401
|
Sawai MV, Waring AJ, Kearney WR, McCray PB, Forsyth WR, Lehrer RI, Tack BF. Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Eng Des Sel 2002; 15:225-32. [PMID: 11932493 DOI: 10.1093/protein/15.3.225] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied three model antibacterial peptides that resembled the N-terminal 18 amino acids of SMAP-29, an alpha-helical, antimicrobial peptide of sheep. Although the parent compound, ovispirin-1 (KNLRR IIRKI IHIIK KYG), was potently antimicrobial, it was also highly cytotoxic to human epithelial cells and hemolytic for human erythrocytes. Single residue substitutions to ovispirin-1 yielded two substantially less cytotoxic peptides (novispirins), with intact antimicrobial properties. One of these, novispirin G-10, differed from ovispirin-1 only by containing glycine at position 10, instead of isoleucine. The other, novispirin T-7, contained threonine instead of isoleucine at position 7. We determined the three-dimensional solution structures of all three peptides by circular dichroism spectroscopy and two-dimensional nuclear magnetic resonance spectroscopy. Although all retained an amphipathic helical structure in 2,2,2-trifluoroethanol, they manifested subtle fine-structural changes that evidently impacted their activities greatly. These findings show that simple structural modifications can 'fine-tune' an antimicrobial peptide to minimize unwanted cytotoxicity while retaining its desired activity.
Collapse
Affiliation(s)
- Monali V Sawai
- Department of Microbiology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | | | |
Collapse
|
402
|
Abstract
Innate immune mechanisms respond rapidly to bacterial infection. A key cellular component of the innate immune response is the neutrophil, whose cytoplasmic granules contain a variety of antimicrobial proteins and peptides. Among these is the bactericidal/permeability-increasing protein (BPI), a cationic 55 kDa protein whose selective anti-infective action against Gram-negative bacteria is based on its high (nM) affinity for lipopolysaccharide (LPS, or "endotoxin"). Binding of BPI to Gram-negative bacteria results in growth inhibition, serves as an opsonin that enhances phagocytosis of bacteria and inhibits bacteria-induced inflammatory responses by blocking the interaction of LPS with host pro-inflammatory pathways. Expression of BPI appears to be developmentally regulated as human newborns apparently have lower neutrophil BPI levels than adults. BPI expression has also recently been demonstrated in human epithelial cells where it appears to be inducible by endogenous anti-inflammatory lipids (lipoxins). BPI's potent anti-endotoxic activity against a broad range of Gram-negative bacterial pathogens is manifest in biological fluids and renders it an attractive template for pharmaceutical development. Indeed, rBPI(21), an active recombinant protein derived from human BPI, has proven safe in Phase I human trials, shown promise in Phase II trials and has recently completed a Phase III trial for severe meningococcaemia with apparent benefit. Identification and evaluation of additional disease entities characterised by Gram-negative bacteraemia and/or endotoxaemia as possible targets for BPI therapy continues.
Collapse
Affiliation(s)
- Ofer Levy
- Division of Infectious Diseases, Children's Hospital of Boston, MA, USA.
| |
Collapse
|
403
|
Park K, Oh D, Shin SY, Hahm KS, Kim Y. Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. Biochem Biophys Res Commun 2002; 290:204-12. [PMID: 11779154 DOI: 10.1006/bbrc.2001.6173] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PMAP-23 is a cathelicidin-derived antimicrobial peptide identified from porcine leukocytes. PMAP-23 was reported to show potent antimicrobial activity against Gram-negative and Gram-positive bacteria without hemolytic activity. To study the structure-antibiotic activity relationships of PMAP-23, two analogues by replacing Trp with Ala were synthesized and their tertiary structures bound to DPC micelles have been studied by NMR spectroscopy. PMAP-23 has two alpha-helices, one from Arg1 to Arg10 in the N-terminal region and the other from Phe18 to Arg23 in the C-terminal region. PMAP-1 (Trp(7)-->Ala) shows similar structure to PMAP-23, while PMAP-2 (Trp(21)-->Ala) has a random structure in the C-terminus. PMAP-2 was found to show less antibacterial and vesicle-disrupting activities than PMAP-23 and PMAP-1 [J. H. Kang, S. Y. Shin, S. Y. Jang, K. L. Kim, and K.-S. Hahm (1999) Biochem. Biophys. Res. Commun. 264, 281-286]. Trp(21) in PMAP-23 which induces an alpha-helical structure in the second alpha-helix is essential for the antibacterial activity of PMAP-23. Also, the fluorescence data proved that Trp(21) at the second alpha-helix is buried deep into the phospholipid in the membrane. Therefore, it implies that Trp(21) in the second alpha-helix at the C-terminus of PMAP-23 may play an important role on the interactions with the membrane and the flexible region including two proline residues may allow this alpha-helix to span the lipid bilayer.
Collapse
Affiliation(s)
- Kyoungsoo Park
- Department of Chemistry, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | |
Collapse
|
404
|
Sanchez JF, Wojcik F, Yang YS, Strub MP, Strub JM, Van Dorsselaer A, Martin M, Lehrer R, Ganz T, Chavanieu A, Calas B, Aumelas A. Overexpression and structural study of the cathelicidin motif of the protegrin-3 precursor. Biochemistry 2002; 41:21-30. [PMID: 11771999 DOI: 10.1021/bi010930a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous precursors of antibacterial peptides with unrelated sequences share a similar prosequence of 96-101 residues, referred to as the cathelicidin motif. The structure of this widespread motif has not yet been reported. The cathelicidin motif of protegrin-3 (ProS) was overexpressed in Escherichia coli as a His-tagged protein to facilitate its purification. The His tag was then removed by thrombin cleavage. In addition, the complete proprotegrin-3 (ProS-PG-3) (120 residues) was overexpressed in baculovirus-infected insect cells. As it contained the antibacterial peptide protegrin-3 in its C-terminal part, ProS-PG-3 contained four disulfide bonds. At neutral pH, ProS and ProS-PG-3 adopted two slowly exchanging conformations that existed in a ratio of 55/45. This ratio was progressively modified at acidic pH to reach a 90/10 value at pH 3.0, suggesting that electrostatic interactions are involved in such a conformational change. Therefore, the structural study of the main conformer was undertaken at pH 3.0 by circular dichroism, mass spectrometry, and homo- and heteronuclear NMR. In parallel, a model for the ProS structure was built from the X-ray structure of the chicken cystatin. ProS and the chicken cystatin share two conserved disulfide bonds as well as a high conservation of hydrophobic residues. The ProS model features the conservation of a hydrophobic core made of the interface between the N-terminal helix and the wrapping beta-sheet. Although the full assignment of the main conformer of ProS could not be obtained, available NMR data validated the presence of the N-terminal helix and of a four-stranded beta-sheet, in agreement with the cystatin fold. Moreover, we clearly demonstrated that ProS and ProS-PG-3 share the same global structure, suggesting that the presence of the highly constrained beta-hairpin of protegrin does not significantly modify the structure of the cathelicidin motif of the protegrin precursor.
Collapse
Affiliation(s)
- Jean Frédéric Sanchez
- Centre de Biochimie Structurale, UMR 5048 CNRS-UM1/UMR 554 INSERM-UM1, Université Montpellier 1, Faculté de Pharmacie, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Smith VJ, Chisholm JR. Antimicrobial proteins in crustaceans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:95-112. [PMID: 11419011 DOI: 10.1007/978-1-4615-1291-2_10] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- V J Smith
- Comparative Immunology Group, Gatty Marine Laboratory, University of St Andrews, Fife, KY16 8LB Scotland, UK
| | | |
Collapse
|
406
|
Johansson S, Göransson U, Luijendijk T, Backlund A, Claeson P, Bohlin L. A neutrophil multitarget functional bioassay to detect anti-inflammatory natural products. JOURNAL OF NATURAL PRODUCTS 2002; 65:32-41. [PMID: 11809061 DOI: 10.1021/np010323o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A multitarget functional bioassay was optimized as a method for detecting substances interacting with the inflammatory process of activated neutrophil granulocytes, mainly to release elastase detected by p-nitroanilide (pNA) formation. Using this bioassay, 100 fractionated extracts of 96 plants were screened, with results presented in a manner that links recorded biological activity to phylogenetic information. The plants were selected to represent a major part of the angiosperms, with emphasis on medicinal plants, Swedish anti-inflammatory plants, and plants known to contain peptides. Of the tested extracts, 41% inhibited pNA formation more than 60%, and 3% stimulated formation. The extract of Digitalis purpurea enhanced pNA formation, and digitoxin, the active compound, was isolated and identified. Plant extracts that exhibited potent nonselective inhibition (>80% inhibition) were evaluated further for direct inhibition of isolated elastase and trypsin enzyme. The inhibitory effect of most tested extracts on the isolated enzyme elastase was similar to that of PAF- and fMLP-induced pNA formation. Compared to trypsin, inhibition of elastase by extracts of Rubus idaeus and Tabernaemontana dichotoma was significantly higher (80% and 99%, respectively). Inhibition of trypsin by the extract of Reseda luteola was high (97%). Orders such as Lamiales and Brassicales were shown to include a comparably high proportion of plants with inhibitory extracts.
