351
|
Xu M, Shu J, Qian S, Guo J, Gong Y, Huang R, Wang S, Zhou Z, Yuan G, Huang M, Lin LE, Lou S, Song Y, Liu Q, Zhou H, Mei H, Hu Y. Zuberitamab, an innovative anti-CD20 monoclonal antibody, for patients with primary immune thrombocytopenia in China: a randomized, double-blind, placebo-controlled, phase 2 study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 47:101096. [PMID: 38808021 PMCID: PMC11131054 DOI: 10.1016/j.lanwpc.2024.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Background Primary immune thrombocytopenia (ITP) is an autoimmune disease, and rituximab (RTX) induces long-term effect as second-line treatments. Zuberitamab is an innovative anti-CD20 monoclonal antibody, which was first developed in China and launched in diffuse large B lymphoma. This study aimed to investigate the safety, efficacy, and anticipated therapeutic dose of zuberitamab in Chinese ITP patients. Methods This randomised, double-blind, placebo-controlled, phase 2 study was conducted at 26 hospitals in China. Eligible patients were aged 18-70 years, had primary immune thrombocytopenia for more than 6 months, and did not respond or relapsed after previous treatment and had a pre-treatment platelet count of <30 × 109/L. Patients randomly received zuberitamab in a dose escalation (100/300/600 mg) or placebo once-weekly for 4 weeks and followed up to 24 weeks. The primary endpoint is the proportion of patients with a platelet count ≥50 × 109/L at week 8. Secondary endpoints include the proportion of patients with platelet counts ≥50 × 109/L or ≥100 × 109/L at least once within week 12/24, the proportion of patients experiencing platelets increased twice more than baseline as well as ≥30 × 109/L at least once during the treatment. Adverse events, pharmacokinetic, B cell depletion and immunogenicity were also assessed. This study is registered with https://www.chictr.org.cn/as ChiCTR2100050513. Findings From October 2021 to March 2023, 50 patients were screened for eligibility, of whom 32 patients were enrolled and randomly assigned to placebo (n = 4), zuberitamab 100 mg (n = 10), 300 mg (n = 8) and 600 mg (n = 10) groups. The primary endpoint (PLT ≥50 × 109/L at week 8) was achieved by 40% of patients in the 100 mg group, while none in the other groups. Within 12 weeks, the proportions of patients in each treatment group achieving at least one instance of platelet count ≥50 × 109/L or ≥100 × 109/L or an increase twice more than baseline as well as ≥30 × 109/L were (70%, 38%, 50%), (60%, 13%, 30%), and (80%, 50%, 70%) in zuberitamab 100/300/600 mg groups, respectively. By week 24, the proportions of patients achieving these secondary endpoints remained relatively stable or showed a mild increase of around 10%. The anticipated therapeutic dose of zuberitamab was 100 mg. The plasma concentration of zuberitamab showed an increasing trend with dose (100 mg-600 mg) and linear pharmacokinetic behavior. CD19+ B cells and CD20+ B lymphocytes rapidly declined to 0% within one week and consistently maintained reduced levels throughout the entire treatment phase in three groups. Adverse events occurred in all patients with most of them were mild to moderate, no severe infections occurred. A slight decrease in immunoglobulins was observed in the 600 mg group, but gradually recovered at week 20. Three patients (2 in 100 mg and 1 in 600 mg group) were tested positive for anti-zuberitamab antibodies. We also observed that women, disease duration <12 months, and MAIPA + patients may have higher response rates. Interpretation This study preliminarily confirmed that 100 mg zuberitamab was safe and effective in treating ITP and was recommended to support further investigation. Funding National Natural Science Foundation of China and Zhejiang Bioray Biopharmaceutical Co. Ltd.
Collapse
Affiliation(s)
- Min Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingming Guo
- Department of Hematology, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Yuping Gong
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Ruibin Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuye Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zeping Zhou
- Department of Hematology, The Second Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Guolin Yuan
- Department of Hematology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Meijuan Huang
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-E Lin
- Department Hematology of Hainan Provincial People's Hospital, Haikou, China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Song
- Department of Hematology, Xi'an Central Hospital, Xi'an, China
| | - Qingchi Liu
- Department of Hematology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hu Zhou
- Department of Hematology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
352
|
Dinpanah K, Kazemi T, Shetty S, Bizhaem SK, Fanoodi A, Riahi SM. The association of the apolipoprotein B/A1 ratio and the metabolic syndrome in children and adolescents: a systematic review and meta-analysis. J Diabetes Metab Disord 2024; 23:1-10. [PMID: 38932877 PMCID: PMC11196517 DOI: 10.1007/s40200-023-01235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2024]
Abstract
Objectives Metabolic syndrome (MetS) is a constellation of coexisting cardiovascular risk factors. This study aimed to assess the evidence for the association between the apolipoprotein B/A1 ratio, apolipoprotein B, and apolipoprotein A1, and the MetS in children and adolescents. Methods The English electronic databases including PubMed, Embase, Web of Science, and Scopus were searched up to February 28, 2022. To ascertain the validity of eligible studies, modified JBI scale was used. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were pooled using the random-effects model to evaluate the association between the apolipoprotein B/A1 ratio, apolipoprotein B, and apolipoprotein A1 and the MetS. Heterogeneity amongst the studies was determined by the use of the Galbraith diagram, Cochran's Q-test, and I2 test. Publication bias was assessed using Egger's and Begg's tests. Results From 7356 records, 5 studies were included in the meta-analysis, representing a total number of 232 participants with MetS and 1320 participants as control group. The results indicated that increased levels of apolipoprotein B/A1 ratio (SMD 1.26; 95% CI: 1.04, 1.47) and apolipoprotein B (SMD 0.75; 95% CI: 0.36, 1.14) and decreased levels of apolipoprotein A1 (SMD -0.53; 95% CI: -0.69, -0.37) are linked to the presence of MetS. The notable findings were, children and adolescents with MetS had elevated levels of the apolipoprotein B/A1 ratio, apolipoprotein B, and decreased levels of apolipoprotein A1. Conclusions Our results suggest the need to evaluate the levels of apolipoproteins for detecting the risk of MetS in children and adolescents. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01235-z.
Collapse
Affiliation(s)
- Kayhan Dinpanah
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Toba Kazemi
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sameep Shetty
- Department of oral and maxillofacial surgery Manipal college of dental sciences Mangalore 575001, Manipal academy of higher education. A constituent unit of MAHE, Manipal, India
| | - Saeede Khosravi Bizhaem
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Mohammad Riahi
- Department of Community Medicine, School of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
353
|
Shah FT, Nicolle S, Garg M, Pancham S, Lieberman G, Anthony K, Mensah AK. Guideline for the management of conception and pregnancy in thalassaemia syndromes: A British Society for Haematology Guideline. Br J Haematol 2024; 204:2194-2209. [PMID: 38715390 DOI: 10.1111/bjh.19362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 06/15/2024]
Abstract
This comprehensive guideline, developed by a representative group of UK-based medical experts specialising in haemoglobinopathies, addresses the management of conception and pregnancy in patients with thalassaemia. A systematic search of PubMed and EMBASE using specific keywords, formed the basis of the literature review. Key terms included "thalassaemia," "pregnancy," "Cooley's anaemia," "Mediterranean anaemia," and others, covering aspects such as fertility, iron burden and ultrasonography. The guideline underwent rigorous review by prominent organisations, including the Endocrine Society, the Royal College of Obstetricians and Gynaecologists (RCOG), the United Kingdom Thalassaemia Society and the British Society of Haematology (BSH) guideline writing group. Additional feedback was solicited from a sounding board of UK haematologists, ensuring a thorough and collaborative approach. The objective of the guideline is to equip healthcare professionals with precise recommendations for managing conception and pregnancy in patients with thalassaemia.
Collapse
Affiliation(s)
- Farrukh T Shah
- Department of Haematology, Whittington Health, London, UK
| | - Sarah Nicolle
- Department of Haematology, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Mamta Garg
- Department of Haematology, Leicester Royal infirmary, Leicester, UK
| | - Shivan Pancham
- Department of Haematology, Sandwell and West Birmingham NHS Trust, West Bromwich, UK
| | - Gidon Lieberman
- Department of Obstetrics and Gynaecology Whittington Health, London, UK
| | - Karen Anthony
- Department of Endocrinology, Whittington Health, London, UK
| | - Amma Kyei Mensah
- Department of Obstetrics and Gynaecology Whittington Health, London, UK
| |
Collapse
|
354
|
Swan J, Szabó Z, Peters J, Kummu O, Kemppi A, Rahtu-Korpela L, Konzack A, Hakkola J, Pasternack A, Ritvos O, Kerkelä R, Magga J. Inhibition of activin receptor 2 signalling ameliorates metabolic dysfunction-associated steatotic liver disease in western diet/L-NAME induced cardiometabolic disease. Biomed Pharmacother 2024; 175:116683. [PMID: 38705130 DOI: 10.1016/j.biopha.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVE Blockade of activin 2 receptor (ACVR2) signaling has been shown to improve insulin sensitivity and aid in weight loss. Inhibition of ACVR2 signaling restores cardiac function in multiple heart failure models. However, its potential in the treatment of obesity-related cardiometabolic disease remains unknown. Here, we investigated targeting ACVR2 signaling in cardiometabolic disease manifested with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Mice were fed a high-fat, high-sugar diet combined with the administration of nitric oxide synthase inhibitor L-NAME in drinking water, which causes hypertensive stress. For the last eight weeks, the mice were treated with the soluble ACVR2B decoy receptor (sACVR2B-Fc). RESULTS sACVR2B-Fc protected against the development of comorbidities associated with cardiometabolic disease. This was most pronounced in the liver where ACVR2 blockade attenuated the development of MASLD including cessation of pro-fibrotic activation. It also significantly reduced total plasma cholesterol levels, impeded brown adipose tissue whitening, and improved cardiac diastolic function. In vitro, ACVR2 ligands activin A, activin B and GDF11 induced profibrotic signaling and the proliferation of human cardiac fibroblasts. CONCLUSIONS Blockade of ACVR2B exerts broad beneficial effects for therapy of cardiometabolic disease. By reducing obesity, ameliorating cardiovascular deterioration and restraining MASLD, blockade of ACVR2B signaling proves a potential target in MASLD and its comorbidities.
Collapse
Affiliation(s)
- Julia Swan
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland.
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Juliana Peters
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Anna Kemppi
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Anja Konzack
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland; Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Aapistie 5, Oulu 90220, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu 90220, Finland; Biocenter Oulu, University of Oulu, Aapistie 5, Oulu 90220, Finland.
| |
Collapse
|
355
|
Zaccheddu E, Zappu A, Barella S, Clemente MG, Orecchia V, Pilia MP, Piras S, Pitturru C, Scarano M, Origa R. Unplanned pregnancy in women with beta-thalassaemia treated with luspatercept. Br J Haematol 2024; 204:2505-2507. [PMID: 38652468 DOI: 10.1111/bjh.19480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Eleonora Zaccheddu
- SC Microcitemie e Anemie Rare, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | - Antonietta Zappu
- SC Microcitemie e Anemie Rare, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | - Susanna Barella
- SC Microcitemie e Anemie Rare, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | | | - Valeria Orecchia
- SC Microcitemie e Anemie Rare, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | - Maria Paola Pilia
- SC Microcitemie e Anemie Rare, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | - Simona Piras
- SC Microcitemie e Anemie Rare, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | - Carla Pitturru
- SC Microcitemie e Anemie Rare, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | | | - Raffaella Origa
- SC Microcitemie e Anemie Rare, Ospedale Pediatrico Microcitemico, Cagliari, Italy
- SSD Neonatologia, ARNAS G. Brotzu, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
356
|
Chiba Y, Tasaka K, Matsubara K, Mori M, Muraoka M, Hamabata T, Nodomi S, Waki K. Romiplostim as an early treatment for refractory immune thrombocytopenia in a 2-month-old infant. Pediatr Blood Cancer 2024; 71:e30953. [PMID: 38520052 DOI: 10.1002/pbc.30953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Affiliation(s)
- Yuko Chiba
- Department of Pediatrics, Kurashiki Central Hospital, Okayama, Japan
| | - Keiji Tasaka
- Department of Pediatrics, Kurashiki Central Hospital, Okayama, Japan
| | - Kousaku Matsubara
- Department of Pediatrics, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Makiko Mori
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Michiko Muraoka
- Department of Pediatrics, Fukuyama City Hospital, Hiroshima, Japan
| | - Takayuki Hamabata
- Department of Pediatrics, Kurashiki Central Hospital, Okayama, Japan
| | - Seishiro Nodomi
- Department of Pediatrics, Kurashiki Central Hospital, Okayama, Japan
| | - Kenji Waki
- Department of Pediatrics, Kurashiki Central Hospital, Okayama, Japan
| |
Collapse
|
357
|
Babamir Satehi M, Karimi M, Farrokhian Z, Pakbaz F. The effect of aqueous extract of Iranian oak (Quercus brantii) on antioxidant capacity and oxidative stress in beta-thalassemia patients: Randomized controlled trial. Clin Nutr ESPEN 2024; 61:230-236. [PMID: 38777439 DOI: 10.1016/j.clnesp.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND AIM Frequent administration of blood in β-thalassemia patients can lead to over-loaded iron, a reduction in the levels of antioxidant activities in the body, and oxidative stress. This study was done to evaluate the antioxidant and protective effect of aqueous oak (Quercus brantii) extract supplementation on these patients. METHODS This clinical trial was performed on 60 major β thalassemia patients dividing them into intervention and control groups. In addition to taking desferrioxamine (DFO), the control and intervention groups received respectively placebo capsule supplementation and aqueous Quercus extract capsules (300 mg/day) for 3 months. Serum lipid profiles (LDL-c, HDL-c, triglyceride), Total Antioxidant Capacity (TAC), Glucose, Uric acid, urea nitrogen (BUN), Creatinine, LFT (Liver Function Tests) such as SGOT, SGPT, ALP, Total bilirubin, Direct bilirubin, ferritin, MDA and carbonyl protein (CO) levels were measured before and after the period. In addition, the activity of catalase (CAT), and superoxide dismutase (SOD) was measured in the red blood cell. Furthermore, antioxidant activity and total phenolic content of aqueous Quercus were recorded to standardize capsule formulation. RESULTS Mean serum MDA, and protein CO, significantly decreased in the intervention group with β-TM after 3 months of treatment with Quercus extract. In addition, the superoxide dismutase (SOD) enzyme and Total antioxidant capacity (TAC) significantly increased in comparison with the control group. Changes in serum creatinine, BUN, and alanine transferase were not significant. In the study, Quercus extract capsules contain 48/56 mg gallic acid/g (dry extract) total phenol, 58/6 mg/g (dry extract), and flavonoids of 63/8 μg/ml antioxidant power which by GC/MS analysis has been measured. At the end of the study, serum MDA decreased from 48.65 ± 8.74 to 43.94 ± 10.39 μ mol/l after administration of oak extract and protein CO dropped from 2.44 ± 0.38 to 1.2 ± 0.31 nmol DNPH/mg protein after administration of the oak extract. At the end of the study serum, TAC increased in patients interventional group from 907 ± 319 to 977 ± 327 μmol FeSO4/l compared to the control group 916 ± 275 to 905.233 ± 233 μmol FeSO4/l with placebo, and SOD increased from 1577 ± 325 to 2079 ± 554 U/l (compared to 1687 ± 323 U/l with placebo). The treatment effect of Quercus was measured using a mixed-effects model of variance analysis for changes in MDA, protein CO, TAC, and SOD, with significant effects being demonstrated for each laboratory parameter (P = 0.15, P = 0.001, P = 0.02, and P < 0.003, respectively). CONCLUSIONS Aqueous Quercus extract, due to its high antioxidant potential, reduced MDA, serum carbonyl protein, and increased superoxide dismutase activity effectively decreased serum OS and enhanced serum antioxidant capacity in patients with β-thalassemia major. oak given as an adjuvant therapy to standard iron chelators may provide an improvement in the OS measurements obtained in these patients. REGISTRATION INFORMATION This study was submitted, evaluated, and approved by the Iranian Registry of Clinical Trials (IRCT: http://www.irct.ir; IRCT2015101411819N4), which was established for national medical schools in Iran.
