401
|
Greenwood JA, Theibert AB, Prestwich GD, Murphy-Ullrich JE. Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p(3) binding to alpha-actinin. J Cell Biol 2000; 150:627-42. [PMID: 10931873 PMCID: PMC2175186 DOI: 10.1083/jcb.150.3.627] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1999] [Accepted: 06/13/2000] [Indexed: 01/05/2023] Open
Abstract
Focal adhesions are an elaborate network of interconnecting proteins linking actin stress fibers to the extracellular matrix substrate. Modulation of the focal adhesion plaque provides a mechanism for the regulation of cellular adhesive strength. Using interference reflection microscopy, we found that activation of phosphoinositide 3-kinase (PI 3-kinase) by PDGF induces the dissipation of focal adhesions. Loss of this close apposition between the cell membrane and the extracellular matrix coincided with a redistribution of alpha-actinin and vinculin from the focal adhesion complex to the Triton X-100-soluble fraction. In contrast, talin and paxillin remained localized to focal adhesions, suggesting that activation of PI 3-kinase induced a restructuring of the plaque rather than complete dispersion. Furthermore, phosphatidylinositol (3,4, 5)-trisphosphate (PtdIns (3,4,5)-P(3)), a lipid product of PI 3-kinase, was sufficient to induce restructuring of the focal adhesion plaque. We also found that PtdIns (3,4,5)-P(3) binds to alpha-actinin in PDGF-treated cells. Further evidence demonstrated that activation of PI 3-kinase by PDGF induced a decrease in the association of alpha-actinin with the integrin beta subunit, and that PtdIns (3,4,5)-P(3) could disrupt this interaction in vitro. Modification of focal adhesion structure by PI 3-kinase and its lipid product, PtdIns (3,4,5)-P(3), has important implications for the regulation of cellular adhesive strength and motility.
Collapse
Affiliation(s)
- J A Greenwood
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Alabama 35294, USA.
| | | | | | | |
Collapse
|
402
|
Burnham MR, Bruce-Staskal PJ, Harte MT, Weidow CL, Ma A, Weed SA, Bouton AH. Regulation of c-SRC activity and function by the adapter protein CAS. Mol Cell Biol 2000; 20:5865-78. [PMID: 10913170 PMCID: PMC86064 DOI: 10.1128/mcb.20.16.5865-5878.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
SRC family kinases play essential roles in a variety of cellular functions, including proliferation, survival, differentiation, and apoptosis. The activities of these kinases are regulated by intramolecular interactions and by heterologous binding partners that modulate the transition between active and inactive structural conformations. p130(CAS) (CAS) binds directly to both the SH2 and SH3 domains of c-SRC and therefore has the potential to structurally alter and activate this kinase. In this report, we demonstrate that overexpression of full-length CAS in COS-1 cells induces c-SRC-dependent tyrosine phosphorylation of multiple endogenous cellular proteins. A carboxy-terminal fragment of CAS (CAS-CT), which contains the c-SRC binding site, was sufficient to induce c-SRC-dependent protein tyrosine kinase activity, as measured by tyrosine phosphorylation of cortactin, paxillin, and, to a lesser extent, focal adhesion kinase. A single amino acid substitution located in the binding site for the SRC SH3 domain of CAS-CT disrupted CAS-CT's interaction with c-SRC and inhibited its ability to induce tyrosine phosphorylation of cortactin and paxillin. Murine C3H10T1/2 fibroblasts that expressed elevated levels of tyrosine phosphorylated CAS and c-SRC-CAS complexes exhibited an enhanced ability to form colonies in soft agar and to proliferate in the absence of serum or growth factors. CAS-CT fully substituted for CAS in mediating growth in soft agar but was less effective in promoting serum-independent growth. These data suggest that CAS plays an important role in regulating specific signaling pathways governing cell growth and/or survival, in part through its ability to interact with and modulate the activity of c-SRC.
Collapse
Affiliation(s)
- M R Burnham
- Department of Microbiology and Cancer Center, Health Sciences Center, University of Virginia, Charlottesville, Virginia 22908, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
403
|
Mulrooney J, Foley K, Vineberg S, Barreuther M, Grabel L. Phosphorylation of the beta1 integrin cytoplasmic domain: toward an understanding of function and mechanism. Exp Cell Res 2000; 258:332-41. [PMID: 10896784 DOI: 10.1006/excr.2000.4964] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As F9 stem cells differentiate into parietal endoderm they form focal adhesion sites. There is a concomitant decrease in the level of phosphorylation of S785 in the cytoplasmic domain of the beta1 integrin subunit. Previous transfection studies demonstrate that site-specific mutations at this residue, mimicking different phosphorylation states, can alter the subcellular localization of the subunit in differentiating F9 cells. We now extend these observations in an attempt to substantiate the function of beta1 phosphorylation and determine how the phosphorylation levels are regulated. We show that treatment of parietal endoderm with okadaic acid induces an increase in beta1 phosphorylation and selective loss of beta1 from focal adhesion sites. Using a PCR approach, we identify two phosphatases expressed in parietal endoderm, including PP2A. Using a crosslinking approach, where antibodies are added to live cells, we show that the catalytic subunit of PP2A co-immunoprecipitates with beta1. Immunocytochemistry shows PP2A colocalizing to focal adhesion sites with beta1. In addition integrin-linked kinase (ILK) co-immunoprecipitates with beta1 in parietal endoderm and localizes to focal adhesion sites. Okadaic acid treatment significantly decreases the level of ILK associated with beta1. A possible role for regulated beta1 phosphorylation in cell migration is discussed.
Collapse
Affiliation(s)
- J Mulrooney
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459-0170, USA
| | | | | | | | | |
Collapse
|
404
|
Ohene-Abuakwa Y, Pignatelli M. Adhesion molecules in cancer biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:115-26. [PMID: 10810620 DOI: 10.1007/0-306-46817-4_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Y Ohene-Abuakwa
- Division of Investigative Science, Imperial College School of Medicine, London
| | | |
Collapse
|
405
|
Fornaro M, Steger CA, Bennett AM, Wu JJ, Languino LR. Differential role of beta(1C) and beta(1A) integrin cytoplasmic variants in modulating focal adhesion kinase, protein kinase B/AKT, and Ras/Mitogen-activated protein kinase pathways. Mol Biol Cell 2000; 11:2235-49. [PMID: 10888665 PMCID: PMC14916 DOI: 10.1091/mbc.11.7.2235] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The integrin cytoplasmic domain modulates cell proliferation, adhesion, migration, and intracellular signaling. The beta(1) integrin subunits, beta(1C) and beta(1A), that contain variant cytoplasmic domains differentially affect cell proliferation; beta(1C) inhibits proliferation, whereas beta(1A) promotes it. We investigated the ability of beta(1C) and beta(1A) to modulate integrin-mediated signaling events that affect cell proliferation and survival in Chinese hamster ovary stable cell lines expressing either human beta(1C) or human beta(1A). The different cytodomains of either beta(1C) or beta(1A) did not affect either association with the endogenous alpha(2), alpha(V), and alpha(5) subunits or cell adhesion to fibronectin or TS2/16, a mAb to human beta(1). Upon engagement of endogenous and exogenous integrins by fibronectin, cells expressing beta(1C) showed significantly inhibited extracellular signal-regulated kinase (ERK) 2 activation compared with beta(1A) stable cell lines. In contrast, focal adhesion kinase phosphorylation and Protein Kinase B/AKT activity were not affected. Selective engagement of the exogenously expressed beta(1C) by TS2/16 led to stimulation of Protein Kinase B/AKT phosphorylation but not of ERK2 activation; in contrast, beta(1A) engagement induced activation of both proteins. We show that Ras activation was strongly reduced in beta(1C) stable cell lines in response to fibronectin adhesion and that expression of constitutively active Ras, Ras 61 (L), rescued beta(1C)-mediated down-regulation of ERK2 activation. Inhibition of cell proliferation in beta(1C) stable cell lines was attributable to an inhibitory effect of beta(1C) on the Ras/MAP kinase pathway because expression of activated MAPK kinase rescued beta(1C) antiproliferative effect. These findings show that the beta(1C) variant, by means of a unique signaling mechanism, selectively inhibits the MAP kinase pathway by preventing Ras activation without affecting either survival signals stimulated by integrins or cellular interactions with the extracellular matrix. These findings highlight a role for beta(1)-specific cytodomain sequences in maintaining an intracellular balance of proliferation and survival signals.