Collapse
Affiliation(s)
- Senia Johansson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, PO Box 574, S-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
407
|
Abstract
The cytoplasmic granules of mammalian neutrophils contain several antimicrobial peptides. Some, like defensins, are fully processed before storage, whereas others are stored as precursors that require additional processing. Cathelicidins are bipartite molecules with an N-terminal cathelin domain and an antimicrobial C-terminal domain. Humans apparently have only one cathelicidin gene. Its product, hCAP-18, is present in the secondary (specific) granules of neutrophils, and its C-terminal antimicrobial peptide, LL-37, is liberated by proteinase 3 coincident with degranulation and secretion. Many nonmyeloid tissues also express hCAP-18, including epididymis, spermatids, keratinocytes, epithelial cells, and various lymphocytes. LL-37 stimulates chemotaxis, acting via the formyl peptide-like receptor-1. The structurally diverse cathelicidin-derived antimicrobial peptides of animals provide interesting models for pharmaceutical development. PR-39, a proline-rich porcine cathelicidin, has shown efficacy in limiting myocardial damage after experimental ischemia in rodent models. Porcine protegrins are in stage III clinical trials to prevent oral mucositis caused by radiation or chemo-therapy.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine, Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA.
| | | |
Collapse
|
408
|
Abstract
Cathelicidins are a mammalian gene family notable for the presence of an antibiotic peptide encoded at the carboxy-terminal domain of the nascent pre-pro-protein. Following proteolytic release, this peptide has direct antimicrobial activity. To understand the function and regulation of cathelicidin we investigated the peptide processing site and gene structure of the mouse cathelicidin CRAMP. Amino acid sequencing of the purified native 5 kDa peptide identified the functionally critical amino terminal sequence of mature CRAMP. Characterization of the CRAMP gene (Cnlp) showed homology in structure and sequence identity in several potential transcription factors binding sites found in the human cathelicidin LL-37. Overall, CRAMP shows striking similarities with LL-37, making it a useful model for study of human cathelicidin function and regulation.
Collapse
Affiliation(s)
- V K Pestonjamasp
- Division of Dermatology, University of California San Diego, Healthcare System, San Diego, CA, USA
| | | | | |
Collapse
|
409
|
Zhao C, Nguyen T, Boo LM, Hong T, Espiritu C, Orlov D, Wang W, Waring A, Lehrer RI. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey. Antimicrob Agents Chemother 2001; 45:2695-702. [PMID: 11557457 PMCID: PMC90719 DOI: 10.1128/aac.45.10.2695-2702.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhesus monkey bone marrow expresses a cathelicidin whose C-terminal domain comprises a 37-residue alpha-helical peptide (RL-37) that resembles human LL-37. Like its human counterpart, RL-37 rapidly permeabilized the membranes of Escherichia coli ML-35p and lysed liposomes that simulated bacterial membranes. When tested in media whose NaCl concentrations approximated those of extracellular fluids, RL-37 was considerably more active than LL-37 against staphylococci. Whereas human LL-37 contains five acidic residues and has a net charge of +6, rhesus RL-37 has only two acidic residues and a net charge of +8. Speculating that the multiple acidic residues of human LL-37 reduced its efficacy against staphylococci, we made a peptide (LL-37 pentamide) in which each aspartic acid of LL-37 was replaced by an asparagine and each glutamic acid was replaced by a glutamine. LL-37 pentamide's antistaphylococcal activity was substantially greater than that of LL-37. Thus, although the precursor of LL-37 is induced in human skin keratinocytes by injury or inflammation, its insufficiently cationic antimicrobial domain may contribute to the success of staphylococci in colonizing and infecting human skin.
Collapse
Affiliation(s)
- C Zhao
- Department of Medicine, UCLA School of Medicine, 10833 LeConte Ave., Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
410
|
O'Keefe BR. Biologically active proteins from natural product extracts. JOURNAL OF NATURAL PRODUCTS 2001; 64:1373-1381. [PMID: 11678673 DOI: 10.1021/np0103362] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The term "biologically active proteins" is almost redundant. All proteins produced by living creatures are, by their very nature, biologically active to some extent in their homologous species. In this review, a subset of these proteins will be discussed that are biologically active in heterologous systems. The isolation and characterization of novel proteins from natural product extracts including those derived from microorganisms, plants, insects, terrestrial vertebrates, and marine organisms will be reviewed and grouped into several distinct classes based on their biological activity and their structure.
Collapse
Affiliation(s)
- B R O'Keefe
- Molecular Targets Drug Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
411
|
Saiman L, Tabibi S, Starner TD, San Gabriel P, Winokur PL, Jia HP, McCray PB, Tack BF. Cathelicidin peptides inhibit multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob Agents Chemother 2001; 45:2838-44. [PMID: 11557478 PMCID: PMC90740 DOI: 10.1128/aac.45.10.2838-2844.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 07/19/2001] [Indexed: 11/20/2022] Open
Abstract
Endogenous peptide antibiotics are under investigation as inhaled therapeutic agents for cystic fibrosis (CF) lung disease. The bactericidal activities of five cathelicidin peptides (LL37 [human], CAP18 [rabbit], mCRAMP [mouse], rCRAMP [rat], and SMAP29 [sheep]), three novel alpha-helical peptides derived from SMAP29 and termed ovispirins (OV-1, OV-2, and OV-3), and two derivatives of CAP18 were tested by broth microdilution assays. Their MICs were determined for multiply antibiotic-resistant Pseudomonas aeruginosa (n = 24), Burkholderia cepacia (n = 5), Achromobacter xylosoxidans (n = 5), and Stenotrophomonas maltophilia (n = 5) strains isolated from CF patients. SMAP29 was most active and inhibited mucoid and nonmucoid P. aeruginosa strains (MIC, 0.06 to 8 microg/ml). OV-1, OV-2, and OV-3 were nearly as active (MIC, 0.03 to 16 microg/ml), but CAP18 (MIC, 1.0 to 32 microg/ml), CAP18-18 (MIC, 1.0 to >32 microg/ml), and CAP18-22 (MIC, 0.5 to 32 microg/ml) had variable activities. LL37, mCRAMP, and rCRAMP were least active against the clinical isolates studied (MIC, 1.0 to >32 microg/ml). Peptides had modest activities against S. maltophilia and A. xylosoxidans (MIC range, 1.0 to > 32 microg/ml), but none inhibited B. cepacia. However, CF sputum inhibited the activity of SMAP29 substantially. The effects of peptides on bacterial cell membranes and eukaryotic cells were examined by scanning electron microscopy and by measuring transepithelial cell resistance, respectively. SMAP29 caused the appearance of bacterial membrane blebs within 1 min, killed P. aeruginosa within 1 h, and caused a dose-dependent, reversible decrease in transepithelial resistance within 5 h. The tested cathelicidin-derived peptides represent a novel class of antimicrobial agents and warrant further development as prophylactic or therapeutic agents for CF lung disease.
Collapse
Affiliation(s)
- L Saiman
- Department of Pediatrics, Columbia University, 650 West 168th St., New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, Hong M. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophys J 2001; 81:2203-14. [PMID: 11566791 PMCID: PMC1301692 DOI: 10.1016/s0006-3495(01)75868-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly oriented in the plane of the lipid bilayer, except for a small portion of the helix, possibly at the C-terminus, which deviates from the surface orientation. This suggests differential insertion of the peptide backbone into the lipid bilayer. (15)N spectra of both oriented and unoriented peptides show a reduced (15)N chemical shift anisotropy at room temperature compared with that of rigid proteins, indicating that the peptide undergoes uniaxial rotational diffusion around the bilayer normal with correlation times shorter than 10(-4) s. This motion is frozen below the gel-to-liquid crystalline transition temperature of the lipids. Ovispirin interacts strongly with the lipid bilayer, as manifested by the significantly reduced (2)H quadrupolar splittings of perdeuterated palmitoyloleoylphosphatidylcholine acyl chains upon peptide binding. Therefore, ovispirin is a curved helix residing in the membrane-water interface that executes rapid uniaxial rotation. These structural and dynamic features are important for understanding the antimicrobial function of this peptide.
