401
|
Stahl M, Kim TK, Zeidan AM. Update on acute myeloid leukemia stem cells: New discoveries and therapeutic opportunities. World J Stem Cells 2016; 8:316-331. [PMID: 27822339 PMCID: PMC5080639 DOI: 10.4252/wjsc.v8.i10.316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
The existence of cancer stem cells has been well established in acute myeloid leukemia. Initial proof of the existence of leukemia stem cells (LSCs) was accomplished by functional studies in xenograft models making use of the key features shared with normal hematopoietic stem cells (HSCs) such as the capacity of self-renewal and the ability to initiate and sustain growth of progenitors in vivo. Significant progress has also been made in identifying the phenotype and signaling pathways specific for LSCs. Therapeutically, a multitude of drugs targeting LSCs are in different phases of preclinical and clinical development. This review focuses on recent discoveries which have advanced our understanding of LSC biology and provided rational targets for development of novel therapeutic agents. One of the major challenges is how to target the self-renewal pathways of LSCs without affecting normal HSCs significantly therefore providing an acceptable therapeutic window. Important issues pertinent to the successful design and conduct of clinical trials evaluating drugs targeting LSCs will be discussed as well.
Collapse
|
402
|
Dong L, Yu WM, Zheng H, Loh ML, Bunting ST, Pauly M, Huang G, Zhou M, Broxmeyer HE, Scadden DT, Qu CK. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 2016; 539:304-308. [PMID: 27783593 DOI: 10.1038/nature20131] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Germline activating mutations of the protein tyrosine phosphatase SHP2 (encoded by PTPN11), a positive regulator of the RAS signalling pathway, are found in 50% of patients with Noonan syndrome. These patients have an increased risk of developing leukaemia, especially juvenile myelomonocytic leukaemia (JMML), a childhood myeloproliferative neoplasm (MPN). Previous studies have demonstrated that mutations in Ptpn11 induce a JMML-like MPN through cell-autonomous mechanisms that are dependent on Shp2 catalytic activity. However, the effect of these mutations in the bone marrow microenvironment remains unclear. Here we report that Ptpn11 activating mutations in the mouse bone marrow microenvironment promote the development and progression of MPN through profound detrimental effects on haematopoietic stem cells (HSCs). Ptpn11 mutations in mesenchymal stem/progenitor cells and osteoprogenitors, but not in differentiated osteoblasts or endothelial cells, cause excessive production of the CC chemokine CCL3 (also known as MIP-1α), which recruits monocytes to the area in which HSCs also reside. Consequently, HSCs are hyperactivated by interleukin-1β and possibly other proinflammatory cytokines produced by monocytes, leading to exacerbated MPN and to donor-cell-derived MPN following stem cell transplantation. Remarkably, administration of CCL3 receptor antagonists effectively reverses MPN development induced by the Ptpn11-mutated bone marrow microenvironment. This study reveals the critical contribution of Ptpn11 mutations in the bone marrow microenvironment to leukaemogenesis and identifies CCL3 as a potential therapeutic target for controlling leukaemic progression in Noonan syndrome and for improving stem cell transplantation therapy in Noonan-syndrome-associated leukaemias.
Collapse
Affiliation(s)
- Lei Dong
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Wen-Mei Yu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hong Zheng
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mignon L Loh
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California at San Francisco, San Francisco, California 94122, USA
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA
| | - Melinda Pauly
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Muxiang Zhou
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - David T Scadden
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, Massachusetts 02114, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
403
|
Latchney SE, Calvi LM. The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Semin Hematol 2016; 54:25-32. [PMID: 28088984 DOI: 10.1053/j.seminhematol.2016.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/11/2022]
Abstract
The hematopoietic system has the remarkable ability to provide a lifelong supply of mature cells that make up the entire blood and immune system. However, similar to other adult stem cell niches, the hematopoietic system is vulnerable to the detrimental effects of aging. This is a substantial health concern as the trend for population aging continues to increase. Identifying mechanisms that underlie hematopoietic aging is vital for understanding hematopoietic-related diseases. In this review, we first discuss the cellular hierarchy of the hematopoietic system and the components that make up the surrounding hematopoietic niche. We then provide an overview of the major phenotypes associated with hematopoietic aging and discuss recent research investigating cell-intrinsic and cell-extrinsic mechanisms of hematopoietic stem cell (HSCs) aging. We end by discussing the exciting new concept of possibly reversing the HSC aging process along with outstanding questions that remain to be answered.
Collapse
Affiliation(s)
- Sarah E Latchney
- Endocrine Metabolism Division, University of Rochester School of Medicine and Dentistry, Rochester NY
| | - Laura M Calvi
- Endocrine Metabolism Division, University of Rochester School of Medicine and Dentistry, Rochester NY; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY.
| |
Collapse
|
404
|
Prendergast ÁM, Kuck A, van Essen M, Haas S, Blaszkiewicz S, Essers MAG. IFNα-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica 2016; 102:445-453. [PMID: 27742772 PMCID: PMC5394972 DOI: 10.3324/haematol.2016.151209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
In the bone marrow, endothelial cells are a major component of the hematopoietic stem cell vascular niche and are a first line of defense against inflammatory stress and infection. The primary response of an organism to infection involves the synthesis of immune-modulatory cytokines, including interferon alpha. In the bone marrow, interferon alpha induces rapid cell cycle entry of hematopoietic stem cells in vivo. However, the effect of interferon alpha on bone marrow endothelial cells has not been described. Here, we demonstrate that acute interferon alpha treatment leads to rapid stimulation of bone marrow endothelial cells in vivo, resulting in increased bone marrow vascularity and vascular leakage. We find that activation of bone marrow endothelial cells involves the expression of key inflammatory and endothelial cell-stimulatory markers. This interferon alpha-mediated activation of bone marrow endothelial cells is dependent in part on vascular endothelial growth factor signaling in bone marrow hematopoietic cell types, including hematopoietic stem cells. Thus, this implies a role for hematopoietic stem cells in remodeling of the bone marrow niche in vivo following inflammatory stress. These data increase our current understanding of the relationship between hematopoietic stem cells and the bone marrow niche under inflammatory stress and also clarify the response of bone marrow niche endothelial cells to acute interferon alpha treatment in vivo.