Collapse
Affiliation(s)
- Mahdi Babamir Satehi
- Msc of Clinical Biochemistry Sciences, Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Karimi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Zohreh Farrokhian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fateme Pakbaz
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
358
|
Ioannidou M, Avgeros C, Georgiou E, Papadimitriou-Tsantarliotou A, Dimitriadis D, Tragiannidis A, Panagopoulou P, Papakonstantinou E, Galli-Tsinopoulou A, Makedou K, Hatzipantelis E. Effect of apolipoprotein E (APOE) gene polymorphisms on the lipid profile of children being treated for acute lymphoblastic leukemia. Int J Hematol 2024; 119:755-761. [PMID: 38507115 PMCID: PMC11140815 DOI: 10.1007/s12185-024-03748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Medications used to treat acute lymphoblastic leukemia (ALL), such as L-asparaginase, can cause blood lipid disturbances. These can also be associated with polymorphisms of the lipoprotein lipase (LpL) and apolipoprotein E (APOE) genes. PROCEDURE We aimed to investigate the association between lipid profile, certain LpL and APOE gene polymorphisms (rs268, rs328, rs1801177 and rs7412, rs429358 respectively) as well as the risk subgroup in 30 pediatric patients being treated for ALL, compared with 30 pediatric ALL survivors and 30 healthy controls. RESULTS The only APOE gene polymorphism with significant allelic and genotypic heterogeneity was rs429358. Further analysis of this polymorphism showed that genotype (CC, CT, or TT) was significantly associated with (1) changes in the lipid profile at the end of consolidation (total cholesterol, LDL, apo-B100, and lipoprotein a) and during re-induction (total cholesterol and apo-B100), and (2) classification in the high risk-ALL subgroup (for CC genotype/C allele presence). CONCLUSIONS Lipid abnormalities in children being treated for ALL may be associated with the APOE genotype, which is also possibly associated with risk stratification. Further research is needed to confirm the potential prognostic value of these findings.
Collapse
Affiliation(s)
- Maria Ioannidou
- Pediatric and Adolescent Hematology Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54621, Thessaloniki, Greece.
| | - Chrysostomos Avgeros
- Laboratory of Biological Chemistry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elisavet Georgiou
- Laboratory of Biological Chemistry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aliki Papadimitriou-Tsantarliotou
- Laboratory of Pharmacology, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Athanasios Tragiannidis
- Pediatric and Adolescent Hematology Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54621, Thessaloniki, Greece
| | - Paraskevi Panagopoulou
- 4th Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Assimina Galli-Tsinopoulou
- Pediatric and Adolescent Hematology Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54621, Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biological Chemistry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanuel Hatzipantelis
- Pediatric and Adolescent Hematology Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, AHEPA University General Hospital, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54621, Thessaloniki, Greece
| |
Collapse
|
359
|
Takagi K, Kasai H, Tani H, Sakao S, Sugiura T, Suzuki T. Macitentan Administration for Pulmonary Hypertension Due to β-thalassemia with Multiple Organ Failure. Intern Med 2024; 63:1585-1590. [PMID: 37952959 PMCID: PMC11189700 DOI: 10.2169/internalmedicine.2307-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/14/2023] Open
Abstract
A 51-year-old Thai woman diagnosed with β-thalassemia underwent regular blood transfusion and iron-chelating therapy. However, after voluntarily discontinuing treatment, the patient developed progressive dyspnea and was diagnosed with pulmonary hypertension following right heart catheterization. Despite resuming blood transfusions, her condition did not improve. Because the patient had a history of multiple organ failure, curative treatment for β-thalassemia was not feasible, and macitentan was administered. Despite experiencing hypotension as an adverse event, her condition remained stable during macitentan treatment. Thus, macitentan may be well tolerated in patients with pulmonary hypertension caused by β-thalassemia with multiple organ dysfunction.
Collapse
Affiliation(s)
- Kento Takagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Hajime Kasai
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroyuki Tani
- Department of Medicine, School of Medicine, Chiba University, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare (IUHW), Japan
| | - Toshihiko Sugiura
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
360
|
Maloney KA, Mizerik E, King RH, McGinnis EM, Perkowitz S, Diamonstein CJ, Schmanski AA, Saliganan S, Shipper AG, Udler MS, Guan Y, Pollin TI. Genetic counseling in diabetes mellitus: A practice resource of the National Society of Genetic Counselors. J Genet Couns 2024; 33:493-505. [PMID: 37537905 DOI: 10.1002/jgc4.1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 08/05/2023]
Abstract
Diabetes mellitus is a group of diseases characterized by hyperglycemia and its consequences, affecting over 34 million individuals in the United States and 422 million worldwide. While most diabetes is polygenic and is classified as type 1 (T1D), type 2 (T2D), or gestational diabetes (GDM), at least 0.4% of all diabetes is monogenic in nature. Correct diagnosis of monogenic diabetes has important implications for glycemic management and genetic counseling. We provide this Practice Resource to familiarize the genetic counseling community with (1) the existence of monogenic diabetes, (2) how it differs from more common polygenic/complex diabetes types, (3) the advantage of a correct diagnosis, and (4) guidance for identifying, counseling, and testing patients and families with suspected monogenic diabetes. This document is intended for genetic counselors and other healthcare professionals providing clinical services in any setting, with the goal of maximizing the likelihood of a correct diagnosis of monogenic diabetes and access to related care.
Collapse
Affiliation(s)
- Kristin A Maloney
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Robin H King
- Genetic Services, Everly Health, Austin, Texas, USA
| | - Erin M McGinnis
- Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | | | | | - Andrew A Schmanski
- University of Arizona Cancer Center, Banner University Medicine, Tucson, Arizona, USA
| | | | - Andrea G Shipper
- Charles Library, Temple University, Philadelphia, Pennsylvania, USA
| | - Miriam S Udler
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yue Guan
- Emory University, Atlanta, Georgia, USA
| | - Toni I Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
361
|
Tuo Y, Li Y, Li Y, Ma J, Yang X, Wu S, Jin J, He Z. Global, regional, and national burden of thalassemia, 1990-2021: a systematic analysis for the global burden of disease study 2021. EClinicalMedicine 2024; 72:102619. [PMID: 38745964 PMCID: PMC11090906 DOI: 10.1016/j.eclinm.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background Anemia is a significant contributor to the global disease burden, of which thalassemia is the most common hereditary anaemic disease. Previous estimates were based on data that were geographically limited and lacked comprehensive global analysis. This study provides the prevalence, incidence, mortality and disability-adjusted life years (DALYs) of thalassemia in 204 countries and regions of thalassemia between 1990 and 2021, focusing on the age structure and time trends of the disease burden. To provide effective information for health policy, allocation of medical resources and optimization of patient management programs. Methods Using the standardised Global Burden of Disease (GBD) methodologies, we aimed to derive a more precise representation of the health burden posed by thalassemia by considering four distinct types of epidemiological data, namely the incidence at birth, prevalence, mortality and DALYs. The presented data were meticulously estimated and displayed both as numerical counts and as age-standardised rates per 100,000 persons of the population, accompanied by uncertainty interval (UI) to highlight potential statistical variability. The temporal trends spanning the years 1990-2021 were subjected to a rigorous examination utilizing Joinpoint regression analysis. This methodological approach facilitated the computation of the annual percentage change (APC) and the average annual percentage change (AAPC), along with their corresponding 95% confidence intervals (CIs). Findings Globally, the age-standardized prevalence rates (ASPR), age-standardized incidence rates (ASIR), age-standardized mortality rates (ASMR), and age-standardized DALYs rates for thalassemia in 2021 were 18.28 per 100,000 persons (95% UI 15.29-22.02), 1.93 per 100,000 persons (95% UI 1.51-2.49), 0.15 per 100,000 persons(95% UI 0.11-0.20), and 11.65 per 100,000 persons (95% UI 8.24-14.94), respectively. Compared to 1990, these rates have decreased by 0.18 (95% UI -0.22 to -0.14), 0.25 (95% UI -0.30 to -0.19), 0.48 (95% UI -0.60 to -0.28), and 0.49 (95% UI -0.62 to -0.29) respectively. In 2021, the ASIR of thalassemia was highest in East Asia at 7.35 per 100,000 persons (95% UI 5.37-10.04), and ASMR was highest in Southeast Asia at 0.37 per 100,000 persons (95% UI 0.29-0.45).Gender comparisons showed negligible differences in disease burden, with the highest prevalence noted in children under five, decreasing with age. The global ASPR and ASMR declined from 1990 to 2021 overall, though an increasing trend in prevalence was found among the elderly. Joinpoint analysis revealed that the global ASPR increased between 2018 and 2021 (APC = 9.2%, 95% CI: 4.8%-13.8%, P < 0.001), ASIR decreased (APC = -7.68%, 95% CI: -10.88% to -4.36%, P < 0.001), and there was a significant rise in ASMR from 2019 to 2021 (APC = 4.8%, 95% CI: 0.1%-9.6%, P < 0.05). Trends in ASPR and ASMR varied across regions, with notable changes in South Asia. Interpretation The global burden of thalassemia, reflected in its prevalence, incidence, mortality, and DALYs, exhibits significant disparities. Geographic and demographic shifts in disease distribution have been observed from 1990 to 2021, with an overall decrease in burden, yet an increase in cases among the elderly population. Analysis of epidemiological trends over time highlights the influence of health policies and significant public health interventions on thalassemia outcomes. There data are crucial for healthcare professionals, policymakers, and researchers to refine and enhance management strategies, aiming to further mitigate thalassemia's global impact. Funding National Natural Science Foundation of China; Guizhou Province Science and Technology Project; Guizhou Province Science and Technology Foundation of Health Commission.
Collapse
Affiliation(s)
- Yuanyuan Tuo
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Department of Pediatrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Yan Li
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Department of Pediatrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jianjuan Ma
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Department of Pediatrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaoyan Yang
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Department of Pediatrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Shasha Wu
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Department of Pediatrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jiao Jin
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Department of Pediatrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Zhixu He
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Department of Pediatrics, School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine, Zunyi Medical University, Zuiyi, 563000, China
| |
Collapse
|
362
|
Onida F, Gagelmann N, Chalandon Y, Kobbe G, Robin M, Symeonidis A, de Witte T, Itzykson R, Jentzsch M, Platzbecker U, Santini V, Sanz G, Scheid C, Solary E, Valent P, Greco R, Sanchez-Ortega I, Yakoub-Agha I, Pleyer L. Management of adult patients with CMML undergoing allo-HCT: recommendations from the EBMT PH&G Committee. Blood 2024; 143:2227-2244. [PMID: 38493484 DOI: 10.1182/blood.2023023476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Chronic myelomonocytic leukemia (CMML) is a heterogeneous disease presenting with either myeloproliferative or myelodysplastic features. Allogeneic hematopoietic cell transplantation (allo-HCT) remains the only potentially curative option, but the inherent toxicity of this procedure makes the decision to proceed to allo-HCT challenging, particularly because patients with CMML are mostly older and comorbid. Therefore, the decision between a nonintensive treatment approach and allo-HCT represents a delicate balance, especially because prospective randomized studies are lacking and retrospective data in the literature are conflicting. International consensus on the selection of patients and the ideal timing of allo-HCT, specifically in CMML, could not be reached in international recommendations published 6 years ago. Since then, new, CMML-specific data have been published. The European Society for Blood and Marrow Transplantation (EBMT) Practice Harmonization and Guidelines (PH&G) Committee assembled a panel of experts in the field to provide the first best practice recommendations on the role of allo-HCT specifically in CMML. Recommendations were based on the results of an international survey, a comprehensive review of the literature, and expert opinions on the subject, after structured discussion and circulation of recommendations. Algorithms for patient selection, timing of allo-HCT during the course of the disease, pretransplant strategies, allo-HCT modality, as well as posttransplant management for patients with CMML were outlined. The keynote message is, that once a patient has been identified as a transplant candidate, upfront transplantation without prior disease-modifying treatment is preferred to maximize chances of reaching allo-HCT whenever possible, irrespective of bone marrow blast counts.