Collapse
Affiliation(s)
- M Fornaro
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
406
|
Providence KM, Kutz SM, Higgins PJ. Perturbation of the actin cytoskeleton induces PAI-1 gene expression in cultured epithelial cells independent of substrate anchorage. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:218-29. [PMID: 10098935 DOI: 10.1002/(sici)1097-0169(1999)42:3<218::aid-cm5>3.0.co;2-b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Perturbation of cellular architecture with agents that alter cytoskeletal organization provides a means to assess the relationship between cell shape and gene expression. Induced transcription of the plasminogen activator inhibitor type-1 (PAI-1) gene in serum-free cultures of normal rat kidney (NRK-52E) cells following disruption of actin microfilament structures with cytochalasin D (CD) provides a simple model to probe mechanisms underlying shape-related expression control. Transition from the typical flat epithelial cell shape to an "arborized" phenotype was a concomitant of the PAI-1 inductive response. Stimulated expression occurred rapidly (i.e., within 2 h of CD addition), involved increases in both PAI-1 mRNA abundance and de novo protein synthesis, and was dependent upon the concentration of CD used. A series of culture conditions were designed (e.g., use of bacteriological surfaces, poly-HEMA coated surfaces, maintenance in suspension on agarose) to discriminate cell shape from adhesive influences on CD-stimulated PAI-1 expression. Cytoskeletal disruption, and not simply changes in cell shape, was a critical aspect of CD-mediated PAI-1 expression in NRK cells cultured under serum-free conditions; induced expression was independent of substrate anchorage. Low concentrations of CD (1-2 microM) failed to cause cell arborization or increase either relative PAI-1 mRNA/protein abundance levels suggesting, however, that cell rounding may be a necessary but not sufficient aspect in CD-mediated PAI-1 induction. Transfection of PAI-1 promoter-CAT reporter constructs into NRK cells followed by stimulation with CD or serum additionally indicated that CD-induced PAI-1 expression did not utilize the same functional complement of serum-responsive promoter sequences, thus, further defining differences in the growth factor- and cytoskeletal-mediated pathways of PAI-1 gene regulation.
Collapse
Affiliation(s)
- K M Providence
- Department of Microbiology, Immunology and Molecular Genetics, Albany Medical College, New York 12208, USA
| | | | | |
Collapse
|
407
|
Yu X, Miyamoto S, Mekada E. Integrin alpha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. J Cell Sci 2000; 113 ( Pt 12):2139-47. [PMID: 10825287 DOI: 10.1242/jcs.113.12.2139] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain integrins including alpha 2 beta 1 and alpha 3 beta 1 localize to intercellular binding sites, and thus may participate in cell-cell interactions. We demonstrated here the physical and functional associations of integrin alpha 2 beta 1 with epidermal growth factor receptor (EGFR) at intercellular adhesion sites. Immunoprecipitation with anti-integrin alpha 2 antibodies or anti-integrin beta 1 antibody resulted in preferential coprecipitation of EGFR from A431 cell lysates, while anti-EGFR antibody coprecipitated integrin alpha 2 beta 1. Chemical crosslinking confirmed the association of integrin alpha 2 beta 1 and EGFR. Colocalization of integrin alpha 2 beta 1 and EGFR at cell-cell contact sites was observed by double immunofluorescence staining of A431 cells. EGF-induced EGFR stimulation did not affect the association of integrin alpha 2 beta 1 and EGFR. However, immunostaining with the antibody specific to activated-EGFR revealed that EGFR localized at cell-cell contact sites are phosphorylated even in serum-depleted conditions, while EGFR localized to other sites is totally dephosphorylated in the same conditions. The EGFR phosphorylation in cell-cell contact sites observed in a serum-depleted culture was abrogated with a function-blocking antibody of integrin alpha 2, but not with a non-function-blocking alpha 2 antibody or function-blocking alpha 3 antibody. Moreover, the EGFR phosphorylation in serum-depleted conditions was not observed in suspended cells, or largely abrogated in sparse cells, indicating that cell-cell adhesion is required for EGFR phosphorylation. These results indicate that integrin alpha 2 beta 1 not only physically associates with EGFR but also functions in serum-independent EGFR activation at cell-cell contact sites. The present results shed a new light on the role of intercellular integrins in cell-cell interactions.
Collapse
Affiliation(s)
- X Yu
- Institute of Life Science and Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka 839-0861, Japan
| | | | | |
Collapse
|
408
|
Cao L, Yao Y, Lee V, Kiani C, Spaner D, Lin Z, Zhang Y, Adams ME, Yang BB. Epidermal growth factor induces cell cycle arrest and apoptosis of squamous carcinoma cells through reduction of cell adhesion. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000615)77:4<569::aid-jcb5>3.0.co;2-k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
409
|
Martin-Bermudo MD. Integrins modulate the Egfr signaling pathway to regulate tendon cell differentiation in the Drosophila embryo. Development 2000; 127:2607-15. [PMID: 10821759 DOI: 10.1242/dev.127.12.2607] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Changes in the extracellular matrix (ECM) govern the differentiation of many cell types during embryogenesis. Integrins are cell matrix receptors that play a major role in cell-ECM adhesion and in transmitting signals from the ECM inside the cell to regulate gene expression. In this paper, it is shown that the PS integrins are required at the muscle attachment sites of the Drosophila embryo to regulate tendon cell differentiation. The analysis of the requirements of the individual alpha subunits, alphaPS1 and alphaPS2, demonstrates that both PS1 and PS2 integrins are involved in this process. In the absence of PS integrin function, the expression of tendon cell-specific genes such as stripe and beta1 tubulin is not maintained. In addition, embryos lacking the PS integrins also exhibit reduced levels of activated MAPK. This reduction is probably due to a downregulation of the Epidermal Growth Factor receptor (Egfr) pathway, since an activated form of the Egfr can rescue the phenotype of embryos mutant for the PS integrins. Furthermore, the levels of the Egfr ligand Vein at the muscle attachment sites are reduced in PS mutant embryos. Altogether, these results lead to a model in which integrin-mediated adhesion plays a role in regulating tendon cell differentiation by modulating the activity of the Egfr pathway at the level of its ligand Vein.
Collapse
Affiliation(s)
- M D Martin-Bermudo
- Department of Anatomy, Cambridge University, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
410
|
Balda MS, Matter K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 2000; 19:2024-33. [PMID: 10790369 PMCID: PMC305688 DOI: 10.1093/emboj/19.9.2024] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial tight junctions regulate paracellular diffusion and restrict the intermixing of apical and basolateral plasma membrane components. We now identify a Y-box transcription factor, ZONAB (ZO-1-associated nucleic acid-binding protein), that binds to the SH3 domain of ZO-1, a submembrane protein of tight junctions. ZONAB localizes to the nucleus and at tight junctions, and binds to sequences of specific promoters containing an inverted CCAAT box. In reporter assays, ZONAB and ZO-1 functionally interact in the regulation of the ErbB-2 promoter in a cell density-dependent manner. In stably transfected overexpressing cells, ZO-1 and ZONAB control expression of endogenous ErbB-2 and function in the regulation of paracellular permeability. These data indicate that tight junctions directly participate in the control of gene expression and suggest that they function in the regulation of epithelial cell differentiation.
Collapse
Affiliation(s)
- M S Balda
- Department of Cell Biology, University of Geneva, 30, Quai Ernest-Ansermet, 1211 Genève-4, Switzerland.
| | | |
Collapse
|
411
|
Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2000; 2:249-56. [PMID: 10806474 DOI: 10.1038/35010517] [Citation(s) in RCA: 981] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here we show that cells lacking focal adhesion kinase (FAK) are refractory to motility signals from platelet-derived and epidermal growth factors (PDGF and EGF respectively), and that stable re-expression of FAK rescues these defects. FAK associates with activated PDGF- and EGF-receptor (PDGFR and EGFR) signalling complexes, and expression of the band-4.1-like domain at the FAK amino terminus is sufficient to mediate an interaction with activated EGFR. However, efficient EGF-stimulated cell migration also requires FAK to be targeted, by its carboxy-terminal domain, to sites of integrin-receptor clustering. Although the kinase activity of FAK is not needed to promote PDGF- or EGF-stimulated cell motility, kinase-inactive FAK is transphosphorylated at the indispensable Src-kinase-binding site, FAK Y397, after EGF stimulation of cells. Our results establish that FAK is an important receptor-proximal link between growth-factor-receptor and integrin signalling pathways.
Collapse
Affiliation(s)
- D J Sieg
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
412
|
Short SM, Boyer JL, Juliano RL. Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase. J Biol Chem 2000; 275:12970-7. [PMID: 10777598 DOI: 10.1074/jbc.275.17.12970] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs) can both activate mitogen-activated protein kinase (MAPK), a critical intermediate in the transduction of proliferative signals. Numerous observations have demonstrated that integrin-mediated cell anchorage can regulate the efficiency of signaling from RTKs to MAPK. Recently, a relationship between integrins and GPCR signaling has also emerged; however, little is understood concerning the mechanisms involved. Here, we investigate integrin regulation of GPCR signaling to MAPK, focusing on the P2Y class of GPCRs that function through activation of phospholipase Cbeta. P2Y receptor signaling to the downstream components mitogen-activated protein kinase kinase and MAPK is highly dependent on integrin-mediated cell anchorage. However, activation of upstream events, including inositol phosphate production and generation of calcium transients, is completely independent of cell anchorage. This indicates that integrins regulate the linkage between upstream and downstream events in this GPCR pathway, just as they do in some aspects of RTK signaling. However, the P2Y pathway does not involve cross-activation of a RTK, nor a role for Shc or c-Raf; thus, it is quite distinct from the classical RTK-Ras-Raf-MAPK cascade. Rather, integrin-modulated P2Y receptor stimulation of MAPK depends on calcium and on the activation of protein kinase C.
Collapse
Affiliation(s)
- S M Short
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7365, USA
| | | | | |
Collapse
|
413
|
Muller SM, Okan E, Jones P. Regulation of urokinase receptor transcription by Ras- and Rho-family GTPases. Biochem Biophys Res Commun 2000; 270:892-8. [PMID: 10772921 DOI: 10.1006/bbrc.2000.2531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
How cell adhesion is coordinated with extracellular proteolysis is a key question in understanding cell migration. Potentially, the small GTP-binding proteins that affect actin organisation and signal transduction may also regulate the expression of genes associated with extracellular proteolysis. We investigated the ability of Ras, Rac-1, Cdc42Hs, and RhoA to regulate transcription from the1.55-kb promoter region of the human urokinase plasminogen activator receptor (uPAR) gene. Constitutively active V12 H-Ras and Rho-A stimulated uPAR transcription while Cdc42Hs and Rac-1 did not. The use of Ras effector-loop mutants indicated that signalling via multiple Ras-effectors is necessary for the maximum activation of transcription.
