401
|
Zhao X, Wang MY, Jiang H, Lwin T, Park PM, Gao J, Meads MB, Ren Y, Li T, Sun J, Fahmi NA, Singh S, Sehgal L, Wang X, Silva AS, Sotomayor EM, Shain KH, Cleveland JL, Wang M, Zhang W, Qi J, Shah BD, Tao J. Transcriptional programming drives Ibrutinib-resistance evolution in mantle cell lymphoma. Cell Rep 2021; 34:108870. [PMID: 33730585 PMCID: PMC8057695 DOI: 10.1016/j.celrep.2021.108870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Ibrutinib, a bruton's tyrosine kinase (BTK) inhibitor, provokes robust clinical responses in aggressive mantle cell lymphoma (MCL), yet many patients relapse with lethal Ibrutinib-resistant (IR) disease. Here, using genomic, chemical proteomic, and drug screen profiling, we report that enhancer remodeling-mediated transcriptional activation and adaptive signaling changes drive the aggressive phenotypes of IR. Accordingly, IR MCL cells are vulnerable to inhibitors of the transcriptional machinery and especially so to inhibitors of cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Further, CDK9 inhibition disables reprogrammed signaling circuits and prevents the emergence of IR in MCL. Finally, and importantly, we find that a robust and facile ex vivo image-based functional drug screening platform can predict clinical therapeutic responses of IR MCL and identify vulnerabilities that can be targeted to disable the evolution of IR.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adenine/therapeutic use
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Cyclin-Dependent Kinase 9/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic/genetics
- Humans
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/enzymology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Male
- Mice, Inbred NOD
- Mice, SCID
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein Kinases/metabolism
- RNA Polymerase II/metabolism
- Signal Transduction/drug effects
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptome/genetics
- Treatment Outcome
- Mice
Collapse
Affiliation(s)
- Xiaohong Zhao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Michelle Y Wang
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Huijuan Jiang
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tint Lwin
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul M Park
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Jing Gao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Mark B Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yuan Ren
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tao Li
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Satishkumar Singh
- Department of Internal Medicine, The Ohio State University, Columbus, OH 32816, USA
| | - Lalit Sehgal
- Department of Internal Medicine, The Ohio State University, Columbus, OH 32816, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ariosto S Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eduardo M Sotomayor
- Department of Hematology and Oncology, George Washington University, Washington, D.C. 20052, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Michael Wang
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jun Qi
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Bijal D Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Jianguo Tao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
402
|
Genome Sequence of Streptomyces sp. Strain HB-N217, Isolated from the Marine Sponge Forcepia sp. Microbiol Resour Announc 2021; 10:10/8/e01410-20. [PMID: 33632867 PMCID: PMC7909092 DOI: 10.1128/mra.01410-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genome sequence of the Forcepia sponge-derived bacterium Streptomyces sp. strain HB-N217 was determined, with approximately 8.25 Mbp and a G+C content of 72.1%. Thirty biosynthetic gene clusters that bear the capability to produce secondary metabolites were predicted. The results will aid marine natural product chemistry and sponge-microbe association studies. The genome sequence of the Forcepia sponge-derived bacterium Streptomyces sp. strain HB-N217 was determined, with approximately 8.25 Mbp and a G+C content of 72.1%. Thirty biosynthetic gene clusters that bear the capability to produce secondary metabolites were predicted. The results will aid marine natural product chemistry and sponge-microbe association studies.