Collapse
Affiliation(s)
- Áine M Prendergast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Andrea Kuck
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Mieke van Essen
- Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sandra Blaszkiewicz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany .,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
405
|
Levesque JP, Winkler IG. Cell Adhesion Molecules in Normal and Malignant Hematopoiesis: from Bench to Bedside. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
406
|
Pérez-Fernández A, Hernández-Hernández Á. The DARC-CD82 axis discloses bone marrow macrophages as guardians of long-term hematopoietic stem cells quiescence. Stem Cell Investig 2016; 3:44. [PMID: 27668251 DOI: 10.21037/sci.2016.08.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Alejandro Pérez-Fernández
- Department of Biochemistry and Molecular Biology, University of Salamanca (USAL), Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ángel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca (USAL), Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
407
|
Yao JC, Link DC. Concise Review: The Malignant Hematopoietic Stem Cell Niche. Stem Cells 2016; 35:3-8. [PMID: 27647718 DOI: 10.1002/stem.2487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem cell (HSC) proliferation, self-renewal, and trafficking are dependent, in part, upon signals generated by stromal cells in the bone marrow. Stromal cells are organized into niches that support specific subsets of hematopoietic progenitors. There is emerging evidence that malignant hematopoietic cells may generate signals that alter the number and/or function of specific stromal cell populations in the bone marrow. At least in some cases, the resulting alterations in the bone marrow microenvironment confer a competitive advantage to the malignant HSC and progenitor cells and/or render them less sensitive to chemotherapy. Targeting these signals represents a promising therapeutic strategy for selected hematopoietic malignancies. In this review, we focus on two questions. How do alterations in bone marrow stromal cells arise in hematopoietic malignancies, and how do they contribute to disease pathogenesis? Stem Cells 2017;35:3-8.
Collapse
Affiliation(s)
- Juo-Chin Yao
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel C Link
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
408
|
Gustafsson K, Welsh M. Maintenance of hematopoietic stem cell dormancy: yet another role for the macrophage. Stem Cell Investig 2016; 3:46. [PMID: 27777935 DOI: 10.21037/sci.2016.08.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Karin Gustafsson
- Department of Stem and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA;; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
409
|
Norozi F, Shahrabi S, Hajizamani S, Saki N. Regulatory role of Megakaryocytes on Hematopoietic Stem Cells Quiescence by CXCL4/PF4 in Bone Marrow Niche. Leuk Res 2016; 48:107-12. [DOI: 10.1016/j.leukres.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 01/20/2023]
|
410
|
Smith JNP, Kanwar VS, MacNamara KC. Hematopoietic Stem Cell Regulation by Type I and II Interferons in the Pathogenesis of Acquired Aplastic Anemia. Front Immunol 2016; 7:330. [PMID: 27621733 PMCID: PMC5002897 DOI: 10.3389/fimmu.2016.00330] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 12/02/2022] Open
Abstract
Aplastic anemia (AA) occurs when the bone marrow fails to support production of all three lineages of blood cells, which are necessary for tissue oxygenation, infection control, and hemostasis. The etiology of acquired AA is elusive in the vast majority of cases but involves exhaustion of hematopoietic stem cells (HSC), which are usually present in the bone marrow in a dormant state, and are responsible for lifelong production of all cells within the hematopoietic system. This destruction is immune mediated and the role of interferons remains incompletely characterized. Interferon gamma (IFNγ) has been associated with AA and type I IFNs (alpha and beta) are well documented to cause bone marrow aplasia during viral infection. In models of infection and inflammation, IFNγ activates HSCs to differentiate and impairs their ability to self-renew, ultimately leading to HSC exhaustion. Recent evidence demonstrating that IFNγ also impacts the HSC microenvironment or niche, raises new questions regarding how IFNγ impairs HSC function in AA. Immune activation can also elicit type I interferons, which may exert effects both distinct from and overlapping with IFNγ on HSCs. IFNα/β increase HSC proliferation in models of sterile inflammation induced by polyinosinic:polycytidylic acid and lead to BM aplasia during viral infection. Moreover, patients being treated with IFNα exhibit cytopenias, in part due to BM suppression. Herein, we review the current understanding of how interferons contribute to the pathogenesis of acquired AA, and we explore additional potential mechanisms by which interferons directly and indirectly impair HSCs. A comprehensive understanding of how interferons impact hematopoiesis is necessary in order to identify novel therapeutic approaches for treating AA patients.
Collapse
Affiliation(s)
- Julianne N P Smith
- Department of Immunology and Microbial Disease, Albany Medical College , Albany, NY , USA
| | - Vikramjit S Kanwar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Albany Medical Center , Albany, NY , USA
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College , Albany, NY , USA
| |
Collapse
|
411
|
Ramasamy SK, Kusumbe AP, Itkin T, Gur-Cohen S, Lapidot T, Adams RH. Regulation of Hematopoiesis and Osteogenesis by Blood Vessel-Derived Signals. Annu Rev Cell Dev Biol 2016; 32:649-675. [PMID: 27576121 DOI: 10.1146/annurev-cellbio-111315-124936] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their conventional role as a versatile transport system, blood vessels provide signals controlling organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular osteoprogenitor cells and thereby control bone formation. Blood vessels are also a critical component of niche microenvironments for hematopoietic stem cells. Here we discuss key pathways and factors controlling endothelial cell behavior in bone, the role of vessels in osteogenesis, and the nature of vascular stem cell niches in bone marrow.
Collapse
Affiliation(s)
- Saravana K Ramasamy
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Anjali P Kusumbe
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Tomer Itkin
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Shiri Gur-Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Tsvee Lapidot
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel;
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48169 Münster, Germany; .,Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
412
|
Xin T, Greco V, Myung P. Hardwiring Stem Cell Communication through Tissue Structure. Cell 2016; 164:1212-1225. [PMID: 26967287 DOI: 10.1016/j.cell.2016.02.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/24/2022]
Abstract
Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues.
Collapse
Affiliation(s)
- Tianchi Xin
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA; Department of Dermatology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, USA; Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, USA.
| | - Peggy Myung
- Department of Dermatology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
413
|
Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft LEM, Kinstrie R, Guitart AV, Dunn K, Abraham SA, Sansom O, Michie AM, Machesky L, Kranc KR, Graham GJ, Pellicano F, Holyoake TL. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood 2016; 128:371-83. [PMID: 27222476 PMCID: PMC4991087 DOI: 10.1182/blood-2015-08-661785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/12/2016] [Indexed: 01/13/2023] Open
Abstract
The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34(+)Hoescht(-)Pyronin Y(-) and primitive CD34(+)38(-), as compared with proliferating CD34(+)Hoechst(+)Pyronin Y(+) and CD34(+)38(+) stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34(+) hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2(-/-) mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin(-)Sca-1(+)c-Kit(+) subpopulations. Cxcr2(-/-) stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit(+) cells, and Cxcl4(-/-) mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal.