Collapse
Affiliation(s)
- S Yamaguchi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|
413
|
Levy O, Elsbach P. Bactericidal/permeability-increasing protein in host defense and its efficacy in the treatment of bacterial sepsis. Curr Infect Dis Rep 2001. [DOI: 10.1007/bf03160475] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
414
|
Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Heumann D. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3329-38. [PMID: 11544322 DOI: 10.4049/jimmunol.167.6.3329] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian myeloid and epithelial cells express several kinds of antibacterial peptides (alpha-/beta-defensins and cathelicidins) that contribute to the innate host defense by killing invading micro-organisms. In this study we evaluated the LPS-neutralizing activities of cathelicidin peptides human CAP18 (cationic antibacterial proteins of 18 kDa) and guinea pig CAP11 using the CD14(+) murine macrophage cell line RAW264.7 and the murine endotoxin shock model. Flow cytometric analysis revealed that CAP18 and CAP11 inhibited the binding of FITC-conjugated LPS to RAW264.7 cells. Likewise, Northern and Western blot analyses indicated that CAP18 and CAP11 suppressed LPS-induced TNF-alpha mRNA and protein expression by RAW264.7 cells. Interestingly, CAP18 and CAP11 possessed LPS-binding activities, and they strongly suppressed the interaction of LPS with LPS binding protein that mediates the transport of LPS to CD14 to facilitate the activation of CD14(+) cells by LPS. Moreover, when CAP18 and CAP11 were preincubated with RAW264.7 cells, they bound to the cell surface CD14 and inhibited the binding of FITC-LPS to the cells. Furthermore, in the murine endotoxin shock model, CAP18 or CAP11 administration inhibited the binding of LPS to CD14(+) cells (peritoneal macrophages) and suppressed LPS-induced TNF-alpha expression by these cells. Together these observations indicate that cathelicidin peptides CAP18 and CAP11 probably exert protective actions against endotoxin shock by blocking the binding of LPS to CD14(+) cells, thereby suppressing the production of cytokines by these cells via their potent binding activities for LPS and CD14.
Collapse
Affiliation(s)
- I Nagaoka
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
415
|
Gutsmann T, Hagge SO, Larrick JW, Seydel U, Wiese A. Interaction of CAP18-derived peptides with membranes made from endotoxins or phospholipids. Biophys J 2001; 80:2935-45. [PMID: 11371466 PMCID: PMC1301477 DOI: 10.1016/s0006-3495(01)76259-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antimicrobial peptides with alpha-helical structures and positive net charges are in the focus of interest with regard to the development of new antibiotic agents, in particular against Gram-negative bacteria. Interaction between seven polycationic alpha-helical CAP18-derived peptides and different types of artificial membranes composed of phosphatidylcholine or lipopolysaccharide of the Gram-negative bacterium Escherichia coli were investigated using different biophysical techniques. Results obtained from fluorescence energy transfer spectroscopy with liposomes, monolayer measurements on a Langmuir trough, and electrophysiological measurements on planar reconstituted asymmetric bilayer membranes including the lipid matrix of the outer membrane of E. coli were correlated, and these data were, furthermore, correlated with structural parameters of the peptides (net charge, alpha-helical content, hydrophobic moment, and hydrophobicity). All peptides induced current fluctuations in planar membranes due to the formation of transient lesions above a peptide- and lipid-specific minimal clamp voltage. Antibacterial activity was exhibited only by those peptides that induced lesion formation in the reconstituted outer membrane at clamp voltages below the transmembrane potential of the natural membrane. Thus, we propose that the physicochemical properties of both the peptides as well as of the target membranes are important for antibacterial activity.
Collapse
Affiliation(s)
- T Gutsmann
- Research Center Borstel, Department of Immunochemistry and Biochemical Microbiology, D-23845 Borstel, Germany
| | | | | | | | | |
Collapse
|
416
|
Shin SY, Park EJ, Yang ST, Jung HJ, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI. Structure-activity analysis of SMAP-29, a sheep leukocytes-derived antimicrobial peptide. Biochem Biophys Res Commun 2001; 285:1046-51. [PMID: 11467858 DOI: 10.1006/bbrc.2001.5280] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SAMP-29 is a cathelecidin-derived antimicrobial peptide deduced from sheep myeloid mRNA. To elucidate the structural-activity relationship of SMAP-29, several analogues were synthesized and their antibiotic activity was investigated. Compared to parental SMAP-29, SMAP-29(1-17) and [K(22,25,27)]-SMAP-29 retained relatively effective antimicrobial activity (MIC: 1.0-8.0 microM), but resulted in a complete loss of hemolytic activity. Pro-19 --> Ala substitution ([A19]-SMAP-29) in SMAP-29 induced a significant reduction in antibacterial activity. These results suggested that the N-terminal amphipathic alpha-helical region and the C-terminal hydrophobic region of SMAP-29 are responsible for antimicrobial activity and hemolytic activity, respectively, and the central Pro-19 in SMAP-29 plays a critical role in showing improved antibacterial activity. In particular, [K(2,7,13)]-SMAP-29(1-17) showed potent antimicrobial activity under high salt conditions without hemolytic activity. Thus, this short peptide could serve as an attractive candidate for the development of therapeutic antimicrobial drugs. Structural analysis by circular dichroism suggested that SMAP-29 seems to adopt a helix-bend/turn-extended random conformation.
Collapse
Affiliation(s)
- S Y Shin
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, 500-712, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 2001; 117:91-7. [PMID: 11442754 DOI: 10.1046/j.1523-1747.2001.01340.x] [Citation(s) in RCA: 413] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cathelicidins are a family of peptides thought to provide an innate defensive barrier against a variety of potential microbial pathogens. The human and mouse cathelicidins (LL-37 and CRAMP, respectively) are expressed at select epithelial interfaces where they have been proposed to kill a number of gram-negative and gram-positive bacteria. To determine if these peptides play a part in the protection of skin against wound infections, the anti-microbial activity of LL-37 and CRAMP was determined against the common wound pathogen group A Streptococcus, and their expression was examined after cutaneous injury. We observed a large increase in the expression of cathelicidins in human and murine skin after sterile incision, or in mouse following infection by group A Streptococcus. The appearance of cathelicidins in skin was due to both synthesis within epidermal keratinocytes and deposition from granulocyctes that migrate to the site of injury. Synthesis and deposition in the wound was accompanied by processing from the inactive prostorage form to the mature C-terminal peptide. Analysis of anti-microbial activity of this C-terminal peptide against group A Streptococcus revealed that both LL-37 and CRAMP potently inhibited bacterial growth. Action against group A Streptococcus occurred in conditions that typically abolish the activity of anti-microbial peptides against other organisms. Thus, cathelicidins are well suited to provide defense against infections due to group A Streptococcus, and represent an important element of cutaneous innate immunity.