Collapse
Affiliation(s)
- S M Muller
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | |
Collapse
|
414
|
Hogeweg P. Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J Theor Biol 2000; 203:317-33. [PMID: 10736211 DOI: 10.1006/jtbi.2000.1087] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differential cell adhesion, mediated by e.g. integrin and cadherins/catenines, plays an important role in morphogenesis and it has been shown that there is intimate cross-talk between their expression and modification, and inter-cellular signalling, cell differentiation, cell growth and apoptosis. In this paper, we introduce and use a formal model to explore the morphogenetic potential of the interplay between these processes. We demonstrate the formation of interesting morphologies. Initiated by cell differentiation, differential cell adhesion leads to a long transient of cell migrations, e.g. engulfing and intercalation of cells and cell layers. This transient can be sustained dynamically by further cell differentiation, and by cell growth/division and cell death which are triggered by the (also long range) forces (stretching and squeezing) generated by the cell adhesion. We study the interrelation between modes of cell differentiation and modes of morphogenesis. We use an evolutionary process to zoom in on gene-regulation networks which lead to cell differentiation. Morphogenesis is not selected for but appears as a side-effect. The evolutionary dynamics shows the hallmarks of evolution on a rugged landscape, including long neutral paths. We show that a combinatorially large set of morphologies occurs in the vicinity of a neutral path which sustains cell differentiation. Thus, an almost linear molecular phylogeny gives rise to mosaic evolution on the morphological level.
Collapse
Affiliation(s)
- P Hogeweg
- Theoretical Biology and Bioinformatics Group, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
415
|
Gilmore AP, Metcalfe AD, Romer LH, Streuli CH. Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol 2000; 149:431-46. [PMID: 10769034 PMCID: PMC2175159 DOI: 10.1083/jcb.149.2.431] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Accepted: 03/08/2000] [Indexed: 01/09/2023] Open
Abstract
Most normal cells require adhesion to extracellular matrix for survival, but the molecular mechanisms that link cell surface adhesion events to the intracellular apoptotic machinery are not understood. Bcl-2 family proteins regulate apoptosis induced by a variety of cellular insults through acting on internal membranes. A pro-apoptotic Bcl-2 family protein, Bax, is largely present in the cytosol of many cells, but redistributes to mitochondria after treatment with apoptosis-inducing drugs. Using mammary epithelial cells as a model for adhesion-regulated survival, we show that detachment from extracellular matrix induced a rapid translocation of Bax to mitochondria concurrent with a conformational change resulting in the exposure of its BH3 domain. Bax translocation and BH3 epitope exposure were reversible and occurred before caspase activation and apoptosis. Pp125FAK regulated the conformation of the Bax BH3 epitope, and PI 3-kinase and pp60src prevented apoptosis induced by defective pp125FAK signaling. Our results provide a mechanistic connection between integrin-mediated adhesion and apoptosis, through the kinase-regulated subcellular distribution of Bax.
Collapse
Affiliation(s)
- Andrew P. Gilmore
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Anthony D. Metcalfe
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Lewis H. Romer
- Departments of Cell Biology and Anatomy, Pediatrics, and Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Charles H. Streuli
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
416
|
Paine E, Palmantier R, Akiyama SK, Olden K, Roberts JD. Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathway. J Biol Chem 2000; 275:11284-90. [PMID: 10753939 DOI: 10.1074/jbc.275.15.11284] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Adhesion of metastatic human mammary carcinoma MDA-MB-435 cells to the basement membrane protein collagen type IV can be activated by treatment with arachidonic acid. We initially observed that this arachidonic acid-mediated adhesion was inhibited by the tyrosine kinase inhibitor genistein. Therefore, we examined the role of the mitogen-activated protein (MAP) kinase family tyrosine phosphorylation-regulated pathways in arachidonic acid-stimulated cell adhesion. Arachidonic acid stimulated the phosphorylation of p38, the activation of MAP kinase-activated protein kinase 2 (MAPKAPK2, a downstream substrate of p38), and the phosphorylation of heat shock protein 27 (a downstream substrate of MAP kinase-activated protein kinase 2). Treatment with the p38 inhibitor PD169316 completely and specifically inhibited arachidonic acid-mediated cell adhesion to collagen type IV. p38 activity was specifically associated with arachidonic acid-stimulated adhesion; this was demonstrated by the observation that 12-O-tetradecanoylphorbol 13-acetate-activated cell adhesion was not blocked by inhibiting p38 activity. Extracellular signal-regulated protein kinases (ERKs) 1 and 2 were also activated by arachidonic acid; however, cell adhesion to collagen type IV was not highly sensitive to PD98059, an inhibitor of MAP kinase kinase/ERK kinase 1 (MEK1) that blocks activation of the ERKs. c-Jun NH(2)-terminal kinase was not activated by arachidonic acid treatment of these cells. Together, these data suggest a novel role for p38 MAP kinase in regulating adhesion of breast cancer cells to collagen type IV.
Collapse
Affiliation(s)
- E Paine
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
417
|
Abstract
Large-scale screening strategies aimed at finding anticancer drugs traditionally focus on identifying cytotoxic compounds that attack actively dividing cells. Because progression to malignancy involves acquisition of an aggressively invasive phenotype in addition to hyperproliferation, simple and effective screening strategies for finding compounds that target the invasive aspects of cancer progression may prove valuable for identifying alternative and preventative cancer therapies. Here, we describe a fluorescence-based automated assay for identifying antimigratory compounds, with the ability to discern cytotoxic from noncytotoxic modes of action. With this assay, we analyzed the effects of two drugs on tumorigenic (MDA-MB-435) and nontumorigenic (MCF-10A) human breast cell lines. We chose to compare carboxyamidotriazole (CAI), an experimental compound shown to inhibit migration of various cell types, with tamoxifen, a common preventative and therapeutic anticancer compound. Our assay demonstrated that both these compounds inhibit migration at sublethal concentrations. Furthermore, CAI was more effective than tamoxifen at inhibiting chemotactic and haptotactic migration of both cell lines at all concentrations tested.
Collapse
Affiliation(s)
- W L Rust
- Department of Biological Sciences, University of Nevada, Las Vegas 89154, USA
| | | | | |
Collapse
|
418
|
Bianchi E, Denti S, Granata A, Bossi G, Geginat J, Villa A, Rogge L, Pardi R. Integrin LFA-1 interacts with the transcriptional co-activator JAB1 to modulate AP-1 activity. Nature 2000; 404:617-21. [PMID: 10766246 DOI: 10.1038/35007098] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Integrin adhesion receptors transduce signals that control complex cell functions which require the regulation of gene expression, such as proliferation, differentiation and survival. Their intracellular domain has no catalytic function, indicating that interaction with other transducing molecules is crucial for integrin-mediated signalling. Here we have identified a protein that interacts with the cytoplasmic domain of the beta2 subunit of the alphaL/beta2 integrin LFA-1. This protein is JAB1 (Jun activation domain-binding protein 1), a coactivator of the c-Jun transcription factor. We found that JAB1 is present both in the nucleus and in the cytoplasm of cells and that a fraction of JAB1 colocalizes with LFA-1 at the cell membrane. LFA-1 engagement is followed by an increase of the nuclear pool of JAB1, paralleled by enhanced binding of c-Jun-containing AP-1 complexes to their DNA consensus site and increased transactivation of an AP-1-dependent promoter. We suggest that signalling through the LFA-1 integrin may affect c-Jun-driven transcription by regulating JAB1 nuclear localization. This represents a new pathway for integrin-dependent modulation of gene expression.
Collapse
Affiliation(s)
- E Bianchi
- Scientific Institute San Raffaele-DIBIT, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
419
|
Zamir E, Katz M, Posen Y, Erez N, Yamada KM, Katz BZ, Lin S, Lin DC, Bershadsky A, Kam Z, Geiger B. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol 2000; 2:191-6. [PMID: 10783236 DOI: 10.1038/35008607] [Citation(s) in RCA: 418] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here we use time-lapse microscopy to analyse cell-matrix adhesions in cells expressing one of two different cytoskeletal proteins, paxillin or tensin, tagged with green fluorescent protein (GFP). Use of GFP-paxillin to analyse focal contacts and GFP-tensin to study fibrillar adhesions reveals that both types of major adhesion are highly dynamic. Small focal contacts often translocate, by extending centripetally and contracting peripherally, at a mean rate of 19 micrometers per hour. Fibrillar adhesions arise from the medial ends of stationary focal contacts, contain alpha5beta1 integrin and tensin but not other focal-contact components, and associate with fibronectin fibrils. Fibrillar adhesions translocate centripetally at a mean rate of 18 micrometers per hour in an actomyosin-dependent manner. We propose a dynamic model for the regulation of cell-matrix adhesions and for transitions between focal contacts and fibrillar adhesions, with the ability of the matrix to deform functioning as a mechanical switch.