Collapse
Affiliation(s)
- Amy Sinclair
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Park
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mansi Shah
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark Drotar
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Calaminus
- Centre for Cardiovascular and Metabolic Research, University of Hull, Hull, United Kingdom
| | - Lisa E M Hopcroft
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ross Kinstrie
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Amelie V Guitart
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sheela A Abraham
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Owen Sansom
- Beatson Institute for Cancer Research, Glasgow, United Kingdom; and
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Machesky
- Beatson Institute for Cancer Research, Glasgow, United Kingdom; and
| | - Kamil R Kranc
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francesca Pellicano
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
414
|
Parker ZF, Rux AH, Riblett AM, Lee FH, Rauova L, Cines DB, Poncz M, Sachais BS, Doms RW. Platelet Factor 4 Inhibits and Enhances HIV-1 Infection in a Concentration-Dependent Manner by Modulating Viral Attachment. AIDS Res Hum Retroviruses 2016; 32:705-17. [PMID: 26847431 DOI: 10.1089/aid.2015.0344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Platelet factor 4 (PF4) has been recently shown to inhibit infection by a broad range of human immunodeficiency virus type 1 (HIV-1) isolates in vitro. We found that the inhibitory effects of PF4 are limited to a defined concentration range where PF4 exists largely in a monomeric state. Under these conditions, PF4 bound the HIV-1 envelope protein and inhibited HIV-1 attachment to the cell surface. However, as concentrations increased to the point where PF4 exists largely in tetrameric or higher-order forms, viral infection in vitro was enhanced. Enhancement could be inhibited by mutations in PF4 that shift the oligomeric equilibrium toward the monomeric state, or by using soluble glycosaminoglycans (GAGs) to which tetrameric PF4 avidly binds. We conclude that at physiologically relevant concentrations, oligomeric PF4 enhances infection by HIV-1 by interacting with the viral envelope protein as well as cell surface GAGs, enhancing virus attachment to the cell surface. This effect was not specific to HIV-1, as enhancement was seen with some but not all other viruses tested. The biphasic effects of PF4 on HIV-1 infection suggest that native PF4 will not be a useful antiviral agent and that PF4 could contribute to the hematologic abnormalities commonly seen in HIV-infected individuals by enhancing virus infection in the bone marrow.
Collapse
Affiliation(s)
- Zahra F. Parker
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ann H. Rux
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Amber M. Riblett
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Fang-Hua Lee
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lubica Rauova
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Douglas B. Cines
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Mortimer Poncz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Bruce S. Sachais
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- New York Blood Center, New York, New York
| | - Robert W. Doms
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Departments of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
415
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
416
|
Abstract
Hematopoietic stem cells (HSCs) sponsoring hematopoiesis are preserved in the bone marrow (BM) microenvironment or niche. Here, Itkin et al. demonstrate how distinct blood vessels contribute to HSC maintenance and hematopoiesis in the BM niches.
Collapse
|
417
|
Oxidative stress and hypoxia in normal and leukemic stem cells. Exp Hematol 2016; 44:540-60. [PMID: 27179622 DOI: 10.1016/j.exphem.2016.04.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/20/2022]
Abstract
The main hematopoietic stem cell (HSC) functions, self-renewal and differentiation, are finely regulated by both intrinsic mechanisms such as transcriptional and epigenetic regulators and extrinsic signals originating in the bone marrow microenvironment (HSC niche) or in the body (humoral mediators). The interaction between regulatory signals and cellular metabolism is an emerging area. Several metabolic pathways function differently in HSCs compared with progenitors and differentiated cells. Hypoxia, acting through hypoxia-inducing factors, has emerged as a key regulator of stem cell biology and acts by maintaining HSC quiescence and a condition of metabolic dormancy based on anaerobic glycolytic energetic metabolism, with consequent low production reactive oxygen species (ROS) and high antioxidant defense. Hematopoietic cell differentiation is accompanied by changes in oxidative metabolism (decrease of anaerobic glycolysis and increase of oxidative phosphorylation) and increased levels of ROS. Leukemic stem cells, defined as the cells that initiate and maintain the leukemic process, show peculiar metabolic properties in that they are more dependent on oxidative respiration than on glycolysis and are more sensitive to oxidative stress than normal HSCs. Several mitochondrial abnormalities have been described in acute myeloid leukemia (AML) cells, explaining the shift to aerobic glycolysis observed in these cells and offering the unique opportunity for therapeutic metabolic targeting. Finally, frequent mutations of the mitochondrial isocitrate dehydrogenase-2 (IDH2) enzyme are observed in AML cells, in which the mutated enzyme acts as an oncogenic driver and can be targeted using specific inhibitors under clinical evaluation with promising results.
Collapse
|
418
|
Meinders M, Hoogenboezem M, Scheenstra MR, De Cuyper IM, Papadopoulos P, Németh T, Mócsai A, van den Berg TK, Kuijpers TW, Gutiérrez L. Repercussion of Megakaryocyte-Specific Gata1 Loss on Megakaryopoiesis and the Hematopoietic Precursor Compartment. PLoS One 2016; 11:e0154342. [PMID: 27152938 PMCID: PMC4859556 DOI: 10.1371/journal.pone.0154342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cKOMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches.
Collapse
Affiliation(s)
- Marjolein Meinders
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Mark Hoogenboezem
- Dept. of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, the Netherlands
| | - Maaike R. Scheenstra
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Iris M. De Cuyper
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Petros Papadopoulos
- Dept. of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Tamás Németh
- Dept. of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Dept. of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Timo K. van den Berg
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Taco W. Kuijpers
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
- Emma Children’s Hospital, Academic Medical Centre (AMC), UvA, Amsterdam, the Netherlands
| | - Laura Gutiérrez
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
- Dept. of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|
419
|
Zhan H, Ma Y, Lin CHS, Kaushansky K. JAK2 V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation. Leukemia 2016; 30:2332-2341. [PMID: 27133820 DOI: 10.1038/leu.2016.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/06/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023]
Abstract
The myeloproliferative neoplasms (MPNs) are characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of mature blood cells. The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs, but the mechanism(s) responsible for MPN stem cell expansion remain incomplete. One hallmark feature of the marrow in patients with MPNs is megakaryocyte (MK) hyperplasia. We report here that mice bearing a human JAK2V617F gene restricted exclusively to the MK lineage develop many of the features of a MPN. Specifically, these mice exhibit thrombocytosis, splenomegaly, increased numbers of marrow and splenic hematopoietic progenitors and a substantial expansion of HSPCs. In addition, wild-type mice transplanted with cells from JAK2V617F-bearing MK marrow develop a myeloproliferative syndrome with thrombocytosis and erythrocytosis as well as pan-hematopoietic progenitor and stem cell expansion. As marrow histology in this murine model of myeloproliferation reveals a preferentially perivascular localization of JAK2V617F-mutant MKs and an increased marrow sinusoid vascular density, it adds to accumulating data that MKs are an important component of the marrow HSPC niche, and that MK expansion might indirectly contribute to the critical role of the thrombopoietin/c-Mpl signaling pathway in HSPC maintenance and expansion.
Collapse
Affiliation(s)
- H Zhan
- Division of Hematology-Oncology, Department of Medicine, Northport VA Medical Center, Northport, NY, USA.,Department of Medicine, Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY, USA
| | - Y Ma
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - C H S Lin
- Department of Medicine, Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY, USA
| | - K Kaushansky
- Office of the Sr Vice President, Health Sciences, Stony Brook Medicine, NY, USA
| |
Collapse
|
420
|
Kobayashi I, Katakura F, Moritomo T. Isolation and characterization of hematopoietic stem cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:86-94. [PMID: 26801099 DOI: 10.1016/j.dci.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Despite 400 million years of evolutionary divergence, hematopoiesis is highly conserved between mammals and teleost fish. All types of mature blood cells including the erythroid, myeloid, and lymphoid lineages show a high degree of similarity to their mammalian counterparts at the morphological and molecular level. Hematopoietic stem cells (HSCs) are cells that are capable of self-renewal and differentiating into all hematopoietic lineages over the lifetime of an organism. The study of HSCs has been facilitated through bone marrow transplantation experiments developed in the mouse model. In the last decade, the zebrafish and clonal ginbuna carp (Carassius auratus langsdorfii) have emerged as new models for the study of HSCs. This review highlights the recent progress and future prospects of studying HSCs in teleost fish. Transplantation assays using these teleost models have demonstrated the presence of HSCs in the kidney, which is the major hematopoietic organ in teleost fish. Moreover, it is possible to purify HSCs from the kidney utilizing fluorescent dyes or transgenic animals. These teleost models will provide novel insights into the universal mechanisms of HSC maintenance, homeostasis, and differentiation among vertebrates.
