 DOI: 10.1093/molbev/msaa281] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Novel coronaviruses, including SARS-CoV-2, SARS, and MERS, often originate from recombination events. The mechanism of recombination in RNA viruses is template switching. Coronavirus transcription also involves template switching at specific regions, called transcriptional regulatory sequences (TRS). It is hypothesized but not yet verified that TRS sites are prone to recombination events. Here, we developed a tool called SuPER to systematically identify TRS in coronavirus genomes and then investigated whether recombination is more common at TRS. We ran SuPER on 506 coronavirus genomes and identified 465 TRS-L and 3,509 TRS-B. We found that the TRS-L core sequence (CS) and the secondary structure of the leader sequence are generally conserved within coronavirus genera but different between genera. By examining the location of recombination breakpoints with respect to TRS-B CS, we observed that recombination hotspots are more frequently colocated with TRS-B sites than expected.
Collapse
Affiliation(s)
- Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - A Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| |
Collapse
|
357
|
Survival of SARS-CoV-2 on Clothing Materials. Adv Virol 2021; 2021:6623409. [PMID: 33927762 PMCID: PMC8049815 DOI: 10.1155/2021/6623409] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
In order to plan and execute proper preventative measures against COVID-19, we need to understand how SARS-CoV-2 is transmitted. It has been shown to remain infectious on surfaces from hours to days depending on surface type and environmental factors. The possibility of transmission through fur animals and contaminated pelts, along with the safety of those working with them, is a major concern. SARS-CoV-2 can infect minks and raccoon dogs and has spread to mink farms in numerous countries. Here, we studied the stability of SARS-CoV-2 on blue fox, Finn raccoon, and American mink pelt, fake fur, cotton, plastic, faux leather, and polyester and tested its inactivation by UV light and heat treatment. We detected infectious virus up to 5 days on plastic, up to 1 day on fake fur, less than a day on cotton, polyester, and faux leather, and even 10 days on mink fur. UV light failed to inactivate SARS-CoV-2 on pelts, most likely due to the mechanical protection by the fur. Hence, it should not be used to inactivate the virus on fur products, and its use for other surfaces should also be considered carefully. Heat treatment at 60°C for 1 h inactivated the virus on all surfaces and is a promising method to be applied in practice. This study helps prevent further spread of COVID-19 by increasing our understanding about risks of SARS-CoV-2 spread through contaminated clothing materials and giving important information needed to improve safety of those working in the production line as well as people using the products.
Collapse
|
358
|
Michelitsch A, Wernike K, Ulrich L, Mettenleiter TC, Beer M. SARS-CoV-2 in animals: From potential hosts to animal models. Adv Virus Res 2021; 110:59-102. [PMID: 34353482 PMCID: PMC8025072 DOI: 10.1016/bs.aivir.2021.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Within only one year after the first detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), nearly 100 million infections were reported in the human population globally, with more than two million fatal cases. While SARS-CoV-2 most likely originated from a natural wildlife reservoir, neither the immediate viral precursor nor the reservoir or intermediate hosts have been identified conclusively. Due to its zoonotic origin, SARS-CoV-2 may also be relevant to animals. Thus, to evaluate the host range of the virus and to assess the risk to act as potential animal reservoir, a large number of different animal species were experimentally infected with SARS-CoV-2 or monitored in the field in the last months. In this review, we provide an update on studies describing permissive and resistant animal species. Using a scoring system based on viral genome detection subsequent to SARS-CoV-2 inoculation, seroconversion, the development of clinical signs and transmission to conspecifics or humans, the susceptibility of diverse animal species was classified on a semi-quantitative scale. While major livestock species such as pigs, cattle and poultry are mostly resistant, companion animals appear moderately susceptible, while several model animal species used in research, including several Cricetidae species and non-human primates, are highly susceptible to SARS-CoV-2 infection. By natural infections, it became obvious that American minks (Neovison vison) in fur farms, e.g., in the Netherlands and Denmark are highly susceptible resulting in local epidemics in these animals.
Collapse
Affiliation(s)
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lorenz Ulrich
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
359
|
Zrelovs N, Ustinova M, Silamikelis I, Birzniece L, Megnis K, Rovite V, Freimane L, Silamikele L, Ansone L, Pjalkovskis J, Fridmanis D, Vilne B, Priedite M, Caica A, Gavars M, Perminov D, Storozenko J, Savicka O, Dimina E, Dumpis U, Klovins J. First Report on the Latvian SARS-CoV-2 Isolate Genetic Diversity. Front Med (Lausanne) 2021; 8:626000. [PMID: 33889583 PMCID: PMC8055824 DOI: 10.3389/fmed.2021.626000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.
Collapse
Affiliation(s)
- Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Monta Ustinova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Liga Birzniece
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Lauma Freimane
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Laura Ansone
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | | | - Dmitry Perminov
- E. Gulbja Laboratorija, Ltd, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| | - Jelena Storozenko
- Riga Stradins University, Riga, Latvia
- Laboratory Service, Latvian Centre of Infectious Diseases Laboratory, National Microbiology Reference Laboratory, Molecular Biology and Virology Department, Riga East University Hospital, Riga, Latvia
| | - Oksana Savicka
- Riga Stradins University, Riga, Latvia
- Laboratory Service, Latvian Centre of Infectious Diseases Laboratory, National Microbiology Reference Laboratory, Molecular Biology and Virology Department, Riga East University Hospital, Riga, Latvia
| | - Elina Dimina
- Infectious Diseases Surveillance and Immunization Division, Infectious Diseases Risk Analysis and Prevention Department, The Centre for Disease Prevention and Control (CDPC) of Latvia, Riga, Latvia
| | - Uga Dumpis
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
360
|
Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073768. [PMID: 33916590 PMCID: PMC8038505 DOI: 10.3390/ijerph18073768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022]
Abstract
The heterogenous distribution of both COVID-19 incidence and mortality in Catalonia (Spain) during the firsts moths of the pandemic suggests that differences in baseline risk factors across regions might play a relevant role in modulating the outcome of the pandemic. This paper investigates the associations between both COVID-19 incidence and mortality and air pollutant concentration levels, and screens the potential effect of the type of agri-food industry and the overall land use and cover (LULC) at area level. We used a main model with demographic, socioeconomic and comorbidity covariates highlighted in previous research as important predictors. This allowed us to take a glimpse of the independent effect of the explanatory variables when controlled for the main model covariates. Our findings are aligned with previous research showing that the baseline features of the regions in terms of general health status, pollutant concentration levels (here NO2 and PM10), type of agri-food industry, and type of land use and land cover have modulated the impact of COVID-19 at a regional scale. This study is among the first to explore the associations between COVID-19 and the type of agri-food industry and LULC data using a population-based approach. The results of this paper might serve as the basis to develop new research hypotheses using a more comprehensive approach, highlighting the inequalities of regions in terms of risk factors and their response to COVID-19, as well as fostering public policies towards more resilient and safer environments.
Collapse
|
361
|
Fenollar F, Mediannikov O, Maurin M, Devaux C, Colson P, Levasseur A, Fournier PE, Raoult D. Mink, SARS-CoV-2, and the Human-Animal Interface. Front Microbiol 2021; 12:663815. [PMID: 33868218 PMCID: PMC8047314 DOI: 10.3389/fmicb.2021.663815] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 01/05/2023] Open
Abstract
Mink are small carnivores of the Mustelidae family. The American mink is the most common and was imported to Europe, Asia, and Latin America for breeding, as its fur is very popular. Denmark, the Netherlands, and China are the biggest producers of mink. Mink farms with a high population density in very small areas and a low level of genetic heterogeneity are places conducive to contagion. The mink’s receptor for SARS-CoV-2 is very similar to that of humans. Experimental models have shown the susceptibility of the ferret, another mustelid, to become infected with SARS-CoV-2 and to transmit it to other ferrets. On April 23, 2020, for the first time, an outbreak of SARS-CoV-2 in a mink farm was reported in the Netherlands. Since then, COVID-19 has reached numerous mink farms in the Netherlands, Denmark, United States, France, Greece, Italy, Spain, Sweden, Poland, Lithuania, and Canada. Not only do mink become infected from each other, but also they are capable of infecting humans, including with virus variants that have mutated in mink. Human infection with variant mink viruses with spike mutations led to the culling in Denmark of all mink in the country. Several animals can be infected with SARS-CoV-2. However, anthropo-zoonotic outbreaks have only been reported in mink farms. The rapid spread of SARS-CoV-2 in mink farms raises questions regarding their potential role at the onset of the pandemic and the impact of mutants on viral fitness, contagiousness, pathogenicity, re-infections with different mutants, immunotherapy, and vaccine efficacy.