Collapse
Affiliation(s)
- R A Dorschner
- Division of Dermatology, University of California San Diego, and VA San Diego Healthcare Center, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001; 97:3951-9. [PMID: 11389039 DOI: 10.1182/blood.v97.12.3951] [Citation(s) in RCA: 634] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cathelicidins are a family of antimicrobial proteins found in the peroxidase-negative granules of neutrophils. The known biologic functions reside in the C-terminus, which must be cleaved from the holoprotein to become active. Bovine and porcine cathelicidins are cleaved by elastase from the azurophil granules to yield the active antimicrobial peptides. The aim of this study was to identify the physiological setting for cleavage of the only human cathelicidin, hCAP-18, to liberate the antibacterial and cytotoxic peptide LL-37 and to identify the protease responsible for this cleavage. Immunoelectron microscopy demonstrated that both hCAP-18 and azurophil granule proteins were present in the phagolysosome. Immunoblotting revealed no detectable cleavage of hCAP-18 in cells after phagocytosis. In contrast, hCAP-18 was cleaved to generate LL-37 in exocytosed material. Of the 3 known serine proteases from azurophil granules, proteinase 3 was solely responsible for cleavage of hCAP-18 after exocytosis. This is the first detailed study describing the generation of a human antimicrobial peptide from a promicrobicidal protein, and it demonstrates that the generation of active antimicrobial peptides from common proproteins occurs differently in related species. (Blood. 2001;97:3951-3959)
Collapse
Affiliation(s)
- O E Sørensen
- Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
419
|
Yang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in anti‐microbial immunity: receptors and activities of human defensins and cathelicidin (LL‐37). J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.5.691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- De Yang
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Oleg Chertov
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Joost J. Oppenheim
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
420
|
Yang D, Chen Q, Le Y, Wang JM, Oppenheim JJ. Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4092-8. [PMID: 11238658 DOI: 10.4049/jimmunol.166.6.4092] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocytes are the common precursors for myeloid dendritic cells (DC) and macrophages. Identification of chemotactic receptors expressed by myeloid DC, macrophages, and their precursors in the course of differentiation and maturation is important not only for elucidation of their in vivo trafficking, but also for understanding of the functional distinction between DC and macrophages. We chose to study formyl peptide receptor like-1 (FPRL1), a chemotactic receptor known to interact with several endogenous agonists that are involved in inflammatory and host defense responses. Here we show that FPRL1 is down-regulated as monocytes differentiate into DC. This down-regulation occurs at both mRNA and functional levels. Therefore, the interaction of FPRL1 with its agonists is more likely to regulate the in vivo trafficking of DC precursors than DC. In contrast, FPRL1 expression is maintained at both mRNA and functional levels as monocytes differentiate into macrophages. Thus, our results demonstrate further distinctions between myeloid DC and macrophages, albeit they share a common precursor. The fact that macrophages rather than myeloid DC express functional FPRL1 suggests that this chemotactic receptor may be more involved in inflammatory reactions and innate host defense than in adaptive immune responses.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cells, Cultured
- Chemotaxis, Leukocyte/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Down-Regulation/immunology
- Humans
- Ligands
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Monocytes/cytology
- Monocytes/immunology
- Monocytes/metabolism
- N-Formylmethionine Leucyl-Phenylalanine/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Rats
- Receptors, Formyl Peptide
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Lipoxin
- Receptors, Peptide/antagonists & inhibitors
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D Yang
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
421
|
Skerlavaj B, Scocchi M, Gennaro R, Risso A, Zanetti M. Structural and functional analysis of horse cathelicidin peptides. Antimicrob Agents Chemother 2001; 45:715-22. [PMID: 11181349 PMCID: PMC90362 DOI: 10.1128/aac.45.3.715-722.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cathelicidin-derived antimicrobial peptides are a component of the peptide-based host defense of neutrophils and epithelia, with a widespread distribution in mammals. We recently reported the cDNA sequences of three putative horse myeloid cathelicidins, named eCATH-1, -2, and -3. A Western analysis was performed to investigate their presence in neutrophils and processing to mature peptides. eCATH-2 and eCATH-3, but not eCATH-1, were found to be present in uncleaved forms in horse neutrophils. The corresponding mature peptides were detected in inflammatory sites, suggesting that processing of the propeptides takes place upon neutrophil activation. A functional characterization was then performed with synthetic eCATH peptides. Circular dichroism measurements indicated an amphipathic alpha-helical conformation of these peptides in an anisotropic environment, and in vitro assays revealed a potent activity and a broad spectrum of antimicrobial activity for eCATH-1 and a somewhat more restricted spectrum of activity for eCATH-2. Conversely, a strong dependence on salt concentration was observed when the activity of eCATH-3 was tested. This peptide efficiently killed bacteria and some fungal species, i.e., Cryptococcus neoformans and Rhodotorula rubra, in low-ionic-strength media, but the activity was inhibited in the presence of physiological salt medium. This behavior could be modified by modulating the amphipathicity of the molecule. In fact, the synthetic analogue LLK-eCATH-3, with a slightly modified sequence that increases the hydrophobic moment of the peptide, displayed a potent activity in physiological salt medium against the strains resistant to eCATH-3 under these conditions.
Collapse
Affiliation(s)
- B Skerlavaj
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, 33100 Udine, Italy
| | | | | | | | | |
Collapse
|
422
|
Kline T, Holub D, Therrien J, Leung T, Ryckman D. Synthesis and characterization of the colistin peptide polymyxin E1 and related antimicrobial peptides. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 57:175-87. [PMID: 11298918 DOI: 10.1111/j.1399-3011.2001.00835.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two strategies were developed to synthesize the acylated cyclic peptides know as polymyxins. Synthesis of polymyxin E1 and several analogs enabled us to evaluate the minimum inhibitory concentration of individual compounds against Gram-negative bacteria. In this study we also report the first identification of two component peptides in the complex polymyxin fermentation product colistin, a Thr2Ser isoform and an acyl group isomer. Both of these peptides, as well as a known component peptide, Leu7Ile, were similar to polymyxin E1 in potency, suggesting that conservative mutations in the colistin family are functionally inconsequential. In contrast, the acyclic analogs of all of these peptides were inactive, indicating that the characteristic lariat structure of the polymyxins is necessary for antimicrobial activity.
Collapse
Affiliation(s)
- T Kline
- PathoGenesis Corporation, Seattle, Washington 98119, USA.
| | | | | | | | | |
Collapse
|
423
|
Bals R, Lang C, Weiner DJ, Vogelmeier C, Welsch U, Wilson JM. Rhesus monkey (Macaca mulatta) mucosal antimicrobial peptides are close homologues of human molecules. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:370-5. [PMID: 11238224 PMCID: PMC96065 DOI: 10.1128/cdli.8.2.370-375.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One component of host defense at mucosal surfaces appears to be epithelium-derived antimicrobial peptides. Molecules of the defensin and cathelicidin families have been studied in several species, including human and mouse. We describe in this report the identification and characterization of rhesus monkey homologues of human mucosal antimicrobial peptides. Using reverse transcriptase PCR methodology, we cloned the cDNAs of rhesus monkey beta-defensin 1 and 2 (rhBD-1 and rhBD-2) and rhesus monkey LL-37/CAP-18 (rhLL-37/rhCAP-18). The predicted amino acid sequences showed a high degree of homology to the human molecules. The expression of the monkey antimicrobial peptides was analyzed using immunohistochemistry with three polyclonal antibodies to the human molecules. As in humans, rhesus monkey antimicrobial peptides are expressed in epithelia of various organs. The present study demonstrates that beta-defensins and cathelicidins of rhesus monkeys are close homologues to the human molecules and indicate that nonhuman primates represent valid model organisms to study innate immune functions.
Collapse
Affiliation(s)
- R Bals
- Medizinische Klinik und Poliklinik I, Hospital of the University of Munich, Campus Grosshadern, Schwerpunkt Pneumologie, Ludwig-Maximilians-Universität, Marchioninstr. 15, 81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
424
|
Chan YR, Zanetti M, Gennaro R, Gallo RL. Anti-microbial activity and cell binding are controlled by sequence determinants in the anti-microbial peptide PR-39. J Invest Dermatol 2001; 116:230-5. [PMID: 11179998 DOI: 10.1046/j.1523-1747.2001.01231.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PR-39 is a member of the proline-rich group of cathelicidin peptides, a class of anti-microbial peptides found in skin and in leukocytes. In addition to their innate defense function, these proline-rich peptides influence a number of mammalian cell processes, including inflammation, development, differentiation, and metastatic transformation. To characterize the mechanism further, through which proline-rich cathelicidin peptides may exert their numerous effects, we altered various conserved peptide sequence motifs using a biologically active fragment of PR-39 [PR-39(15)] as the template: We altered the N-terminal charge of its SH3 binding motif, substituted tryptophan for a conserved intervening leucine, and modified a proline-arginine stretch (residues 10-13). These peptide variants were tested for binding known targets of PR-39 and for biologic activity in mammalian and bacterial systems. We found that the N-terminal arginines are crucial for protein binding and that modification in this domain results in loss of affinity and specificity in binding to generalized and SH3-containing targets. The N-terminal charged residues are also required for NIH 3T3 syndecan induction and anti-microbial activity. In addition, modification of more C-terminal residues eliminates anti-bacterial activity while having less of an effect on peptide interactions in mammalian cell assays. This study shows that the presence of a charged N-terminus is important for peptide activity in both mammalian and bacterial systems whereas the C-terminal alterations of PR-39(15) more definitively affect anti-bacterial activity.