Collapse
|
403
|
Oliva M, Milicchio F, King K, Benson G, Boucher C, Prosperi M. Portable nanopore analytics: are we there yet? Bioinformatics 2021; 36:4399-4405. [PMID: 32277811 DOI: 10.1093/bioinformatics/btaa237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/07/2020] [Accepted: 04/06/2020] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION Oxford Nanopore technologies (ONT) add miniaturization and real time to high-throughput sequencing. All available software for ONT data analytics run on cloud/clusters or personal computers. Instead, a linchpin to true portability is software that works on mobile devices of internet connections. Smartphones' and tablets' chipset/memory/operating systems differ from desktop computers, but software can be recompiled. We sought to understand how portable current ONT analysis methods are. RESULTS Several tools, from base-calling to genome assembly, were ported and benchmarked on an Android smartphone. Out of 23 programs, 11 succeeded. Recompilation failures included lack of standard headers and unsupported instruction sets. Only DSK, BCALM2 and Kraken were able to process files up to 16 GB, with linearly scaling CPU-times. However, peak CPU temperatures were high. In conclusion, the portability scenario is not favorable. Given the fast market growth, attention of developers to ARM chipsets and Android/iOS is warranted, as well as initiatives to implement mobile-specific libraries. AVAILABILITY AND IMPLEMENTATION The source code is freely available at: https://github.com/marco-oliva/portable-nanopore-analytics.
Collapse
Affiliation(s)
- Marco Oliva
- Department of Engineering, Roma Tre University, Rome, Italy.,Department of Computer and Information Science and Engineering
| | | | - Kaden King
- Department of Computer and Information Science and Engineering
| | - Grace Benson
- Department of Computer and Information Science and Engineering
| | | | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
404
|
Li J, Mahata B, Escobar M, Goell J, Wang K, Khemka P, Hilton IB. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat Commun 2021; 12:896. [PMID: 33563994 PMCID: PMC7873277 DOI: 10.1038/s41467-021-21188-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
Histone phosphorylation is a ubiquitous post-translational modification that allows eukaryotic cells to rapidly respond to environmental stimuli. Despite correlative evidence linking histone phosphorylation to changes in gene expression, establishing the causal role of this key epigenomic modification at diverse loci within native chromatin has been hampered by a lack of technologies enabling robust, locus-specific deposition of endogenous histone phosphorylation. To address this technological gap, here we build a programmable chromatin kinase, called dCas9-dMSK1, by directly fusing nuclease-null CRISPR/Cas9 to a hyperactive, truncated variant of the human MSK1 histone kinase. Targeting dCas9-dMSK1 to human promoters results in increased target histone phosphorylation and gene activation and demonstrates that hyperphosphorylation of histone H3 serine 28 (H3S28ph) in particular plays a causal role in the transactivation of human promoters. In addition, we uncover mediators of resistance to the BRAF V600E inhibitor PLX-4720 in human melanoma cells using genome-scale screening with dCas9-dMSK1. Collectively, our findings enable a facile way to reshape human chromatin using CRISPR/Cas9-based epigenome editing and further define the causal link between histone phosphorylation and human gene activation. Histone phosphorylation is a ubiquitous post-translational modification. Here the authors present a programmable chromatin kinase, dCas9-dMSK1, that enables controlled histone phosphorylation and specific gene activation.
Collapse
Affiliation(s)
- Jing Li
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Mario Escobar
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kaiyuan Wang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Pranav Khemka
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
405
|
Aiewsakun P, Prombutara P, Siregar TAP, Laopanupong T, Kanjanasirirat P, Khumpanied T, Borwornpinyo S, Tong-Ngam P, Tubsuwan A, Srilohasin P, Chaiprasert A, Ruangchai W, Palittapongarnpim P, Prammananan T, VanderVen BC, Ponpuak M. Transcriptional response to the host cell environment of a multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features. Sci Rep 2021; 11:3199. [PMID: 33542438 PMCID: PMC7862621 DOI: 10.1038/s41598-021-82905-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated “MKR superspreader”, and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR’s intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Thanida Laopanupong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pirut Tong-Ngam