Collapse
Affiliation(s)
- Florence Fenollar
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, SSA, VITROME, Aix Marseille University, Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| | - Max Maurin
- CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Christian Devaux
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| | - Philippe Colson
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| | - Anthony Levasseur
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| | - Pierre-Edouard Fournier
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, SSA, VITROME, Aix Marseille University, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France.,IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France
| |
Collapse
|
362
|
Ghai RR, Carpenter A, Liew AY, Martin KB, Herring MK, Gerber SI, Hall AJ, Sleeman JM, VonDobschuetz S, Behravesh CB. Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses. Emerg Infect Dis 2021; 27:1015-1022. [PMID: 33770472 PMCID: PMC8007319 DOI: 10.3201/eid2704.203945] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ongoing global pandemic caused by coronavirus disease has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. Because severe acute respiratory syndrome coronavirus 2 was first detected in December 2019, information on its tropism, host range, and clinical manifestations in animals is limited. Given the limited information, data from other coronaviruses might be useful for informing scientific inquiry, risk assessment, and decision-making. We reviewed endemic and emerging infections of alphacoronaviruses and betacoronaviruses in wildlife, livestock, and companion animals and provide information on the receptor use, known hosts, and clinical signs associated with each host for 15 coronaviruses detected in humans and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.
Collapse
|
363
|
Hosie MJ, Epifano I, Herder V, Orton RJ, Stevenson A, Johnson N, MacDonald E, Dunbar D, McDonald M, Howie F, Tennant B, Herrity D, Da Silva Filipe A, Streicker DG, Willett BJ, Murcia PR, Jarrett RF, Robertson DL, Weir W. Detection of SARS-CoV-2 in respiratory samples from cats in the UK associated with human-to-cat transmission. Vet Rec 2021; 188:e247. [PMID: 33890314 PMCID: PMC8251078 DOI: 10.1002/vetr.247] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The aim of the study was to find evidence of SARS-CoV-2 infection in UK cats. DESIGN Tissue samples were tested for SARS-CoV-2 antigen using immunofluorescence and for viral RNA by in situ hybridisation. A set of 387 oropharyngeal swabs that had been submitted for routine respiratory pathogen testing was tested for SARS-CoV-2 RNA using reverse transcriptase quantitative PCR. RESULTS Lung tissue collected post-mortem from cat 1 tested positive for both SARS-CoV-2 nucleocapsid antigen and RNA. SARS-CoV-2 RNA was detected in an oropharyngeal swab collected from cat 2 that presented with rhinitis and conjunctivitis. High throughput sequencing of the viral genome revealed five single nucleotide polymorphisms (SNPs) compared to the nearest UK human SARS-CoV-2 sequence, and this human virus contained eight SNPs compared to the original Wuhan-Hu-1 reference sequence. An analysis of the viral genome of cat 2 together with nine other feline-derived SARS-CoV-2 sequences from around the world revealed no shared cat-specific mutations. CONCLUSIONS These findings indicate that human-to-cat transmission of SARS-CoV-2 occurred during the COVID-19 pandemic in the UK, with the infected cats developing mild or severe respiratory disease. Given the ability of the new coronavirus to infect different species, it will be important to monitor for human-to-cat, cat-to-cat and cat-to-human transmission.
Collapse
Affiliation(s)
| | - Ilaria Epifano
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Vanessa Herder
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | | | | | - Natasha Johnson
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Emma MacDonald
- Veterinary Diagnostics Service, School of Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Dawn Dunbar
- Veterinary Diagnostics Service, School of Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Michael McDonald
- Veterinary Diagnostics Service, School of Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Fiona Howie
- SRUC Veterinary ServicesPentlands Science ParkPenicuikMidlothianUK
| | - Bryn Tennant
- SRUC Veterinary ServicesPentlands Science ParkPenicuikMidlothianUK
| | | | | | - Daniel G. Streicker
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
- Animal Health and Comparative MedicineInstitute of Biodiversity University of GlasgowGlasgowUK
| | | | | | - Pablo R. Murcia
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Ruth F. Jarrett
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | | | - William Weir
- Veterinary Diagnostics Service, School of Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
364
|
Winkler MS, Skirecki T, Brunkhorst FM, Cajander S, Cavaillon JM, Ferrer R, Flohé SB, García-Salido A, Giamarellos-Bourboulis EJ, Girardis M, Kox M, Lachmann G, Martin-Loeches I, Netea MG, Spinetti T, Schefold JC, Torres A, Uhle F, Venet F, Weis S, Scherag A, Rubio I, Osuchowski MF. Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine 2021; 66:103291. [PMID: 33813139 PMCID: PMC8016444 DOI: 10.1016/j.ebiom.2021.103291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.
Collapse
Affiliation(s)
- Martin S Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Robert-Koch-Str. 40, 37085 Göttingen, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Frank M Brunkhorst
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany; Center for Clinical Studies, Jena University Hospital, 07747 Jena, Germany
| | - Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Sweden
| | | | - Ricard Ferrer
- Intensive Care Department and Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Alberto García-Salido
- Pediatric Critical Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Massimo Girardis
- Department of Anesthesia and Intensive Care, University Hospital of Modena, Italy
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gunnar Lachmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, James's St N, Ushers, Dublin, D03 VX82, Ireland
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Antoni Torres
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - University of Barcelona (UB), Spain
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France; EA 7426 "Pathophysiology of Injury-Induced Immunosuppression - PI3", Université Claude Bernard Lyon 1/bioMérieux/Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Sebastian Weis
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital-Friedrich Schiller University, Bachstrasse 18, 07743 Jena, Germany
| | - Ignacio Rubio
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria.
| |
Collapse
|
365
|
Gryseels S, De Bruyn L, Gyselings R, Calvignac‐Spencer S, Leendertz FH, Leirs H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mamm Rev 2021; 51:272-292. [PMID: 33230363 PMCID: PMC7675675 DOI: 10.1111/mam.12225] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
It has been a long time since the world has experienced a pandemic with such a rapid devastating impact as the current COVID-19 pandemic. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unusual in that it appears capable of infecting many different mammal species. As a significant proportion of people worldwide are infected with SARS-CoV-2 and may spread the infection unknowingly before symptoms occur or without any symptoms ever occurring, there is a non-negligible risk of humans spreading SARS-CoV-2 to wildlife, in particular to wild non-human mammals. Because of SARS-CoV-2's apparent evolutionary origins in bats and reports of humans transmitting the virus to pets and zoo animals, regulations for the prevention of human-to-animal transmission have so far focused mostly on these animal groups. We summarise recent studies and reports that show that a wide range of distantly related mammals are likely to be susceptible to SARS-CoV-2, and that susceptibility or resistance to the virus is, in general, not predictable, or only predictable to some extent, from phylogenetic proximity to known susceptible or resistant hosts. In the absence of solid evidence on the susceptibility and resistance to SARS-CoV-2 for each of the >6500 mammal species, we argue that sanitary precautions should be taken by humans interacting with any other mammal species in the wild. Preventing human-to-wildlife SARS-CoV-2 transmission is important to protect these animals (some of which are classed as threatened) from disease, but also to avoid establishment of novel SARS-CoV-2 reservoirs in wild mammals. The risk of repeated re-infection of humans from such a wildlife reservoir could severely hamper SARS-CoV-2 control efforts. Activities during which direct or indirect interaction with wild mammals may occur include wildlife research, conservation activities, forestry work, pest control, management of feral populations, ecological consultancy work, management of protected areas and natural environments, wildlife tourism and wildlife rehabilitation in animal shelters. During such activities, we recommend sanitary precautions, such as physical distancing, wearing face masks and gloves, and frequent decontamination, which are very similar to regulations currently imposed to prevent transmission among humans. We further recommend active surveillance of domestic and feral animals that could act as SARS-CoV-2 intermediate hosts between humans and wild mammals.
Collapse
Affiliation(s)
- Sophie Gryseels
- Department of Microbiology, Immunology and TransplantationRega Institute, KU LeuvenHerestraat 49Leuven3000Belgium
- Department of Ecology and Evolutionary BiologyUniversity of Arizona1041 E. Lowell St.TucsonAZ85721USA
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
| | - Luc De Bruyn
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
- Research Institute for Nature and Forest (INBO)Havenlaan 88Brussels1000Belgium
| | - Ralf Gyselings
- Research Institute for Nature and Forest (INBO)Havenlaan 88Brussels1000Belgium
| | | | | | - Herwig Leirs
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
| |
Collapse
|
366
|
Casel MAB, Rollon RG, Choi YK. Experimental Animal Models of Coronavirus Infections: Strengths and Limitations. Immune Netw 2021; 21:e12. [PMID: 33996168 PMCID: PMC8099610 DOI: 10.4110/in.2021.21.e12] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the emergence of SARS-CoV-2 in the human population in late 2019, it has spread on an unprecedented scale worldwide leading to the first coronavirus pandemic. SARS-CoV-2 infection results in a wide range of clinical manifestations from asymptomatic to fatal cases. Although intensive research has been undertaken to increase understanding of the complex biology of SARS-CoV-2 infection, the detailed mechanisms underpinning the severe pathogenesis and interactions between the virus and the host immune response are not well understood. Thus, the development of appropriate animal models that recapitulate human clinical manifestations and immune responses against SARS-CoV-2 is crucial. Although many animal models are currently available for the study of SARS-CoV-2 infection, each has distinct advantages and disadvantages, and some models show variable results between and within species. Thus, we aim to discuss the different animal models, including mice, hamsters, ferrets, and non-human primates, employed for SARS-CoV-2 infection studies and outline their individual strengths and limitations for use in studies aimed at increasing understanding of coronavirus pathogenesis. Moreover, a significant advantage of these animal models is that they can be tailored, providing unique options specific to the scientific goals of each researcher.