Collapse
Affiliation(s)
- Isao Kobayashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
421
|
Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 2016; 532:323-8. [PMID: 27074509 PMCID: PMC6450701 DOI: 10.1038/nature17624] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/25/2016] [Indexed: 12/15/2022]
Abstract
Bone marrow (BM) endothelial cells (BMECs) form a network of blood vessels (BVs) which regulate both leukocyte trafficking and hematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles and if these events occur at the same vascular site. We found that BM stem cell maintenance and leukocyte trafficking are regulated by distinct BV types with different permeability properties. Less permeable arterial BVs maintain HSCs in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the BM. A functional consequence of high BVs permeability is that exposure to blood plasma increases BM HSPC ROS levels, augmenting their migration capacity while compromising their long term repopulation and survival potential. These findings may have relevance for clinical hematopoietic stem cell transplantation and mobilization protocols.
Collapse
|
422
|
Hur J, Choi JI, Lee H, Nham P, Kim TW, Chae CW, Yun JY, Kang JA, Kang J, Lee SE, Yoon CH, Boo K, Ham S, Roh TY, Jun JK, Lee H, Baek SH, Kim HS. CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC-Expressing Macrophages. Cell Stem Cell 2016; 18:508-21. [PMID: 26996598 DOI: 10.1016/j.stem.2016.01.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
Abstract
Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we examine the role of CD82/KAI1 in niche-mediated LT-HSC maintenance. We found that CD82/KAI1 is expressed predominantly on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs). In Cd82(-/-) mice, LT-HSCs were selectively lost as they exited from quiescence and differentiated. Mechanistically, CD82-based TGF-β1/Smad3 signaling leads to induction of CDK inhibitors and cell-cycle inhibition. The CD82 binding partner DARC/CD234 is expressed on macrophages and stabilizes CD82 on LT-HSCs, promoting their quiescence. When DARC(+) BM macrophages were ablated, the level of surface CD82 on LT-HSCs decreased, leading to cell-cycle entry, proliferation, and differentiation. A similar interaction appears to be relevant for human HSPCs. Thus, CD82 is a functional surface marker of LT-HSCs that maintains quiescence through interaction with DARC-expressing macrophages in the BM stem cell niche.
Collapse
Affiliation(s)
- Jin Hur
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Jae-Il Choi
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Hwan Lee
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Pniel Nham
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Tae-Won Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Cheong-Whan Chae
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Ji-Yeon Yun
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Jin-A Kang
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Jeehoon Kang
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Sang Eun Lee
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Chang-Hwan Yoon
- Cardiovascular Center and Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 463-707, Republic of Korea
| | - Kyungjin Boo
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seokjin Ham
- BK21PLUS Fellowship Program, Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Tae-Young Roh
- BK21PLUS Fellowship Program, Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | - Ho Lee
- Division of Convergence Technology, National Cancer Center, Gyeonggi-do 410-769, Republic of Korea
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-744, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-744, Republic of Korea.
| |
Collapse
|
423
|
Sugimura R. Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine. Adv Drug Deliv Rev 2016; 99:212-220. [PMID: 26527127 DOI: 10.1016/j.addr.2015.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/20/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
The scope of this chapter is to introduce the current consensus of hematopoietic stem cell (HSC) niche biology to bioengineering field so that can apply to regenerative medicine. A decade of research has been addressing "what is HSC niche", then next step is "how it advances medicine". The demand to improve HSC transplantation has advanced the methodology to expand HSC in vitro. Still precise modeling of bone marrow (BM) is demanded by bioengineering HSC niche in vitro. Better understanding of HSC niche is essential toward this progress. Now it would be the time to apply the knowledge of HSC niche field to the venue of bioengineering, so that a promising new approach to regenerative medicine might appear. This chapter describes the current consensus of niche that endothelial cell and perivascular mesenchymal stromal cell maintain HSC, expansion of cord blood HSC by small molecules, bioengineering efforts to model HSC niche by microfluidics chip, organoids, and breakthroughs to induce HSC from heterologous types of cells.
Collapse
|
424
|
Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev 2016; 99:197-205. [PMID: 26362921 DOI: 10.1016/j.addr.2015.08.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/01/2015] [Accepted: 08/26/2015] [Indexed: 02/08/2023]
Abstract
Tumor tissues consist of heterogeneous cancer cells including cancer stem cells (CSCs) that can terminally differentiate into cancer cells. Tissue-specific stem cells in normal organs maintain their stemness in a specific microenvironment, the stem cell niche; several studies have suggested that there are specific microenvironments that maintain CSCs in an immature phenotype. Cell types in a CSC niche vary from fibroblasts, to endothelial cells, immune cells, and so on; these non-cancer cells have been suggested to change their original features in the normal tissue/organ and to acquire a phenotype that protects CSCs from anticancer therapies. Therefore, to kill CSCs, we need to understand the cellular and molecular mechanisms involved in the maintenance of the immature phenotype of CSCs and in drug resistance.
Collapse
|
425
|
Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 2016; 1370:82-96. [PMID: 27015419 DOI: 10.1111/nyas.13016] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
In adult mammals, hematopoietic stem cells (HSCs) are defined by their abilities to self-renew and to differentiate to form all blood cell lineages. These rare multipotent cells occupy specific locations in the bone marrow (BM) microenvironment. The specific microenvironment regulating HSCs, commonly referred to as the niche, comprises multiple cell types whose exact contributions are under active investigation. Understanding cellular cross talk involving HSCs in the BM microenvironment is of fundamental importance for harnessing therapies against benign and malignant blood diseases. In this review, we summarize and evaluate recent advances in our understanding of niche heterogeneity and its influence on HSC function.