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Prapaporn Srilohasin
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Therdsak Prammananan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand. .,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
406
|
Markus BM, Waldman BS, Lorenzi HA, Lourido S. High-Resolution Mapping of Transcription Initiation in the Asexual Stages of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 10:617998. [PMID: 33553008 PMCID: PMC7854901 DOI: 10.3389/fcimb.2020.617998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is a common parasite of humans and animals, causing life-threatening disease in the immunocompromized, fetal abnormalities when contracted during gestation, and recurrent ocular lesions in some patients. Central to the prevalence and pathogenicity of this protozoan is its ability to adapt to a broad range of environments, and to differentiate between acute and chronic stages. These processes are underpinned by a major rewiring of gene expression, yet the mechanisms that regulate transcription in this parasite are only partially characterized. Deciphering these mechanisms requires a precise and comprehensive map of transcription start sites (TSSs); however, Toxoplasma TSSs have remained incompletely defined. To address this challenge, we used 5'-end RNA sequencing to genomically assess transcription initiation in both acute and chronic stages of Toxoplasma. Here, we report an in-depth analysis of transcription initiation at promoters, and provide empirically-defined TSSs for 7603 (91%) protein-coding genes, of which only 1840 concur with existing gene models. Comparing data from acute and chronic stages, we identified instances of stage-specific alternative TSSs that putatively generate mRNA isoforms with distinct 5' termini. Analysis of the nucleotide content and nucleosome occupancy around TSSs allowed us to examine the determinants of TSS choice, and outline features of Toxoplasma promoter architecture. We also found pervasive divergent transcription at Toxoplasma promoters, clustered within the nucleosomes of highly-symmetrical phased arrays, underscoring chromatin contributions to transcription initiation. Corroborating previous observations, we asserted that Toxoplasma 5' leaders are among the longest of any eukaryote studied thus far, displaying a median length of approximately 800 nucleotides. Further highlighting the utility of a precise TSS map, we pinpointed motifs associated with transcription initiation, including the binding sites of the master regulator of chronic-stage differentiation, BFD1, and a novel motif with a similar positional arrangement present at 44% of Toxoplasma promoters. This work provides a critical resource for functional genomics in Toxoplasma, and lays down a foundation to study the interactions between genomic sequences and the regulatory factors that control transcription in this parasite.
Collapse
Affiliation(s)
- Benedikt M. Markus
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Benjamin S. Waldman
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
407
|
De-la-Cruz IM, Hallab A, Olivares-Pinto U, Tapia-López R, Velázquez-Márquez S, Piñero D, Oyama K, Usadel B, Núñez-Farfán J. Genomic signatures of the evolution of defence against its natural enemies in the poisonous and medicinal plant Datura stramonium (Solanaceae). Sci Rep 2021; 11:882. [PMID: 33441607 PMCID: PMC7806989 DOI: 10.1038/s41598-020-79194-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023] Open
Abstract
Tropane alkaloids and terpenoids are widely used in the medicine and pharmaceutic industry and evolved as chemical defenses against herbivores and pathogens in the annual herb Datura stramonium (Solanaceae). Here, we present the first draft genomes of two plants from contrasting environments of D. stramonium. Using these de novo assemblies, along with other previously published genomes from 11 Solanaceae species, we carried out comparative genomic analyses to provide insights on the genome evolution of D. stramonium within the Solanaceae family, and to elucidate adaptive genomic signatures to biotic and abiotic stresses in this plant. We also studied, in detail, the evolution of four genes of D. stramonium-Putrescine N-methyltransferase, Tropinone reductase I, Tropinone reductase II and Hyoscyamine-6S-dioxygenase-involved in the tropane alkaloid biosynthesis. Our analyses revealed that the genomes of D. stramonium show signatures of expansion, physicochemical divergence and/or positive selection on proteins related to the production of tropane alkaloids, terpenoids, and glycoalkaloids as well as on R defensive genes and other important proteins related with biotic and abiotic pressures such as defense against natural enemies and drought.