Collapse
Affiliation(s)
- Mark Anthony B. Casel
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Rare G. Rollon
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
367
|
Parolin C, Virtuoso S, Giovanetti M, Angeletti S, Ciccozzi M, Borsetti A. Animal Hosts and Experimental Models of SARS-CoV-2 Infection. Chemotherapy 2021; 66:8-16. [PMID: 33774628 PMCID: PMC8089426 DOI: 10.1159/000515341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Viruses arise through cross-species transmission and can cause potentially fatal diseases in humans. This is the case of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which recently appeared in Wuhan, China, and rapidly spread worldwide, causing the outbreak of coronavirus disease 2019 (COVID-19) and posing a global health emergency. Sequence analysis and epidemiological investigations suggest that the most likely original source of SARS-CoV-2 is a spillover from an animal reservoir, probably bats, that infected humans either directly or through intermediate animal hosts. The role of animals as reservoirs and natural hosts in SARS-CoV-2 has to be explored, and animal models for COVID-19 are needed as well to be evaluated for countermeasures against SARS-CoV-2 infection. Experimental cells, tissues, and animal models that are currently being used and developed in COVID-19 research will be presented.
Collapse
Affiliation(s)
- Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Sara Virtuoso
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Giovanetti
- Reference Laboratory of Flavivirus, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
368
|
Dias HG, Resck MEB, Caldas GC, Resck AF, da Silva NV, dos Santos AMV, Sousa TDC, Ogrzewalska MH, Siqueira MM, Pauvolid-Corrêa A, dos Santos FB. Neutralizing antibodies for SARS-CoV-2 in stray animals from Rio de Janeiro, Brazil. PLoS One 2021; 16:e0248578. [PMID: 33765012 PMCID: PMC7993851 DOI: 10.1371/journal.pone.0248578] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The epidemic of coronavirus disease 2019 (COVID-19), caused by a novel Betacoronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a public health emergency worldwide. Few reports indicate that owned pets from households with at least one human resident that was diagnosed with COVID-19 can be infected by SARS-CoV-2. However, the exposure to SARS-CoV-2 of pets from households with no COVID-19 cases or stray animals remains less assessed. Using real-time reverse transcriptase polymerase chain reaction (RT-PCR) and plaque reduction neutralization test (PRNT90), we investigated the infection and previous exposure of dogs and cats to SARS-CoV-2 during the ongoing COVID-19 epidemic in Rio de Janeiro, Brazil. From June to August 2020, 96 animals were sampled, including 49 cats (40 owned and 9 stray) and 47 dogs (42 owned and 5 stray). Regarding owned pets, 75.6% (62/82) belonged to households with no COVID-19 cases. Samples included serum, and rectal and oropharyngeal swabs. All swabs were negative for SARS-CoV-2 RNA, but serum samples of a stray cat and a stray dog presented neutralizing antibodies for SARS-CoV-2, with PRNT90 titer of 80 and 40, respectively. Serological data presented here suggest that not only owned pets from households with COVID19 cases, but also stray animals are being exposed to SARS-CoV-2 during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Helver Gonçalves Dias
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Maria Eduarda Barreto Resck
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Gabriela Cardoso Caldas
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | | | - Natália Valente da Silva
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | | | - Thiago das Chagas Sousa
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Maria Halina Ogrzewalska
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Alex Pauvolid-Corrêa
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | | |
Collapse
|
369
|
Pereira F. SARS-CoV-2 variants lacking ORF8 occurred in farmed mink and pangolin. Gene 2021; 784:145596. [PMID: 33766711 PMCID: PMC7985683 DOI: 10.1016/j.gene.2021.145596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
The SARS-CoV-2 Variant of Concern 202012/01 (VOC-202012/01) is rapidly spreading worldwide owing to its substantial transmission advantage. The variant has changes in critical sites of the spike protein with potential biological significance. Moreover, VOC-202012/01 has a mutation that inactivates the ORF8 protein, whose absence can change the clinical features of the infection. Why VOC-202012/01 is more transmissible remains unclear, but spike mutations and ORF8 inactivation stand out by their known phenotypic effects. Here I show that variants combining relevant spike mutations and the absence of ORF8 occurred in SARS-CoV-2 and related viruses circulating in other host species. A truncated ORF8 (Q23stop) occurred in a SARS-CoV-2-related virus from a pangolin seized in China in 2017, also with several mutations in critical spike sites. Strikingly, I found that variants without ORF8 (E19stop) and with the N501T spike mutation circulated in farmed mink and humans from Denmark. Although with differences to VOC-202012/01, the identification of these variants highlights the danger of having reservoirs of SARS-CoV-2 and related viruses where more transmissible variants may occur and spill over to humans.
Collapse
Affiliation(s)
- Filipe Pereira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal; IDENTIFICA genetic testing, Rua Simão Bolívar 259 3° Dir Tras, Maia 4470-214, Portugal.
| |
Collapse
|
370
|
Klaus J, Palizzotto C, Zini E, Meli ML, Leo C, Egberink H, Zhao S, Hofmann-Lehmann R. SARS-CoV-2 Infection and Antibody Response in a Symptomatic Cat from Italy with Intestinal B-Cell Lymphoma. Viruses 2021; 13:527. [PMID: 33806922 PMCID: PMC8004793 DOI: 10.3390/v13030527] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Since the coronavirus disease (COVID-19) pandemic was first identified in early 2020, rare cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pet cats have been reported worldwide. Some reports of cats with SARS-CoV-2 showed self-limiting respiratory or gastrointestinal disease after suspected human-to-feline transmission via close contact with humans with SARS-CoV-2. In the present study, we investigated a cat with SARS-CoV-2 that was presented to a private animal clinic in Northern Italy in May 2020 in a weak clinical condition due to an underlying intestinal B-cell lymphoma. The cat developed signs of respiratory tract disease, including a sneeze, a cough and ocular discharge, three days after an oropharyngeal swab tested positive for SARS-CoV-2 viral RNA using two real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays for the envelope (E) and RNA-dependent RNA polymerase (RdRp) gene. Thus, SARS-CoV-2 viral RNA was detectable prior to the onset of clinical signs. Five and six months after positive molecular results, the serological testing substantiated the presence of a SARS-CoV-2 infection in the cat with the detection of anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin (IgG) antibodies and neutralizing activity in a surrogate virus neutralization assay (sVNT). To the best of our knowledge, this extends the known duration of seropositivity of SARS-CoV-2 in a cat. Our study provides further evidence that cats are susceptible to SARS-CoV-2 under natural conditions and strengthens the assumption that comorbidities may play a role in the development of clinical disease.
Collapse
Affiliation(s)
- Julia Klaus
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| | - Chiara Leo
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| |
Collapse
|
371
|
Mosselhy DA, Virtanen J, Kant R, He W, Elbahri M, Sironen T. COVID-19 Pandemic: What about the Safety of Anti-Coronavirus Nanoparticles? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:796. [PMID: 33808934 PMCID: PMC8003598 DOI: 10.3390/nano11030796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023]
Abstract
Every day, new information is presented with respect to how to best combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This manuscript sheds light on such recent findings, including new co-factors (i.e., neuropilin-1) and routes (i.e., olfactory transmucosal) allowing cell entry of SARS-CoV-2 and induction of neurological symptoms, as well as the new SARS-CoV-2 variants. We highlight the SARS-CoV-2 human-animal interfaces and elaborate containment strategies using the same vaccination (i.e., nanoparticle "NP" formulations of the BNT162b2 and mRNA-1273 vaccines) for humans, minks, raccoon dogs, cats, and zoo animals. We investigate the toxicity issues of anti-CoV NPs (i.e., plasmonic NPs and quantum dots) on different levels. Namely, nano-bio interfaces (i.e., protein corona), in vitro (i.e., lung cells) and in vivo (i.e., zebrafish embryos) assessments, and impacts on humans are discussed in a narrative supported by original figures. Ultimately, we express our skeptical opinion on the comprehensive administration of such antiviral nanotheranostics, even when integrated into facemasks, because of their reported toxicities and the different NP parameters (e.g., size, shape, surface charge, and purity and chemical composition of NPs) that govern their end toxicity. We believe that more toxicity studies should be performed and be presented, clarifying the odds of the safe administration of nanotoxocological solutions and the relief of a worried public.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; (J.V.); (R.K.); (T.S.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Jenni Virtanen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; (J.V.); (R.K.); (T.S.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; (J.V.); (R.K.); (T.S.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China;
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd., Suzhou 215123, China
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Center for Nanotechnology, Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, Egypt
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; (J.V.); (R.K.); (T.S.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
372
|
Elaswad A, Fawzy M. Mutations in Animal SARS-CoV-2 Induce Mismatches with the Diagnostic PCR Assays. Pathogens 2021; 10:371. [PMID: 33808783 PMCID: PMC8003424 DOI: 10.3390/pathogens10030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was detected in several animal species. After transmission to animals, the virus accumulates mutations in its genome as adaptation to the new animal host progresses. Therefore, we investigated whether these mutations result in mismatches with the diagnostic PCR assays and suggested proper modifications to the oligo sequences accordingly. A comprehensive bioinformatic analysis was conducted using 28 diagnostic PCR assays and 793 publicly available SARS-CoV-2 genomes isolated from animals. Sixteen out of the investigated 28 PCR assays displayed at least one mismatch with their targets at the 0.5% threshold. Mismatches were detected in seven, two, two, and six assays targeting the ORF1ab, spike, envelope, and nucleocapsid genes, respectively. Several of these mismatches, such as the deletions and mismatches at the 3' end of the primer or probe, are expected to negatively affect the diagnostic PCR assays resulting in false-negative results. The modifications to the oligo sequences should result in stronger template binding by the oligos, better sensitivity of the assays, and higher confidence in the result. It is necessary to monitor the targets of diagnostic PCR assays for any future mutations that may occur as the virus continues to evolve in animals.