Collapse
Affiliation(s)
- Francesco Onida
- Department of Oncology and Hemato-Oncology, Hematology and Bone Marrow Transplantation Unit, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, University of Milan, Milan, Italy
- European Society for Blood and Marrow Transplantation Practice Harmonization and Guidelines Committee, Barcelona, Spain
| | - Nico Gagelmann
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yves Chalandon
- Division of Hematology, University Hospital of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Marie Robin
- Service d'Hématologie Greffe, Hôpital Saint-Louis, L'Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Argiris Symeonidis
- Department of Hematology, Olympion General Hospital and Rehabilitation Center, Patras, Greece
| | - Theo de Witte
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, Centre National de la Recherche Scientifique, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, L'Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Madlen Jentzsch
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Hematology, Dipartimento di Medicina Sperimentale e Clinica, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Guillermo Sanz
- University and Polytechnic Hospital La Fe and Health Research Institute La Fe, Valencia, Spain
- Centro de Investigacion Biomedica en Red Cancer, Instituto de Salud Carlos III, Madrid, Spain
| | - Christof Scheid
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Eric Solary
- Department of Hematology, INSERM Unité Mixte de Recherche 1287, Gustave Roussy Cancer Center, Villejuif, France
- Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicetre, France
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Greco
- European Society for Blood and Marrow Transplantation Practice Harmonization and Guidelines Committee, Barcelona, Spain
- Unit of Hematology and Bone Marrow Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Isabel Sanchez-Ortega
- European Society for Blood and Marrow Transplantation Practice Harmonization and Guidelines Committee, Barcelona, Spain
| | - Ibrahim Yakoub-Agha
- European Society for Blood and Marrow Transplantation Practice Harmonization and Guidelines Committee, Barcelona, Spain
- Centre Hospitalier Universitaire de Lille, University of Lille, INSERM U1286, Infinite, Lille, France
| | - Lisa Pleyer
- Austrian Group of Medical Tumor Therapy Study Group, Vienna, Austria
- Salzburg Cancer Research Institute, Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
363
|
Luna TB, Bello JLG, Carbonell AG, Montoya ADLCR, Lafargue AL, Ciria HMC, Zulueta YA. Integrating classification and regression learners with bioimpedance methods for estimating weight status in infants and juveniles from the southern Cuba region. BMC Pediatr 2024; 24:370. [PMID: 38811864 PMCID: PMC11134843 DOI: 10.1186/s12887-024-04841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE The search for other indicators to assess the weight and nutritional status of individuals is important as it may provide more accurate information and assist in personalized medicine. This work is aimed to develop a machine learning predictions of weigh status derived from bioimpedance measurements and other physical parameters of healthy younger volunteers from Southern Cuba Region. METHODS A pilot random study at the Pediatrics Hospital was conducted. The volunteers were selected between 2002 and 2008, ranging in age between 2 and 18 years old. In total, 776 female and male volunteers are studied. Along the age and sex in the cohort, volunteers with class I obesity, overweight, underweight and with normal weight are considered. The bioimpedance parameters are obtained by measuring standard tetrapolar whole-body configuration. The bioimpedance analyser is used, collecting fundamental bioelectrical and other parameters of interest. A classification model are performed, followed by a prediction of the body mass index. RESULTS The results derived from the classification leaner reveal that the size, body density, phase angle, body mass index, fat-free mass, total body water volume according to Kotler, body surface area, extracellular water according to Kotler and sex largely govern the weight status of this population. In particular, the regression model shows that other bioparameters derived from impedance measurements can be associated with weight status estimation with high accuracy. CONCLUSION The classification and regression predictive models developed in this work are of the great importance to assist the diagnosis of weigh status with high accuracy. These models can be used for prompt weight status evaluation of younger individuals at the Pediatrics Hospital in Santiago de Cuba, Cuba.
Collapse
Affiliation(s)
- Taira Batista Luna
- Autonomous University of Santo Domingo (UASD), UASD Nagua Center, Nagua, Dominican Republic.
| | - Jose Luis García Bello
- Autonomous University of Santo Domingo (UASD), San Francisco de Macorís Campus, Santo Domingo, Dominican Republic
| | - Agustín Garzón Carbonell
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente CP 90500, Santiago de Cuba, Cuba
| | | | - Alcibíades Lara Lafargue
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente CP 90500, Santiago de Cuba, Cuba
| | - Héctor Manuel Camué Ciria
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente CP 90500, Santiago de Cuba, Cuba
| | - Yohandys A Zulueta
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, 90500, CP, Cuba.
| |
Collapse
|
364
|
van Beers EJ, Al-Samkari H, Grace RF, Barcellini W, Glenthøj A, DiBacco M, Wind-Rotolo M, Xu R, Beynon V, Patel P, Porter JB, Kuo KHM. Mitapivat improves ineffective erythropoiesis and iron overload in adult patients with pyruvate kinase deficiency. Blood Adv 2024; 8:2433-2441. [PMID: 38330179 PMCID: PMC11112604 DOI: 10.1182/bloodadvances.2023011743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
ABSTRACT Pyruvate kinase (PK) deficiency is a rare, hereditary disease characterized by chronic hemolytic anemia. Iron overload is a common complication regardless of age, genotype, or transfusion history. Mitapivat, an oral, allosteric PK activator, improves anemia and hemolysis in adult patients with PK deficiency. Mitapivat's impact on iron overload and ineffective erythropoiesis was evaluated in adults with PK deficiency who were not regularly transfused in the phase 3 ACTIVATE trial and long-term extension (LTE) (#NCT03548220/#NCT03853798). Patients in the LTE received mitapivat throughout ACTIVATE/LTE (baseline to week 96; mitapivat-to-mitapivat [M/M] arm) or switched from placebo (baseline to week 24) to mitapivat (week 24 to week 96; placebo-to-mitapivat [P/M] arm). Changes from baseline in markers of iron overload and erythropoiesis were assessed to week 96. Improvements in hepcidin (mean, 4770.0 ng/L; 95% confidence interval [CI], -1532.3 to 11 072.3), erythroferrone (mean, -9834.9 ng/L; 95% CI, -14 328.4 to -5341.3), soluble transferrin receptor (mean, -56.0 nmol/L; 95% CI, -84.8 to -27.2), and erythropoietin (mean, -32.85 IU/L; 95% CI, -54.65 to -11.06) were observed in the M/M arm (n = 40) from baseline to week 24, sustained to week 96. No improvements were observed in the P/M arm (n = 40) to week 24; however, upon transitioning to mitapivat, improvements similar to those observed in the M/M arm were seen. Mean changes from baseline in liver iron concentration by magnetic resonance imaging at week 96 in the M/M arm and the P/M arm were -2.0 mg Fe/g dry weight (dw; 95% CI, -4.8 to -0.8) and -1.8 mg Fe/g dw (95% CI, -4.4 to 0.80), respectively. Mitapivat is the first disease-modifying pharmacotherapy shown to have beneficial effects on iron overload and ineffective erythropoiesis in patients with PK deficiency. This trial was registered at www.ClinicalTrials.gov as #NCT03548220 (ACTIVATE) and #NCT03853798 (LTE).
Collapse
Affiliation(s)
- Eduard J. van Beers
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hanny Al-Samkari
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachael F. Grace
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Wilma Barcellini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andreas Glenthøj
- Danish Red Blood Cell Center, Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Rengyi Xu
- Agios Pharmaceuticals, Inc, Cambridge, MA
| | | | | | - John B. Porter
- Haematology Department, University College London Hospitals, London, United Kingdom
| | - Kevin H. M. Kuo
- Division of Hematology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
365
|
Liu W, Kurkewich JL, Stoddart A, Khan S, Anandan D, Gaubil AN, Wolfgeher DJ, Jueng L, Kron SJ, McNerney ME. CUX1 regulates human hematopoietic stem cell chromatin accessibility via the BAF complex. Cell Rep 2024; 43:114227. [PMID: 38735044 PMCID: PMC11163479 DOI: 10.1016/j.celrep.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/16/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.
Collapse
Affiliation(s)
- Weihan Liu
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Angela Stoddart
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhivyaa Anandan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Alexandre N Gaubil
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Lia Jueng
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Megan E McNerney
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
366
|
Ramadas A, Rizal H, Rajakumar S, Mariapun J, Yasin MS, Armstrong MEG, Su TT. Dietary intake, obesity, and metabolic risk factors among children and adolescents in the SEACO-CH20 cross-sectional study. Sci Rep 2024; 14:11265. [PMID: 38760446 PMCID: PMC11101611 DOI: 10.1038/s41598-024-61090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
We investigated the association between dietary intake and metabolic risk factors in children and adolescents within a semi-rural Malaysian community. Using an interviewer-led questionnaire, we surveyed 623 participants aged 7-18 from the South East Asia Community Observatory (SEACO). Anthropometric and blood pressure data were collected from all participants, while a subset (n = 162) provided blood samples for biomarker analysis, including fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Metabolic syndrome was determined using the International Diabetes Federation's Definition of Metabolic Syndrome in Children and Adolescents. Most participants were Malay (66.8%), with a median household income of MYR1,500 and a balanced sex distribution. Cereals, processed foods, beverages, fruits, and vegetables were commonly consumed. Obesity and abdominal obesity were prevalent, affecting more than a third of participants. Adherence to dietary recommendations was generally poor (ranging from 19.9 to 58.1%) and varied across age, sex, and ethnicity. Notably, some food groups displayed unexpected associations with health markers; for instance, fruit consumption was linked to abdominal obesity in children (abdominal obesity vs. normal: 2.4 servings/day vs. 1.6 servings/day). These findings emphasise the necessity of longitudinal studies to explore the complex relationship between diet and long-term health outcomes, including cardiometabolic diseases, while acknowledging the unique challenges posed by the COVID-19 pandemic on data collection and analysis.
Collapse
Affiliation(s)
- Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia.
| | - Hussein Rizal
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | - Sutha Rajakumar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | - Jeevitha Mariapun
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 80100, Johor Bahru, Malaysia
| | - Mohamed Shajahan Yasin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | - Miranda E G Armstrong
- Centre for Exercise, Nutrition & Health Sciences, School for Policy Studies, University of Bristol, Bristol, BS8 1TZ, UK
| | - Tin Tin Su
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| |
Collapse
|
367
|
Du W, Lu L, Liu Y, Yan Y, La R, Wu Q, Xu J, Zhou X. The association between dietary vitamin B1 intake and constipation: a population-based study. BMC Gastroenterol 2024; 24:171. [PMID: 38760704 PMCID: PMC11100033 DOI: 10.1186/s12876-024-03255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Numerous researches have indicated a correlation between the intake of dietary micronutrients and the occurrence of constipation. Nevertheless, the correlation between constipation and vitamin B1 remains uninvestigated. The main aim of this research was to examine the association between chronic constipation and the consumption of vitamin B1 in the diet among adult participants of the National Health and Nutrition Examination Survey (NHANES). METHODS This study used data from the NHANES, a survey on health and nutrition conducted between 2005 and 2010. The respondents' dietary information was gathered by utilizing the 24-hour dietary records. Various statistical analyses, such as multiple logistic regression, subgroup analysis, and curve-fitting analysis, were employed to investigate the correlation between dietary intake of vitamin B1 and chronic constipation. RESULTS In the trial, there were 10,371 participants, out of which 1,123 individuals (10.8%) were identified as having chronic constipation. Fully adjusted multiple logistic regression analyses showed that increasing dietary intake of vitamin B1 (OR = 0.87, 95% CI: 0.77-0.99) was significantly associated with a reduced risk of constipation. Following adjustment for multiple variables in Model 3, the odds ratio (OR) and 95% confidence interval (CI) for the third tertile, in comparison to the first tertile (reference group), was 0.80 (0.65, 0.99). In addition, subgroup analyses and interaction tests showed a significant inverse association between vitamin B1 intake and the prevalence of constipation, especially among men, non-hypertensive, and non-diabetic individuals (all P-values less than 0.05). CONCLUSION This research uncovered an inverse correlation between the consumption of vitamin B1 in the diet and the occurrence of chronic constipation. One potential explanation for this phenomenon is that the consumption of vitamin B1 in one's diet is linked to the softening of stools and an augmented occurrence of colonic peristalsis. Additional extensive prospective research is required to thoroughly examine the significance of thiamine in long-term constipation.
Collapse
Affiliation(s)
- Wenyi Du
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Medical Center, Wuxi, Jiangsu, China
| | - Lingchen Lu
- Department of Pediatric Surgery, Maternal and Child Health Care Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Yuxuan Liu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China
| | - Yuxin Yan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Suzhou, Jiangsu, China
| | - Rui La
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Suzhou, Jiangsu, China
| | - Qian Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Institute of Orthopedics at Soochow University, Suzhou, Jiangsu, China.
- Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Korea.
| | - Jie Xu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China.
| | - Xiaojun Zhou
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China.
| |
Collapse
|
368
|
Ács N, Korte WC, von Heymann CC, Windyga J, Blatný J. Rationale for the Potential Use of Recombinant Activated Factor VII in Severe Post-Partum Hemorrhage. J Clin Med 2024; 13:2928. [PMID: 38792469 PMCID: PMC11122570 DOI: 10.3390/jcm13102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Severe post-partum hemorrhage (PPH) is a major cause of maternal mortality worldwide. Recombinant activated factor VII (rFVIIa) has recently been approved by the European Medicines Agency for the treatment of severe PPH if uterotonics fail to achieve hemostasis. Although large randomized controlled trials are lacking, accumulated evidence from smaller studies and international registries supports the efficacy of rFVIIa alongside extended standard treatment to control severe PPH. Because rFVIIa neither substitutes the activity of a missing coagulation factor nor bypasses a coagulation defect in this population, it is not immediately evident how it exerts its beneficial effect. Here, we discuss possible mechanistic explanations for the efficacy of rFVIIa and the published evidence in patients with severe PPH. Recombinant FVIIa may not primarily increase systemic thrombin generation, but may promote local thrombin generation through binding to activated platelets at the site of vascular wall injury. This explanation may also address safety concerns that have been raised over the administration of a procoagulant molecule in a background of increased thromboembolic risk due to both pregnancy-related hemostatic changes and the hemorrhagic state. However, the available safety data for this and other indications are reassuring and the rates of thromboembolic events do not appear to be increased in women with severe PPH treated with rFVIIa. We recommend that the administration of rFVIIa be considered before dilutional coagulopathy develops and used to support the current standard treatment in certain patients with severe PPH.
Collapse
Affiliation(s)
- Nándor Ács
- Department of Obstetrics and Gynaecology, Semmelweis University, H-1082 Budapest, Hungary
| | - Wolfgang C. Korte
- Centre for Laboratory Medicine, Haemostasis and Haemophilia Centre, CH-9001 St. Gallen, Switzerland
| | - Christian C. von Heymann
- Department of Anaesthesia, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Vivantes Klinikum in Friedrichshain, DE-10249 Berlin, Germany
| | - Jerzy Windyga
- Department of Haemostasis Disorders and Internal Medicine, Laboratory of Haemostasis and Metabolic Diseases, Institute of Haematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Jan Blatný
- Department of Paediatric Oncology, University Hospital Brno, and Masaryk University, 613 00 Brno, Czech Republic
| |
Collapse
|
369
|
Ren Y, Ying Q, Chen Y, Liao C, Li A, Ye Q. HLA-DRB5 Overexpression Promotes Platelet Reduction in Immune Thrombocytopenia Mice Model by Facilitating MHC-II-Mediated Antigen Presentation. Acta Haematol 2024; 148:68-76. [PMID: 38744253 DOI: 10.1159/000538749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Major histocompatibility complex II (MHC-II)-mediated antigen presentation contributes to the pathogenesis of immune thrombocytopenia (ITP). Human leukocyte antigen (HLA)-DRB5 is an MHC-II molecule and this study aims to investigate its role and mechanisms in ITP development. METHODS Guinea pig anti-mouse platelet (PLT) serum-induced ITP mice received tail vein injection of HLA-DRB5 overexpressing adenoviral vector/immune receptor expressed on myeloid cells-1 (IREM-1) monoclonal antibody (mAb). PLT count changes in mice blood were assessed by a hematology analyzer. MHC-II/CD80/CD86 expression in mice blood was measured by quantitative real-time-PCR and immunofluorescence assay. CD8+ T-cell proportion in mice blood was detected by flow cytometry. RESULTS HLA-DRB5 overexpression exacerbated PLT reduction since the 5th day of the establishment of ITP mice model and enhanced MHC-II/CD80/CD86 expression upregulation as well as CD8+ T-cell ratio elevation in the blood of ITP mice, while its effects were reversed by IREM-1 mAb. CONCLUSION HLA-DRB5 overexpression upregulates MHC-II-mediated antigen presentation to CD8+ T cells, thus lowering PLT count in the ITP mice model.
Collapse
Affiliation(s)
- Yujuan Ren
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
- NBU Health Science Center, Ningbo, China
| | - Qianqian Ying
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| | - Ying Chen
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| | - Cong Liao
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| | - Anrong Li
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| | - Qidong Ye
- Department of Pediatrics, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
370
|
Chueh HW, Shim YJ, Jung HL, Kim N, Hwang SM, Kim M, Choi HS. Current Status of Molecular Diagnosis of Hereditary Hemolytic Anemia in Korea. J Korean Med Sci 2024; 39:e162. [PMID: 38742293 PMCID: PMC11091231 DOI: 10.3346/jkms.2024.39.e162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hereditary hemolytic anemia (HHA) is considered a group of rare hematological diseases in Korea, primarily because of its unique ethnic characteristics and diagnostic challenges. Recently, the prevalence of HHA has increased in Korea, reflecting the increasing number of international marriages and increased awareness of the disease. In particular, the diagnosis of red blood cell (RBC) enzymopathy experienced a resurgence, given the advances in diagnostic techniques. In 2007, the RBC Disorder Working Party of the Korean Society of Hematology developed the Korean Standard Operating Procedure for the Diagnosis of Hereditary Hemolytic Anemia, which has been continuously updated since then. The latest Korean clinical practice guidelines for diagnosing HHA recommends performing next-generation sequencing as a preliminary step before analyzing RBC membrane proteins and enzymes. Recent breakthroughs in molecular genetic testing methods, particularly next-generation sequencing, are proving critical in identifying and providing insight into cases of HHA with previously unknown diagnoses. These innovative molecular genetic testing methods have now become important tools for the management and care planning of patients with HHA. This review aims to provide a comprehensive overview of recent advances in molecular genetic testing for the diagnosis of HHA, with particular emphasis on the Korean context.
Collapse
Affiliation(s)
- Hee Won Chueh
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Lim Jung
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Namhee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
371
|
Locatelli F, Lang P, Wall D, Meisel R, Corbacioglu S, Li AM, de la Fuente J, Shah AJ, Carpenter B, Kwiatkowski JL, Mapara M, Liem RI, Cappellini MD, Algeri M, Kattamis A, Sheth S, Grupp S, Handgretinger R, Kohli P, Shi D, Ross L, Bobruff Y, Simard C, Zhang L, Morrow PK, Hobbs WE, Frangoul H. Exagamglogene Autotemcel for Transfusion-Dependent β-Thalassemia. N Engl J Med 2024; 390:1663-1676. [PMID: 38657265 DOI: 10.1056/nejmoa2309673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent β-thalassemia and a β0/β0, β0/β0-like, or non-β0/β0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS A total of 52 patients with transfusion-dependent β-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent β-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).
Collapse
Affiliation(s)
- Franco Locatelli
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Peter Lang
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Donna Wall
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Roland Meisel
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Selim Corbacioglu
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Amanda M Li
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Josu de la Fuente
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Ami J Shah
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Ben Carpenter
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Janet L Kwiatkowski
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Markus Mapara
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Robert I Liem
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Maria Domenica Cappellini
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Mattia Algeri
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Antonis Kattamis
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Sujit Sheth
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Stephan Grupp
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Rupert Handgretinger
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Puja Kohli
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Daoyuan Shi
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Leorah Ross
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Yael Bobruff
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Christopher Simard
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Lanju Zhang
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Phuong Khanh Morrow
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - William E Hobbs
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| | - Haydar Frangoul
- From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.)
| |
Collapse
|
372
|
Klukowska A, Sidonio RF, Young G, Mancuso ME, Álvarez-Román MT, Bhatnagar N, Jansen M, Knaub S. Simoctocog alfa (Nuwiq ®) in children: early steps in life's journey for people with severe hemophilia A. Ther Adv Hematol 2024; 15:20406207241245511. [PMID: 38737006 PMCID: PMC11085023 DOI: 10.1177/20406207241245511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 05/14/2024] Open
Abstract
People with severe hemophilia A usually experience their first bleed early in life. In children with severe hemophilia A, primary prophylaxis is recommended to prevent recurrent and potentially life-threatening bleeds that significantly impact day-to-day life. Factor VIII (FVIII) prophylaxis is well-established in children and has been shown to reduce the development of hemophilic arthropathy. However, a major challenge of FVIII therapy is the development of neutralizing anti-FVIII antibodies (FVIII inhibitors). Simoctocog alfa (Nuwiq®) is a human cell line-derived recombinant FVIII (rFVIII) whose immunogenicity, efficacy, and safety have been studied in 167 children with severe hemophilia A across two prospective clinical trials and their long-term extensions. In 105 previously untreated children, the inhibitor rate of 16.2% for high-titer inhibitors (26.7% for all inhibitors) was lower than published rates for hamster cell line-derived rFVIII products. There was no inhibitor development in previously untreated children with non-null F8 mutations and in previously treated children. In a case series of 10 inhibitor patients, 8 (80%) underwent successful immune tolerance induction with simoctocog alfa with a median time to undetectable inhibitor of 3.5 months. In an analysis of 96 children who enrolled in the extension studies and received long-term simoctocog alfa prophylaxis for up to 5 years, median spontaneous, joint, and total annualized bleeding rates were 0.3, 0.4, and 1.8, respectively. No thromboembolisms were reported in any of the 167 children, and there were no treatment-related deaths. Optimal care of children should consider several factors, including minimization of inhibitor development risk, maintaining tolerance to FVIII, highly effective bleed prevention and treatment, safety, and impact on long-term outcomes such as bone and joint health. In this context we review the pediatric clinical data and ongoing studies with simoctocog alfa.
Collapse
Affiliation(s)
- Anna Klukowska
- Haemostasis Group of the Polish Society of Haematology and Transfusiology, 14 Indira Gandhi Street, Warsaw 02-776, Poland
| | - Robert F. Sidonio
- Hemophilia of Georgia Center for Bleeding and Clotting Disorders, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Guy Young
- Hemostasis and Thrombosis Center, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Maria Elisa Mancuso
- Center for Thrombosis and Hemorrhagic Diseases, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Humanitas University, Pieve Emanuele, Italy
| | | | - Neha Bhatnagar
- Oxford Haemophilia and Thrombosis Comprehensive Care Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Martina Jansen
- Clinical Research and Development, Octapharma Pharmazeutika Produktionsges m.b.H., Vienna, Austria
| | - Sigurd Knaub
- Clinical Research and Development, Octapharma AG, Lachen, Switzerland
| |
Collapse
|
373
|
Yin X, Li Q, Shu Y, Wang H, Thomas B, Maxwell JT, Zhang Y. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing. J Biomed Sci 2024; 31:47. [PMID: 38724973 PMCID: PMC11084032 DOI: 10.1186/s12929-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.
Collapse
Affiliation(s)
- Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Biju Thomas
- Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
374
|
Hu J, Zhong Y, Xu P, Xin L, Zhu X, Jiang X, Gao W, Yang B, Chen Y. β-Thalassemia gene editing therapy: Advancements and difficulties. Medicine (Baltimore) 2024; 103:e38036. [PMID: 38701251 PMCID: PMC11062644 DOI: 10.1097/md.0000000000038036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
β-Thalassemia is the world's number 1 single-gene genetic disorder and is characterized by suppressed or impaired production of β-pearl protein chains. This results in intramedullary destruction and premature lysis of red blood cells in peripheral blood. Among them, patients with transfusion-dependent β-thalassemia face the problem of long-term transfusion and iron chelation therapy, which leads to clinical complications and great economic stress. As gene editing technology improves, we are seeing the dawn of a cure for the disease, with its reduction of ineffective erythropoiesis and effective prolongation of survival in critically ill patients. Here, we provide an overview of β-thalassemia distribution and pathophysiology. In addition, we focus on gene therapy and gene editing advances. Nucleic acid endonuclease tools currently available for gene editing fall into 3 categories: zinc finger nucleases, transcription activator-like effector nucleases, and regularly interspaced short palindromic repeats (CRISPR-Cas9) nucleases. This paper reviews the exploratory applications and exploration of emerging therapeutic tools based on 3 classes of nucleic acid endonucleases in the treatment of β-thalassemia diseases.
Collapse
Affiliation(s)
- Jing Hu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yebing Zhong
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Pengxiang Xu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liuyan Xin
- Hematology Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaodan Zhu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinghui Jiang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weifang Gao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Yang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yijian Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
375
|
Bizri M, Koleilat R, Akiki N, Dergham R, Mihailescu AM, Bou-Fakhredin R, Musallam KM, Taher AT. Quality of life, mood disorders, and cognitive impairment in adults with β-thalassemia. Blood Rev 2024; 65:101181. [PMID: 38341336 DOI: 10.1016/j.blre.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Advances in understanding the disease process in β-thalassemia supported development of various treatment strategies that resulted in improved survival. Improved survival, however, allowed multiple morbidities to manifest and cemented the need for frequent, lifelong treatment. This has directly impacted patients' health-related quality of life and opened the door for various psychiatric and cognitive disorders to potentially develop. In this review, we summarize available evidence on quality of life, depression and anxiety, suicidality, and cognitive impairment in adult patients with β-thalassemia while sharing our personal insights from experience in treating patients with both transfusion-dependent and non-transfusion-dependent forms.