Collapse
Affiliation(s)
- Y R Chan
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
425
|
Cole AM, Shi J, Ceccarelli A, Kim YH, Park A, Ganz T. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds. Blood 2001; 97:297-304. [PMID: 11133774 DOI: 10.1182/blood.v97.1.297] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host defense roles of neutrophil elastase in a porcine skin wound chamber model were explored. Analysis of wound fluid by acid-urea polyacrylamide gel electrophoresis, Western blot, and bacterial overlay confirmed that the neutrophil-derived protegrins constituted the major stable antimicrobial polypeptide in the wound fluid. The application to the wound of 0.10 and 0.25 mM N-methoxysuccinyl-alanine-alanine-proline-valine (AAPV) chloromethyl ketone, a specific neutrophil elastase inhibitor (NEI), blocked the proteolytic activation of protegrins and diminished the associated antimicrobial activity as detected by radial diffusion assay against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans or by bacterial gel overlay against S epidermidis and E coli. The application of the related cathepsin G inhibitor (CGI), benzyloxycarbonyl-glycine-leucine-phenylalanine (ZGLF) chloromethyl ketone, had no effect. In wound chambers that received 10(6) colony-forming unit (CFU)/mL of S epidermidis, the presence of NEI significantly decreased the 24-hour clearance of bacteria from the wound compared to wounds treated with CGI or solvent only. Neither inhibitor, at 0.10 or 0.25 mM concentration, affected leukocyte accumulation or degranulation in the wound chambers. The in vitro microbicidal decrement due to NEI was restored by an amount of the specific protegrin (PG-1), which was equivalent to the measured difference of protegrin between control and inhibited chambers. Administration of 1 microg/mL exogenous PG-1 4 hours after chamber preparation was sufficient to normalize in vivo antimicrobial activity. Although pharmacologic NEIs are promising candidates as anti-inflammatory drugs, they may impair host defense in part by inhibiting the activation of cathelicidins by neutrophil elastase.
Collapse
Affiliation(s)
- A M Cole
- Department of Medicine, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, CA 90095-1690, USA
| | | | | | | | | | | |
Collapse
|
426
|
Risso A. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.6.785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Angela Risso
- Department of Biomedical Science and Biotechnology, University of Udine, Italy
| |
Collapse
|
427
|
The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000. [DOI: 10.1182/blood.v96.9.3086] [Citation(s) in RCA: 535] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe identified antibacterial components in human T and natural killer (NK) cells by using freshly isolated lymphocytes enriched for T and NK cells as starting material. After growing these lymphocytes for 5 days in the presence of interleukin (IL)–2, we isolated and characterized several antibacterial peptides/proteins from the supernatant—α-defensins (HNP 1-3), LL-37, lysozyme, and a fragment of histone H2B—although other active components were also present. We then used reverse transcriptase–polymerase chain reaction to search for expression of the gene coding for LL-37 in several B-cell lines, γδ T-cell lines, NK clones, and one monocytic cell line, with positive results, but found no expression in several αβ T-cell lines. The α-defensins (HNP 1-3) were also found to be expressed in several of these cell lines. To confirm the presence of these antibacterial peptides in lymphocytes, we localized them to NK, γδ T cells, B cells, and monocytes/macrophages by using double-staining immunohistochemical analysis of freshly isolated lymphocytes. We also found that primary cultures of lymphocytes transcribe and secrete LL-37 and that these processes are affected by IL-6 and interferon-γ. In addition, we demonstrated that LL-37 has chemotactic activity for polymorphonuclear leukocytes and CD4 T lymphocytes, whereas others have shown chemotactic activity for human α-defensins (HNP 1-2). These findings suggest that microbicidal peptides are effector molecules of lymphocytes and that antibacterial activity previously shown to be derived from T and NK cells may be partly mediated by the antibacterial peptides LL-37 and HNP 1-3.
Collapse
|
428
|
Abstract
The intestinal epithelium encounters a unique environment consisting of microbes, both commensals and pathogens, as well as dietary nutrients and antigens. This complex composition necessitates the presence of a dynamic system of defense to contain both pathogenic and commensal bacteria within the lumen yet allow for nutrient absorption. Tight junctions provide protection of the intercellular spaces while other surface molecules, such as intestinal trefoil factor, help to maintain the structural integrity of the epithelium. Other more active processes, including upregulated expression and activation of antimicrobial peptides and enhanced fluid secretion, provide a second level of innate defense. Despite providing the interface between an exuberant immune system and a highly antigenic lumenal environment, the intestinal epithelium must remain quiescent. As such, several novel antiinflammatory mechanisms were recently identified. Studies that elaborate the various aspects of these pathways are discussed in this review.
Collapse
Affiliation(s)
- V K Viswanathan
- Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | |
Collapse
|
429
|
The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000. [DOI: 10.1182/blood.v96.9.3086.h8003086_3086_3093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified antibacterial components in human T and natural killer (NK) cells by using freshly isolated lymphocytes enriched for T and NK cells as starting material. After growing these lymphocytes for 5 days in the presence of interleukin (IL)–2, we isolated and characterized several antibacterial peptides/proteins from the supernatant—α-defensins (HNP 1-3), LL-37, lysozyme, and a fragment of histone H2B—although other active components were also present. We then used reverse transcriptase–polymerase chain reaction to search for expression of the gene coding for LL-37 in several B-cell lines, γδ T-cell lines, NK clones, and one monocytic cell line, with positive results, but found no expression in several αβ T-cell lines. The α-defensins (HNP 1-3) were also found to be expressed in several of these cell lines. To confirm the presence of these antibacterial peptides in lymphocytes, we localized them to NK, γδ T cells, B cells, and monocytes/macrophages by using double-staining immunohistochemical analysis of freshly isolated lymphocytes. We also found that primary cultures of lymphocytes transcribe and secrete LL-37 and that these processes are affected by IL-6 and interferon-γ. In addition, we demonstrated that LL-37 has chemotactic activity for polymorphonuclear leukocytes and CD4 T lymphocytes, whereas others have shown chemotactic activity for human α-defensins (HNP 1-2). These findings suggest that microbicidal peptides are effector molecules of lymphocytes and that antibacterial activity previously shown to be derived from T and NK cells may be partly mediated by the antibacterial peptides LL-37 and HNP 1-3.
Collapse
|
430
|
Ouellette AJ, Satchell DP, Hsieh MM, Hagen SJ, Selsted ME. Characterization of luminal paneth cell alpha-defensins in mouse small intestine. Attenuated antimicrobial activities of peptides with truncated amino termini. J Biol Chem 2000; 275:33969-73. [PMID: 10942762 DOI: 10.1074/jbc.m004062200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paneth cells at the base of small intestinal crypts secrete apical granules that contain antimicrobial peptides including alpha-defensins, termed cryptdins. Using an antibody specific for mouse cryptdin-1, -2, -3, and -6, immunogold-localization studies demonstrated that cryptdins are constituents of mouse Paneth cell secretory granules. Several cryptdin peptides have been purified from rinses of adult mouse small intestine by gel filtration and reverse-phase high performance liquid chromatography. Their primary structures were determined by peptide sequencing, and their antimicrobial activities were compared with those of the corresponding tissue forms. The isolated luminal cryptdins included peptides identical to the tissue forms of cryptdin-2, -4, and -6 as well as variants of cryptdin-1, -4, and -6 that have N termini truncated by one or two residues. In assays of antimicrobial activity against Staphylococcus aureus, Escherichia coli, and the defensin-sensitive Salmonella typhimurium phoP(-) mutant, full-length cryptdins had the same in vitro antibacterial activities whether isolated from tissue or from the lumen. In contrast, the N-terminal-truncated (des-Leu), (des-Leu-Arg)-cryptdin-6, and (des-Gly)-cryptdin-4 peptides were markedly less active. The microbicidal activities of recombinant cryptdin-4 and (des-Gly)-cryptdin-4 peptides against E. coli, and S. typhimurium showed that the N-terminal Gly residue or the length of the cryptdin-4 N terminus are determinants of microbicidal activity. Innate immunity in the crypt lumen may be modulated by aminopeptidase modification of alpha-defensins after peptide secretion.