Collapse
Affiliation(s)
- E Zamir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Zhou L, Cheng EL, Rege P, Yue BY. Signal transduction mediated by adhesion of human trabecular meshwork cells to extracellular matrix. Exp Eye Res 2000; 70:457-65. [PMID: 10865994 DOI: 10.1006/exer.1999.0806] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study we investigated the signaling event induced by adhesion of human trabecular meshwork (TM) cells to extracellular matrix (ECM) elements such as fibronectin. The role of tyrosine phosphorylation in adhesion was evaluated. A number of intracellular entities involved in the adhesion-mediated pathways were identified. For the experiments, human TM cells were seeded onto fibronectin- or polylysine (negative control)-coated plates. Fifteen, 30, 90 and 240 min after the seeding, cell lysates were collected. Immunoblotting analysis revealed that tyrosine phosphorylation occurred within 15 min of adhesion of TM cells to fibronectin and the level increased with time. The phosphotyrosyl proteins had molecular masses 25-220 kDa. A much lower level of tyrosine phosphorylation was observed when cells were plated on polylysine. Immunoprecipitation experiments indicated that the phosphotyrosine-containing proteins included focal adhesion kinase, paxillin, phosphatidylinositol 3-kinase and mitogen activated protein kinase. Within 30 min of adherence to fibronectin, human TM cells immunostained for paxillin and phosphotyrosine and exhibited prominent focal contacts. When treated with tyrosine kinase inhibitors genistein and herbimycin A and a protein kinase C (PKC) pseudosubstrate peptide inhibitor, cell adhesion to fibronectin was compromised and focal contact formation was limited. These results demonstrated that in human TM cells, tyrosine kinase was activated upon their adherence to fibronectin. PKC also appeared to play a role in modulation of the cell-matrix adhesion process. The current study provides insight into the signaling pathways that are linked to the ECM-induced events in TM cells. Elucidation of the hierarchy of signal responses may help develop strategies manipulating the cell-matrix interactions in the TM system.
Collapse
Affiliation(s)
- L Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, USA
| | | | | | | |
Collapse
|
421
|
Bruinsma R, Behrisch A, Sackmann E. Adhesive switching of membranes: experiment and theory. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 61:4253-4267. [PMID: 11088221 DOI: 10.1103/physreve.61.4253] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/1999] [Indexed: 05/23/2023]
Abstract
We report on a study of a model bioadhesion system: giant vesicles in contact with a supported lipid bilayer. Embedded in both membranes are very low concentrations of homophilic recognition molecules (contact site A receptors) competing with higher concentrations of repeller molecules: polyethylene glycol (PEG) lipids. These repellers mimic the inhibiting effect of the cell glycocalyx on adhesion. The effective adhesive interaction between the two membranes is probed by interferometric analysis of thermal fluctuations. We find two competing states of adhesion: initial weak adhesion is followed by slower aggregation of the adhesion molecules into small, tightly bound clusters that coexist with the regions of weak adhesion. We interpret our results in terms of a double-well intermembrane potential, and we present a theoretical analysis of the intermembrane interaction in the presence of mobile repeller molecules at a fixed chemical potential that shows that the interaction potential indeed should have just such a double-well shape. At a fixed repeller concentration we recover a conventional purely repulsive potential. We discuss the implications of our findings in terms of a general amplification mechanism of the action of sparse adhesion molecules by a nonspecific double-well potential. We also discuss the important role of the Helfrich undulation force for the proposed scenario.
Collapse
Affiliation(s)
- R Bruinsma
- Department of Physics, University of California, Los Angeles, California 90024, USA
| | | | | |
Collapse
|
422
|
LeBaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. TISSUE ENGINEERING 2000; 6:85-103. [PMID: 10941205 DOI: 10.1089/107632700320720] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review describes research on selected peptide sequences that affect cell adhesion as it applies in orthopedic applications. Of particular interest are the integrin-binding RGD peptides and heparin-binding peptides. The influence of these peptides on cell adhesion is described. Cell adhesion is defined as a sequence of four steps: cell attachment, cell spreading, organization of an actin cytoskeleton, and formation of focal adhesions. RGD sequences clearly influence cell attachment and spreading, whereas heparin-binding sequences appear to be less efficient. Collectively, these sequences appear to promote all steps of cell adhesion in certain cell types. This review also addresses issues related to peptide immobilization, as well as potential complexities that may develop as a result of using these versatile cell-binding sequences. Also described are future directions in the field concerning use of existing and more sophisticated peptide substrata.
Collapse
Affiliation(s)
- R G LeBaron
- Laboratory of Extracellular Matrix and Cell Adhesion Research, Division of Life Sciences, The University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
423
|
Michelson PH, Tigue M, Jones JC. Human bronchial epithelial cells secrete laminin 5, express hemidesmosomal proteins, and assemble hemidesmosomes. J Histochem Cytochem 2000; 48:535-44. [PMID: 10727295 DOI: 10.1177/002215540004800411] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epithelial cells attach to the basement membrane through adhesive contacts between the basal cells of the epithelium and the proteins of the extracellular matrix (ECM). The hemidesmosome (HD) is a specialized cell-ECM contact, that mediates the attachment of the epithelial cell basal surface to the ECM. In bronchial epithelial cells, the protein components that constitute the HD have not been demonstrated. Using immunohistochemical techniques, we determined that normal human bronchial epithelial (NHBE) cells express the HD cell surface integrin alpha6beta4 and produce laminin 5, the ECM protein associated with HDs. Furthermore, expression of the HD-associated structural proteins, bullous pemphigoid antigens 1 (BPAG 1) and 2 (BPAG 2), was demonstrated in NHBE cells by immunofluorescence microscopy and immunoblot analyses. In addition, we confirmed the presence of laminin 5 in the basement membrane (BM) of bronchial epithelial biopsy specimens and of BP230, BP180, and the alpha6beta4 integrin heterodimer at the site of bronchial epithelial cell-ECM interaction in vivo. Finally, using electron microscopy, we were able to demonstrate intact HDs in a glutaraldehyde-fixed NHBE cell monolayer. These findings suggest that bronchial epithelium forms HDs and that the laminin 5-alpha6beta4 integrin interaction may be important in stabilizing epithelial cell adhesion to the BM in the lung.
Collapse
Affiliation(s)
- P H Michelson
- Departments of Pediatrics, Northwestern University Medical School, Chicago, Iillinois, USA.
| | | | | |
Collapse
|
424
|
Abstract
Interactions between cells and the extracellular matrix (ECM) result in the regulation of cell growth, cell differentiation and cell migration. These interactions are mediated by integrins and growth factor receptors and intracellular effectors that couple these receptors to downstream components are key to the transduction of ECM signals. This review summarizes recent advances in our understanding of signal transduction via integrins, focusing on the role of integrin-linked kinase in some of these pathways. Research into this interesting protein is uncovering novel aspects of coordinated signaling by the ECM and growth factors.
Collapse
Affiliation(s)
- S Dedhar
- Department of Biochemistry, University of British Columbia, BC Cancer Agency and Vancouver Hospital, Jack Bell Research Center, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
425
|
Niquet J, Pérez-Martínez L, Guerra M, Grouselle D, Joseph-Bravo P, Charli J. Extracellular matrix proteins increase the expression of pro-TRH and pro-protein convertase PC1 in fetal hypothalamic neurons in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 120:49-56. [PMID: 10727729 DOI: 10.1016/s0165-3806(99)00190-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
External clues for neuron development include extracellular matrix (ECM) molecules. To explore ECM influence on the early development of peptide phenotype in the CNS, we have compared pro-TRH levels in primary cultures of rat hypothalamic cells plated either on poly-lysine (PL) (control) or on PL plus one of various ECM molecules at 10 microgram/ml. Fetal day 17 cells plated at a density of 1250/mm(2) were grown in a serum free medium made of Neurobasal medium supplemented with B27 (GIBCO). Cultures, consisting mainly of neurons, were analyzed at DIV 2. ECM proteins induced morphological effects in agreement with previously published studies. The amount of pro-TRH per dish, quantified by Western blotting, was increased to 275% for laminin, 191% for fibronectin and 173% for tenascin-C (control=100%); there was no effect of vitronectin. Laminin or fibronectin did not change pro-TRH mRNA or TRH levels but enhanced levels of the pro-protein convertase PC1 suggesting that the ECM molecules did regulate the translational status of pro-TRH. In conclusion, we have shown that some ECM proteins increased pro-TRH level in vitro; this may contribute to the enhancement of pro-TRH levels observed early in vivo in the hypothalamus.
Collapse
Affiliation(s)
- J Niquet
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|
426
|
Polonchuk L, Elbel J, Eckert L, Blum J, Wintermantel E, Eppenberger HM. Titanium dioxide ceramics control the differentiated phenotype of cardiac muscle cells in culture. Biomaterials 2000; 21:539-50. [PMID: 10701455 DOI: 10.1016/s0142-9612(99)00189-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new approach, the cultivation of heart muscle cells on biocompatible scaffolds made from titanium dioxide ceramics was established to provide a mechanism for in vitro engineering of a vital heart tissue. Terminally differentiated ventricular myocytes isolated from hearts of adult rats were kept in primary culture for long periods of time and used as an experimental model. The microenvironmental properties of titanium dioxide ceramics helped to maintain the tissue-like structural organisation of the cardiac cells in vitro. Coating of the cell substrata with fine-grained titanium dioxide ceramics imitating cell surface topography favoured the formation of focal adhesion complexes in the ventral plasma membrane of cardiomyocytes. It also promoted the cellular expression of vinculin, a protein that connects the ECM integrin receptors to the network of cytoplasmic filaments, which define cell shape. This topographical reinforcement of cell-material interactions led to stabilisation of the molecular linkage between the extracellular contacts and the intracellular cytoskeleton and thus assisted the preservation and maintenance of the heart muscle cell differentiated phenotype in long-term primary culture. The results of this work demonstrate a promising pathway for the regulation of cellular organisation in vitro by local geometric control.