Collapse
Affiliation(s)
- Maya Bizri
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rawan Koleilat
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie Akiki
- Department of Haematology, King's College Hospital, London, United Kingdom
| | - Reem Dergham
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Khaled M Musallam
- Center for Research on Rare Blood Disorders (CR-RBD), Burjeel Medical City, Abu Dhabi, United Arab Emirates
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
376
|
Lester W, Bent C, Alikhan R, Roberts L, Gordon-Walker T, Trenfield S, White R, Forde C, Arachchillage DJ. A British Society for Haematology guideline on the assessment and management of bleeding risk prior to invasive procedures. Br J Haematol 2024; 204:1697-1713. [PMID: 38517351 DOI: 10.1111/bjh.19360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Will Lester
- Department of Haematology, University Hospitals Birmingham, Birmingham, UK
| | - Clare Bent
- Department of Radiology, University Hospitals Dorset, Dorset, UK
| | - Raza Alikhan
- Department of Haematology, University Hospitals of Cardiff, Cardiff, UK
| | - Lara Roberts
- Department of Haematology, King College London, London, UK
| | - Tim Gordon-Walker
- Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sarah Trenfield
- Department of Anaesthesia and Critical Care, Royal Brompton Hospital, London, UK
| | - Richard White
- Department of Radiology, Cardiff and Vale UHB, Cardiff, UK
| | - Colm Forde
- Department of Radiology, University Hospitals Birmingham, Birmingham, UK
| | - Deepa J Arachchillage
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, UK
- Department of Haematology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
377
|
Russo G, Parodi E, Farruggia P, Notarangelo LD, Perrotta S, Casale M, Cesaro S, Del Borrello G, Del Vecchio GC, Giona F, Gorio C, Ladogana S, Lassandro G, Marzollo A, Maslak K, Miano M, Nardi M, Palumbo G, Rossi F, Spinelli M, Tolva A, Saracco P, Ramenghi U, Giordano P. Recommendations for the management of acute immune thrombocytopenia in children. A Consensus Conference from the Italian Association of Pediatric Hematology and Oncology. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2024; 22:253-265. [PMID: 37677093 PMCID: PMC11073630 DOI: 10.2450/bloodtransfus.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/07/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an acquired immune-mediated bleeding disorder characterized by isolated thrombocytopenia. Its estimated yearly incidence in the pediatric population is 1.9-6.4/100,000. ITP in children is usually a self-limiting and benign disorder. The clinical management of children with ITP often remains controversial, as robust randomized trials on the management of this disorder are lacking. Treatments vary widely in clinical practice and existing guidelines from hematology societies on clinical management offer indications based largely on expert opinion rather than strong evidence. MATERIALS AND METHODS The Coagulative Disorder Working Group of the Italian Association of Pediatric Hematology and Oncology (AIEOP) developed this document to collect shared expert opinions on the management of newly diagnosed ITP, updating previous guidelines and providing recommendations to pediatricians. Each statement has been given a score expressing the strength of evidence, appropriateness and agreement among participants. RESULTS Clear-cut definitions of the clinical phases of the disease and clinical response are stated. Recommendations are given regarding the classification of bleeding symptoms, evaluation of bleeding risk, diagnosis, and prognostic factors. Specific recommendations for treatment include indications for first-line (intravenous immunoglobulins, steroids) and second-line (combined therapy, thrombopoietin receptor agonists, immunosuppressive drugs, rituximab) therapeutic agents, as well as hemorrhagic emergency and supportive treatment, including emergency splenectomy. The optimal follow-up schedule, the relation between ITP and vaccines and health-related quality-of-life issues are also discussed. DISCUSSION The panel achieved broad consensus on issues related to how to treat children with newly diagnosed ITP, providing a comprehensive review of all relevant clinical aspects.
Collapse
Affiliation(s)
- Giovanna Russo
- Pediatric Onco-hematology Unit, Azienda Policlinico Rodolico San Marco, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Emilia Parodi
- Pediatric and Neonatology Unit, Ordine Mauriziano Hospital, Turin, Italy
| | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, ARNAS Ospedale Civico, Palermo, Italy
| | - Lucia D. Notarangelo
- Direzione Medica di Presidio, Children’s Hospital, ASST-Spedali Civili, Brescia, Italy
| | - Silverio Perrotta
- Department of Women, Children and General and Specialized Surgery, “Luigi Vanvitelli” Università degli Studi della Campania, Naples, Italy
| | - Maddalena Casale
- Department of Women, Children and General and Specialized Surgery, “Luigi Vanvitelli” Università degli Studi della Campania, Naples, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giovanni Del Borrello
- Pediatric Oncohematology, Pediatrics Department, Hospital Città Della Salute e Della Scienza, University of Turin, Turin, Italy
| | - Giovanni C. Del Vecchio
- Interdisciplinary Department of Medicine, Pediatric Section, “Aldo Moro” University of Bari, Bari, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, AOU Policlinico Umberto I, Rome, Italy
| | - Chiara Gorio
- Pediatric Onco-hematology Unit, Children’s Hospital, ASST-Spedali Civili, Brescia, Italy
| | - Saverio Ladogana
- Pediatric Onco-hematology Unit “Casa Sollievo della Sofferenza” Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Giuseppe Lassandro
- Interdisciplinary Department of Medicine, Pediatric Section, “Aldo Moro” University of Bari, Bari, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Karolina Maslak
- Pediatric Onco-hematology Unit, Azienda Policlinico Rodolico San Marco, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Margherita Nardi
- Pediatric Hematology Oncology, Bone Marrow Transplant, Azienda Ospedaliero Universitaria Pisana, S. Chiara Hospital, Pisa, Italy
| | - Giuseppe Palumbo
- Department of Pediatric Hematology and Oncology Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Francesca Rossi
- Department of Women, Children and General and Specialized Surgery, “Luigi Vanvitelli” Università degli Studi della Campania, Naples, Italy
| | - Marco Spinelli
- Pediatric Hematology Oncology Unit, Department of Pediatrics, IRCCS San Gerardo dei Tintori Foundation, Monza, Italy
| | - Alessandra Tolva
- Pediatric Hematology-Oncology, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paola Saracco
- Department of Public Health and Pediatric Sciences, Regina Margherita Children’s Hospital, University of Turin, Turin, Italy
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, Regina Margherita Children’s Hospital, University of Turin, Turin, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, Pediatric Section, “Aldo Moro” University of Bari, Bari, Italy
| |
Collapse
|
378
|
Meissner B, Lang P, Bader P, Hoenig M, Müller I, Meisel R, Greil J, Sauer MG, Metzler M, Corbacioglu S, Burkhardt B, Wölfl M, Strahm B, Kafa K, Basu O, Lode HN, Gruhn B, Cario H, Ozga AK, Zimmermann M, Jarisch A, Beier R. Finding a balance in reduced toxicity hematopoietic stem cell transplantation for thalassemia: role of infused CD3+ cell count and immunosuppression. Bone Marrow Transplant 2024; 59:587-596. [PMID: 38326567 PMCID: PMC11073967 DOI: 10.1038/s41409-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
We performed a retrospective analysis on 124 patients with transfusion-dependent thalassemia who were registered in the German pediatric registry for stem cell transplantation. All patients underwent first allogeneic hematopoietic stem cell transplantation (HSCT) between 2011 and 2020 and belonged mainly to Pesaro risk class 1-2. Four-year overall (OS) and thalassemia-free survival (TFS) were 94.5% ± 2.9% and 88.0% ± 3.4% after treosulfan-fludarabine-thiotepa- and 96.9% ± 3.1% (P = 0.763) and 96.9% ± 3.1% (P = 0.155) after busulfan-fludarabine-based conditioning. Mixed chimerism below 75% occurred predominantly in treosulfan-based regimens (27.5% versus 6.2%). OS and TFS did not differ significantly between matched sibling, other matched family and matched unrelated donor (UD) HSCTs (OS: 100.0%, 100.0%, 96.3% ± 3.6%; TFS: 96.5% ± 2.4%, 90.0% ± 9.5%, 88.9% ± 6.0%). However, mismatched UD-HSCTs performed less favorable (OS: 84.7% ± 7.3% (P = 0.029); TFS: 79.9% ± 7.4% (P = 0.082)). We generated a scoring system reflecting the risk to develop mixed chimerism in our cohort. The main risk-reducing factors were a high CD3+ cell count (≥6 × 107/kg) in the graft, busulfan-conditioning, pre-conditioning therapy and low-targeted ciclosporin A trough levels. Acute GvHD grade III-IV in treosulfan-based concepts predominantly occurred in patients with UD and reduced GvHD prophylaxis but not in the context of high CD3+ cell doses. Taken together, this information might be used to develop more risk-adapted HSCT regimens for thalassemia patients.
Collapse
Affiliation(s)
- Barbara Meissner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | - Peter Lang
- Department Hematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Peter Bader
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Meisel
- Devision of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Johann Greil
- University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Matthias Wölfl
- University Children's Hospital Wuerzburg, Wuerzburg, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kinan Kafa
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Oliver Basu
- University Children's Hospital Essen, Essen, Germany
| | - Holger N Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Holger Cario
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Ann-Kathrin Ozga
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Andrea Jarisch
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Rita Beier
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
379
|
Nadtochiy SM, Stefanos T, Wissler R, Gu Y, Feng C, Lebedko N, Eaton MP. Effect of bivalirudin on coagulation in neonatal (cord) and adult human blood in vitro. Paediatr Anaesth 2024; 34:415-421. [PMID: 38055634 DOI: 10.1111/pan.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Bivalirudin is recommended as an alternative to heparin in cardiac surgery with cardiopulmonary bypass. Although it has been used in infants and children for this indication, there is a paucity of data on the pharmacologic effects of bivalirudin in neonates. Given the immaturity of the hemostatic system in neonates, we hypothesized that coagulation responses to bivalirudin in this population would be different than in adults. METHODS Blood samples were drawn from placenta-cord units and from healthy adult donors. The study was carried out in two steps. First, bivalirudin was added to cord and adult blood samples at concentrations of 0, 5, 10, 15, and 20 μg/mL. Activated clotting time and thromboelastographic variables were recorded. Next, we used a Chandler loop system to assess the efficacy of bivalirudin in a simple model of cardiopulmonary bypass. The loops were primed with cord or adult blood and were run until thrombus was detected. Plasma bivalirudin concentrations were measured at 1, 15, 30, 45, 60, and 75 min after initiating rotation of the loops using liquid chromatography/mass spectrometry. RESULTS Bivalirudin elicited a dose-dependent prolongation inhibition of coagulation in both cord and adult blood samples with greater potency in cord blood in comparison to adult blood (activated clotting time: 627 ± 50 vs. 452 ± 22 s at 15 μg/mL bivalirudin, p < .0001). This relative potency was also demonstrated in the Chandler loop system, but interestingly, cord blood appeared to inactivate bivalirudin more rapidly than adult blood with earlier clotting in loops containing cord blood. CONCLUSIONS This study demonstrates that bivalirudin has greater potency in cord blood in vitro than in adult blood. Plasma degradation appears to proceed more rapidly in cord blood than in adults. Both of these findings should be considered when planning dosing regimens in neonatal patients.
Collapse
Affiliation(s)
- Sergiy M Nadtochiy
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Tatsiana Stefanos
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Richard Wissler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yang Gu
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Natalie Lebedko
- School of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Michael P Eaton
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
380
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
381
|
Ravichandran S, Hoffmann M, Petersen J, Sjø L, Rasmussen AØ, Eidesgaard A, Glenthøj A. A Rare Case of De Novo Beta-Thalassemia Diagnosed by Whole-Genome Sequencing in an Ethnically Danish Newborn. Hemoglobin 2024; 48:196-199. [PMID: 38980105 DOI: 10.1080/03630269.2024.2335919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 07/10/2024]
Abstract
In 2020, a 2-month-old ethnically Danish girl was diagnosed with β-thalassemia after presenting with persistent jaundice. The peripheral blood smear showed significant aniso- and poikilocytosis, increased number of reticulocytes and erythroblastosis. Trio analysis of the index patient and both parents was performed by whole-genome sequencing. Here, both parents were found normal, however the analysis revealed an apparently de novo HBB:c.444A > C variant in the child. The child has recently been discharged three months after a successful bone marrow transplantation with a matched sibling-donor.
Collapse
Affiliation(s)
- Stefni Ravichandran
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Marianne Hoffmann
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Jesper Petersen
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Lene Sjø
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Andreas Ørslev Rasmussen
- Department of Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annetta Eidesgaard
- Department of Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Glenthøj
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
382
|
Locatelli F, Cavazzana M, Frangoul H, Fuente JDL, Algeri M, Meisel R. Autologous gene therapy for hemoglobinopathies: From bench to patient's bedside. Mol Ther 2024; 32:1202-1218. [PMID: 38454604 PMCID: PMC11081872 DOI: 10.1016/j.ymthe.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
In recent years, a growing number of clinical trials have been initiated to evaluate gene therapy approaches for the treatment of patients with transfusion-dependent β-thalassemia and sickle cell disease (SCD). Therapeutic modalities being assessed in these trials utilize different molecular techniques, including lentiviral vectors to add functional copies of the gene encoding the hemoglobin β subunit in defective cells and CRISPR-Cas9, transcription activator-like effector protein nuclease, and zinc finger nuclease gene editing strategies to either directly address the underlying genetic cause of disease or induce fetal hemoglobin production by gene disruption. Here, we review the mechanisms of action of these various gene addition and gene editing approaches and describe the status of clinical trials designed to evaluate the potentially for these approaches to provide one-time functional cures to patients with transfusion-dependent β-thalassemia and SCD.