Collapse
Affiliation(s)
- A J Ouellette
- Departments of Pathology and Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697-4800, USA.
| | | | | | | | | |
Collapse
|
431
|
Zanetti M, Gennaro R, Scocchi M, Skerlavaj B. Structure and biology of cathelicidins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 479:203-18. [PMID: 10897421 DOI: 10.1007/0-306-46831-x_17] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- M Zanetti
- Department of Sciences and Medical Technologies, University of Udine, Italy
| | | | | | | |
Collapse
|
432
|
Blondelle SE, Lohner K. Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 2000; 55:74-87. [PMID: 10931443 DOI: 10.1002/1097-0282(2000)55:1<74::aid-bip70>3.0.co;2-s] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the race for supremacy, microbes are sprinting ahead. This warning by the World Health Organization clearly demonstrates that the spread of antibiotic-resistant bacteria leads to a global health problem and that antibiotics never seen before by bacteria are urgently needed. Antimicrobial peptides represent such a source for novel antibiotics due to their rapid lytic activity (within minutes) through disruption of cell membranes. However, due to the similarities between bacterial, fungal, and mammalian plasma cell membranes, a large number of antimicrobial peptides have low lytic specificities and exhibit a broad activity spectrum and/or significant toxic effect toward mammalian cells. Mutation strategies have allowed the development of analogues of existing antimicrobial peptides having greater lytic specificities, although such methods are lengthy and would be more efficient if the molecular mechanisms of action of antimicrobial peptides were clearly elucidated. Synthetic combinatorial library approaches have brought a new dimension to the design of novel biologically active compounds. Thus, a set of peptide analogues were generated based on the screening of a library built around an existing lytic peptide, and on a deconvolution strategy directed toward activity specificity. These peptide analogues also served as model systems to further study the effect of biomembrane mimetic systems on the peptides structural behavior relevant to their biological activities.
Collapse
Affiliation(s)
- S E Blondelle
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA.
| | | |
Collapse
|
433
|
Abstract
Cathelicidins are a numerous group of mammalian proteins that carry diverse antimicrobial peptides at the C-terminus of a highly conserved preproregion. These peptides, which become active when released from the proregion, display a remarkable variety of sizes, sequences, and structures, and in fact comprise representatives of all the structural groups in which the known antimicrobial peptides have been classified. Most of the cathelicidin-derived peptides exert a broad spectrum and potent antimicrobial activity and also bind to lipopolysaccharide and neutralize its effects. In addition, some of them have recently been shown to exert other activities and might participate in host defense also by virtue of their ability to induce expression of molecules involved in a variety of biological processes. This review is aimed at providing a general overview of the cathelicidins and of the peptides derived therefrom, with emphasis on aspects such as structure, biological activities in vitro and in vivo, and structure/activity relationship studies.
Collapse
Affiliation(s)
- R Gennaro
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università di Trieste, Via Giorgieri, 1, 34127 Trieste, Italy.
| | | |
Collapse
|
434
|
Abstract
Gene-encoded antimicrobial peptides are an important component of host defense in animals ranging from insects to mammals. They do not target specific molecular receptors on the microbial surface, but rather assume amphipathic structures that allow them to interact directly with microbial membranes, which they can rapidly permeabilize. They are thus perceived to be one promising solution to the growing problem of microbial resistance to conventional antibiotics. A particularly abundant and widespread class of antimicrobial peptides are those with amphipathic, alpha-helical domains. Due to their relatively small size and synthetic accessibility, these peptides have been extensively studied and have generated a substantial amount of structure-activity relationship (SAR) data. In this review, alpha-helical antimicrobial peptides are considered from the point of view of six interrelated structural and physicochemical parameters that modulate their activity and specificity: sequence, size, structuring, charge, amphipathicity, and hydrophobicity. It begins by providing an overview of how these vary in peptides from different natural sources. It then analyzes how they relate to the currently accepted model for the mode of action of alpha-helical peptides, and discusses what the numerous SAR studies that have been carried out on these compounds and their analogues can tell us. A comparative analysis of the many alpha-helical, antimicrobial peptide sequences that are now available then provides further information on how these parameters are distributed and interrelated. Finally, the systematic variation of parameters in short model peptides is used to throw light on their role in antimicrobial potency and specificity. The review concludes with some considerations on the potentials and limitations for the development of alpha-helical, antimicrobial peptides as antiinfective agents.
Collapse
Affiliation(s)
- A Tossi
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università degli Studi di Trieste, 34127, Trieste, Italy
| | | | | |
Collapse
|
435
|
Abstract
AbstractThe innate immune system provides rapid and effective host defense against microbial invasion in a manner that is independent of prior exposure to a given pathogen.1 It has long been appreciated that the blood contains important elements that mediate rapid responses to infection. Thus, anatomic compartments with ample blood supply are less frequently infected and recover more readily once infected, whereas regions with poor perfusion are prone to severe infection and may require surgical débridement. Blood-borne innate immune mediators are either carried in circulating blood cells (ie, leukocytes and platelets) or in plasma after release from blood cells or on secretion by the liver.
Collapse
|
436
|
Abstract
The innate immune system provides rapid and effective host defense against microbial invasion in a manner that is independent of prior exposure to a given pathogen.1 It has long been appreciated that the blood contains important elements that mediate rapid responses to infection. Thus, anatomic compartments with ample blood supply are less frequently infected and recover more readily once infected, whereas regions with poor perfusion are prone to severe infection and may require surgical débridement. Blood-borne innate immune mediators are either carried in circulating blood cells (ie, leukocytes and platelets) or in plasma after release from blood cells or on secretion by the liver.
Collapse
|
437
|
Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000; 192:1069-74. [PMID: 11015447 PMCID: PMC2193321 DOI: 10.1084/jem.192.7.1069] [Citation(s) in RCA: 917] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We have previously shown that antimicrobial peptides like defensins have the capacity to mobilize leukocytes in host defense. LL-37 is the cleaved antimicrobial 37-residue, COOH-terminal peptide of hCAP18 (human cationic antimicrobial protein with a molecular size of 18 kD), the only identified member in humans of a family of proteins called cathelicidins. LL-37/hCAP18 is produced by neutrophils and various epithelial cells. Here we report that LL-37 is chemotactic for, and can induce Ca(2+) mobilization in, human monocytes and formyl peptide receptor-like 1 (FPRL1)-transfected human embryonic kidney 293 cells. LL-37-induced Ca(2+) mobilization in monocytes can also be cross-desensitized by an FPRL1-specific agonist. Furthermore, LL-37 is also chemotactic for human neutrophils and T lymphocytes that are known to express FPRL1. Our results suggest that, in addition to its microbicidal activity, LL-37 may contribute to innate and adaptive immunity by recruiting neutrophils, monocytes, and T cells to sites of microbial invasion by interacting with FPRL1.
Collapse
MESH Headings
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Antimicrobial Cationic Peptides/metabolism
- Antimicrobial Cationic Peptides/pharmacology
- Calcium/metabolism
- Carrier Proteins/metabolism
- Carrier Proteins/pharmacology
- Cathelicidins
- Cell Line, Transformed
- Cells, Cultured
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Epithelial Cells/metabolism
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/physiology
- Monocytes/cytology
- Monocytes/drug effects
- Monocytes/physiology
- Neutrophils/drug effects
- Neutrophils/metabolism
- Neutrophils/physiology
- Receptors, Formyl Peptide
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Lipoxin
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/physiology
Collapse
|
438
|
Wu H, Zhang G, Minton JE, Ross CR, Blecha F. Regulation of cathelicidin gene expression: induction by lipopolysaccharide, interleukin-6, retinoic acid, and Salmonella enterica serovar typhimurium infection. Infect Immun 2000; 68:5552-8. [PMID: 10992453 PMCID: PMC101505 DOI: 10.1128/iai.68.10.5552-5558.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cathelicidins are a family of antimicrobial peptides prominent in the host defense mechanisms of several mammalian species. In addition to their antimicrobial activities, these peptides have been implicated in wound healing, angiogenesis, and other innate immune mechanisms. To investigate the regulatory mechanisms of cathelicidin gene expression, we conducted in vitro experiments evaluating the bone marrow cell expression of two porcine cathelicidins, PR-39 and protegrin, and cloned and evaluated the promoter sequence of PR-39. In addition, we evaluated in vivo kinetics of cathelicidin gene expression in pigs during an infection with Salmonella enterica serovar Typhimurium. Lipopolysaccharide (LPS) increased PR-39 and protegrin mRNA expression, which was ameliorated by polymyxin B. Concentrations of PR-39 in supernatants from bone marrow cell cultures were increased 10-fold after LPS stimulation. Similarly, interleukin-6 (IL-6) and all-trans retinoic acid (RA) markedly induced cathelicidin gene expression. To verify the transcriptional activation of the PR-39 gene by these agents, we made a PR-39 promoter-luciferase construct containing the full-length PR-39 promoter driving luciferase gene expression and transiently transfected PK-15 epithelial cells. RA and IL-6 increased luciferase activity in PK-15 cells transfected with the PR-39 promoter-luciferase reporter. Similarly, Salmonella-challenged pigs showed increased expression of PR-39 and protegrin mRNA in bone marrow cells at 6 and 24 h postchallenge. Taken together, these findings show that bacterial products (LPS), IL-6, RA, and Salmonella infection enhance the expression of the cathelicidins, PR-39 and protegrin, in bone marrow progenitor cells, and we suggest that extrinsic modulation of this innate host defense mechanism may be possible.