Collapse
Affiliation(s)
- I M De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - A Hallab
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Julich, Germany
| | - U Olivares-Pinto
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro, Mexico
| | - R Tapia-López
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - S Velázquez-Márquez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - D Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - K Oyama
- Escuela Nacional de Estudios Superiores and Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Universidad Nacional Autónoma de México (UNAM), Campus Morelia, Morelia, Michoacán, Mexico
| | - B Usadel
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Julich, Germany
- Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - J Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
408
|
Tan X, Liu R, Zhang Y, Wang X, Wang J, Wang H, Zhao G, Zheng M, Wen J. Integrated analysis of the methylome and transcriptome of chickens with fatty liver hemorrhagic syndrome. BMC Genomics 2021; 22:8. [PMID: 33407101 PMCID: PMC7789526 DOI: 10.1186/s12864-020-07305-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation, a biochemical modification of cytosine, has an important role in lipid metabolism. Fatty liver hemorrhagic syndrome (FLHS) is a serious disease and is tightly linked to lipid homeostasis. Herein, we compared the methylome and transcriptome of chickens with and without FLHS. Results We found genome-wide dysregulated DNA methylation pattern in which regions up- and down-stream of gene body were hypo-methylated in chickens with FLHS. A total of 4155 differentially methylated genes and 1389 differentially expressed genes were identified. Genes were focused when a negative relationship between mRNA expression and DNA methylation in promoter and gene body were detected. Based on pathway enrichment analysis, we found expression of genes related to lipogenesis and oxygenolysis (e.g., PPAR signaling pathway, fatty acid biosynthesis, and fatty acid elongation) to be up-regulated with associated down-regulated DNA methylation. In contrast, genes related to cellular junction and communication pathways (e.g., vascular smooth muscle contraction, phosphatidylinositol signaling system, and gap junction) were inhibited and with associated up-regulation of DNA methylation. Conclusions In the current study, we provide a genome-wide scale landscape of DNA methylation and gene expression. The hepatic hypo-methylation feature has been identified with FLHS chickens. By integrated analysis, the results strongly suggest that increased lipid accumulation and hepatocyte rupture are central pathways that are regulated by DNA methylation in chickens with FLHS. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07305-3.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yonghong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xicai Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hailong Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
409
|
Alvarez-Molina A, Cobo-Díaz JF, López M, Prieto M, de Toro M, Alvarez-Ordóñez A. Unraveling the emergence and population diversity of Listeria monocytogenes in a newly built meat facility through whole genome sequencing. Int J Food Microbiol 2021; 340:109043. [PMID: 33454520 DOI: 10.1016/j.ijfoodmicro.2021.109043] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
The food processing environments of a newly opened meat processing facility were sampled in ten visits carried out during its first 1.5 years of activity and analyzed for the presence of Listeria monocytogenes. A total of 18 L. monocytogenes isolates were obtained from 229 samples, and their genomes were sequenced to perform comparative genomic analyses. An increase in the frequency of isolation of L. monocytogenes and in the diversity of sequence types (STs) detected was observed along time. Although the strains isolated belonged to six different STs (ST8, ST9, ST14, ST37, ST121 and ST155), ST9 was the most abundant (8 out of 18 strains). Low (0 and 2) single nucleotide polymorphism (SNP) distances were found between two pairs of ST9 strains isolated in both cases 3 months apart from the same processing room (Lm-1267 and Lm-1705, with a 2 SNPs distance in the core genome; Lm-1265 and Lm-1706, with a 0 SNPs distance), which suggests that these strains may be persistent L. monocytogenes strains in the food processing environment. Most strains showed an in silico attenuated virulence potential either through the truncation of InlA (in 67% of the isolates) or the absence of other virulence factors involved in cell adhesion or invasion. Twelve of the eighteen L. monocytogenes isolates contained a plasmid, which ranged in size from 4 to 87 Kb and harbored stress survival, in addition to heavy metals and biocides resistance determinants. Identical or highly similar plasmids were identified for various sets of L. monocytogenes ST9 isolates, which suggests the clonal expansion and persistence of plasmid-containing ST9 strains in the processing environments of the meat facility. Finally, the analysis of the L. monocytogenes genomes available in the NCBI database, and their associated metadata, evidenced that strains from ST9 are more frequently reported in Europe, linked to foods, particularly to meat and pork products, and less represented among clinical isolates than other L. monocytogenes STs. It also showed that the ST9 strains here isolated were more closely related to the European isolates, which clustered together and separated from ST9 North American isolates.