Collapse
Affiliation(s)
- L Polonchuk
- Institute for Cell Biology, ETH-Hoenggerberg, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
427
|
Chiarugi P, Cirri P, Taddei L, Giannoni E, Camici G, Manao G, Raugei G, Ramponi G. The low M(r) protein-tyrosine phosphatase is involved in Rho-mediated cytoskeleton rearrangement after integrin and platelet-derived growth factor stimulation. J Biol Chem 2000; 275:4640-6. [PMID: 10671492 DOI: 10.1074/jbc.275.7.4640] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme that is involved in the early events of platelet-derived growth factor (PDGF) receptor signal transduction. In fact, LMW-PTP is able to specifically bind and dephosphorylate activated PDGF receptor, thus modulating PDGF-induced mitogenesis. In particular, LMW-PTP is involved in pathways that regulate the transcription of the immediately early genes myc and fos in response to growth factor stimulation. Recently, we have found that LMW-PTP exists constitutively in cytosolic and cytoskeleton-associated localization and that, after PDGF stimulation, c-Src is able to bind and phosphorylate LMW-PTP only in the cytoskeleton-associated fraction. As a consequence of its phosphorylation, LMW-PTP increases its catalytic activity about 20-fold. In this study, our interest was to investigate the role of LMW-PTP phosphorylation in cellular response to PDGF stimulation. To address this issue, we have transfected in NIH-3T3 cells a mutant form of LMW-PTP in which the c-Src phosphorylation sites (Tyr(131) and Tyr(132)) were mutated to alanine. We have established that LMW-PTP phosphorylation by c-Src after PDGF treatment strongly influences both cell adhesion and migration. In addition, we have discovered a new LMW-PTP substrate localized in the cytoskeleton that becomes tyrosine-phosphorylated after PDGF treatment: p190Rho-GAP. Hence, LMW-PTP plays multiple roles in PDGF receptor-mediated mitogenesis, since it can bind and dephosphorylate PDGF receptor, and, at the same time, the cytoskeleton-associated LMW-PTP, through the regulation of the p190Rho-GAP phosphorylation state, controls the cytoskeleton rearrangement in response to PDGF stimulation.
Collapse
Affiliation(s)
- P Chiarugi
- Dipartimento di Scienze Biochimiche, Università di Firenze, 50134 Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
428
|
Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 2000; 287:989-94. [PMID: 10669422 DOI: 10.1126/science.287.5455.989] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
New proteins and modules have been invented throughout evolution. Gene "birth dates" in Caenorhabditis elegans range from the origins of cellular life through adaptation to a soil habitat. Possibly half are "metazoan" genes, having arisen sometime between the yeast-metazoan and nematode-chordate separations. These include basement membrane and cell adhesion molecules implicated in tissue organization. By contrast, epithelial surfaces facing the environment have specialized components invented within the nematode lineage. Moreover, interstitial matrices were likely elaborated within the vertebrate lineage. A strategy for concerted evolution of new gene families, as well as conservation of adaptive genes, may underlie the differences between heterochromatin and euchromatin.
Collapse
Affiliation(s)
- H Hutter
- Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Rosenfeldt H, Grinnell F. Fibroblast quiescence and the disruption of ERK signaling in mechanically unloaded collagen matrices. J Biol Chem 2000; 275:3088-92. [PMID: 10652290 DOI: 10.1074/jbc.275.5.3088] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fibroblasts in mechanically unloaded collagen matrices had low levels of DNA synthesis compared with cells in mechanically loaded matrices. Under the former conditions, the cellular ERK signaling pathway appeared to be disrupted. Also, pharmacologic inhibition of ERK signaling blocked DNA synthesis by fibroblasts in mechanically loaded matrices. These results were consistent with the idea that mechanoregulation of fibroblast DNA synthesis in collagen matrices occurs at the level of the ERK signaling pathway.
Collapse
Affiliation(s)
- H Rosenfeldt
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039, USA
| | | |
Collapse
|
430
|
Levy L, Broad S, Diekmann D, Evans RD, Watt FM. beta1 integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. Mol Biol Cell 2000; 11:453-66. [PMID: 10679006 PMCID: PMC14785 DOI: 10.1091/mbc.11.2.453] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In keratinocytes, the beta1 integrins mediate adhesion to the extracellular matrix and also regulate the initiation of terminal differentiation. To explore the relationship between these functions, we stably infected primary human epidermal keratinocytes and an undifferentiated squamous cell carcinoma line, SCC4, with retroviruses encoding wild-type and mutant chick beta1 integrin subunits. We examined the ability of adhesion-blocking chick beta1-specific antibodies to inhibit suspension-induced terminal differentiation of primary human keratinocytes and the ability of the chick beta1 subunit to promote spontaneous differentiation of SCC4. A D154A point mutant clustered in focal adhesions but was inactive in the differentiation assays, showing that differentiation regulation required a functional ligand-binding domain. The signal transduced by beta1 integrins in normal keratinocytes was "do not differentiate" (transduced by ligand-occupied receptors) as opposed to "do differentiate" (transduced by unoccupied receptors), and the signal depended on the absolute number, rather than on the proportion, of occupied receptors. Single and double point mutations in cyto-2 and -3, the NPXY motifs, prevented focal adhesion targeting without inhibiting differentiation control. However, deletions in the proximal part of the cytoplasmic domain, affecting cyto-1, abolished the differentiation-regulatory ability of the beta1 subunit. We conclude that distinct signaling pathways are involved in beta1 integrin-mediated adhesion and differentiation control in keratinocytes.
Collapse
Affiliation(s)
- L Levy
- Keratinocyte Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
431
|
Opposing effects of engagement of integrins and stimulation of cytokine receptors on cell cycle progression of normal human hematopoietic progenitors. Blood 2000. [DOI: 10.1182/blood.v95.3.846.003k31_846_854] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the effect of β1-integrin receptor engagement on the expression and activity of cell cycle regulatory proteins in CD34+ cells under conditions that mimic the steady-state marrow microenvironment and in the presence of supraphysiological concentrations of interleukin-3 (IL3) and stem cell factor (SCF). Adhesion of CD34+ progenitors to fibronectin (FN) was similar whether IL3 or SCF was present or absent. Engagement of β1-integrins blocked S-phase entry of CD34+ cells in the absence of IL3 or SCF, whereas addition of 10 ng/mL IL3 or SCF prevented such a block in S-phase entry. In the absence of IL3 or SCF, cyclin-E levels were significantly lower and p27KIP1 levels significantly higher in FN-adherent than in FN-nonadherent cells, or than in poly-L-lysine (PLL)–adherent or (PLL)–nonadherent cells. Cyclin-dependent-kinase (cdk)-2 activity was decreased and levels of cyclin-E–cdk2 complexes were lower in FN-adherent than in PLL-adherent cells. In contrast, cyclin-E and p27KIP1 protein levels and cdk2 activity in cells adherent to FN in the presence of IL3 or SCF were similar to those in PLL-adherent and FN-nonadherent or PLL-nonadherent cells. In conclusion, under physiological cytokine conditions, integrin engagement prevents S-phase entrance of CD34+ cells, which is associated with elevated levels of the contact-dependent cyclin kinase inhibitor p27KIP1. Supraphysiological concentrations of IL3 or SCF prevent p27KIP1 elevation and override the integrin-mediated inhibition of entry into S phase.
Collapse
|
432
|
Abstract
Cellular contacts with the extracellular matrix are regulated by the Rho family of GTPases through their effects on both the actin and the microtubule cytoarchitecture. Recent genetic, biochemical and structural data have highlighted the role played by a subset of actin-binding proteins in coupling integrins to cytoskeletal actin and in assembling signalling complexes that are important for cell motility and cell proliferation.
Collapse
Affiliation(s)
- D R Critchley
- Department of Biochemistry, University of Leicester, Leicester, LE1 7RH, England.
| |
Collapse
|
433
|
Byzova TV, Kim W, Midura RJ, Plow EF. Activation of integrin alpha(V)beta(3) regulates cell adhesion and migration to bone sialoprotein. Exp Cell Res 2000; 254:299-308. [PMID: 10640428 DOI: 10.1006/excr.1999.4765] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha(V)beta(3), a broadly distributed member of the integrin family of adhesion receptors, has been implicated in a variety of physiological and pathophysiological events, including control of bone density, angiogenesis, apoptosis, tumor growth, and metastasis. Recently, it has been shown that activation of alpha(V)beta(3), its transition from a low- to a high-affinity/avidity state, influences its recognition of certain ligands. Bone sialoprotein (BSP) is recognized as an important ligand for alpha(V)beta(3) in processes ranging from bone formation to the homing of metastatic tumor cells. Here, the influence of alpha(V)beta(3) activation on the adhesion and migration of relevant cells to BSP has been examined. Stimulation of lymphoblastoid, osteoblastoid, and human umbilical vein endothelial cells (HUVEC) with PMA or Mn(2+) markedly enhanced alpha(V)beta(3)-dependent adhesion to BSP. alpha(V)beta(3)-mediated migration of HUVEC or osteoblastic cells to BSP was substantially enhanced by stimulation, demonstrating that alpha(V)beta(3) activation enhances both adhesive and migratory responses. However, adhesion and/or migration of certain tumor cell lines, including M21 melanoma and MDA MB435 and SKBR3 breast carcinoma cell lines, to BSP was constitutively high and was not augmented by alpha(V)beta(3)-activating stimuli. Inhibitors of the intracellular signaling molecules, phosphatidylinositol 3-kinase with wortmannin, hsp90-dependent kinases with geldanamycin, and calpain with calpeptin, but not MAPKK with PD98059, reduced the high spontaneous adhesion and migration of the M21 cells to BSP, consistent with the constitutive activation of the receptor on these tumor cells. These results indicate that the activation state of alpha(V)beta(3) can regulate cell migration and adhesion to BSP and, by extension, to other ligands of this receptor. The constitutive activation of alpha(V)beta(3) on neoplastic cells may contribute to tumor growth and metastatic potential.