Collapse
Affiliation(s)
- Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
426
|
Wang W, Zimmerman G, Huang X, Yu S, Myers J, Wang Y, Moreton S, Nthale J, Awadallah A, Beck R, Xin W, Wald D, Huang AY, Zhou L. Aberrant Notch Signaling in the Bone Marrow Microenvironment of Acute Lymphoid Leukemia Suppresses Osteoblast-Mediated Support of Hematopoietic Niche Function. Cancer Res 2016; 76:1641-52. [PMID: 26801976 PMCID: PMC4794354 DOI: 10.1158/0008-5472.can-15-2092] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
More than half of T-cell acute lymphoblastic leukemia (T-ALL) patients harbor gain-of-function mutations in the intracellular domain of Notch1. Diffuse infiltration of the bone marrow commonly occurs in T-ALL and relapsed B-cell acute lymphoblastic leukemia patients, and is associated with worse prognosis. However, the mechanism of leukemia outgrowth in the marrow and the resulting biologic impact on hematopoiesis are poorly understood. Here, we investigated targetable cellular and molecular abnormalities in leukemia marrow stroma responsible for the suppression of normal hematopoiesis using a T-ALL mouse model and human T-ALL xenografts. We found that actively proliferating leukemia cells inhibited normal hematopoietic stem and progenitor cell (HSPC) proliferation and homing to the perivascular region. In addition, leukemia development was accompanied by the suppression of the endosteum-lining osteoblast population. We further demonstrated that aberrant Notch activation in the stroma plays an important role in negatively regulating the expression of CXLC12 on osteoblasts and their differentiation. Notch blockade reversed attenuated HSPC cycling, leukemia-associated abnormal blood lineage distribution, and thrombocytopenia as well as recovered osteoblast and HSPC abundance and improved the hematopoietic-supportive functions of osteoblasts. Finally, we confirmed that reduced osteoblast frequency and enhanced Notch signaling were also features of the marrow stroma of human ALL tissues. Collectively, our findings suggest that therapeutically targeting the leukemia-infiltrated hematopoietic niche may restore HSPC homeostasis and improve the outcome of ALL patients.
Collapse
Affiliation(s)
- Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Grant Zimmerman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Xiaoran Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Jay Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Stephen Moreton
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Joseph Nthale
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Amad Awadallah
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Rose Beck
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio. Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio. Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio. Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio. Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
427
|
Gur-Cohen S, Kollet O, Graf C, Esmon CT, Ruf W, Lapidot T. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Ann N Y Acad Sci 2016; 1370:65-81. [PMID: 26928241 DOI: 10.1111/nyas.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/protease-activated receptor-1 (PAR1) signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR(+) LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NO(low) LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling that overcomes BM EPCR(+) LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production.
Collapse
Affiliation(s)
- Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Claudine Graf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Third Medical Department, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation and Departments of Pathology and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Immunology and Microbial Science, the Scripps Research Institute, La Jolla, California
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
428
|
Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A 2016; 113:E854-63. [PMID: 26831077 DOI: 10.1073/pnas.1508541113] [Citation(s) in RCA: 532] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14(+) cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14(+) epithelial tumor cell clusters disseminate collectively to colonize distant organs.
Collapse
|
429
|
Angénieux C, Maître B, Eckly A, Lanza F, Gachet C, de la Salle H. Time-Dependent Decay of mRNA and Ribosomal RNA during Platelet Aging and Its Correlation with Translation Activity. PLoS One 2016; 11:e0148064. [PMID: 26808079 PMCID: PMC4726520 DOI: 10.1371/journal.pone.0148064] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/12/2016] [Indexed: 01/23/2023] Open
Abstract
Previous investigations have indicated that RNAs are mostly present in the minor population of the youngest platelets, whereas translation in platelets could be biologically important. To attempt to solve this paradox, we studied changes in the RNA content of reticulated platelets, i.e., young cells brightly stained by thiazole orange (TObright), a fluorescent probe for RNAs. We provoked in mice strong thrombocytopenia followed by dramatic thrombocytosis characterized by a short period with a vast majority of reticulated platelets. During thrombocytosis, the TObright platelet count rapidly reached a maximum, after which TOdim platelets accumulated, suggesting that most of the former were converted into the latter within 12 h. Experiments on platelets, freshly isolated or incubated ex vivo at 37°C, indicated that their “RNA content”, here corresponding to the amounts of extracted RNA, and the percentage of TObright platelets were positively correlated. The “RNA Content” normalized to the number of platelets could be 20 to 40 fold higher when 80–90% of the cells were reticulated (20–40 fg/platelet), than when only 5–10% of control cells were TObright (less than 1fg/platelet). TObright platelets, incubated ex vivo at 37°C or transfused into mice, became TOdim within 24 h. Ex vivo at 37°C, platelets lost about half of their ribosomal and beta actin RNAs within 6 hours, and more than 98% of them after 24 hours. Accordingly, fluorescence in situ hybridization techniques confirmed the presence of beta actin mRNAs in most reticulated-enriched platelets, but detected them in only a minor subset of control platelets. In vitro, constitutive translation decreased considerably within less than 6 hours, questioning how protein synthesis in platelets, especially in non-reticulated ones, could have a biological function in vivo. Nevertheless, constitutive transient translation in young platelets under pathological conditions characterized by a dramatic increase in circulating reticulated platelets could deserve to be investigated.
Collapse
Affiliation(s)
- Catherine Angénieux
- UMR_S949, INSERM, Strasbourg, France
- Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Blandine Maître
- UMR_S949, INSERM, Strasbourg, France
- Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Anita Eckly
- UMR_S949, INSERM, Strasbourg, France
- Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - François Lanza
- UMR_S949, INSERM, Strasbourg, France
- Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Christian Gachet
- UMR_S949, INSERM, Strasbourg, France
- Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Henri de la Salle
- UMR_S949, INSERM, Strasbourg, France
- Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
430
|
Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood 2016; 127:1234-41. [PMID: 26787737 DOI: 10.1182/blood-2015-07-607903] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Thrombocytopenia is defined as a status in which platelet numbers are reduced. Imbalance between the homeostatic regulation of platelet generation and destruction is 1 potential cause of thrombocytopenia. In adults, platelet generation is a 2-stage process entailing the differentiation of hematopoietic stem cells into mature megakaryocytes (MKs; known as megakaryopoiesis) and release of platelets from MKs (known as thrombopoiesis or platelet biogenesis). Until recently, information about the genetic defects responsible for congenital thrombocytopenia was only available for a few forms of the disease. However, investigations over the past 15 years have identified mutations in genes encoding >20 different proteins that are responsible for these disorders, which has advanced our understanding of megakaryopoiesis and thrombopoiesis. The underlying pathogenic mechanisms can be categorized as (1) defects in MK lineage commitment and differentiation, (2) defects in MK maturation, and (3) defect in platelet release. Using these developmental stage categories, we here update recently described mechanisms underlying megakaryopoiesis and thrombopoiesis and discuss the association between platelet generation systems and thrombocytopenia.
Collapse
|
431
|
Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood 2016; 127:1242-8. [PMID: 26787736 DOI: 10.1182/blood-2015-07-607945] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/01/2015] [Indexed: 12/24/2022] Open
Abstract
The classical model of hematopoiesis has long held that hematopoietic stem cells (HSCs) sit at the apex of a developmental hierarchy in which HSCs undergo long-term self-renewal while giving rise to cells of all the blood lineages. In this model, self-renewing HSCs progressively lose the capacity for self-renewal as they transit into short-term self-renewing and multipotent progenitor states, with the first major lineage commitment occurring in multipotent progenitors, thus giving rise to progenitors that initiate the myeloid and lymphoid branches of hematopoiesis. Subsequently, within the myeloid lineage, bipotent megakaryocyte-erythrocyte and granulocyte-macrophage progenitors give rise to unipotent progenitors that ultimately give rise to all mature progeny. However, over the past several years, this developmental scheme has been challenged, with the origin of megakaryocyte precursors being one of the most debated subjects. Recent studies have suggested that megakaryocytes can be generated from multiple pathways and that some differentiation pathways do not require transit through a requisite multipotent or bipotent megakaryocyte-erythrocyte progenitor stage. Indeed, some investigators have argued that HSCs contain a subset of cells with biased megakaryocyte potential, with megakaryocytes directly arising from HSCs under steady-state and stress conditions. In this review, we discuss the evidence supporting these nonclassical megakaryocytic differentiation pathways and consider their relative strengths and weaknesses as well as the technical limitations and potential pitfalls in interpreting these studies. Ultimately, such pitfalls will need to be overcome to provide a comprehensive and definitive understanding of megakaryopoiesis.