Collapse
Affiliation(s)
- H Wu
- Departments of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
439
|
Abstract
Cationic antimicrobial peptides are found in all living species. A single animal can contain >24 different antimicrobial peptides, which fall into four structural classes. These peptides are produced in large quantities at sites of infection and/or inflammation and can have broad-spectrum antibacterial, antifungal, antiviral, antiprotozoan and antisepsis properties. In addition, they interact directly with host cells to modulate the inflammatory process and innate defences.
Collapse
Affiliation(s)
- R E Hancock
- Dept of Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd, Vancouver, Canada V6T 1Z3.
| | | |
Collapse
|
440
|
Abstract
Protegrins and their derivatives are a new class of peptide antibiotics based on mammalian antimicrobial peptides. Their pharmacological properties include an unusually broad spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi and some enveloped viruses. Preclinical and clinical studies of the lead compound, IB-367, developed for topical applications, show promise for the prevention of chemotherapy- and radiation-induced oral mucositis.
Collapse
Affiliation(s)
- L Bellm
- CHS 37-055, Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1690, USA
| | | | | |
Collapse
|
441
|
Pellegrini A, Thomas U, Wild P, Schraner E, von Fellenberg R. Effect of lysozyme or modified lysozyme fragments on DNA and RNA synthesis and membrane permeability of Escherichia coli. Microbiol Res 2000; 155:69-77. [PMID: 10950188 DOI: 10.1016/s0944-5013(00)80040-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Previously we have shown that chicken egg white lysozyme, an efficient bactericidal agent, affects both gram-positive and gram-negative bacteria independently of its muramidase activity. More recently we reported that the digestion of lysozyme by clostripain yielded a pentadecapeptide, IVSDGNGMNAWVAWR (amino acid 98-112 of chicken egg white lysozyme), with moderate bactericidal activity but without muramidase activity. On the basis of this amino acid sequence three polypeptides, in which asparagine 106 was replaced by arginine (IVSDGNGMRAWVAWR, RAWVAWR, RWVAWR), were synthesized which showed to be strongly bactericidal. To elucidate the mechanisms of action of lysozyme and of the modified antimicrobial polypeptides Escherichia coli strain ML-35p was used. It is an ideal organism to study the outer and the inner membrane permeabilization since it is cryptic for periplasmic beta-lactamase and cytoplasmic beta-galactosidase unless the outer or inner membrane becomes damaged. For the first time we present evidence that lysozyme inhibits DNA and RNA synthesis and in contrast to the present view is able to damage the outer membrane of Escherichia coli. Blockage of macromolecular synthesis, outer membrane damage and inner membrane permeabilization bring about bacterial death. Ultrastructural studies indicate that lysozyme does not affect bacterial morphology but impairs stability of the organism. The bactericidal polypeptides derived from lysozyme block at first the synthesis of DNA and RNA which is followed by an increase of the outer membrane permeabilization causing the bacterial death. Inner membrane permeabilization, caused by RAWVAWR and RWVAWR, follows after the blockage of macromolecular synthesis and outer membrane damage, indicating that inner membrane permeabilization is not the deadly event. Escherichia coli bacteria killed by the substituted bactericidal polypeptides appeared, by electron microscopy, with a condensed cytoplasm and undulated bacterial membrane. So the action of lysozyme and its derived peptides is not identical.
Collapse
Affiliation(s)
- A Pellegrini
- Institute of Veterinary Physiology, Division of Applied Physiology, University of Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
442
|
Amiche M, Seon AA, Wroblewski H, Nicolas P. Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin genes family. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4583-92. [PMID: 10880984 DOI: 10.1046/j.1432-1327.2000.01514.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 32-residue peptide, named dermatoxin, has been extracted from the skin of a single specimen of the tree frog Phyllomedusa bicolor, and purified to homogeneity using a four-step protocol. Mass spectral analysis and sequencing of the purified peptide, as well as chemical synthesis and cDNA analysis were consistent with the structure: SLGSFLKGVGTTLASVGKVVSDQF GKLLQAGQ. This peptide proved to be bactericidal towards mollicutes (wall-less eubacteria) and Gram-positive eubacteria, and also, though to a lesser extent, towards Gram-negative eubacteria. Measurement of the bacterial membrane potential revealed that the plasma membrane is the primary target of dermatoxin. Observation of bacterial cells using reflected light fluorescence microscopy after DNA-staining was consistent with a mechanism of cell killing based upon the alteration of membrane permeability rather than membrane solubilization, very likely by forming ion-conducting channels through the plasma membrane. CD spectroscopy and secondary structure predictions indicated that dermatoxin assumes an amphipathic alpha-helical conformation in low polarity media which mimic the lipophilicity of the membrane of target microorganisms. PCR analysis coupled with cDNA cloning and sequencing revealed that dermatoxin is expressed in the skin, the intestine and the brain. Preprodermatoxin from the brain and the intestine have the same sequence as the skin preproform except for two amino-acid substitutions in the preproregion of the brain precursor. The dermatoxin precursor displayed the characteristic features of preprodermaseptins, a family of peptide precursors found in the skin of Phyllomedusa ssp. Precursors of this family have a common N-terminal preproregion followed by markedly different C-terminal domains that give rise to 19-34-residue peptide antibiotics named dermaseptins B and phylloxin, and to the D-amino-acid-containing opioid heptapeptides dermorphins and deltorphins. Because the structures and cidal mechanisms of dermatoxin, dermaseptins B and phylloxin are very different, dermatoxin extends the repertoire of structurally and functionally diverse peptides derived from the rapidly evolving C-terminal domains of precursors of the dermaseptins family.
Collapse
Affiliation(s)
- M Amiche
- Laboratoire de Bioactivation des Peptides, Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
443
|
Abstract
Amphibian skin secretions contain many biologically active compounds, such as biogenic amines, complex alkaloids, or peptides. Within the latter class of molecules, a large number of peptide antibiotics has been isolated and characterized from different amphibian species. Antimicrobial peptides are considered the effector molecules of innate immunity, acting as a first line of defense against bacterial infections, by perturbing the phospholipid bilayer of the target cell membrane. These gene-encoded molecules are synthesized as inactive precursors and in several cases their proparts were shown to have highly conserved structures. It has also been demonstrated that the promoter regions of inducible peptide antibiotics are often regulated by the transcriptional control machinery NF-kappa B/I kappa B alpha. In amphibia of Rana and Bombina genera, inhibition of transcription of the genes encoding antimicrobial peptides has been obtained by glucocorticoid treatment, which causes an increase of I kappa B alpha synthesis. Moreover, determination of the structure of a number of genes coding for antimicrobial peptides in amphibia has actually shown that their promoter regions contain recognition sites for nuclear factors.
Collapse
Affiliation(s)
- M Simmaco
- Dipartimento di Scienze Biomediche, Università G. D'Annunzio, Chieti, Italy
| | | | | |
Collapse
|
444
|
Barillas-Mury C, Wizel B, Han YS. Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity and vaccine development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:429-442. [PMID: 10802234 DOI: 10.1016/s0965-1748(00)00018-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The introduction of novel biochemical, genetic, molecular and cell biology tools to the study of insect immunity has generated an information explosion in recent years. Due to the biodiversity of insects, complementary model systems have been developed. The conceptual framework built based on these systems is used to discuss our current understanding of mosquito immune responses and their implications for malaria transmission. The areas of insect and vertebrate innate immunity are merging as new information confirms the remarkable extent of the evolutionary conservation, at a molecular level, in the signaling pathways mediating these responses in such distant species. Our current understanding of the molecular language that allows the vertebrate innate immune system to identify parasites, such as malaria, and direct the acquired immune system to mount a protective immune response is very limited. Insect vectors of parasitic diseases, such as mosquitoes, could represent excellent models to understand the molecular responses of epithelial cells to parasite invasion. This information could broaden our understanding of vertebrate responses to parasitic infection and could have extensive implications for anti-malarial vaccine development.