Collapse
Affiliation(s)
- Ahmed Elaswad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Middle East for Vaccines (ME VAC®), Sharquia 44813, Egypt
| |
Collapse
|
373
|
Frutos R, Gavotte L, Devaux CA. Understanding the origin of COVID-19 requires to change the paradigm on zoonotic emergence from the spillover to the circulation model. INFECTION GENETICS AND EVOLUTION 2021; 95:104812. [PMID: 33744401 PMCID: PMC7969828 DOI: 10.1016/j.meegid.2021.104812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
While the COVID-19 pandemic continues to spread with currently more than 117 million cumulated cases and 2.6 million deaths worldwide as per March 2021, its origin is still debated. Although several hypotheses have been proposed, there is still no clear explanation about how its causative agent, SARS-CoV-2, emerged in human populations. Today, scientifically-valid facts that deserve to be debated still coexist with unverified statements blurring thus the knowledge on the origin of COVID-19. Our retrospective analysis of scientific data supports the hypothesis that SARS-CoV-2 is indeed a naturally occurring virus. However, the spillover model considered today as the main explanation to zoonotic emergence does not match the virus dynamics and somehow misguided the way researches were conducted. We conclude this review by proposing a change of paradigm and model and introduce the circulation model for explaining the various aspects of the dynamic of SARS-CoV-2 emergence in humans.
Collapse
|
374
|
Klaus J, Meli ML, Willi B, Nadeau S, Beisel C, Stadler T, Egberink H, Zhao S, Lutz H, Riond B, Rösinger N, Stalder H, Renzullo S, Hofmann-Lehmann R. Detection and Genome Sequencing of SARS-CoV-2 in a Domestic Cat with Respiratory Signs in Switzerland. Viruses 2021; 13:496. [PMID: 33802899 PMCID: PMC8002591 DOI: 10.3390/v13030496] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of coronavirus disease (COVID-19) in late 2019, domestic cats have been demonstrated to be susceptible to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) under natural and experimental conditions. As pet cats often live in very close contact with their owners, it is essential to investigate SARS-CoV-2 infections in cats in a One-Health context. This study reports the first SARS-CoV-2 infection in a cat in a COVID-19-affected household in Switzerland. The cat (Cat 1) demonstrated signs of an upper respiratory tract infection, including sneezing, inappetence, and apathy, while the cohabiting cat (Cat 2) remained asymptomatic. Nasal, oral, fecal, fur, and environmental swab samples were collected twice from both cats and analyzed by RT-qPCR for the presence of SARS-CoV-2 viral RNA. Both nasal swabs from Cat 1 tested positive. In addition, the first oral swab from Cat 2 and fur and bedding swabs from both cats were RT-qPCR positive. The fecal swabs tested negative. The infection of Cat 1 was confirmed by positive SARS-CoV-2 S1 receptor binding domain (RBD) antibody testing and neutralizing activity in a surrogate assay. The viral genome sequence from Cat 1, obtained by next generation sequencing, showed the closest relation to a human sequence from the B.1.1.39 lineage, with one single nucleotide polymorphism (SNP) difference. This study demonstrates not only SARS-CoV-2 infection of a cat from a COVID-19-affected household but also contamination of the cats' fur and bed with viral RNA. Our results are important to create awareness that SARS-CoV-2 infected people should observe hygienic measures to avoid infection and contamination of animal cohabitants.
Collapse
Affiliation(s)
- Julia Klaus
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| | - Marina L. Meli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (B.W.); (N.R.)
| | - Sarah Nadeau
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (S.N.); (C.B.); (T.S.)
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (S.N.); (C.B.); (T.S.)
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (S.N.); (C.B.); (T.S.)
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | | | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Hans Lutz
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| | - Barbara Riond
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| | - Nina Rösinger
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (B.W.); (N.R.)
| | - Hanspeter Stalder
- Institute for Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (H.S.); (S.R.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Sandra Renzullo
- Institute for Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (H.S.); (S.R.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| |
Collapse
|
375
|
Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study. Viruses 2021; 13:494. [PMID: 33802857 PMCID: PMC8002747 DOI: 10.3390/v13030494] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has brought many questions over the origin of the virus, the threat it poses to animals both in the wild and captivity, and the risks of a permanent viral reservoir developing in animals. Animal experiments have shown that a variety of animals can become infected with the virus. While coronaviruses have been known to infect animals for decades, the true intermediate host of the virus has not been identified, with no cases of SARS-CoV-2 in wild animals. The screening of wild, farmed, and domesticated animals is necessary to help us understand the virus and its origins and prevent future outbreaks of both COVID-19 and other diseases. There is intriguing evidence that farmed mink infections (acquired from humans) have led to infection of other farm workers in turn, with a recent outbreak of a mink variant in humans in Denmark. A thorough examination of the current knowledge and evidence of the ability of SARS-CoV-2 to infect different animal species is therefore vital to evaluate the threat of animal to human transmission and reverse zoonosis.
Collapse
Affiliation(s)
- Tessa Prince
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Shirley L. Smith
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Alan D. Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Tom Solomon
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Grant L. Hughes
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Edward I. Patterson
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
376
|
Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc Natl Acad Sci U S A 2021; 118:2025373118. [PMID: 33658332 PMCID: PMC8000431 DOI: 10.1073/pnas.2025373118] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a major global health threat. The host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. We found that SARS-CoV-2 has the potential to infect a broad range of mammalian hosts, including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria. Those species may be at risk for human-to-animal or animal-to-animal transmissions of SARS-CoV-2. Our study highlights the importance of banning illegal wildlife trade and consumption, and enforcing the importance of surveilling animals in close contact with humans as potential zoonotic reservoirs to prevent outbreaks in the future. The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs—including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria—could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.
Collapse
|
377
|
Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer ( Rangifer tarandus). BIOLOGY 2021; 10:biology10030222. [PMID: 33805829 PMCID: PMC7998281 DOI: 10.3390/biology10030222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Reindeer are an important wild and domesticated species of the Arctic, Northern Europe, Siberia and North America. As reindeer have developed various strategies to adapt to extreme environments, this makes them an interesting species for studies into diversity of immune and metabolic functions in the animal kingdom. Importantly, while reindeer carry natural infections caused by viruses (including coronaviruses), bacteria and parasites, they can also act as carriers for transmitting such diseases to other animals and humans, so called zoonosis. Reindeer are also affected by chronic wasting disease, a neuronal disease caused by prions, similar to scrapie in sheep, mad cows disease in cattle and Creutzfeldt-Jakob disease in humans. The current study assessed a specific protein modification called deimination/citrullination, which can change how proteins function and allow them to take on different roles in health and disease processes. Profiling of deiminated proteins in reindeer showed that many important pathways for immune defenses, prion diseases and metabolism are enriched in deiminated proteins, both in plasma, as well as in plasma extracellular vesicles. This study provides a platform for the development of novel biomarkers to assess wild life health status and factors relating to zoonotic disease. Abstract The reindeer (caribou) Rangifer tarandus is a Cervidae in the order Artiodactyla. Reindeer are sedentary and migratory populations with circumpolar distribution in the Arctic, Northern Europe, Siberia and North America. Reindeer are an important wild and domesticated species, and have developed various adaptive strategies to extreme environments. Importantly, deer have also been identified to be putative zoonotic carriers, including for parasites, prions and coronavirus. Therefore, novel insights into immune-related markers are of considerable interest. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which causes post-translational protein deimination by converting arginine into citrulline in target proteins. This affects protein function in health and disease. Extracellular vesicles (EVs) participate in cellular communication, in physiological and pathological processes, via transfer of cargo material, and their release is partly regulated by PADs. This study assessed deiminated protein and EV profile signatures in plasma from sixteen healthy wild female reindeer, collected in Iceland during screening for parasites and chronic wasting disease. Reindeer plasma EV profiles showed a poly-dispersed distribution from 30 to 400 nm and were positive for phylogenetically conserved EV-specific markers. Deiminated proteins were isolated from whole plasma and plasma EVs, identified by proteomic analysis and protein interaction networks assessed by KEGG and GO analysis. This revealed a large number of deimination-enriched pathways for immunity and metabolism, with some differences between whole plasma and EVs. While shared KEGG pathways for whole plasma and plasma EVs included complement and coagulation pathways, KEGG pathways specific for EVs were for protein digestion and absorption, platelet activation, amoebiasis, the AGE–RAGE signaling pathway in diabetic complications, ECM receptor interaction, the relaxin signaling pathway and the estrogen signaling pathway. KEGG pathways specific for whole plasma were pertussis, ferroptosis, SLE, thyroid hormone synthesis, phagosome, Staphylococcus aureus infection, vitamin digestion and absorption, and prion disease. Further differences were also found between molecular function and biological processes GO pathways when comparing functional STRING networks for deiminated proteins in EVs, compared with deiminated proteins in whole plasma. This study highlights deiminated proteins and EVs as candidate biomarkers for reindeer health and may provide information on regulation of immune pathways in physiological and pathological processes, including neurodegenerative (prion) disease and zoonosis.