Collapse
|
432
|
Leiva M, Quintana JA, Ligos JM, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun 2016; 7:10222. [PMID: 26742601 PMCID: PMC4729861 DOI: 10.1038/ncomms10222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/17/2015] [Indexed: 01/11/2023] Open
Abstract
The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGFβ by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment. Hematopoietic stem and progenitor cell (HSPCs) proliferation is controlled by signals from the niche. Here, Leiva et al. show in vivo in mice that deletion of E-selectin ligand 1 causes quiescence of HSPCs and a reduction in niche size, which is mediated by changes of TGFß levels in the bone marrow.
Collapse
Affiliation(s)
- Magdalena Leiva
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Juan A Quintana
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - José M Ligos
- Cellomics Unit, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany
| |
Collapse
|
433
|
Schepers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 2016; 16:254-67. [PMID: 25748932 DOI: 10.1016/j.stem.2015.02.014] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on instructive cues from the bone marrow (BM) niche to maintain their quiescence and adapt blood production to the organism's needs. Alterations in the BM niche are commonly observed in blood malignancies and directly contribute to the aberrant function of disease-initiating leukemic stem cells (LSCs). Here, we review recent insights into the cellular and molecular determinants of the normal HSC niche and describe how genetic changes in stromal cells and leukemia-induced BM niche remodeling contribute to blood malignancies. Moreover, we discuss how these findings can be applied to non-cell-autonomous therapies targeting the LSC niche.
Collapse
Affiliation(s)
- Koen Schepers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Timothy B Campbell
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
434
|
Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, Kaufmann KB, McLeod J, Laurenti E, Dunant CF, McPherson JD, Stein LD, Dror Y, Dick JE. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 2016; 351:aab2116. [PMID: 26541609 PMCID: PMC4816201 DOI: 10.1126/science.aab2116] [Citation(s) in RCA: 536] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/23/2015] [Indexed: 12/26/2022]
Abstract
In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.
Collapse
Affiliation(s)
- Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sasan Zandi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Naoya Takayama
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Dobson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario Canada
| | - Kerstin B Kaufmann
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jessica McLeod
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elisa Laurenti
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Cyrille F Dunant
- Ecole Polytechnique Fédérale de Lausanne, LMC, Station 12, Lausanne, CH-1015, Switzerland
| | - John D McPherson
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario Canada
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario Canada
| | - Yigal Dror
- The Hospital for Sick Children Research Institute, University of Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
435
|
van Pel M, Fibbe WE, Schepers K. The human and murine hematopoietic stem cell niches: are they comparable? Ann N Y Acad Sci 2015; 1370:55-64. [DOI: 10.1111/nyas.12994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Melissa van Pel
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| | - Willem E. Fibbe
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| | - Koen Schepers
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden the Netherlands
| |
Collapse
|
436
|
Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood 2015; 127:616-25. [PMID: 26637787 DOI: 10.1182/blood-2015-06-653113] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022] Open
Abstract
In vitro evidence suggests that the bone marrow microenvironment (BMME) is altered in myelodysplastic syndromes (MDSs). Here, we study the BMME in MDS in vivo using a transgenic murine model of MDS with hematopoietic expression of the translocation product NUP98-HOXD13 (NHD13). This model exhibits a prolonged period of cytopenias prior to transformation to leukemia and is therefore ideal to interrogate the role of the BMME in MDS. In this model, hematopoietic stem and progenitor cells (HSPCs) were decreased in NHD13 mice by flow cytometric analysis. The reduction in the total phenotypic HSPC pool in NHD13 mice was confirmed functionally with transplantation assays. Marrow microenvironmental cellular components of the NHD13 BMME were found to be abnormal, including increases in endothelial cells and in dysfunctional mesenchymal and osteoblastic populations, whereas megakaryocytes were decreased. Both CC chemokine ligand 3 and vascular endothelial growth factor, previously shown to be increased in human MDS, were increased in NHD13 mice. To assess whether the BMME contributes to disease progression in NHD13 mice, we performed transplantation of NHD13 marrow into NHD13 mice or their wild-type (WT) littermates. WT recipients as compared with NHD13 recipients of NHD13 marrow had a lower rate of the combined outcome of progression to leukemia and death. Moreover, hematopoietic function was superior in a WT BMME as compared with an NHD13 BMME. Our data therefore demonstrate a contributory role of the BMME to disease progression in MDS and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function and overall survival.
Collapse
|
437
|
Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estapé A, Pinho S, Ciero P, Nakahara F, Ma'ayan A, Bergman A, Merad M, Frenette PS. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 2015; 351:176-80. [PMID: 26634440 DOI: 10.1126/science.aad0084] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
Whereas the cellular basis of the hematopoietic stem cell (HSC) niche in the bone marrow has been characterized, the nature of the fetal liver niche is not yet elucidated. We show that Nestin(+)NG2(+) pericytes associate with portal vessels, forming a niche promoting HSC expansion. Nestin(+)NG2(+) cells and HSCs scale during development with the fractal branching patterns of portal vessels, tributaries of the umbilical vein. After closure of the umbilical inlet at birth, portal vessels undergo a transition from Neuropilin-1(+)Ephrin-B2(+) artery to EphB4(+) vein phenotype, associated with a loss of periportal Nestin(+)NG2(+) cells and emigration of HSCs away from portal vessels. These data support a model in which HSCs are titrated against a periportal vascular niche with a fractal-like organization enabled by placental circulation.
Collapse
Affiliation(s)
- Jalal A Khan
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA. Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avital Mendelson
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yuya Kunisaki
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan Kou
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Arnal-Estapé
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Ciero
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA. Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
438
|
The Hematopoietic Niche in Myeloproliferative Neoplasms. Mediators Inflamm 2015; 2015:347270. [PMID: 26696752 PMCID: PMC4677214 DOI: 10.1155/2015/347270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022] Open
Abstract
Specialized microanatomical areas of the bone marrow provide the signals that are mandatory for the maintenance and regulation of hematopoietic stem cells (HSCs) and progenitor cells. A complex microenvironment adjacent to the marrow vasculature (vascular niche) and close to the endosteum (endosteal niche) harbors multiple cell types including mesenchymal stromal cells and their derivatives such as CAR cells expressing high levels of chemokines C-X-C motif ligand 12 and early osteoblastic lineage cells, endothelial cells, and megakaryocytes. The characterization of the cellular and molecular networks operating in the HSC niche has opened new perspectives for the understanding of the bidirectional cross-talk between HSCs and stromal cell populations in normal and malignant conditions. A structural and functional remodeling of the niche may contribute to the development of myeloproliferative neoplasms (MPN). Malignant HSCs may alter the function and survival of MSCs that do not belong to the neoplastic clone. For example, a regression of nestin+ MSCs by apoptosis has been attributed to neuroglial damage in MPN. Nonneoplastic MSCs in turn can promote aggressiveness and drug resistance of malignant cells. In the future, strategies to counteract the pathological interaction between the niche and neoplastic HSCs may offer additional treatment strategies for MPN patients.