Collapse
Affiliation(s)
- T V Byzova
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
434
|
Brinkman A, van der Flier S, Kok EM, Dorssers LC. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J Natl Cancer Inst 2000; 92:112-20. [PMID: 10639512 DOI: 10.1093/jnci/92.2.112] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Treatment of breast cancer with the antiestrogen tamoxifen is effective in approximately one half of the patients with estrogen receptor-positive disease, but tumors recur frequently because of the development of metastases that are resistant to tamoxifen. We have previously shown that mutagenesis of human estrogen-dependent ZR-75-1 breast cancer cells by insertion of a defective retrovirus genome caused the cells to become antiestrogen resistant. In this study, we isolated and characterized the crucial gene at the breast cancer antiestrogen resistance 1 (BCAR1) locus. METHODS/RESULTS Transfer of the BCAR1 locus from retrovirus-mutated, antiestrogen-resistant cells to estrogen-dependent ZR-75-1 cells by cell fusion conferred an antiestrogen-resistant phenotype on the recipient cells. The complete coding sequence of BCAR1 was isolated by use of exon-trapping and complementary DNA (cDNA) library screening. Sequence analysis of human BCAR1 cDNA predicted a protein of 870 amino acids that was strongly homologous to rat p130Cas-adapter protein. Genomic analysis revealed that BCAR1 consists of seven exons and is located at chromosome 16q23.1. BCAR1 transcripts were detected in multiple human tissues and were similar in size to transcripts produced by retrovirus-mutated ZR-75-1 cells. Transfection of BCAR1 cDNA into ZR-75-1 cells again resulted in sustained cell proliferation in the presence of antiestrogens, confirming that BCAR1 was the responsible gene in the locus. CONCLUSIONS Overexpression of the BCAR1 gene confers antiestrogen resistance on human ZR-75-1 breast cancer cells. Overexpression of BCAR1 in retrovirus-mutated cells appears to result from activation of the gene's promoter. The isolation and characterization of this gene open new avenues to elucidating mechanisms by which the growth of human breast cancer becomes independent of estrogen.
Collapse
MESH Headings
- Amino Acid Sequence
- Antineoplastic Agents, Hormonal/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Fusion
- Crk-Associated Substrate Protein
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor Modulators/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Genes, BRCA1/genetics
- Humans
- Molecular Sequence Data
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Phenotype
- Phosphoproteins/genetics
- Proteins
- Receptors, Estrogen/drug effects
- Retinoblastoma-Like Protein p130
- Sequence Analysis, DNA
- Tamoxifen/pharmacology
- Time Factors
- Transfection
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- A Brinkman
- Department of Pathology/Division of Molecular Biology, Josephine Nefkens Institute, University Hospital Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
435
|
Chan JR, Hyduk SJ, Cybulsky MI. Alpha 4 beta 1 integrin/VCAM-1 interaction activates alpha L beta 2 integrin-mediated adhesion to ICAM-1 in human T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:746-53. [PMID: 10623819 DOI: 10.4049/jimmunol.164.2.746] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Modulation of integrin affinity and/or avidity provides a regulatory mechanism by which leukocyte adhesion to endothelium is strengthened or weakened at different stages of emigration. In this study, we demonstrate that binding of high-affinity alpha 4 beta 1 integrins to VCAM-1 strengthens alpha L beta 2 integrin-mediated adhesion. The strength of adhesion of Jurkat cells, a human leukemia T cell line, or MnCl2-treated peripheral blood T cells to immobilized chimeric human VCAM-1/Fc, ICAM-1/Fc, or both was quantified using parallel plate flow chamber leukocyte detachment assays in which shear stress was increased incrementally (0.5-30 dynes/cm2). The strength of adhesion to VCAM-1 plus ICAM-1, or to a 40-kDa fragment of fibronectin containing the CS-1 exon plus ICAM-1, was greater than the sum of adhesion to each molecule alone. Treatment of Jurkat or blood T cells with soluble cross-linked VCAM-1/Fc or HP2/1, a mAb to alpha 4, significantly increased adhesion to ICAM-1. These treatments induced clustering of alpha L beta 2 integrins, but not the high-affinity beta 2 integrin epitope recognized by mAb 24. Up-regulated adhesion to ICAM-1 was abolished by cytochalasin D, an inhibitor of cytoskeletal rearrangement. Taken together, our data suggest that the binding of VCAM-1 or fibronectin to alpha 4 beta 1 integrins initiates a signaling pathway that increases beta 2 integrin avidity but not affinity. A role for the cytoskeleton is implicated in this process.
Collapse
Affiliation(s)
- J R Chan
- Department of Laboratory Medicine, University of Toronto, Toronto General Hospital Research Institute, Toronto, Canada
| | | | | |
Collapse
|
436
|
Baciu PC, Saoncella S, Lee SH, Denhez F, Leuthardt D, Goetinck PF. Syndesmos, a protein that interacts with the cytoplasmic domain of syndecan-4, mediates cell spreading and actin cytoskeletal organization. J Cell Sci 2000; 113 Pt 2:315-24. [PMID: 10633082 DOI: 10.1242/jcs.113.2.315] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Syndecan-4 is a cell surface heparan sulfate proteoglycan which, in cooperation with integrins, transduces signals for the assembly of focal adhesions and actin stress fibers in cells plated on fibronectin. The regulation of these cellular events is proposed to occur, in part, through the interaction of the cytoplasmic domains of these transmembrane receptors with intracellular proteins. To identify potential intracellular proteins that interact with the cytoplasmic domain of syndecan-4, we carried out a yeast two-hybrid screen in which the cytoplasmic domain of syndecan-4 was used as bait. As a result of this screen, we have identified a novel cellular protein that interacts with the cytoplasmic domain of syndecan-4 but not with those of the other three syndecan family members. The interaction involves both the membrane proximal and variable central regions of the cytoplasmic domain. We have named this cDNA and encoded protein syndesmos. Syndesmos is ubiquitously expressed and can be myristylated. Consistent with its myristylation and syndecan-4 association, syndesmos colocalizes with syndecan-4 in the ventral plasma membranes of cells plated on fibronectin. When overexpressed in NIH 3T3 cells, syndesmos enhances cell spreading, actin stress fiber and focal contact formation in a serum-independent manner.
Collapse
Affiliation(s)
- P C Baciu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
437
|
Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E. Requirement of CD9 on the egg plasma membrane for fertilization. Science 2000; 287:321-4. [PMID: 10634791 DOI: 10.1126/science.287.5451.321] [Citation(s) in RCA: 503] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CD9 is an integral membrane protein associated with integrins and other membrane proteins. Mice lacking CD9 were produced by homologous recombination. Both male and female CD9-/- mice were born healthy and grew normally. However, the litter size from CD9-/- females was less than 2% of that of the wild type. In vitro fertilization experiments indicated that the cause of this infertility was due to the failure of sperm-egg fusion. When sperm were injected into oocytes with assisted microfertilization techniques, however, the fertilized eggs developed to term. These results indicate that CD9 has a crucial role in sperm-egg fusion.
Collapse
Affiliation(s)
- K Miyado
- Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0861, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Petit V, Boyer B, Thiery JP, Vallés AM. Characterization of the signaling pathways regulating alpha2beta1 integrin-mediated events by a pharmacological approach. CELL ADHESION AND COMMUNICATION 2000; 7:151-65. [PMID: 10626901 DOI: 10.3109/15419069909010799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In certain instances of developing and adult organism, epithelial cells can change morphology and transform into mesenchymal-like type in order to move through the extracellular matrix. However, because of the multiplicity and complexity of signaling pathways that contribute to these processes, their molecular dissection has remained difficult. By using a pharmacological approach on the rat bladder carcinoma cell line NBT-II dispersion system, we have identified distinct signaling events for adhesion and motility in response to collagen, both activities depending on alpha2beta1 integrin. Treatment of cells with PKC inhibitors markedly impaired initial attachment on collagen without affecting the capacity of cells to move, suggesting that PKC activity is required for initial adhesion strength during cell translocation. Both adhesion and motility were diminished by tyrosine kinase inhibitors herbimycin and tyrphostin whereas tyrosine phosphatase inhibitors amplified cell scattering. The collagen-induced dispersion was insensitive to genistein which we previously showed to abrogate growth factor-induced scattering, thus demonstrating inducer specificity. Finally. Ras inhibitors and expression of a dominant negative form of Ras (N17Ras) while affecting initial cell attachment, did not prevent cell migration, and instead favored the dissociated state on collagen. The specific signaling pathways identified for adhesion and motility should help to understand the sequential processes associated with cell migration.