Collapse
Affiliation(s)
- Franco Locatelli
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy; Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Marina Cavazzana
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris, 75006 Paris, France
| | - Haydar Frangoul
- Sarah Cannon Center for Blood Cancer at The Children's Hospital at TriStar Centennial, Nashville, TN 37203, USA
| | - Josu de la Fuente
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London W21NY, UK
| | - Mattia Algeri
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy; Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| |
Collapse
|
383
|
Sharma P, Bhatia P, Singh M, Jamwal M, Pallavelangini S, Das R, Malhotra P, Attri SV, Ducamp S, Fleming MD, Trehan A. Comprehensive Genomic Analysis Identifies a Diverse Landscape of Sideroblastic and Nonsideroblastic Iron-Related Anemias with Novel and Pathogenic Variants in an Iron-Deficient Endemic Setting. J Mol Diagn 2024; 26:430-444. [PMID: 38360212 DOI: 10.1016/j.jmoldx.2024.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Inherited iron metabolism defects are possibly missed or underdiagnosed in iron-deficient endemic settings because of a lack of awareness or a methodical screening approach. Hence, we systematically evaluated anemia cases (2019 to 2021) based on clinical phenotype, normal screening tests (high-performance liquid chromatography, α gene sequencing, erythrocyte sedimentation rate, C-reactive protein, and tissue transglutaminase), and abnormal iron profile by targeted next-generation sequencing (26-gene panel) supplemented with whole-exome sequencing, multiplex ligation probe amplification/mitochondrial DNA sequencing, and chromosomal microarray. Novel variants in ALAS2, STEAP3, and HSPA9 genes were functionally validated. A total of 290 anemia cases were screened, and 41 (14%) enrolled for genomic testing as per inclusion criteria. Comprehensive genomic testing revealed pathogenic variants in 23 of 41 cases (56%). Congenital sideroblastic anemia was the most common diagnosis (14/23; 61%), with pathogenic variations in ALAS2 (n = 6), SLC25A38 (n = 3), HSPA9 (n = 2) and HSCB, SLC19A2, and mitochondrial DNA deletion (n = 1 each). Nonsideroblastic iron defects included STEAP3-related microcytic anemia (2/23; 8.7%) and hypotransferrenemia (1/23; 4.3%). A total of 6 of 22 cases (27%) revealed a non-iron metabolism gene defect on whole-exome sequencing. Eleven novel variants (including variants of uncertain significance) were noted in 13 cases. Genotype-phenotype correlation revealed a significant association of frameshift/nonsense/splice variants with lower presentation age (0.8 months versus 9 years; P < 0.01) compared with missense variants. The systematic evaluation helped uncover an inherited iron defect in 41% (17/41) of cases, suggesting the need for active screening and awareness for these rare diseases in an iron-deficient endemic population.
Collapse
Affiliation(s)
- Pankaj Sharma
- Pediatric Haematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Pediatric Haematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Minu Singh
- Pediatric Haematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manu Jamwal
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Swetha Pallavelangini
- Pediatric Haematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reena Das
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Haematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Savita V Attri
- Pediatric Biochemistry Laboratory, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sarah Ducamp
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Amita Trehan
- Pediatric Haematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
384
|
Hu Z, Persaud Y, Ahuja S. A systematic review and meta-analysis of the effectiveness of primary thromboprophylaxis in acute lymphoblastic leukemia during early-phase therapy including asparaginase or its prolonged form. Crit Rev Oncol Hematol 2024; 197:104347. [PMID: 38583546 DOI: 10.1016/j.critrevonc.2024.104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Asparaginase is essential in the initial management of acute lymphoblastic leukemia (ALL) but frequently leads to venous thromboembolism (VTE). Using anticoagulants for primary VTE prevention has been studied with no consensus. We conducted a systematic literature search in PubMed, Scopus, and Web of science and performed random-effect meta-analysis using Mantel-Haenszel method in RevMan 5.4 to analyze primary pharmacological thromboprophylaxis during asparaginase treatment in early-phase (induction, consolidation, or intensification phase) therapy in patients with ALL with all ages and followed with subgroup analysis by age. Meta-analysis of 13 articles describing the effect of antithrombin supplementation in 1375 patients showed that antithrombin prophylaxis decreases the risk of VTE by 43% (RR, 0.57; 95% CI, 0.38 - 0.83; p=0.004), with mild heterogeneity (I2=35%, p=0.10) and moderate certainty by GRADE. 8 articles included for meta-analysis of low-molecular weight heparin (LMWH) treatment in 612 patients showed that it decreased the risk of VTE by nearly 40% (RR, 0.61; 95% CI, 0.45 - 0.81; p=0.00081), with minimal heterogeneity (I2=14%, p=0.31) but low certainty. Subgroup analysis showed that only prophylaxis with antithrombin supplementation significantly decreased the VTE rate in adult patients with moderate certainty. In pediatric patients, one nonrandomized prospective study showed that LMWH combined with antithrombin has a better thromboprophylaxis effect than antithrombin alone. In the PREVAPIX-ALL trial, prophylaxis with direct factor Xa inhibitor Apixaban did not benefit children younger than 18 years except for cases of obesity. We concluded that thromboprophylaxis with antithrombin is effective in ALL patients older than 18 years during the early phase of therapy, and LMWH combined with antithrombin supplementation might be effective for pediatric patients with ALL. Apixaban is effective in pediatric ALL patients with obesity and needs further study in other high-risk patients.
Collapse
Affiliation(s)
- Zhongbo Hu
- Hospitalist Medicine Program, Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place Mail Stop 278, Memphis, TN 38105, USA.
| | - Yogindra Persaud
- Department of Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sanjay Ahuja
- Department of Pediatric Hematology & Oncology, University Hospitals Rainbow Babies and Children's Hospital, 11100 Euclid Ave, Cleveland, OH 44106, USA
| |
Collapse
|
385
|
Luban NLC. They are not just small adults. Transfusion 2024; 64:929-932. [PMID: 38577963 DOI: 10.1111/trf.17782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Naomi L C Luban
- Children's National Research Institute, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
386
|
Pitsillidou O, Petrou P, Postma MJ. Can Cyprus Afford Luspatercept? A Budget Impact Analysis of the Reimbursement of Luspatercept for the Management of Thalassaemia in Cyprus. PHARMACOECONOMICS - OPEN 2024; 8:471-480. [PMID: 38575797 PMCID: PMC11058738 DOI: 10.1007/s41669-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE This study aims to estimate the budget impact of luspatercept reimbursement as an adjuvant to the standard management of β-thalassaemia major in Cyprus, from a societal perspective, and assess the financial feasibility of its inclusion in the β-thalassaemia armamentarium. METHODS A 5-year horizon budget impact model was developed to determine the budget impact of reimbursing luspatercept for the management of β-thalassaemia major in Cyprus. Two treatment discontinuation scenarios were elaborated. In the first scenario, luspatercept is reimbursed complementary to best supportive care, and a dropout rate of 40% is assumed based on published real-world data, while for the second scenario a dropout rate of 25%, is assumed as per the clinical trial data. Input parameters were retrieved from the phase III clinical trial of luspatercept, literature, and expert opinion consensus. One-way sensitivity analyses were conducted for both scenarios. RESULTS The addition of luspatercept to the standard management of β-thalassaemia major in Cyprus imparted an incremental budget impact ranging from €21,300,643 to €25,834,368, depending on the drop-out rate scenario assumed. Results were sensitive to the number of eligible patients and dose per patient. CONCLUSION The potential reimbursement of luspatercept will wield a substantial impact on Cyprus total pharmaceutical expenditure and it is therefore imperative to affix a reimbursement framework that will allow the payer to mitigate uncertainty stemming out of the scarce clinical data and the inherently complex therapeutic landscape of β-thalassemia management.
Collapse
Affiliation(s)
- Olga Pitsillidou
- Department of Health Sciences, Unit of Global Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Health Insurance Organization, Nicosia, Cyprus.
| | - Panagiotis Petrou
- Health Insurance Organization, Nicosia, Cyprus
- Pharmacoepidemiology-Pharmacovigilance, Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - M J Postma
- Department of Health Sciences, Unit of Global Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Economics, Econometrics and Finance, Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
387
|
Meier N, Fuchs H, Galactionova K, Hermans C, Pletscher M, Schwenkglenks M. Cost-Effectiveness Analysis of Etranacogene Dezaparvovec Versus Extended Half-Life Prophylaxis for Moderate-to-Severe Haemophilia B in Germany. PHARMACOECONOMICS - OPEN 2024; 8:373-387. [PMID: 38520664 PMCID: PMC11058170 DOI: 10.1007/s41669-024-00480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Haemophilia B is a rare genetic disease that is caused by a deficiency of coagulation factor IX (FIX) in the blood and leads to internal and external bleeding. Under the current standard of care, haemophilia is treated either prophylactically or on-demand via intravenous infusions of FIX. These treatment strategies impose a high burden on patients and health care systems as haemophilia B requires lifelong treatment, and FIX is costly. Etranacogene dezaparvovec (ED) is a gene therapy for haemophilia B that has been recently approved by the United States Food and Drug Administration and has received a recommendation for conditional marketing authorization by the European Medicines Agency. We aimed to examine the cost-effectiveness of ED versus extended half-life FIX (EHL-FIX) prophylaxis for moderate-to-severe haemophilia B from a German health care payer perspective. METHODS A microsimulation model was implemented in R. The model used data from the ED phase 3 clinical trial publication and further secondary data sources to simulate and compare patients receiving ED or EHL-FIX prophylaxis over a lifetime horizon, with the potential for ED patients to switch treatment to EHL-FIX prophylaxis when the effectiveness of ED waned. Primary outcomes of this analysis included discounted total costs, discounted quality-adjusted life years (QALYs), incremental cost-effectiveness, and the incremental net monetary benefit. The annual discount rate for costs and effects was 3%. Uncertainty was examined via probabilistic analysis and additional univariate sensitivity analyses. RESULTS Probabilistic analysis indicated that patients treated with ED instead of EHL-FIX prophylaxis gained 0.50 QALYs and experienced cost savings of EUR 1,179,829 at a price of EUR 1,500,000 per ED treatment. ED was the dominant treatment strategy. At a willingness to pay of EUR 50,000/QALY, the incremental net monetary benefit amounted to EUR 1,204,840. DISCUSSION Depending on the price, ED can save costs and improve health outcomes of haemophilia patients compared with EHL-FIX prophylaxis, making it a potentially cost-effective alternative. These results are uncertain due to a lack of evidence regarding the long-term effectiveness of ED.
Collapse
Affiliation(s)
- Niklaus Meier
- Institute of Pharmaceutical Medicine (ECPM), University of Basel, Basel, Switzerland.
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katya Galactionova
- Institute of Pharmaceutical Medicine (ECPM), University of Basel, Basel, Switzerland
| | - Cedric Hermans
- Haemostasis and Thrombosis Unit, Division of Hematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Mark Pletscher
- Institute of Health Economics and Health Policy, Bern University of Applied Sciences, Bern, Switzerland
| | - Matthias Schwenkglenks
- Institute of Pharmaceutical Medicine (ECPM), University of Basel, Basel, Switzerland
- Health Economics Facility, Department of Public Health, University of Basel, Basel, Switzerland
| |
Collapse
|
388
|
Meijon-Ortigueira MDM, Alvarez-Roman MT, De La Corte H, Butta N, Jimenez-Yuste V. Predicting joint involvement through tailored prophylaxis in severe haemophilia A, is it possible? Haemophilia 2024; 30:678-684. [PMID: 38575526 DOI: 10.1111/hae.15014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Tailored prophylaxis is the current treatment regimen for patients with severe haemophilia A. Recently, published guidelines describe two possible approaches, based on clinical characteristics or estimation of pharmacokinetic parameters. However, both have strengths and weaknesses, and their characteristics need to be integrated to optimize treatment appropriately. In this paper, we present a model that considers together the characteristics of prophylaxis and the relevance of each. METHODS The age at initiation of prophylaxis, number of bleeding events, treatment regimen, therapeutic adherence, FVIII trough levels, and joint status were analyzed in 59 patients followed at La Paz University Hospital between January 2000 and December 2019. RESULTS The mean duration of primary prophylaxis of 113.37 ± 57.79 months. Eighty-three percent (n = 49) had no joint status involvement at the end of follow-up (HJHS and HEAD-US = 0). The median ABR was 0.7 (IQR 0.2 -1.0) and 54.2% presented trough levels of FVIII during follow-up >1 IU/dL. 72,9% engaged in some type of physical activity and overall adherence was over 85% in all patients evaluated. The regression analysis performed, considering all these factors, showed that the initiation of prophylaxis before 21 months of age was the most relevant protective factor against the appearance of joint involvement (OR 88.33 p.031 CI 95% 1.49-5224.40) CONCLUSION: Early initiation of prophylaxis was the most relevant factor in the protection of joint status. More comprehensive analysis models adapted to the characteristics of each population, are needed to adequately individualize treatment.