Collapse
Affiliation(s)
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - María de Toro
- Genomics and Bioinformatics Core Facility, Biomedical Research Center of La Rioja (CIBIR), Logroño, Spain
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
410
|
Zhang F, Zuo T, Yeoh YK, Cheng FWT, Liu Q, Tang W, Cheung KCY, Yang K, Cheung CP, Mo CC, Hui M, Chan FKL, Li CK, Chan PKS, Ng SC. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. Nat Commun 2021; 12:65. [PMID: 33397897 PMCID: PMC7782528 DOI: 10.1038/s41467-020-20240-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fecal microbiota transplant (FMT) has emerged as a potential treatment for severe colitis associated with graft-versus-host disease (GvHD) following hematopoietic stem cell transplant. Bacterial engraftment from FMT donor to recipient has been reported, however the fate of fungi and viruses after FMT remains unclear. Here we report longitudinal dynamics of the gut bacteriome, mycobiome and virome in a teenager with GvHD after receiving four doses of FMT at weekly interval. After serial FMTs, the gut bacteriome, mycobiome and virome of the patient differ from compositions before FMT with variable temporal dynamics. Diversity of the gut bacterial community increases after each FMT. Gut fungal community initially shows expansion of several species followed by a decrease in diversity after multiple FMTs. In contrast, gut virome community varies substantially over time with a stable rise in diversity. The bacterium, Corynebacterium jeikeium, and Torque teno viruses, decrease after FMTs in parallel with an increase in the relative abundance of Caudovirales bacteriophages. Collectively, FMT may simultaneously impact on the various components of the gut microbiome with distinct effects.
Collapse
Affiliation(s)
- Fen Zhang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zuo
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Frankie W T Cheng
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Liu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kitty C Y Cheung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Keli Yang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pan Cheung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chow Chung Mo
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mamie Hui
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Kong Li
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Siew C Ng
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
411
|
Yingling CV, Pruyne D. FHOD formin and SRF promote post-embryonic striated muscle growth through separate pathways in C. elegans. Exp Cell Res 2021; 398:112388. [PMID: 33221314 PMCID: PMC7750259 DOI: 10.1016/j.yexcr.2020.112388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
Previous work with cultured cells has shown transcription of muscle genes by serum response factor (SRF) can be stimulated by actin polymerization driven by proteins of the formin family. However, it is not clear if endogenous formins similarly promote SRF-dependent transcription during muscle development in vivo. We tested whether formin activity promotes SRF-dependent transcription in striated muscle in the simple animal model, Caenorhabditis elegans. Our lab has shown FHOD-1 is the only formin that directly promotes sarcomere formation in the worm's striated muscle. We show here FHOD-1 and SRF homolog UNC-120 both support muscle growth and also muscle myosin II heavy chain A expression. However, while a hypomorphic unc-120 allele blunts expression of a set of striated muscle genes, these genes are largely upregulated or unchanged by absence of FHOD-1. Instead, pharmacological inhibition of the proteasome restores myosin protein levels in worms lacking FHOD-1, suggesting elevated proteolysis accounts for their myosin deficit. Interestingly, proteasome inhibition does not restore normal muscle growth to fhod-1(Δ) mutants, suggesting formin contributes to muscle growth by some alternative mechanism. Overall, we find SRF does not depend on formin to promote muscle gene transcription in a simple in vivo system.
Collapse
Affiliation(s)
- Curtis V Yingling
- Department of Cell and Developmental Biology, 107 Weiskotten Hall, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA.
| | - David Pruyne
- Department of Cell and Developmental Biology, 107 Weiskotten Hall, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA.
| |
Collapse
|
412
|
Abstract
Computers are able to systematically exploit RNA-seq data allowing us to efficiently detect RNA editing sites in a genome-wide scale. This chapter introduces a very flexible computational framework for detecting RNA editing sites in plant organelles. This framework comprises three major steps: RNA-seq data processing, RNA read alignment, and RNA editing site detection. Each step is discussed in sufficient detail to be implemented by the reader. As a study case, the framework will be used with publicly available sequencing data to detect C-to-U RNA editing sites in the coding sequences of the mitochondrial genome of Nicotiana tabacum.
Collapse
Affiliation(s)
- Alejandro A Edera
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown, Argentina.