Collapse
|
439
|
Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood 2015; 126:2443-51. [PMID: 26468230 PMCID: PMC4661168 DOI: 10.1182/blood-2015-07-533588] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
The bone marrow microenvironment contains a heterogeneous population of stromal cells organized into niches that support hematopoietic stem cells (HSCs) and other lineage-committed hematopoietic progenitors. The stem cell niche generates signals that regulate HSC self-renewal, quiescence, and differentiation. Here, we review recent studies that highlight the heterogeneity of the stromal cells that comprise stem cell niches and the complexity of the signals that they generate. We highlight emerging data that stem cell niches in the bone marrow are not static but instead are responsive to environmental stimuli. Finally, we review recent data showing that hematopoietic niches are altered in certain hematopoietic malignancies, and we discuss how these alterations might contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Laura M Calvi
- Department of Medicine and Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY; and
| | - Daniel C Link
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
440
|
Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol 2015; 12:154-68. [PMID: 26607387 DOI: 10.1038/nrrheum.2015.160] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bone marrow niche consists of stem and progenitor cells destined to become mature cells such as haematopoietic elements, osteoblasts or adipocytes. Marrow cells, influenced by endocrine, paracrine and autocrine factors, ultimately function as a unit to regulate bone remodelling and haematopoiesis. Current evidence highlights that the bone marrow niche is not merely an anatomic compartment; rather, it integrates the physiology of two distinct organ systems, the skeleton and the marrow. The niche has a hypoxic microenvironment that maintains quiescent haematopoietic stem cells (HSCs) and supports glycolytic metabolism. In response to biochemical cues and under the influence of neural, hormonal, and biochemical factors, marrow stromal elements, such as mesenchymal stromal cells (MSCs), differentiate into mature, functioning cells. However, disruption of the niche can affect cellular differentiation, resulting in disorders ranging from osteoporosis to malignancy. In this Review, we propose that the niche reflects the vitality of two tissues - bone and blood - by providing a unique environment for stem and stromal cells to flourish while simultaneously preventing disproportionate proliferation, malignant transformation or loss of the multipotent progenitors required for healing, functional immunity and growth throughout an organism's lifetime. Through a fuller understanding of the complexity of the niche in physiologic and pathologic states, the successful development of more-effective therapeutic approaches to target the niche and its cellular components for the treatment of rheumatic, endocrine, neoplastic and metabolic diseases becomes achievable.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
441
|
Gomes AC, Gomes MS. Hematopoietic niches, erythropoiesis and anemia of chronic infection. Exp Hematol 2015; 44:85-91. [PMID: 26615156 DOI: 10.1016/j.exphem.2015.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/07/2023]
Abstract
Anemia is a significant co-morbidity of chronic infections, as well as other inflammatory diseases. Anemia of chronic infection results from defective bone marrow erythropoiesis. Although the limitation of iron availability has been considered a key factor, the exact mechanisms underlying blockade in erythroid generation during infection are not fully understood. Erythropoiesis is a tightly regulated process that is very sensitive to environmental changes. During the last decade, the importance of the bone marrow hematopoietic niche has been progressively acknowledged. Several bone marrow cell types (such as macrophages, mesenchymal stem cells, and progenitor cells) and molecular mediators (such as CXCL12) have been identified as fundamental for both the maintenance of hematopoietic stem cell pluripotency and their most adequate differentiation into each hematopoietic cell lineage. Importantly, both niche-supporting cells and hematopoietic progenitors were found to be able to sense local and systemic cues to adapt the hematopoietic output to needs of the organism. Here, we review how hematopoietic progenitors and niche-supporting cells sense and respond to stress cues and suggest a potential role for the hematopoietic niche in the development of anemia of chronic infection.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- Graduate Program in Biomedical Sciences, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Salomé Gomes
- Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
442
|
Epigenetic Control of Haematopoietic Stem Cell Aging and Its Clinical Implications. Stem Cells Int 2015; 2016:5797521. [PMID: 26681950 PMCID: PMC4670691 DOI: 10.1155/2016/5797521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023] Open
Abstract
Aging, chronic inflammation, and environmental insults play an important role in a number of disease processes through alterations of the epigenome. In this review we explore how age-related changes in the epigenetic landscape can affect heterogeneity within the haematopoietic stem cell (HSC) compartment and the deriving clinical implications.
Collapse
|
443
|
Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med 2015; 21:1473-80. [PMID: 26569382 PMCID: PMC4674320 DOI: 10.1038/nm.3995] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Primary myelofibrosis (PMF) is characterized by bone marrow fibrosis, myeloproliferation, extramedullary hematopoiesis, splenomegaly and leukemic progression. Moreover, the bone marrow and spleens of individuals with PMF contain large numbers of atypical megakaryocytes that are postulated to contribute to fibrosis through the release of cytokines, including transforming growth factor (TGF)-β. Although the Janus kinase inhibitor ruxolitinib provides symptomatic relief, it does not reduce the mutant allele burden or substantially reverse fibrosis. Here we show through pharmacologic and genetic studies that aurora kinase A (AURKA) represents a new therapeutic target in PMF. Treatment with MLN8237, a selective AURKA inhibitor, promoted polyploidization and differentiation of megakaryocytes with PMF-associated mutations and had potent antifibrotic and antitumor activity in vivo in mouse models of PMF. Moreover, heterozygous deletion of Aurka was sufficient to ameliorate fibrosis and other PMF features in vivo. Our data suggest that megakaryocytes drive fibrosis in PMF and that targeting them with AURKA inhibitors has the potential to provide therapeutic benefit.