Collapse
Affiliation(s)
- V Petit
- UMR 144, CNRS, Subcellular Structure and Cellular Dynamics, Institut Curie Research Division, Paris, France
| | | | | | | |
Collapse
|
439
|
Putnins EE, Firth JD, Lohachitranont A, Uitto VJ, Larjava H. Keratinocyte growth factor (KGF) promotes keratinocyte cell attachment and migration on collagen and fibronectin. CELL ADHESION AND COMMUNICATION 2000; 7:211-21. [PMID: 10626905 DOI: 10.3109/15419069909010803] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Keratinocyte growth factor (KGF) induction of keratinocyte attachment and migration on provisional and basement membrane proteins was examined. KGF-treated keratinocytes showed increased attachment to collagen types I and IV and fibronectin, but, not to laminin-1, vitronectin, or tenascin. This increase was time- and dose-dependent. Increase in attachment occurred with 2 10 microg/ml of ECM proteins. This KGF-stimulated cell attachment was beta1 integrin-dependent but was not associated with stimulation of the cell surface expression nor affinity (activity) of the collagen integrin receptor (alpha2beta1) nor the fibronectin integrin receptors (alpha5beta1 or alphav). At the basal layer of KGF-treated cells significant accumulation of beta1 integrins was found at the leading edges, and actin stress fibers colocalized with beta1. KGF also induced migratory phenotype and stimulated keratinocyte migration on both fibronectin and collagen types I and IV but not on laminin-1, vitronectin nor tenascin. The results suggest that in addition to its proliferation promoting activity. KGF is able to modulate keratinocyte adhesion and migration on collagen and fibronectin. Our data suggest that KGF induced integrin avidity (clustering), a signaling event, which is not dependent on the alteration of cell surface integrin numbers.
Collapse
Affiliation(s)
- E E Putnins
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| | | | | | | | | |
Collapse
|
440
|
Arregui CO, Balsamo J, Lilien J. Regulation of signaling by protein-tyrosine phosphatases: potential roles in the nervous system. Neurochem Res 2000; 25:95-105. [PMID: 10685609 DOI: 10.1023/a:1007595617447] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During neuronal development, cells respond to a variety of environmental cues through cell surface receptors that are coupled to a signaling transduction machinery based on protein tyrosine phosphorylation and dephosphorylation. Receptor and non-receptor tyrosine kinases have received a great deal of attention; however, in the last few years, receptor (plasma membrane associated) and non-receptor protein-tyrosine phosphatases (PTPs) have also been shown to play important roles in development of the nervous system. In many cases PTPs have provocative distribution patterns or have been shown to be associated with specific cell adhesion and growth factor receptors. Additionally, altering PTP expression levels or activity impairs neuronal behavior. In this review we outline what is currently known about the role of PTPs in development, differentiation and neuronal physiology.
Collapse
Affiliation(s)
- C O Arregui
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
441
|
Hirayama E, Inoue N, Kamata M, Ama M, Kim J. Dynamic distribution of an antigen involved in the differentiation of avian myoblasts: II. Possible association of beta1 integrin with myofibril organization. CELL MOTILITY AND THE CYTOSKELETON 2000; 45:27-41. [PMID: 10618164 DOI: 10.1002/(sici)1097-0169(200001)45:1<27::aid-cm3>3.0.co;2-g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have shown that a monoclonal antibody, H-145, inhibits myotube formation of quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) [Hyodo and Kim, 1994: Exp. Cell Res. 212:120-131]. The antigen recognized by H-145 (H-145 antigen), which is a glycoprotein with a molecular mass of about 116 kDa, is related to a step immediately before myoblast fusion. To determine the functional significance of H-145 antigen, we examined its dynamic state during myogenic differentiation of QM-RSV cells. H-145 antigen showed a unique and discrete distribution. In immature myotubes immediately after myoblast fusion, many ring-like structures of H-145 antigen appeared on the ventral surface of the cells, encircling the actin dots detected simultaneously by immunofluorescence and interference reflection microscopy. The core of the ring-like structures was filled with the termini of actin bundles, mainly formed by alpha-actin. Other cytoskeletal-associated proteins, such as vinculin and alpha-actinin, were also associated with these structures. The ring-like structures of H-145 antigen were observed only during a restricted period when myoblasts fused actively, suggesting their relationships to myotube formation and an early stage of myofibril formation. With maturation of the myotubes, most of the H-145 antigen became redistributed in linear arrays on the apical cell surface and was probably associated with the termini of actin bundles to organize myofibrils, suggesting that the antigen was also related to maturation of myotubes. Experiments using monoclonal antibodies against chick beta1 integrin showed that H-145 antigen is beta1 integrin or a very closely related derivation. Thus H-145 antigen (beta1 integrin) is possibly involved in both myoblast fusion and the myofibril organization in myotubes.
Collapse
Affiliation(s)
- E Hirayama
- Institute of Molecular and Cellular Biology for Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
442
|
Jiang K, Coppola D, Crespo NC, Nicosia SV, Hamilton AD, Sebti SM, Cheng JQ. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol 2000; 20:139-48. [PMID: 10594016 PMCID: PMC85069 DOI: 10.1128/mcb.20.1.139-148.2000] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Farnesyltransferase inhibitors (FTIs) represent a novel class of anticancer drugs that exhibit a remarkable ability to inhibit malignant transformation without toxicity to normal cells. However, the mechanism by which FTIs inhibit tumor growth is not well understood. Here, we demonstrate that FTI-277 inhibits phosphatidylinositol 3-OH kinase (PI 3-kinase)/AKT2-mediated growth factor- and adhesion-dependent survival pathways and induces apoptosis in human cancer cells that overexpress AKT2. Furthermore, overexpression of AKT2, but not oncogenic H-Ras, sensitizes NIH 3T3 cells to FTI-277, and a high serum level prevents FTI-277-induced apoptosis in H-Ras- but not AKT2-transformed NIH 3T3 cells. A constitutively active form of AKT2 rescues human cancer cells from FTI-277-induced apoptosis. FTI-277 inhibits insulin-like growth factor 1-induced PI 3-kinase and AKT2 activation and subsequent phosphorylation of the proapoptotic protein BAD. Integrin-dependent activation of AKT2 is also blocked by FTI-277. Thus, a mechanism for FTI inhibition of human tumor growth is by inducing apoptosis through inhibition of PI 3-kinase/AKT2-mediated cell survival and adhesion pathway.
Collapse
Affiliation(s)
- K Jiang
- Department of Pathology, College of Medicine, H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
443
|
|
444
|
Chapter 1 The role of volume regulation in intestinal transport: Insights from villus cells in suspension. CURRENT TOPICS IN MEMBRANES 2000. [DOI: 10.1016/s1063-5823(00)50003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
445
|
Davey G, Buzzai M, Assoian RK. Reduced expression of (alpha)5(beta)1 integrin prevents spreading-dependent cell proliferation. J Cell Sci 1999; 112 ( Pt 24):4663-72. [PMID: 10574714 DOI: 10.1242/jcs.112.24.4663] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell adhesion to substratum results in the initiation of integrin signaling and an integrin-dependent organization of the cytoskeleton (cell spreading). To address the potential relationships between these events and cell proliferation, we transfected NRK fibroblasts with an antisense cDNA encoding a 1.3 kb ATG-spanning portion of (alpha)5 integrin subunit and obtained stable clones in which the surface expression of (alpha)5(beta)1 integrin was selectively reduced. (alpha)5-antisense NRK cells are less spread than the control transfectants, have poorly defined stress fibers, and an increased amount of cortical actin. The antisense clones remained anchorage-dependent, but they proliferated very slowly. Serum dose-response curves showed that they have an impaired response to mitogens. Importantly, cell spreading and stress fiber formation could be completely restored by plating the antisense cells on collagen, but cell spreading failed to rescue proliferation. These data indicate that cell spreading can be uncoupled from cell proliferation and that cytoskeletal organization is important for NRK cell proliferation because it enforces the proliferative effect of (alpha)5(beta)1 integrin. Our results also indicate that reduced surface expression of (alpha)5(beta)1 integrin is not sufficient to confer the anchorage-independent phenotype to nontransformed cells.