Collapse
Affiliation(s)
| | | | - Hortensia De La Corte
- Department of Physical Medicine and Rehabilitation, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Nora Butta
- Department of Hematology, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Victor Jimenez-Yuste
- Department of Hematology, La Paz University Hospital-IdiPAZ, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
389
|
Wlodarski MW, Vlachos A, Farrar JE, Da Costa LM, Kattamis A, Dianzani I, Belendez C, Unal S, Tamary H, Pasauliene R, Pospisilova D, de la Fuente J, Iskander D, Wolfe L, Liu JM, Shimamura A, Albrecht K, Lausen B, Bechensteen AG, Tedgard U, Puzik A, Quarello P, Ramenghi U, Bartels M, Hengartner H, Farah RA, Al Saleh M, Hamidieh AA, Yang W, Ito E, Kook H, Ovsyannikova G, Kager L, Gleizes PE, Dalle JH, Strahm B, Niemeyer CM, Lipton JM, Leblanc TM. Diagnosis, treatment, and surveillance of Diamond-Blackfan anaemia syndrome: international consensus statement. Lancet Haematol 2024; 11:e368-e382. [PMID: 38697731 DOI: 10.1016/s2352-3026(24)00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 05/05/2024]
Abstract
Diamond-Blackfan anaemia (DBA), first described over 80 years ago, is a congenital disorder of erythropoiesis with a predilection for birth defects and cancer. Despite scientific advances, this chronic, debilitating, and life-limiting disorder continues to cause a substantial physical, psychological, and financial toll on patients and their families. The highly complex medical needs of affected patients require specialised expertise and multidisciplinary care. However, gaps remain in effectively bridging scientific discoveries to clinical practice and disseminating the latest knowledge and best practices to providers. Following the publication of the first international consensus in 2008, advances in our understanding of the genetics, natural history, and clinical management of DBA have strongly supported the need for new consensus recommendations. In 2014 in Freiburg, Germany, a panel of 53 experts including clinicians, diagnosticians, and researchers from 27 countries convened. With support from patient advocates, the panel met repeatedly over subsequent years, engaging in ongoing discussions. These meetings led to the development of new consensus recommendations in 2024, replacing the previous guidelines. To account for the diverse phenotypes including presentation without anaemia, the panel agreed to adopt the term DBA syndrome. We propose new simplified diagnostic criteria, describe the genetics of DBA syndrome and its phenocopies, and introduce major changes in therapeutic standards. These changes include lowering the prednisone maintenance dose to maximum 0·3 mg/kg per day, raising the pre-transfusion haemoglobin to 9-10 g/dL independent of age, recommending early aggressive chelation, broadening indications for haematopoietic stem-cell transplantation, and recommending systematic clinical surveillance including early colorectal cancer screening. In summary, the current practice guidelines standardise the diagnostics, treatment, and long-term surveillance of patients with DBA syndrome of all ages worldwide.
Collapse
Affiliation(s)
- Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Adrianna Vlachos
- Cohen Children's Medical Center, Hematology/Oncology and Stem Cell Transplantation, Hew Hyde Park, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jason E Farrar
- Arkansas Children's Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lydie M Da Costa
- Hôpital R. DEBRE, Groupe Hospitalier Universitaire, Assistance Publique-Hôpitaux de Paris Nord, Université de Paris Cité, Paris, France; HEMATIM, EA4666, UPJV, Amiens, France; Le LabEx Gr-Ex - Biogénèse et Pathologies du Globule Rouge, Paris, France
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Cristina Belendez
- Pediatric Hematology and Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Instituto Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sule Unal
- Hacettepe University, Department of Pediatric Hematology and Research Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey
| | - Hannah Tamary
- The Rina Zaizov Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Peta Tikvah, Israel; Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | - Dagmar Pospisilova
- Department of Pediatrics, Faculty Hospital of Palacky University, Olomouc, Czech Republic
| | - Josu de la Fuente
- Department of Paediatrics, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK; Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Deena Iskander
- Department of Paediatrics, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK; Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Lawrence Wolfe
- Cohen Children's Medical Center, Hematology/Oncology and Stem Cell Transplantation, Hew Hyde Park, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Johnson M Liu
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Akiko Shimamura
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Katarzyna Albrecht
- Department of Oncology, Paediatric Haematology, Clinical Transplantology and Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulf Tedgard
- Department of Pediatric Hematology and Oncology, Skåne University Hospital, Lund, Sweden
| | - Alexander Puzik
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paola Quarello
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Ugo Ramenghi
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Marije Bartels
- Pediatric Hematology Department, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heinz Hengartner
- Pediatric Hospital of Eastern Switzerland St Gallen, St Gallen, Switzerland
| | - Roula A Farah
- Department of Pediatrics, LAU Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Mahasen Al Saleh
- King Faisal Hospital and Research Center Riyadh, Riyadh, Saudi Arabia
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Wan Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hoon Kook
- Chonnam National University Hwasun Hospital, Gwangju, South Korea
| | - Galina Ovsyannikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Leo Kager
- St. Anna Children's Hospital, Department of Pediatrics, Medical University Vienna, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | | | - Jean-Hugues Dalle
- Pediatric Immunology and Hematology Department and CRMR aplasies médullaires, Robert Debré Hospital, Groupe Hospitalier Universitaire, Assistance Publique-Hôpitaux de Paris Nord, Université de Paris Cité, Paris, France
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium, Freiburg, Germany; German Cancer Research Center, Heidelberg, Germany
| | - Jeffrey M Lipton
- Cohen Children's Medical Center, Hematology/Oncology and Stem Cell Transplantation, Hew Hyde Park, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Thierry M Leblanc
- Pediatric Immunology and Hematology Department and CRMR aplasies médullaires, Robert Debré Hospital, Groupe Hospitalier Universitaire, Assistance Publique-Hôpitaux de Paris Nord, Université de Paris Cité, Paris, France
| |
Collapse
|
390
|
Ray D, Sharma R, Jain R, Kumar N, Ahluwalia J, Das R. Concomitant large deletion and de novo duplication of factor VIII gene in an Indian patient with severe Hemophilia A. Ann Hematol 2024; 103:1789-1790. [PMID: 38366096 DOI: 10.1007/s00277-024-05661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Debadrita Ray
- Departments of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritika Sharma
- Departments of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Jain
- Pediatric Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Narender Kumar
- Departments of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Jasmina Ahluwalia
- Departments of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reena Das
- Departments of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
391
|
Pierce GF, Fong S, Long BR, Kaczmarek R. Deciphering conundrums of adeno-associated virus liver-directed gene therapy: focus on hemophilia. J Thromb Haemost 2024; 22:1263-1289. [PMID: 38103734 DOI: 10.1016/j.jtha.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Adeno-associated virus gene therapy has been the subject of intensive investigation for monogenic disease gene addition therapy for more than 25 years, yet few therapies have been approved by regulatory agencies. Most have not progressed beyond phase 1/2 due to toxicity, lack of efficacy, or both. The liver is a natural target for adeno-associated virus since most serotypes have a high degree of tropism for hepatocytes due to cell surface receptors for the virus and the unique liver sinusoidal geometry facilitating high volumes of blood contact with hepatocyte cell surfaces. Recessive monogenic diseases such as hemophilia represent promising targets since the defective proteins are often synthesized in the liver and secreted into the circulation, making them easy to measure, and many do not require precise regulation. Yet, despite initiation of many disease-specific clinical trials, therapeutic windows are often nonexistent, resulting in excess toxicity and insufficient efficacy. Iterative progress built on these attempts is best illustrated by hemophilia, with the first regulatory approvals for factor IX and factor VIII gene therapies eventually achieved 25 years after the first gene therapy studies in humans. Although successful gene transfer may result in the production of sufficient transgenic protein to modify the disease, many emerging questions on durability, predictability, reliability, and variability of response have not been answered. The underlying biology accounting for these heterogeneous responses and the interplay between host and virus is the subject of intense investigation and the subject of this review.
Collapse
Affiliation(s)
- Glenn F Pierce
- World Federation of Hemophilia, Montreal, Quebec, Canada.
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Brian R Long
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, Indiana, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
392
|
Ay C, Napolitano M, Hassoun A, Tomic R, Martin C, Seifert W, Pinachyan K, Oldenburg J. Classification of recombinant factor VIII products and implications for clinical practice: A systematic literature review. Haemophilia 2024; 30:577-588. [PMID: 38549463 DOI: 10.1111/hae.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 05/15/2024]
Abstract
INTRODUCTION Consensus over the definition of recombinant factor VIII (rFVIII) product classification in haemophilia A is lacking. rFVIII products are often classified as standard half-life (SHL) or extended half-life (EHL); despite this, no universally accepted definition currently exists. One proposed definition includes half-life, area under the curve, and technology designed to extend half-life; however, the International Society on Thrombosis and Haemostasis defines activity over time as the most intuitive information for building treatment regimens and the World Federation of Hemophilia describes rFVIII product classification in terms of infusion frequency. AIM To summarise published data on the clinical and pharmacokinetic criteria used to define rFVIII product classification. METHODS PubMed and EMBASE database searches of English-language articles (2002-2022) were conducted using search strings to identify the relevant population, intervention, and outcomes (e.g., clinical and pharmacokinetic parameters). Articles then underwent title/abstract and full-text screens. RESULTS Among 1147 identified articles, 62 were included. Half-life was the most widely reported outcome with no clear trends or product groupings observed. No clear groupings emerged among other outcomes, including infusion frequency, consumption, and efficacy. As activity over time was reported in few articles, further investigation of its relevance to rFVIII product classification is warranted. CONCLUSION The findings of this systematic literature review suggest that parameters other than half-life might be important for the development of a comprehensive and clinically relevant rFVIII product classification definition. There seems to be an opportunity to consider parameters that are clinically meaningful and useful for shared decision-making in haemophilia A treatment.
Collapse
Affiliation(s)
- Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Abel Hassoun
- Haemophilia Treatment Center, Simone Veil Hospital, GH Eaubonne-Montmorency, Eaubonne, France
| | | | | | | | | | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
393
|
Nasiri A, Haroon A, Alzahrani H. Clinical and Demographic Characteristics of Pyruvate Kinase Deficiency Patients: A Comprehensive Case Series Analysis. Cureus 2024; 16:e60035. [PMID: 38736761 PMCID: PMC11085967 DOI: 10.7759/cureus.60035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Pyruvate kinase deficiency (PKD) is a rare autosomal recessive disorder characterized by mutations in the PKLR gene, causing impaired glycolysis in red blood cells and leading to diverse clinical manifestations. The prevalence of PKD in Saudi Arabia remains understudied, particularly in the context of consanguinity and non-specialized medical facilities. Methods We conducted a retrospective analysis of seven PKD patients of Arab ethnicity, focusing on demographics, medical history, clinical features, laboratory results, treatments, and outcomes. Results Our patient cohort comprised five males and two females, aged 10 to 38 years, of Arab ethnicity. Consanguinity was prevalent, and hereditary connections were identified in five patients. PKD exhibited varying clinical presentations, with early-onset symptoms including neonatal jaundice and symptomatic anemia. One patient experienced severe hepatic disease progression leading to multiorgan failure. Blood transfusions were universally required, indicating the severity of the disorder. Anemia severity varied among patients, with diverse hematological irregularities. Splenectomy was performed for most patients, improving hemoglobin levels and transfusion needs in some cases. Iron chelation was administered, although iron overload persisted. Thrombocytosis and venous thromboembolism were observed post splenectomy. Jaundice and gallstones were common, leading to cholecystectomy. Laboratory findings remained consistent, with heightened reticulocyte counts and altered enzyme levels. Discussion PKD is a rare disorder characterized by diverse clinical manifestations. Prevalence estimation is complex due to various factors, and its diagnosis is challenged by clinical similarities with other disorders. Our cohort exhibited a spectrum of complications, highlighting the necessity for tailored interventions. Iron overload remained a concern, necessitating continuous monitoring. Although endocrine disorders and osteoporosis were absent in our cohort, vigilance is essential due to the disease's progressive nature. Genetic factors were prominent, supporting the genetic basis of PKD. Splenectomy improved anemia but had a limited impact on gallstones. Iron overload management and bone health remain crucial considerations. Conclusion This study offers comprehensive insights into the clinical and demographic characteristics of PKD patients, illustrating the complex nature of the disorder. The findings underscore the need for personalized management strategies and vigilant monitoring to address the diverse clinical manifestations and challenges associated with PKD.
Collapse
Affiliation(s)
- Abdulrahman Nasiri
- Department of Internal Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Alfadil Haroon
- Section of Hematology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Hazzaa Alzahrani
- Section of Hematology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| |
Collapse
|
394
|
Seijari MN, Alshurafa A, Yassin MA. Luspatercept's use in a patient with transfusion-dependent beta-thalassemia and intrathoracic extramedullary hematopoiesis (EMH). Clin Case Rep 2024; 12:e8795. [PMID: 38736568 PMCID: PMC11087223 DOI: 10.1002/ccr3.8795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 05/14/2024] Open
Abstract
Key Clinical Message This case report and literature review examine the use of a relatively novel agent in a transfusion-dependent beta-thalassemia patient with extramedullary hematopoiesis (EMH). It examines the benefits and risks associated with its use and reviews the available literature while highlighting the drug's results in our patient with a higher risk profile. Abstract Beta thalassemia can be complicated by EMH, which causes different symptoms based on location and size. Luspatercept is a new agent approved for transfusion-dependent thalassemia and Non-transfusion-dependent thalassemia (NTDT). Still, its use in patients with EMH was not well studied, and literature showed an increased risk of EMH expansion or development of new masses after its use. We discuss, in this case, the results of luspatercept treatment in a patient with transfusion-dependent thalassemia who is considered high risk for its use due to the patient's specific characteristics (history of symptomatic intrathoracic EMH, previous splenectomy, refusal to use antithrombotic medications). While also highlighting the benefits of using luspatercept regarding decreasing the iron overload and improving hemoglobin levels and examining how it was used safely to manage a transfusion-dependent thalassemia patient with an extramedullary hematopoiesis mass with no adverse events of note.