Collapse
Affiliation(s)
- C Barillas-Mury
- Department of Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
445
|
Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB, Lehrer RI, Welsh MJ, Tack BF. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 2000; 68:2748-55. [PMID: 10768969 PMCID: PMC97484 DOI: 10.1128/iai.68.5.2748-2755.2000] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous antimicrobial peptides of the cathelicidin family contribute to innate immunity. The emergence of widespread antibiotic resistance in many commonly encountered bacteria requires the search for new bactericidal agents with therapeutic potential. Solid-phase synthesis was employed to prepare linear antimicrobial peptides found in cathelicidins of five mammals: human (FALL39/LL37), rabbit (CAP18), mouse (mCRAMP), rat (rCRAMP), and sheep (SMAP29 and SMAP34). These peptides were tested at ionic strengths of 25 and 175 mM against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. Each peptide manifested activity against P. aeruginosa irrespective of the NaCl concentration. CAP18 and SMAP29 were the most effective peptides of the group against all test organisms under both low- and high-salt conditions. Select peptides of 15 to 21 residues, modeled on CAP18 (37 residues), retained activity against the gram-negative bacteria and methicillin-sensitive S. aureus, although the bactericidal activity was reduced compared to that of the parent peptide. In accordance with the behavior of the parent molecule, the truncated peptides adopted an alpha-helical structure in the presence of trifluoroethanol or lipopolysaccharide. The relationship between the bactericidal activity and several physiochemical properties of the cathelicidins was examined. The activities of the full-length peptides correlated positively with a predicted gradient of hydrophobicity along the peptide backbone and with net positive charge; they correlated inversely with relative abundance of anionic residues. The salt-resistant, antimicrobial properties of CAP18 and SMAP29 suggest that these peptides or congeneric structures have potential for the treatment of bacterial infections in normal and immunocompromised persons and individuals with cystic fibrosis.
Collapse
Affiliation(s)
- S M Travis
- Department of Internal Medicine, University of Iowa College of Medicine Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Osapay K, Tran D, Ladokhin AS, White SH, Henschen AH, Selsted ME. Formation and characterization of a single Trp-Trp cross-link in indolicidin that confers protease stability without altering antimicrobial activity. J Biol Chem 2000; 275:12017-22. [PMID: 10766833 DOI: 10.1074/jbc.275.16.12017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Indolicidin is a 13-residue cationic, antimicrobial peptide-amide isolated from the cytoplasmic granules of bovine neutrophils. The unique composition of indolicidin distinguishes it from alpha-helical and beta-structured cationic peptides, because five of indolicidin's 13 residues are tryptophans: H-Ile-Leu-Pro-Trp-Lys-Trp-Pro-Trp-Trp-Pro-Trp-Arg-Arg-NH(2). Solid phase synthesis of indolicidin gave rise to a minor byproduct that possessed unusual fluorescence and UV absorbance properties compared with authentic indolicidin. The byproduct was purified by combined ion exchange and reversed phase high pressure liquid chromatography steps and was shown be identical to authentic indolicidin in its microbicidal activity against Staphylococcus aureus, Escherichia coli, Candida albicans, and Cryptococcus neoformans. Mass analysis of the byproduct revealed a 2-atomic mass unit reduction compared with indolicidin, suggesting the deprotonation of two indole side chains to form an intrachain delta(1),delta(1)'-ditryptophan derivative. We confirmed the nature of the cross-linked byproduct, termed X-indolicidin, by absorbance and fluorescence spectroscopy, peptide mapping, and sequence analysis. Edman degradation revealed that Trp-6 and Trp-9 were covalently cross-linked. Compared with indolicidin, X-indolicidin was partially resistant to digestion with trypsin and chymotrypsin, suggesting that the ditryptophan stabilizes a subset of molecular conformations that are protease resistant but that are absent in the native structure.
Collapse
Affiliation(s)
- K Osapay
- Department of Pathology, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
447
|
López-Boado YS, Wilson CL, Hooper LV, Gordon JI, Hultgren SJ, Parks WC. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J Cell Biol 2000; 148:1305-15. [PMID: 10725342 PMCID: PMC2174301 DOI: 10.1083/jcb.148.6.1305] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1999] [Accepted: 02/15/2000] [Indexed: 11/22/2022] Open
Abstract
Matrilysin, a matrix metalloproteinase, is expressed and secreted lumenally by intact mucosal and glandular epithelia throughout the body, suggesting that its regulation and function are shared among tissues. Because matrilysin is produced in Paneth cells of the murine small intestine, where it participates in innate host defense by activation of prodefensins, we speculated that its expression would be influenced by bacterial exposure. Indeed, acute infection (10-90 min) of human colon, bladder, and lung carcinoma cells, primary human tracheal epithelial cells, and human tracheal explants with type 1-piliated Escherichia coli mediated a marked (25-50-fold) and sustained (>24 h) induction of matrilysin production. In addition, bacterial infection resulted in activation of the zymogen form of the enzyme, which was selectively released at the apical surface. Induction of matrilysin was mediated by a soluble, non-LPS bacterial factor and correlated with the release of defensin-like bacteriocidal activity. Bacteria did not induce matrilysin in other cell types, and expression of other metalloproteinases by epithelial cells was not affected by bacteria. Matrilysin was not detected in germ-free mice, but the enzyme was induced after colonization with Bacteroides thetaiotaomicron. These findings indicate that bacterial exposure is a potent and physiologically relevant signal regulating matrilysin expression in epithelial cells.
Collapse
Affiliation(s)
| | | | - Lora V. Hooper
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey I. Gordon
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, Missouri 63110
| | - William C. Parks
- Department of Pediatrics, Allergy and Pulmonary Division
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
448
|
|
449
|
Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res 2000; 1:141-50. [PMID: 11667978 PMCID: PMC59560 DOI: 10.1186/rr25] [Citation(s) in RCA: 356] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2000] [Revised: 09/25/2000] [Accepted: 09/27/2000] [Indexed: 01/30/2023] Open
Abstract
One component of host defense at mucosal surfaces seems to be epithelium-derived antimicrobial peptides. Antimicrobial peptides are classified on the basis of their structure and amino acid motifs. Peptides of the defensin, cathelicidin, and histatin classes are found in humans. In the airways, alpha-defensins and the cathelicidin LL-37/hCAP-18 originate from neutrophils. beta-Defensins and LL-37/hCAP-18 are produced by the respiratory epithelium and the alveolar macrophage and secreted into the airway surface fluid. Beside their direct antimicrobial function, antimicrobial peptides have multiple roles as mediators of inflammation with effects on epithelial and inflammatory cells, influencing such diverse processes as proliferation, immune induction, wound healing, cytokine release, chemotaxis, protease-antiprotease balance, and redox homeostasis. Further, antimicrobial peptides qualify as prototypes of innovative drugs that might be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation.
Collapse
Affiliation(s)
- R Bals
- Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
450
|
Schibli DJ, Hwang PM, Vogel HJ. Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. Biochemistry 1999; 38:16749-55. [PMID: 10606506 DOI: 10.1021/bi990701c] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tritrpticin is a member of the cathelicidin family, a group of diverse antimicrobial peptides found in neutrophil granules. The three Trp and four Arg residues in the sequence VRRFPWWWPFLRR make this a Trp-rich cationic peptide. The structure of tritrpticin bound to membrane-mimetic sodium dodecyl sulfate micelles has been determined using conventional two-dimensional NMR methods. It forms two adjacent turns around the two Pro residues, a distinct fold for peptide-membrane interaction. The first turn involves residues 4-7, followed immediately by a second well-defined 3(10)-helical turn involving residues 8-11. The hydrophobic residues are clustered together and are clearly separated from the basic Arg residues, resulting in an amphipathic structure. Favorable interactions between the unusual amphipathic fold and the micelle surface are probably key to determining the peptide structure. NMR studies of the peptide in the micelle in the presence of the spin-label 5-doxylstearic acid determined that tritrpticin lies near the surface of the micelle, where its many aromatic side chains appear to be equally partitioned into the hydrophilic-hydrophobic interface. Additional fluorescence studies confirmed that the tryptophan residues are inserted into the micelle and are partially protected from the effects of the soluble fluorescence quencher acrylamide.
Collapse
Affiliation(s)
- D J Schibli
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|