Collapse
|
378
|
Kutter JS, de Meulder D, Bestebroer TM, Lexmond P, Mulders A, Richard M, Fouchier RAM, Herfst S. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat Commun 2021; 12:1653. [PMID: 33712573 PMCID: PMC7955093 DOI: 10.1038/s41467-021-21918-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 emerged in late 2019 and caused a pandemic, whereas the closely related SARS-CoV was contained rapidly in 2003. Here, an experimental set-up is used to study transmission of SARS-CoV and SARS-CoV-2 through the air between ferrets over more than a meter distance. Both viruses cause a robust productive respiratory tract infection resulting in transmission of SARS-CoV-2 to two of four indirect recipient ferrets and SARS-CoV to all four. A control pandemic A/H1N1 influenza virus also transmits efficiently. Serological assays confirm all virus transmission events. Although the experiments do not discriminate between transmission via small aerosols, large droplets and fomites, these results demonstrate that SARS-CoV and SARS-CoV-2 can remain infectious while traveling through the air. Efficient virus transmission between ferrets is in agreement with frequent SARS-CoV-2 outbreaks in mink farms. Although the evidence for virus transmission via the air between humans under natural conditions is absent or weak for SARS-CoV and SARS-CoV-2, ferrets may represent a sensitive model to study interventions aimed at preventing virus transmission.
Collapse
Affiliation(s)
- Jasmin S Kutter
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ard Mulders
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
379
|
Hancock JT, Rouse RC, Stone E, Greenhough A. Interacting Proteins, Polymorphisms and the Susceptibility of Animals to SARS-CoV-2. Animals (Basel) 2021; 11:797. [PMID: 33809265 PMCID: PMC8000148 DOI: 10.3390/ani11030797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a world-wide problem for the human population. It is known that some animal species, such as mink, can become infected and transmit the virus. However, the susceptibility of most animals is not known. Here, we review the use of sequence analysis of the proteins which are known to interact with SARS-CoV-2 as a way to estimate an animal's susceptibility. Although most such work concentrates on the angiotensin-converting enzyme 2 receptor (ACE2), here TMPRSS2 (Transmembrane Serine Protease 2), neuropilin-1 and furin are also considered. Polymorphisms, especially ones which are known to alter viral/host interactions are also discussed. Analysis of ACE2 and TMPRSS2 protein sequences across species suggests this approach may be of some utility in predicting susceptibility; however, this analysis fails to highlight some susceptible animals such as mink. However, combined with observational data which emerges over time about which animals actually become infected, this may, in the future, be a useful tool to assist the management of risks associated with human/animal contact and support conservation and animal welfare measures.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| | - Ros C. Rouse
- Research, Business and Innovation, University of the West of England, Bristol BS16 1QY, UK;
| | - Emma Stone
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| | - Alexander Greenhough
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| |
Collapse
|
380
|
Shriner SA, Ellis JW, Root JJ, Roug A, Stopak SR, Wiscomb GW, Zierenberg JR, Ip HS, Torchetti MK, DeLiberto TJ. SARS-CoV-2 Exposure in Escaped Mink, Utah, USA. Emerg Infect Dis 2021; 27:988-990. [PMID: 33622465 PMCID: PMC7920664 DOI: 10.3201/eid2703.204444] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In August 2020, outbreaks of coronavirus disease were confirmed on mink farms in Utah, USA. We surveyed mammals captured on and around farms for evidence of infection or exposure. Free-ranging mink, presumed domestic escapees, exhibited high antibody titers, suggesting a potential severe acute respiratory syndrome coronavirus 2 transmission pathway to native wildlife.
Collapse
|
381
|
Abstract
Introduction Since April 2020, when the first SARS-CoV-2 infection was reported in mink and subsequently in mink farm workers in the Netherlands, it has been confirmed that human-to-mink and mink-to-human transmission can occur. Later, SARS-CoV-2 infections in mink were reported in many European and North American countries. Material and methods Samples from 590 mink from a total of 28 farms were tested by real-time RT-PCR. Whole genome sequences from one positive farm were generated and genetic relatedness was established. Results SARS-CoV-2 RNA was detected on a breeder farm with stock of 5,850 mink. Active viraemia was confirmed in individually tested samples with Ct values respectively between 19.4 and 29.6 for E and N gene fragments. Further testing of samples from culled animals revealed 70% positivity in throat swabs and 30% seropositivity in blood samples. Phylogenetic analysis of full-length nucleotide sequences of two SARS-CoV-2 isolates revealed that they belong to the 20B Nextstrain clade. Several nucleotide mutations were found in analysed samples compared to the reference Wuhan HU-1 strain and some of them were nonsynonymous. Conclusion We report the infection of mink with SARS-CoV-2 on one farm in Poland and the results of subsequent analysis of virus sequences from two isolates. These data can be useful for assessment of the epidemiological situation of SARS-CoV-2 in Poland and how it endangers public health.
Collapse
|
382
|
Demoliner M, Gularte JS, Girardi V, de Almeida PR, Weber MN, Eisen AKA, Fleck JD, Spilki FR. SARS-CoV-2 and COVID-19: A perspective from environmental virology. Genet Mol Biol 2021; 44:e20200228. [PMID: 33710254 PMCID: PMC7961391 DOI: 10.1590/1678-4685-gmb-2020-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/18/2021] [Indexed: 11/12/2023] Open
Abstract
December 2019 marked the beginning of the current Coronavirus disease pandemic (COVID-19). Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) was identified as the causative agent of a viral pneumonia outbreak in Wuhan, Hubei Province, China. The alarming spread levels and clinical severity elevated the status of COVID-19 to the global pandemic by the World Health Organization. In 6 months, more than 25 million cases of infected people and more than 890,000 deaths by COVID-19 had been reported worldwide. The main goal of this review is to shed light upon the current COVID-19 epidemic situation in Brazil with a health approach highlighting some unique environmental, animal and epidemiological aspects.
Collapse
Affiliation(s)
- Meriane Demoliner
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Programa de Pós-Graduação em Qualidade Ambiental, Novo Hamburgo, RS, Brazil
| | - Juliana Schons Gularte
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Programa de Pós-Graduação em Qualidade Ambiental, Novo Hamburgo, RS, Brazil
| | - Viviane Girardi
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brazil
| | - Paula Rodrigues de Almeida
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Programa de Pós-Graduação em Qualidade Ambiental, Novo Hamburgo, RS, Brazil
| | - Matheus Nunes Weber
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Mestrado Acadêmico em Virologia, Novo Hamburgo, RS, Brazil
| | - Ana Karolina Antunes Eisen
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Mestrado Acadêmico em Virologia, Novo Hamburgo, RS, Brazil
| | - Juliane Deise Fleck
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Programa de Pós-Graduação em Qualidade Ambiental, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Mestrado Acadêmico em Virologia, Novo Hamburgo, RS, Brazil
| | - Fernando Rosado Spilki
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Programa de Pós-Graduação em Qualidade Ambiental, Novo Hamburgo, RS, Brazil
- Universidade Feevale, Mestrado Acadêmico em Virologia, Novo Hamburgo, RS, Brazil
| |
Collapse
|
383
|
SARS-CoV-2 Seroprevalence in Household Domestic Ferrets ( Mustela putorius furo). Animals (Basel) 2021; 11:ani11030667. [PMID: 33801548 PMCID: PMC8001492 DOI: 10.3390/ani11030667] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Animal infections with SARS-CoV-2 have been reported in different countries and several animal species have been proven to be susceptible to infection with SARS-CoV-2 both naturally or by experimental infection. Moreover, infections under natural conditions in more than 20 mink farms have been reported where humans could have been the source of infection for minks. However, little information is available about the susceptibility of pet animals under natural conditions and currently there is no SARS-CoV-2 epidemiological assessment occurrence in household ferrets. In this study, the presence of SARS-CoV-2 antibodies was evaluated in serum samples obtained from 127 household ferrets (Mustela putorius furo) in the Province of Valencia (Spain). Two ferrets tested positive to SARS-CoV-2 (1.57%) by in-house enzyme-linked immunosorbent assay based on receptor binding domain (RBD) of Spike antigen. Furthermore, anti-RBD SARS-CoV-2 antibodies persisted at detectable levels in a seropositive SARS-CoV-2 domestic ferret beyond 129 days since the first-time antibodies were detected. This study reports for the first time the evidence of household pet ferrets exposure to SARS-CoV-2 in Spain to date. Abstract Animal infections with SARS-CoV-2 have been reported in different countries and several animal species have been proven to be susceptible to infection with SARS-CoV-2 both naturally and by experimental infection. Moreover, infections under natural conditions in more than 20 mink farms have been reported where humans could have been the source of infection for minks. However, little information is available about the susceptibility of pet animals under natural conditions and currently there is no SARS-CoV-2 epidemiological assessment occurrence in household ferrets. In this study, the presence of SARS-CoV-2 antibodies was evaluated in serum samples obtained from 127 household ferrets (Mustela putorius furo) in the Province of Valencia (Spain). Two ferrets tested positive to SARS-CoV-2 (1.57%) by in-house enzyme-linked immunosorbent assay based on receptor binding domain (RBD) of Spike antigen. Furthermore, anti-RBD SARS-CoV-2 antibodies persisted at detectable levels in a seropositive SARS-CoV-2 domestic ferret beyond 129 days since the first time antibodies were detected. This study reports for the first time the evidence of household pet ferrets exposure to SARS-CoV-2 in Spain to date.