Collapse
|
395
|
Taher AT, Wali Y, Cruz MC, Charoenkwan P, Aydinok Y, Werner O, Govindaraju S, Romen F, Viprakasit V. Compliance and clinical benefit of deferasirox granule and dispersible tablet formulation in pediatric patients with transfusional iron overload: in a randomized, open-label, multicenter, phase II study. Haematologica 2024; 109:1413-1425. [PMID: 37855069 PMCID: PMC11063844 DOI: 10.3324/haematol.2023.283133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Abstract
CALYPSO (clinicaltrials gov. Identifier: NCT02435212), a randomized, open-label, multicenter, phase II study evaluated the compliance, clinical benefits, and safety of deferasirox granules and dispersible tablets (DT) in pediatric patients with iron overload. Iron chelation therapy-naive and iron chelation therapy-pretreated patients aged 2 to <18 years with transfusion- dependent anemias were enrolled. Patients were randomized 1:1 to deferasirox granules or DT for 48 weeks, stratified by age group and prior iron chelation therapy. In this study, the co-primary objectives are to evaluate compliance and change from baseline in serum ferritin after 24 weeks for both formulations in iron chelation therapy-naive patients. In total, 224 patients, mostly with β-thalassemia major (63.4%), were randomized to granules (N=112) or DT (N=112). Primary analysis was conducted when 96 iron chelation therapy-naive patients had completed 24 weeks of treatment/discontinued early; least squares mean (LSM) compliance in the deferasirox granules and DT groups, was 86.8% and 84.3% (difference 2.6%; P=0.360) respectively, while least squares mean change from baseline in serum ferritin was +4.8 and -171.5 ng/mL (difference: 176.4 ng/mL; P=0.255). Slight differences were observed in the observer/patient-reported outcome scores between the granule and dispersible-tablet groups and the overall scores indicate good adherence, satisfaction/preference, fewer concerns and good palatability with both deferasirox formulations. Safety analyses (N=221) found that the most frequently observed adverse events (granules and DT) were increased urine protein/creatinine ratio (>0.5 mg/mg; 24.5% and 34.2%), upper respiratory tract infection (28.2% and 29.7%), and pyrexia (26.4% and 23.4%). In iron chelation therapy-naive patients, mean compliance and change from baseline in serum ferritin with both deferasirox formulations were not significantly different. The safety profile was comparable between granule and DT formulations, and was consistent with the general safety profile of deferasirox.
Collapse
Affiliation(s)
- Ali T Taher
- American University of Beirut Medical Center, Beirut.
| | | | - Maria Cecilia Cruz
- Philippine Children's Medical Center, Quezon City, Republic of the Philippines
| | | | | | | | | | | | - Vip Viprakasit
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok
| |
Collapse
|
396
|
Yao Y, Holdcraft RW, Hagness SC, Booske JH. Electric pulse exposure reduces AAV8 dosage required to transduce HepG2 cells. PLoS One 2024; 19:e0298866. [PMID: 38687720 PMCID: PMC11060518 DOI: 10.1371/journal.pone.0298866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 05/02/2024] Open
Abstract
We demonstrate that applying electric field pulses to hepatocytes, in vitro, in the presence of enhanced green fluorescent protein (EGFP)-expressing adeno-associated virus (AAV8) vectors reduces the viral dosage required for a given transduction level by more than 50-fold, compared to hepatocytes exposed to AAV8-EGFP vectors without electric field pulse exposure. We conducted 48 experimental observations across 8 exposure conditions in standard well plates. The electric pulse exposures involved single 80-ms pulses with 375 V/cm field intensity. Our study suggests that electric pulse exposure results in enhanced EGFP expression in cells, indicative of increased transduction efficiency. The enhanced transduction observed in our study, if translated successfully to an in vivo setting, would be a promising indication of potential reduction in the required dose of AAV vectors. Understanding the effects of electric field pulses on AAV transduction in vitro is an important preliminary step.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert W. Holdcraft
- Translational Core Laboratory, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Susan C. Hagness
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John H. Booske
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
397
|
Zhu W, He Y, Huang M, Fu S, Liu Z, Wang X, Li Z, Li X, Chen J, Li Y. Long-Term Follow-Up of Patients Undergoing Thalidomide Therapy for Transfusion-Dependent β-Thalassaemia: A Single-Center Experience. Int J Gen Med 2024; 17:1729-1738. [PMID: 38711824 PMCID: PMC11070558 DOI: 10.2147/ijgm.s462991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE We evaluated the long-term safety and efficacy of thalidomide in the treatment of transfusion-dependent β-thalassemia (TDT). METHODS Fifty patients with TDT were treated with thalidomide and followed-up for 5 years. Thalidomide at a 50 mg dose was administered once a day after dinner. The dose was increased to 150 mg/d after 3 d if well tolerated. After 1 year of treatment, the hemoglobin (Hb) level was stabilized at its maximum, and thalidomide was gradually reduced and maintained at the minimum dose. The hematological response, transfusion dependence, and haemolytic indicators were assessed. RESULTS At 9 month of follow-up, 38 (76%) patients achieved an excellent response, 1 (2%) a good response, 4(8%) a minor response, and 7(14%) did not show a response. The overall response rate was 86%. At 9 months, the Hb level increased from 79.0 ± 13.2 g/L at baseline to 99.0 ± 13.7g/L (P<0.001). Patients who achieved excellent response continued to show an increase in Hb levels during follow-up. At 48 months, the mean Hb level was 98.99 ± 10.3g/L; 21 patients (84.0%) became transfusion independent. Thalidomide was reduced and maintained to 25 mg/d in three of these patients. Moreover, five patients completed 60 months of follow-up, and with a mean Hb level of 99.8 ± 6.7g/L. During follow-up, grade 1-2 adverse drug reactions were noted; however, no grade 3 or higher adverse event was reported. However, no decrease in hemolytic indicators was observed. CONCLUSION Thalidomide was well tolerated in the long term, while it significantly improved Hb levels and reduced the transfusion burden.
Collapse
Affiliation(s)
- Weijian Zhu
- Department of Hematology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuahai, 519050, People’s Republic of China
| | - Ying He
- Department of Hematology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuahai, 519050, People’s Republic of China
| | - Mufang Huang
- Department of Hematology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuahai, 519050, People’s Republic of China
| | - Shezhu Fu
- Department of Hematology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuahai, 519050, People’s Republic of China
| | - Ziyi Liu
- Department of Hematology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuahai, 519050, People’s Republic of China
| | - Xiaoqi Wang
- Department of Hematology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuahai, 519050, People’s Republic of China
| | - Zhixin Li
- Department of Hematology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuahai, 519050, People’s Republic of China
| | - Xiaoliang Li
- Department of Hematology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuahai, 519050, People’s Republic of China
| | - Jiangming Chen
- Department of Haematology, Wuzhou Gongren Hospital, Wuzhou, 543001, People’s Republic of China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 10632, People’s Republic of China
| |
Collapse
|
398
|
Wu J, Li L, Liu Z, Wang H, Chen Y, Zeng L, Wang G, Liu H, Fu R. Abnormal expression of CUX1 influences autophagy activation in paroxysmal nocturnal hemoglobinuria. J Leukoc Biol 2024; 115:926-934. [PMID: 38315716 DOI: 10.1093/jleuko/qiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/07/2024] Open
Abstract
The mechanism underlying autophagy in paroxysmal nocturnal hemoglobinuria (PNH) remains largely unknown. We previously sequenced the entire genome exon of the CD59- cells from 13 patients with PNH and found genes such as CUX1 encoding Cut-like homeobox 1. Peripheral blood samples from 9 patients with PNH and 7 healthy control subjects were obtained to measure CUX1 expression. The correlation between CUX1 messenger RNA expression and PNH clinical indicators was analyzed. To simulate CUX1 expression in patients with PNH, we generated a panel of PNH cell lines by knocking out PIGA in K562 cell lines and transfected lentivirus with CUX1. CCK-8 and EDU assay assessed cell proliferation. Western blotting was used to detect Beclin-1, LC3A, LC3B, ULK1, PI3K, AKT, p-AKT, mTOR, and p-mTOR protein levels. Autophagosomes were observed with transmission electron microscopy. Chloroquine was used to observe CUX1 expression in PNH after autophagy inhibition. Leukocytes from patients with PNH had lower levels of CUX1 messenger RNA expression and protein content than healthy control subjects. The lactose dehydrogenase level and the percentage of PNH clones were negatively correlated with CUX1 relative expression. We reduced CUX1 expression in a PIGA knockout K562 cell line, leading to increased cell proliferation. Levels of autophagy markers Beclin-1, LC3B, LC3A, and ULK1 increased, and autophagosomes increased. Furthermore, PI3K/AKT/mTOR protein phosphorylation levels were lower. CUX1 expression did not change and cell proliferation decreased in CUX1 knocked down PNH cells after inhibition of autophagy by chloroquine. In brief, CUX1 loss-of-function mutation resulted in stronger autophagy in PNH.
Collapse
Affiliation(s)
- Junshu Wu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Liyan Li
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Honglei Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Yingying Chen
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Lijie Zeng
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Guanrou Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| |
Collapse
|
399
|
Fujiyoshi A, Kohsaka S, Hata J, Hara M, Kai H, Masuda D, Miyamatsu N, Nishio Y, Ogura M, Sata M, Sekiguchi K, Takeya Y, Tamura K, Wakatsuki A, Yoshida H, Fujioka Y, Fukazawa R, Hamada O, Higashiyama A, Kabayama M, Kanaoka K, Kawaguchi K, Kosaka S, Kunimura A, Miyazaki A, Nii M, Sawano M, Terauchi M, Yagi S, Akasaka T, Minamino T, Miura K, Node K. JCS 2023 Guideline on the Primary Prevention of Coronary Artery Disease. Circ J 2024; 88:763-842. [PMID: 38479862 DOI: 10.1253/circj.cj-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Affiliation(s)
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University
| | - Mitsuhiko Hara
- Department of Health and Nutrition, Wayo Women's University
| | - Hisashi Kai
- Department of Cardiology, Kurume Univeristy Medical Center
| | | | - Naomi Miyamatsu
- Department of Clinical Nursing, Shiga University of Medical Science
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Masatsune Ogura
- Department of General Medical Science, Chiba University School of Medicine
- Department of Metabolism and Endocrinology, Eastern Chiba Medical Center
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | | | - Yasushi Takeya
- Division of Helath Science, Osaka University Gradiate School of Medicine
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
| | | | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | - Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University
| | | | - Osamu Hamada
- Department of General Internal Medicine, Takatsuki General Hospital
| | | | - Mai Kabayama
- Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Koshiro Kanaoka
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center
| | - Kenjiro Kawaguchi
- Division of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University
| | | | | | | | - Masaki Nii
- Department of Cardiology, Shizuoka Children's Hospital
| | - Mitsuaki Sawano
- Department of Cardiology, Keio University School of Medicine
- Yale New Haven Hospital Center for Outcomes Research and Evaluation
| | | | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Hospital
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Nishinomiya Watanabe Cardiovascular Cerebral Center
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Meidicine
| | - Katsuyuki Miura
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| |
Collapse
|
400
|
Reding MT, Simpson M, Ducore J, Holme PA, Maas Enriquez M, Mancuso ME. Long-Term Efficacy and Safety of Damoctocog Alfa Pegol Prophylaxis in Patients with Haemophilia A Aged 12-<18 Years at Enrolment into PROTECT VIII. Acta Haematol 2024; 148:58-67. [PMID: 38599195 PMCID: PMC11809454 DOI: 10.1159/000538702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION The phase 2/3 PROTECT VIII study demonstrated long-term efficacy and safety of damoctocog alfa pegol (BAY 94-9027; Jivi®), a B-domain-deleted recombinant factor VIII (FVIII), site-specifically PEGylated to improve its pharmacokinetic profile. We report a post hoc assessment of bleeding and safety outcomes in the subgroup of patients, aged 12-<18 years at enrolment. METHOD PROTECT VIII was a multicentre, open-label study of previously treated males aged 12-65 years with severe haemophilia A (FVIII <1%). Twelve patients were included in this analysis. All received damoctocog alfa pegol prophylaxis for the total time in study (median [range] time in study 4.0 [1.3-6.2] years). RESULTS Overall median (Q1; Q3) total and joint annualised bleeding rates were 1.8 (0.4; 5.1) and 0.7 (0.2; 1.8), respectively, for the entire study. During the last 6 months of treatment, eight (66.7%) and ten (83.3%) out of 12 patients experienced zero total and joint bleeds, respectively. No patient developed FVIII inhibitors. No deaths or thrombotic events were reported. CONCLUSION Efficacy and safety of damoctocog alfa pegol were confirmed in adolescent patients with haemophilia A, with data for up to 6 years supporting its use as a long-term treatment option in this group as they transition into adulthood. INTRODUCTION The phase 2/3 PROTECT VIII study demonstrated long-term efficacy and safety of damoctocog alfa pegol (BAY 94-9027; Jivi®), a B-domain-deleted recombinant factor VIII (FVIII), site-specifically PEGylated to improve its pharmacokinetic profile. We report a post hoc assessment of bleeding and safety outcomes in the subgroup of patients, aged 12-<18 years at enrolment. METHOD PROTECT VIII was a multicentre, open-label study of previously treated males aged 12-65 years with severe haemophilia A (FVIII <1%). Twelve patients were included in this analysis. All received damoctocog alfa pegol prophylaxis for the total time in study (median [range] time in study 4.0 [1.3-6.2] years). RESULTS Overall median (Q1; Q3) total and joint annualised bleeding rates were 1.8 (0.4; 5.1) and 0.7 (0.2; 1.8), respectively, for the entire study. During the last 6 months of treatment, eight (66.7%) and ten (83.3%) out of 12 patients experienced zero total and joint bleeds, respectively. No patient developed FVIII inhibitors. No deaths or thrombotic events were reported. CONCLUSION Efficacy and safety of damoctocog alfa pegol were confirmed in adolescent patients with haemophilia A, with data for up to 6 years supporting its use as a long-term treatment option in this group as they transition into adulthood.
Collapse
Affiliation(s)
- Mark T. Reding
- Center for Bleeding and Clotting Disorders, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Mindy Simpson
- Pediatric Hematology/Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Jonathan Ducore
- Hemophilia Treatment Center, UC Davis Medical Center, Sacramento, CA, USA
| | - Pål Andrè Holme
- Department of Haematology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Maria Elisa Mancuso
- Center for Thrombosis and Haemorrhagic Disease, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|