Collapse
Affiliation(s)
- G Davey
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | | | |
Collapse
|
446
|
Gimond C, van der Flier A, van Delft S, Brakebusch C, Kuikman I, Collard JG, Fässler R, Sonnenberg A. Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function. J Cell Biol 1999; 147:1325-40. [PMID: 10601344 PMCID: PMC2168093 DOI: 10.1083/jcb.147.6.1325] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adhesion receptors, which connect cells to each other and to the surrounding extracellular matrix (ECM), play a crucial role in the control of tissue structure and of morphogenesis. In this work, we have studied how intercellular adhesion molecules and beta1 integrins influence each other using two different beta1-null cell lines, epithelial GE11 and fibroblast-like GD25 cells. Expression of beta1A or the cytoplasmic splice variant beta1D, induced the disruption of intercellular adherens junctions and cell scattering in both GE11 and GD25 cells. In GE11 cells, the morphological change correlated with the redistribution of zonula occluden (ZO)-1 from tight junctions to adherens junctions at high cell confluency. In addition, the expression of beta1 integrins caused a dramatic reorganization of the actin cytoskeleton and of focal contacts. Interaction of beta1 integrins with their respective ligands was required for a complete morphological transition towards the spindle-shaped fibroblast-like phenotype. The expression of an interleukin-2 receptor (IL2R)-beta1A chimera and its incorporation into focal adhesions also induced the disruption of cadherin-based adhesions and the reorganization of ECM-cell contacts, but failed to promote cell migration on fibronectin, in contrast to full-length beta1A. This indicates that the disruption of cell-cell adhesion is not simply the consequence of the stimulated cell migration. Expression of beta1 integrins in GE11 cells resulted in a decrease in cadherin and alpha-catenin protein levels accompanied by their redistribution from the cytoskeleton-associated fraction to the detergent-soluble fraction. Regulation of alpha-catenin protein levels by beta1 integrins is likely to play a role in the morphological transition, since overexpression of alpha-catenin in GE11 cells before beta1 prevented the disruption of intercellular adhesions and cell scattering. In addition, using biochemical activity assays for Rho-like GTPases, we show that the expression of beta1A, beta1D, or IL2R-beta1A in GE11 or GD25 cells triggers activation of both RhoA and Rac1, but not of Cdc42. Moreover, dominant negative Rac1 (N17Rac1) inhibited the disruption of cell-cell adhesions when expressed before beta1. However, all three GTPases might be involved in the morphological transition, since expression of either N19RhoA, N17Rac1, or N17Cdc42 reversed cell scattering and partially restored cadherin-based adhesions in GE11-beta1A cells. Our results indicate that beta1 integrins regulate the polarity and motility of epithelial cells by the induction of intracellular molecular events involving a downregulation of alpha-catenin function and the activation of the Rho-like G proteins Rac1 and RhoA.
Collapse
Affiliation(s)
- Clotilde Gimond
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam,The Netherlands
| | - Arjan van der Flier
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam,The Netherlands
| | - Sanne van Delft
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam,The Netherlands
| | - Cord Brakebusch
- Lund University Hospital, Section of Experimental Pathology, Lund S-22185, Sweden
| | - Ingrid Kuikman
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam,The Netherlands
| | - John G. Collard
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam,The Netherlands
| | - Reinhard Fässler
- Lund University Hospital, Section of Experimental Pathology, Lund S-22185, Sweden
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam,The Netherlands
| |
Collapse
|
447
|
Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, Davies MA, Khan H, Furui T, Mao M, Zinner R, Hung MC, Steck P, Siminovitch K, Mills GB. The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 1999; 18:7034-45. [PMID: 10597304 DOI: 10.1038/sj.onc.1203183] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PTEN/MMAC1/TEP (PTEN) tumor suppressor gene at 10q23.3 is mutated in multiple types of sporadic tumors including breast cancers and also in the germline of patients with the Cowden's breast cancer predisposition syndrome. The PTEN gene encodes a multifunctional phosphatase capable of dephosphorylating the same sites in membrane phosphatidylinositols phosphorylated by phosphatidylinositol 3'-kinase (PI3K). We demonstrate herein that loss of PTEN function in breast cancer cells results in an increase in basal levels of phosphorylation of multiple components of the P13K signaling cascade as well as an increase in duration of ligand-induced signaling through the P13K cascade. These alterations are reversed by wild-type but not phosphatase inactive PTEN. In the presence of high concentrations of serum, enforced expression of PTEN induces a predominant G1 arrest consistent with the capacity of PTEN to evoke increases in the expression of the p27Kip1 cyclin dependent kinase inhibitor. In the presence of low concentrations of serum, enforced PTEN expression results in a marked increase in cellular apoptosis, a finding which is consistent with the capacity of PTEN to alter the phosphorylation, and presumably function, of the AKT, BAD, p70S6 kinase and GSK3 alpha apoptosis regulators. Under anchorage-independent conditions, PTEN also induces anoikis, a form of apoptosis that occurs when cells are dissociated from the extracellular matrix, which is enhanced in conjunction with low serum culture conditions. Together, these data suggest that PTEN effects on the PI3K signaling cascade are influenced by the cell stimulatory context, and that depending on the exposure to growth factors and other exogenous stimuli such as integrin ligation, PTEN can induce cell cycle arrest, apoptosis or anoikis in breast cancer cells.
Collapse
Affiliation(s)
- Y Lu
- Department of Molecular Oncology, University of Texas, MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
André F, Rigot V, Thimonier J, Montixi C, Parat F, Pommier G, Marvaldi J, Luis J. Integrins and E-cadherin cooperate with IGF-I to induce migration of epithelial colonic cells. Int J Cancer 1999; 83:497-505. [PMID: 10508486 DOI: 10.1002/(sici)1097-0215(19991112)83:4<497::aid-ijc11>3.0.co;2-d] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the detailed mechanisms of cell migration remain largely unknown, it is now clear that growth factors and cell adhesion molecules are crucial for this process. We have shown that type I insulin-like growth factor (IGF-I) promotes migration of human colonic tumour cells. Since morphological analysis suggested an involvement of adhesion molecules, we have now examined the role of integrins (cell-matrix adhesion molecules) and E-cadherin/catenins complex (cell-cell adhesion molecules) in the IGF-I-induced migration. Using a monolayer wounding assay, we have determined that, except for alpha2beta1, all of the integrins expressed in HT29-D4 cells are involved in the induced cell migration. Immunofluorescence studies revealed that upon IGF-I stimulation the integrins reorganized at the leading edge of migrating cells. We also demonstrate that E-cadherin is involved in cell migration. A rapid tyrosine phosphorylation of E-cadherin and beta-catenin was detected upon IGF-I stimulation. Tyrosine phosphorylation was associated with reduced membranous expression of E-cadherin and promotion of cell motility, suggesting a regulation of the E-cadherin/catenins complex. This effect can be reversed by incubating cells with tyrosine kinase inhibitors. Taken together, our results suggest that IGF-I promotes colonic cell migration through reorganization of integrin receptors and through modulation of E-cadherin/catenins complex function.
Collapse
Affiliation(s)
- F André
- UPRESA-CNRS 6032, Faculté de Pharmacie, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
449
|
Cruet S, Salamanca C, Mitchell GW, Auersperg N. alphavbeta3 and vitronectin expression by normal ovarian surface epithelial cells: role in cell adhesion and cell proliferation. Gynecol Oncol 1999; 75:254-60. [PMID: 10525382 DOI: 10.1006/gyno.1999.5572] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alphavbeta3 integrin and its ligand vitronectin are expressed by differentiated epithelial ovarian carcinomas and carcinoma cell lines in culture. Moreover, alphavbeta3/vitronectin interaction influences adhesion and migration of ovarian carcinoma cells in culture. For a better understanding of the behavior of these carcinomas, it appeared necessary to study the characteristics of their normal counterpart, the ovarian surface epithelium (OSE). The present study showed that normal cultured human OSE cells, like the carcinoma cells, have the ability to synthesize vitronectin. The vitronectin receptor, alphavbeta3 integrin, is also expressed by OSE cells and is localized in focal contacts close to paxillin, a focal contact-specific protein, and p125(FAK), a cytoskeletal and signaling molecule. This localization suggested an active participation of the integrin in the adhesion and/or proliferation of OSE cells. Indeed, the use of a blocking antibody demonstrated that alphav integrins promote OSE cell adhesion on vitronectin but not on fibronectin and that these integrins are required for maximal proliferative activity. The results suggest a role of the alphavbeta3/vitronectin system in normal OSE physiology and demonstrate that the expression of this system by well-differentiated ovarian carcinomas reflects the retention of normal cell properties.
Collapse
Affiliation(s)
- S Cruet
- EA 1772, CJF INSERM 96-03, Laboratoire de Cancérologie Expérimentale, Centre François Baclesse, Route de Lion sur Mer, Caen Cedex, 14 076, France
| | | | | | | |
Collapse
|
450
|
Aplin AE, Short SM, Juliano RL. Anchorage-dependent regulation of the mitogen-activated protein kinase cascade by growth factors is supported by a variety of integrin alpha chains. J Biol Chem 1999; 274:31223-8. [PMID: 10531317 DOI: 10.1074/jbc.274.44.31223] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Integrin cooperation with growth factor receptors to enable permissive signaling to the mitogen-activated protein (MAP) kinase pathway has important implications for cell proliferation, differentiation, and survival. Here we have sought to determine whether anchorage regulation of the MAP kinase pathway is specific to the alpha chain subunit of the integrins employed during adhesion. Human umbilical vein endothelial cells (HUVECs) anchored via endogenous alpha(2), alpha(3), or alpha(5) integrin subunits or NIH3T3 fibroblast cells lines anchored via ectopically expressed human integrin alpha(2) or alpha(5) subunits displayed comparable MAP kinase activation upon growth factor stimulation, regardless of the integrin alpha chain employed. In contrast, when either cell type was maintained in suspension, growth factor treatment inefficiently activated the MAP kinase pathway. The integrin-mediated enhancement of MAP kinase activation by growth factor correlated with the tyrosine phosphorylation of focal adhesion kinase but was independent of Shc. These data indicate that integrin modulation of the MAP kinase pathway is supported by a variety of integrin complexes and imply that other pathways may be required for the previously reported alpha chain-specific effects on cell cycle regulation and cell differentiation.
Collapse
Affiliation(s)
- A E Aplin
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|