Collapse
|
384
|
Khamassi Khbou M, Daaloul Jedidi M, Bouaicha Zaafouri F, Benzarti M. Coronaviruses in farm animals: Epidemiology and public health implications. Vet Med Sci 2021; 7:322-347. [PMID: 32976707 PMCID: PMC7537542 DOI: 10.1002/vms3.359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses (CoVs) are documented in a wide range of animal species, including terrestrial and aquatic, domestic and wild. The geographic distribution of animal CoVs is worldwide and prevalences were reported in several countries across the five continents. The viruses are known to cause mainly gastrointestinal and respiratory diseases with different severity levels. In certain cases, CoV infections are responsible of huge economic losses associated or not to highly public health impact. Despite being enveloped, CoVs are relatively resistant pathogens in the environment. Coronaviruses are characterized by a high mutation and recombination rate, which makes host jumping and cross-species transmission easy. In fact, increasing contact between different animal species fosters cross-species transmission, while agriculture intensification, animal trade and herd management are key drivers at the human-animal interface. If contacts with wild animals are still limited, humans have much more contact with farm animals, during breeding, transport, slaughter and food process, making CoVs a persistent threat to both humans and animals. A global network should be established for the surveillance and monitoring of animal CoVs.
Collapse
Affiliation(s)
- Médiha Khamassi Khbou
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Monia Daaloul Jedidi
- Laboratory of Microbiology and ImmunologyUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Faten Bouaicha Zaafouri
- Department of Livestock Semiology and MedicineUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - M’hammed Benzarti
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| |
Collapse
|
385
|
Boklund A, Gortázar C, Pasquali P, Roberts H, Nielsen SS, Stahl K, Stegeman A, Baldinelli F, Broglia A, Van Der Stede Y, Adlhoch C, Alm E, Melidou A, Mirinaviciute G. Monitoring of SARS-CoV-2 infection in mustelids. EFSA J 2021; 19:e06459. [PMID: 33717355 PMCID: PMC7926496 DOI: 10.2903/j.efsa.2021.6459] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
American mink and ferret are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but no information is available for other mustelid species. SARS-CoV-2 spreads very efficiently within mink farms once introduced, by direct and indirect contact, high within-farm animal density increases the chance for transmission. Between-farm spread is likely to occur once SARS-CoV-2 is introduced, short distance between SARS-CoV-2 positive farms is a risk factor. As of 29 January 2021, SARS-CoV-2 virus has been reported in 400 mink farms in eight countries in the European Union. In most cases, the likely introduction of SARS-CoV-2 infection into farms was infected humans. Human health can be at risk by mink-related variant viruses, which can establish circulation in the community, but so far these have not shown to be more transmissible or causing more severe impact compared with other circulating SARS-CoV-2. Concerning animal health risk posed by SARS-CoV-2 infection the animal species that may be included in monitoring plans are American mink, ferrets, cats, raccoon dogs, white-tailed deer and Rhinolophidae bats. All mink farms should be considered at risk of infection; therefore, the monitoring objective should be early detection. This includes passive monitoring (in place in the whole territory of all countries where animals susceptible to SARS-CoV-2 are bred) but also active monitoring by regular testing. First, frequent testing of farm personnel and all people in contact with the animals is recommended. Furthermore randomly selected animals (dead or sick animals should be included) should be tested using reverse transcriptase-polymerase chain reaction (RT-PCR), ideally at weekly intervals (i.e. design prevalence approximately 5% in each epidemiological unit, to be assessed case by case). Suspected animals (dead or with clinical signs and a minimum five animals) should be tested for confirmation of SARS-CoV-2 infection. Positive samples from each farm should be sequenced to monitor virus evolution and results publicly shared.
Collapse
|
386
|
Rosa RB, Dantas WM, do Nascimento JCF, da Silva MV, de Oliveira RN, Pena LJ. In Vitro and In Vivo Models for Studying SARS-CoV-2, the Etiological Agent Responsible for COVID-19 Pandemic. Viruses 2021; 13:379. [PMID: 33673614 PMCID: PMC7997194 DOI: 10.3390/v13030379] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence and rapid worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted the scientific community to rapidly develop in vitro and in vivo models that could be applied in COVID-19 research. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures derived from lung, alveoli, bronchi, and other organs. Although cell-based systems are economic and allow strict control of experimental variables, they do not always resemble physiological conditions. Thus, several in vivo models are being developed, including different strains of mice, hamsters, ferrets, dogs, cats, and non-human primates. In this review, we summarize the main models of SARS-CoV-2 infection developed so far and discuss their advantages, drawbacks and main uses.
Collapse
Affiliation(s)
- Rafael B. Rosa
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil; (R.B.R.); (J.C.F.d.N.)
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlandia 38400-902, Brazil;
| | - Willyenne M. Dantas
- Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Brazil; (W.M.D.); (R.N.d.O.)
| | - Jessica C. F. do Nascimento
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil; (R.B.R.); (J.C.F.d.N.)
| | - Murilo V. da Silva
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlandia 38400-902, Brazil;
| | - Ronaldo N. de Oliveira
- Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Brazil; (W.M.D.); (R.N.d.O.)
| | - Lindomar J. Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil; (R.B.R.); (J.C.F.d.N.)
| |
Collapse
|
387
|
Genome Sequence of a Minacovirus Strain from a Farmed Mink in The Netherlands. Microbiol Resour Announc 2021; 10:10/8/e01451-20. [PMID: 33632868 PMCID: PMC7909093 DOI: 10.1128/mra.01451-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the genome sequence of a Minacovirus strain identified from a fecal sample from a farmed mink (Neovison vison) in The Netherlands that was tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using real-time PCR (RT-PCR). The viral genome sequence was obtained using agnostic deep sequencing. We report the genome sequence of a Minacovirus strain identified from a fecal sample from a farmed mink (Neovison vison) in The Netherlands that was tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using real-time PCR (RT-PCR). The viral genome sequence was obtained using agnostic deep sequencing.
Collapse
|
388
|
Halabowski D, Rzymski P. Taking a lesson from the COVID-19 pandemic: Preventing the future outbreaks of viral zoonoses through a multi-faceted approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143723. [PMID: 33213901 PMCID: PMC7666614 DOI: 10.1016/j.scitotenv.2020.143723] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 05/22/2023]
Abstract
The pandemic of the novel coronavirus disease 2019 (COVID-19) has caused a significant burden to healthcare systems, economic crisis, and public fears. It is also a lesson to be learned and a call-to-action to minimize the risk of future viral pandemics and their associated challenges. The present paper outlines selected measures (i.e., monitoring and identification of novel viral agents in animals, limitations to wildlife trade, decreasing hunting activities, changes to mink farming and meat production), the implementation of which would decrease such a risk. The role of viral surveillance systems and research exploring the virus strains associated with different animal hosts is emphasized along with the need for stricter wild trade regulations and changes to hunting activities. Finally, the paper suggests modifications to the meat production system, particularly through the introduction of cultured meat that would not only decrease the risk of exposure to novel human viral pathogens but also strengthen food security and decrease the environmental impacts of food production.
Collapse
Affiliation(s)
- Dariusz Halabowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland.
| |
Collapse
|
389
|
Pagani G, Lai A, Bergna A, Rizzo A, Stranieri A, Giordano A, Paltrinieri S, Lelli D, Decaro N, Rusconi S, Gismondo MR, Antinori S, Lauzi S, Galli M, Zehender G. Human-to-Cat SARS-CoV-2 Transmission: Case Report and Full-Genome Sequencing from an Infected Pet and Its Owner in Northern Italy. Pathogens 2021; 10:pathogens10020252. [PMID: 33672421 PMCID: PMC7926546 DOI: 10.3390/pathogens10020252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
There have been previous reports of the human-to-cat transmission of SARS-CoV-2, but there are only a few molecular studies that have compared the whole genome of the virus in cats and their owners. We here describe a case of domestic SARS-CoV-2 transmission from a healthcare worker to his cat for which nasopharyngeal swabs of both the cat and its owner were used for full-genome analysis. The results indicate that quarantine measures should be extended to pets living in SARS-CoV-2-infected households.