Collapse
|
444
|
Regulation of hematopoietic stem cells in the niche. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1209-15. [DOI: 10.1007/s11427-015-4960-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022]
|
445
|
Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 2015; 212:2133-46. [PMID: 26552707 PMCID: PMC4647260 DOI: 10.1084/jem.20150057] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022] Open
Abstract
Nakamura-Ishizu et al. report that megakaryocytes function as a niche to maintain HSC quiescence through CLEC-2–mediated production of Thpo and other key regulators of HSC function. These findings could enable manipulation of HSCs for clinical application. Hematopoietic stem cells (HSCs) depend on the bone marrow (BM) niche for their maintenance, proliferation, and differentiation. The BM niche is composed of nonhematopoietic and mature hematopoietic cells, including megakaryocytes (Mks). Thrombopoietin (Thpo) is a crucial cytokine produced by BM niche cells. However, the cellular source of Thpo, upon which HSCs primarily depend, is unclear. Moreover, no specific molecular pathway for the regulation of Thpo production in the BM has been identified. Here, we demonstrate that the membrane protein C-type lectin-like receptor-2 (CLEC-2) mediates the production of Thpo and other factors in Mks. Mice conditionally deleted for CLEC-2 in Mks (Clec2MkΔ/Δ) produced lower levels of Thpo in Mks. CLEC-2–deficient Mks showed down-regulation of CLEC-2–related signaling molecules Syk, Lcp2, and Plcg2. Knockdown of these molecules in cultured Mks decreased expression of Thpo. Clec2MkΔ/Δ mice exhibited reduced BM HSC quiescence and repopulation potential, along with extramedullary hematopoiesis. The low level of Thpo production may account for the decline in HSC potential in Clec2MkΔ/Δ mice, as administration of recombinant Thpo to Clec2MkΔ/Δ mice restored stem cell potential. Our study identifies CLEC-2 signaling as a novel molecular mechanism mediating the production of Thpo and other factors for the maintenance of HSCs.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Cancer Science Institute, National University of Singapore, Singapore 117599 The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Keiyo Takubo
- The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, Singapore 117599 The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto City 860-0811, Japan
| |
Collapse
|
446
|
Hypoxia regulates the hematopoietic stem cell niche. Pflugers Arch 2015; 468:13-22. [PMID: 26490456 DOI: 10.1007/s00424-015-1743-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 12/17/2022]
Abstract
Bone marrow, the site of hematopoiesis throughout adulthood, is a physiologically hypoxic organ. Thus, various biological oxygen sensors and their signaling cascades play a pivotal role in hematopoietic systems in the bone marrow under both physiologic and pathologic conditions. Hypoxia-inducible factors (HIFs) are hypoxic stress sensor proteins that are stabilized under homeostatic or stress-induced hypoxia. In the hypoxic bone marrow, HIFs play crucial roles in hematopoietic stem cells (HSCs) and in the cells of the HSC niche. The signals downstream of the HIFs maintain HSC quiescence, survival, and metabolic homeostasis through both cell-autonomous and non-cell-autonomous mechanisms. Leukemic stem cells (LSCs) hijack these delicate hypoxia-sensing mechanisms to sustain their self-renewal potential, promoting disease progression and drug resistance even under normoxic conditions. This review focuses on HIF-mediated oxygen-sensing mechanisms of adult HSCs and LSCs and their niche cells in the hypoxic bone marrow.
Collapse
|
447
|
PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med 2015; 21:1307-17. [PMID: 26457757 DOI: 10.1038/nm.3960] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation related also control retention of endothelial protein C receptor-positive (EPCR(+)) LT-HSCs in the bone marrow and their recruitment to the blood via two pathways mediated by protease activated receptor 1 (PAR1). Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to EPCR shedding mediated by tumor necrosis factor-α-converting enzyme (TACE), enhanced CXCL12-CXCR4-induced motility and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with activated protein C (aPC) that retains EPCR(+) LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing integrin VLA4 affinity and adhesion. Inhibition of NO production by aPC-EPCR-PAR1 signaling reduces progenitor cell egress from the bone marrow, increases retention of bone marrow NO(low) EPCR(+) LT-HSCs and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR in controlling NO production to balance maintenance and recruitment of bone marrow EPCR(+) LT-HSCs, with potential clinical relevance for stem cell transplantation.
Collapse
|
448
|
Lambert MP, Meng R, Xiao L, Harper DC, Marks MS, Kowalska AM, Poncz M. Intramedullary megakaryocytes internalize released platelet factor 4 and store it in alpha granules. J Thromb Haemost 2015; 13:1888-99. [PMID: 26256688 PMCID: PMC4638179 DOI: 10.1111/jth.13069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Megakaryocytes express and store platelet factor 4 (PF4) in alpha granules. In vivo, PF4 is a clinically relevant, negative regulator of megakaryopoiesis and hematopoietic stem cell replication. These findings would suggest a regulated source of free intramedullary PF4. OBJECTIVES Define the source of free intramedullary PF4 and its intramedullary life cycle. METHODS We interrogated both murine and human bone marrow-derived cells during megakaryopoiesis in vitro by using confocal microscopy and enzyme-linked immunosorbent assay. With immunohistochemistry, we examined in vivo free PF4 in murine bone marrow before and after radiation injury and in the setting of megakaryocytopenia and thrombocytopenia. RESULTS Exogenously added human PF4 is internalized by murine megakaryocytes. Human megakaryocytes similarly take up murine PF4 but not the related chemokine, platelet basic protein. Confocal microscopy shows that internalized PF4 colocalizes with endogenous PF4 in alpha granules and is available for release on thrombin stimulation. Immunohistochemistry shows free PF4 in the marrow, but not another alphagranule protein, von Willebrand factor. Free PF4 increases with radiation injury and decreases with megakaryocytopenia. Consistent with the known role of low-density lipoprotein receptor-related protein 1 in the negative paracrine effect of PF4 on megakaryopoiesis, PF4 internalization is at least partially low-density lipoprotein receptor-related protein 1 dependent. CONCLUSIONS PF4 has a complex intramedullary life cycle with important implications in megakaryopoiesis and hematopoietic stem cell replication not seen with other tested alpha granule proteins.
Collapse
Affiliation(s)
- Michele P. Lambert
- Department of Pediatrics Perelman School of Medicine, Univ. of Pennsylvania, Philadelphia, PA 19104
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ronghua Meng
- Departments of Pathology & Laboratory Medicine, and Physiology, Perelman School of Medicine, Univ. of Pennsylvania, Philadelphia, PA 19104
| | - Liqing Xiao
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Dawn C. Harper
- Departments of Pathology & Laboratory Medicine, and Physiology, Perelman School of Medicine, Univ. of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michael S. Marks
- Departments of Pathology & Laboratory Medicine, and Physiology, Perelman School of Medicine, Univ. of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Anna M. Kowalska
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | - Mortimer Poncz
- Department of Pediatrics Perelman School of Medicine, Univ. of Pennsylvania, Philadelphia, PA 19104
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
449
|
Exosome-mediated microenvironment dysregulation in leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:464-470. [PMID: 26384870 DOI: 10.1016/j.bbamcr.2015.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 12/23/2022]
Abstract
The hematopoietic stem cell (HSC) niche is composed of a complex set of stromal support cells that maintain HSCs and promote normal hematopoiesis. We now know that molecular changes within the hematopoietic niche contribute to leukemia development. Leukemia cells often reorganize the hematopoietic niche to promote and support their own survival and growth. Here we will summarize recent works that decipher the normal hematopoietic niche cellular components and describe how the leukemia-transformed niche contributes to hematological malignances. Finally, we will discuss recent publications that highlight a possible role for exosomes in the leukemia-induced niche reorganization. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
|
450
|
Xie J, Zhang C. Ex vivo expansion of hematopoietic stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:839-53. [PMID: 26246379 DOI: 10.1007/s11427-015-4895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.
Collapse
Affiliation(s)
- JingJing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, China
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|