Collapse
Affiliation(s)
- Gabriele Pagani
- Infectious Diseases Unit, 3rd Division, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (S.R.); (S.A.); (M.G.)
- Correspondence: ; Tel.: +39-02-3904-2451
| | - Alessia Lai
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Annalisa Bergna
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Alberto Rizzo
- Microbiology Unit, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (A.R.); (M.R.G.)
| | - Angelica Stranieri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (A.S.); (A.G.); (S.P.); (S.L.)
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (A.S.); (A.G.); (S.P.); (S.L.)
| | - Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (A.S.); (A.G.); (S.P.); (S.L.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy;
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, 700010 Bari, Italy;
| | - Stefano Rusconi
- Infectious Diseases Unit, 3rd Division, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (S.R.); (S.A.); (M.G.)
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Maria Rita Gismondo
- Microbiology Unit, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (A.R.); (M.R.G.)
| | - Spinello Antinori
- Infectious Diseases Unit, 3rd Division, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (S.R.); (S.A.); (M.G.)
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Stefania Lauzi
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (A.S.); (A.G.); (S.P.); (S.L.)
| | - Massimo Galli
- Infectious Diseases Unit, 3rd Division, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (S.R.); (S.A.); (M.G.)
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Gianguglielmo Zehender
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| |
Collapse
|
390
|
Calistri P, Decaro N, Lorusso A. SARS-CoV-2 Pandemic: Not the First, Not the Last. Microorganisms 2021; 9:microorganisms9020433. [PMID: 33669805 PMCID: PMC7923159 DOI: 10.3390/microorganisms9020433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
The common trait among the betacoronaviruses that emerged during the past two decades (the severe acute respiratory syndrome coronavirus-SARS-CoV, the Middle East respiratory syndrome coronavirus-MERS-CoV, and the recent SARS coronavirus 2-SARS-CoV-2) is their probable animal origin, all deriving from viruses present in bat species. Bats have arisen the attention of the scientific community as reservoir of emerging viruses, given their wide geographical distribution, their biological diversity (around 1400 species, 21 different families and over 200 genera), and their peculiar ecological and physiological characteristics which seem to facilitate them in harbouring a high viral diversity. Several human activities may enable the viral spill-over from bats to humans, such as deforestation, land-use changes, increased livestock grazing or intensive production of vegetal cultures. In addition, the globalization of trade and high global human mobility allow these viruses to be disseminated in few hours in many parts of the World. In order to avoid the emergence of new pandemic threats in the future we need to substantially change our global models of social and economic development, posing the conservation of biodiversity and the preservation of natural ecosystems as a pillar for the protection of global human health.
Collapse
Affiliation(s)
- Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy;
- Correspondence:
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, 70129 Bari, Italy;
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy;
| |
Collapse
|
391
|
Rendon-Marin S, Martinez-Gutierrez M, Whittaker GR, Jaimes JA, Ruiz-Saenz J. SARS CoV-2 Spike Protein in silico Interaction With ACE2 Receptors From Wild and Domestic Species. Front Genet 2021; 12:571707. [PMID: 33659022 PMCID: PMC7917236 DOI: 10.3389/fgene.2021.571707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a pandemic by the World Health Organization (WHO), and since its first report, it has become a major public health concern. SARS-CoV-2 is closely related to SARS-CoV and SARS-related bat coronaviruses, and it has been described to use angiotensin-converting enzyme 2 (ACE2) as a receptor. Natural SARS-CoV-2 infection in domestic and wildlife animals, measured by RT-qPCR, has been confirmed in different countries, especially from the Felidae family. In silico analysis of the interaction between the SARS-CoV-2 spike protein and the cellular receptor ACE2 in various animal species has suggested that wild felids and domestic cats could be susceptible to SARS-CoV-2 based on this interaction. Here, we performed a protein-protein molecular docking analysis of SARS-CoV-2 spike protein with the ACE2 receptor from different animals to elucidate the potential of those species as intermediate hosts or susceptible animals for SARS-CoV-2 infection. Compared to human ACE2, we found that ACE2 receptors from domestic cats and tigers could efficiently interact with RBD of SARS CoV-2 Spike protein. However, dog, ferret, and hamster ACE2 receptor interaction with SARS-CoV-2 S protein RBD was not predicted as favorable, demonstrating a potential differentiated susceptibility in the evaluated species.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Javier A. Jaimes
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| |
Collapse
|
392
|
Barbosa A, Varsani A, Morandini V, Grimaldi W, Vanstreels RET, Diaz JI, Boulinier T, Dewar M, González-Acuña D, Gray R, McMahon CR, Miller G, Power M, Gamble A, Wille M. Risk assessment of SARS-CoV-2 in Antarctic wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143352. [PMID: 33162142 PMCID: PMC7598351 DOI: 10.1016/j.scitotenv.2020.143352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 04/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourism to minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarctic wildlife by considering the available information on host susceptibility, dynamics of the infection in humans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue.
Collapse
Affiliation(s)
- Andrés Barbosa
- Evolutionary Ecology Dpt. Museo Nacional de Ciencias Naturales, CSIC, C/José Gutierrez Abascal, 2, 28006 Madrid, Spain.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Virginia Morandini
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Oregon, USA
| | | | - Ralph E T Vanstreels
- Institute of Research and Rehabilitation of Marine Animals (IPRAM), Rodovia, Cariacica, Brazil
| | - Julia I Diaz
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, EPHE, Université Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Meagan Dewar
- School of Science, Psychology and Sport, Federation University Australia, Australia
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - Clive R McMahon
- IMOS Animal Satellite Tagging, Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Gary Miller
- Discipline of Microbiology and Immunology, University of Western Australia, Crawley, WA 6009, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Amandine Gamble
- Department of Ecology and Evolution, University of California Los Angeles, CA, USA
| | - Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
393
|
Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C. Host Diversity and Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. Pathogens 2021; 10:180. [PMID: 33567598 PMCID: PMC7915269 DOI: 10.3390/pathogens10020180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging infectious diseases present great risks to public health. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become an urgent public health issue of global concern. It is speculated that the virus first emerged through a zoonotic spillover. Basic research studies have suggested that bats are likely the ancestral reservoir host. Nonetheless, the evolutionary history and host susceptibility of SARS-CoV-2 remains unclear as a multitude of animals has been proposed as potential intermediate or dead-end hosts. SARS-CoV-2 has been isolated from domestic animals, both companion and livestock, as well as in captive wildlife that were in close contact with human COVID-19 cases. Currently, domestic mink is the only known animal that is susceptible to a natural infection, develop severe illness, and can also transmit SARS-CoV-2 to other minks and humans. To improve foundational knowledge of SARS-CoV-2, we are conducting a synthesis review of its host diversity and transmission pathways. To mitigate this COVID-19 pandemic, we strongly advocate for a systems-oriented scientific approach that comprehensively evaluates the transmission of SARS-CoV-2 at the human and animal interface.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Summit County Local Public Health Agency, Summit County, Frisco, CO 80443, USA;
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Yosra A. Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
394
|
Bouwman KM, Tomris I, Turner HL, van der Woude R, Shamorkina TM, Bosman GP, Rockx B, Herfst S, Snijder J, Haagmans BL, Ward AB, Boons GJ, de Vries RP. Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathog 2021; 17:e1009282. [PMID: 33556147 PMCID: PMC7895411 DOI: 10.1371/journal.ppat.1009282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/19/2021] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
Receptor binding studies on sarbecoviruses would benefit from an available toolkit of recombinant spike proteins, or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric Receptor Binding Domain (RBD) proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI-/- mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric, complex glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that complex glycosylated trimeric RBD proteins are attractive to analyze sarbecovirus receptor binding and explore ACE2 expression profiles in tissues.
Collapse
Affiliation(s)
- Kim M. Bouwman
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ilhan Tomris
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Gerlof P. Bosman
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
- Department of Chemistry, University of Georgia, Athens, Georgia, United States of America
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
395
|
Braun KM, Moreno GK, Halfmann PJ, Hodcroft EB, Baker DA, Boehm EC, Weiler AM, Haj AK, Hatta M, Chiba S, Maemura T, Kawaoka Y, Koelle K, O’Connor DH, Friedrich TC. Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. PLoS Pathog 2021; 17:e1009373. [PMID: 33635912 PMCID: PMC7946358 DOI: 10.1371/journal.ppat.1009373] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/10/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
The evolutionary mechanisms by which SARS-CoV-2 viruses adapt to mammalian hosts and, potentially, undergo antigenic evolution depend on the ways genetic variation is generated and selected within and between individual hosts. Using domestic cats as a model, we show that SARS-CoV-2 consensus sequences remain largely unchanged over time within hosts, while dynamic sub-consensus diversity reveals processes of genetic drift and weak purifying selection. We further identify a notable variant at amino acid position 655 in Spike (H655Y), which was previously shown to confer escape from human monoclonal antibodies. This variant arises rapidly and persists at intermediate frequencies in index cats. It also becomes fixed following transmission in two of three pairs. These dynamics suggest this site may be under positive selection in this system and illustrate how a variant can quickly arise and become fixed in parallel across multiple transmission pairs. Transmission of SARS-CoV-2 in cats involved a narrow bottleneck, with new infections founded by fewer than ten viruses. In RNA virus evolution, stochastic processes like narrow transmission bottlenecks and genetic drift typically act to constrain the overall pace of adaptive evolution. Our data suggest that here, positive selection in index cats followed by a narrow transmission bottleneck may have instead accelerated the fixation of S H655Y, a potentially beneficial SARS-CoV-2 variant. Overall, our study suggests species- and context-specific adaptations are likely to continue to emerge. This underscores the importance of continued genomic surveillance for new SARS-CoV-2 variants as well as heightened scrutiny for signatures of SARS-CoV-2 positive selection in humans and mammalian model systems.
Collapse
Affiliation(s)
- Katarina M. Braun
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gage K. Moreno
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma B. Hodcroft
- Institute of Social and Preventative Medicine, University of Bern, Bern, Switzerland
| | - David A. Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma C. Boehm
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amelia K. Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Masato Hatta
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shiho Chiba
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tadashi Maemura
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
396
|
Martinie M. Visons et autres mustélidés : modèle d’étude et risque zoonotique face au coronavirus. LA PRESSE MÉDICALE FORMATION 2021. [PMCID: PMC7969285 DOI: 10.1016/j.lpmfor.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
En dehors des populations humaines, le SARS-CoV-2 touche principalement les élevages de visons, dans lesquels le virus mute rapidement et semble pouvoir se re-transmettre à l’homme. Autre mustélidé, le furet apparaît comme modèle d’étude de la COVID-19. Les animaux domestiques, pour certains sensibles, semblent peu à risque, mais de nombreuses recherches sont encore nécessaires pour évaluer les capacités de transmission à l’homme et l’existence de potentielles espèces réservoirs chez les animaux sauvages.
Collapse
|
397
|
Anis E, Turner G, Ellis JC, Di Salvo A, Barnard A, Carroll S, Murphy L. Evaluation of a real-time RT-PCR panel for detection of SARS-CoV-2 in bat guano. J Vet Diagn Invest 2021; 33:331-335. [PMID: 33522461 DOI: 10.1177/1040638721990333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which is an ongoing global health concern. The exact source of the virus has not been identified, but it is believed that this novel coronavirus originated in animals; bats in particular have been implicated as the primary reservoir of the virus. SARS-CoV-2 can also be transmitted from humans to other animals, including tigers, cats, and mink. Consequently, infected people who work directly with bats could transfer the virus to a wild North American bat, resulting in a new natural reservoir for the virus, and lead to new outbreaks of human disease. We evaluated a reverse-transcription real-time PCR panel for detection of SARS-CoV-2 in bat guano. We found the panel to be highly specific for SARS-CoV-2, and able to detect the virus in bat guano samples spiked with SARS-CoV-2 viral RNA. Our panel could be utilized by wildlife agencies to test bats in rehabilitation facilities prior to their release to the wild, minimizing the risk of spreading this virus to wild bat populations.
Collapse
Affiliation(s)
- Eman Anis
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA.,Department of Virology, Faculty of Veterinary Medicine, University of Sadat, El Beheira Governorate, Sadat City, Egypt
| | - Greg Turner
- Pennsylvania Game Commission, Bureau of Wildlife Management, Harrisburg, PA
| | - Julie C Ellis
- Northeast Wildlife Disease Cooperative, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA
| | - Andrew Di Salvo
- Pennsylvania Game Commission, Bureau of Wildlife Management, Harrisburg, PA
| | - Amanda Barnard
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA
| | - Susan Carroll
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA
| | - Lisa Murphy
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA
| |
Collapse
|
398
|
Michael HT, Waterhouse T, Estrada M, Seguin MA. Frequency of respiratory pathogens and SARS-CoV-2 in canine and feline samples submitted for respiratory testing in early 2020. J Small Anim Pract 2021; 62:336-342. [PMID: 33521974 PMCID: PMC8014115 DOI: 10.1111/jsap.13300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/08/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
Objectives The emergence of the 2019 novel coronavirus (SARS‐CoV‐2) has necessitated evaluation of the potential for SARS‐CoV‐2 infection in dogs and cats. Using a large data set, we evaluated the frequency of SARS‐CoV‐2 and other respiratory pathogens in samples submitted for respiratory testing from mid‐February to mid‐April 2020. Materials and Methods A SARS‐CoV‐2 real‐time PCR was developed and validated. A subset of canine and feline samples submitted for respiratory pathogen panel testing to reference laboratories in Asia, Europe, and North America were also tested for SARS‐CoV‐2. The frequency of respiratory pathogens was compared for the February–April period of 2020 and 2019. Results Samples from 4616 patients were included in the study and 44% of canine and 69% of feline samples were PCR positive with Mycoplasma cynos and Bordetella bronchiseptica and Mycoplasma felis and feline calicivirus, respectively. No SARS‐CoV‐2 infections were identified. Positive results for respiratory samples were similar between years. Clinical Significance The data in this study suggest that during the emergence of the SARS‐CoV‐2 pandemic in early 2020, respiratory diseases in tested pet cats and dogs were caused by common veterinary pathogens and that SARS‐CoV‐2 infections in dogs and cats are rare.
Collapse
Affiliation(s)
- H T Michael
- IDEXX Laboratories, Inc, 1 IDEXX Drive, Westbrook, ME, 04092, USA
| | - T Waterhouse
- IDEXX Laboratories, Inc, 1 IDEXX Drive, Westbrook, ME, 04092, USA
| | - M Estrada
- IDEXX Laboratories, Inc, 2825 KOVR Dr, West Sacramento, CA, 95605, USA
| | - M A Seguin
- IDEXX Laboratories, Inc, 1 IDEXX Drive, Westbrook, ME, 04092, USA
| |
Collapse
|
399
|
Pepin KM, Miller RS, Wilber MQ. A framework for surveillance of emerging pathogens at the human-animal interface: Pigs and coronaviruses as a case study. Prev Vet Med 2021; 188:105281. [PMID: 33530012 PMCID: PMC7839430 DOI: 10.1016/j.prevetmed.2021.105281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/09/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Pigs (Sus scrofa) may be important surveillance targets for risk assessment and risk-based control planning against emerging zoonoses. Pigs have high contact rates with humans and other animals, transmit similar pathogens as humans including CoVs, and serve as reservoirs and intermediate hosts for notable human pandemics. Wild and domestic pigs both interface with humans and each other but have unique ecologies that demand different surveillance strategies. Three fundamental questions shape any surveillance program: where, when, and how can surveillance be conducted to optimize the surveillance objective? Using theory of mechanisms of zoonotic spillover and data on risk factors, we propose a framework for determining where surveillance might begin initially to maximize a detection in each host species at their interface. We illustrate the utility of the framework using data from the United States. We then discuss variables to consider in refining when and how to conduct surveillance. Recent advances in accounting for opportunistic sampling designs and in translating serology samples into infection times provide promising directions for extracting spatio-temporal estimates of disease risk from typical surveillance data. Such robust estimates of population-level disease risk allow surveillance plans to be updated in space and time based on new information (adaptive surveillance) thus optimizing allocation of surveillance resources to maximize the quality of risk assessment insight.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, 4101 Laporte Ave., Fort Collins, CO, 80526, United States.
| | - Ryan S Miller
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, 2150 Center Ave., Fort Collins, CO, 80526, United States
| | - Mark Q Wilber
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, United States
| |
Collapse
|
400
|
Hosie MJ, Hofmann-Lehmann R, Hartmann K, Egberink H, Truyen U, Addie DD, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Lutz H, Marsilio F, Pennisi MG, Tasker S, Thiry E, Möstl K. Anthropogenic Infection of Cats during the 2020 COVID-19 Pandemic. Viruses 2021; 13:185. [PMID: 33530620 PMCID: PMC7911697 DOI: 10.3390/v13020185] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is a severe acute respiratory syndrome (SARS) caused by a new coronavirus (CoV), SARS-CoV-2, which is closely related to SARS-CoV that jumped the animal-human species barrier and caused a disease outbreak in 2003. SARS-CoV-2 is a betacoronavirus that was first described in 2019, unrelated to the commonly occurring feline coronavirus (FCoV) that is an alphacoronavirus associated with feline infectious peritonitis (FIP). SARS-CoV-2 is highly contagious and has spread globally within a few months, resulting in the current pandemic. Felids have been shown to be susceptible to SARS-CoV-2 infection. Particularly in the Western world, many people live in very close contact with their pet cats, and natural infections of cats in COVID-19-positive households have been described in several countries. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European Countries, discusses the current status of SARS-CoV infections in cats. The review examines the host range of SARS-CoV-2 and human-to-animal transmissions, including infections in domestic and non-domestic felids, as well as mink-to-human/-cat transmission. It summarises current data on SARS-CoV-2 prevalence in domestic cats and the results of experimental infections of cats and provides expert opinions on the clinical relevance and prevention of SARS-CoV-2 infection in cats.
Collapse
Affiliation(s)
- Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | | | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Hans Lutz
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Linnaeus Group, Shirley, Solihull B90 4BN, UK
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| |
Collapse
|