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
413
|
Hendrix J, Epperson LE, Durbin D, Honda JR, Strong M. Intraspecies plasmid and genomic variation of Mycobacterium kubicae revealed by the complete genome sequences of two clinical isolates. Microb Genom 2021; 7:mgen000497. [PMID: 33355531 PMCID: PMC8115904 DOI: 10.1099/mgen.0.000497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium kubicae is 1 of nearly 200 species of nontuberculous mycobacteria (NTM), environmental micro-organisms that in some situations can infect humans and cause severe lung, skin and soft tissue infections. Although numerous studies have investigated the genetic variation among prevalent clinical NTM species, including Mycobacterium abscessus and Mycobacterium avium, many of the less common but clinically relevant NTM species, including M. kubicae, still lack complete genomes to serve as a comparative reference. Well-characterized representative genomes for each NTM species are important both for investigating the pathogenic potential of NTM, as well as for use in diagnostic methods, even for species that less frequently cause human disease. Here, we report the complete genomes of two M. kubicae strains, isolated from two unrelated patients. Hybrid short-read and long-read sequencing and assembly, using sequence reads from Illumina and Oxford Nanopore Technologies platforms, were utilized to resolve the chromosome and plasmid sequences of each isolate. The genome of NJH_MKUB1 had 5135 coding sequences (CDSs), a circular chromosome of length 5.3 Mb and two plasmids. The genome of NJH_MKUB2 had 5957 CDSs, a circular chromosome of 6.0 Mb and five plasmids. We compared our completed genomic assemblies to four recently released draft genomes of M. kubicae in order to better understand intraspecies genomic conservation and variability. We also identified genes implicated in drug resistance, virulence and persistence in the M. kubicae chromosome and plasmids. Virulence factors encoded in the genome and in the plasmids of M. kubicae provide a foundation for investigating how opportunistic environmental NTM may cause disease.
Collapse
Affiliation(s)
- Jo Hendrix
- Computational Bioscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - L. Elaine Epperson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - David Durbin
- Advanced Diagnostics Laboratories, National Jewish Health, Denver, CO, USA
| | - Jennifer R. Honda
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Michael Strong
- Computational Bioscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| |
Collapse
|
414
|
Dragoš A, Priyadarshini B, Hasan Z, Strube ML, Kempen PJ, Maróti G, Kaspar C, Bose B, Burton BM, Bischofs IB, Kovács ÁT. Pervasive prophage recombination occurs during evolution of spore-forming Bacilli. ISME JOURNAL 2020; 15:1344-1358. [PMID: 33343000 DOI: 10.1038/s41396-020-00854-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.
Collapse
Affiliation(s)
- Anna Dragoš
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - B Priyadarshini
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Zahraa Hasan
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | - Charlotte Kaspar
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
415
|
Makkay AM, Louyakis AS, Ram-Mohan N, Gophna U, Gogarten JP, Papke RT. Insights into gene expression changes under conditions that facilitate horizontal gene transfer (mating) of a model archaeon. Sci Rep 2020; 10:22297. [PMID: 33339886 PMCID: PMC7749143 DOI: 10.1038/s41598-020-79296-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Horizontal gene transfer is a means by which bacteria, archaea, and eukaryotes are able to trade DNA within and between species. While there are a variety of mechanisms through which this genetic exchange can take place, one means prevalent in the archaeon Haloferax volcanii involves the transient formation of cytoplasmic bridges between cells and is referred to as mating. This process can result in the exchange of very large fragments of DNA between the participating cells. Genes governing the process of mating, including triggers to initiate mating, mechanisms of cell fusion, and DNA exchange, have yet to be characterized. We used a transcriptomic approach to gain a more detailed knowledge of how mating might transpire. By examining the differential expression of genes expressed in cells harvested from mating conditions on a filter over time and comparing them to those expressed in a shaking culture, we were able to identify genes and pathways potentially associated with mating. These analyses provide new insights into both the mechanisms and barriers of mating in Hfx. volcanii.
Collapse
Affiliation(s)
- Andrea M Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Artemis S Louyakis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
416
|
Selby CP, Lindsey-Boltz LA, Yang Y, Sancar A. Mycobacteria excise DNA damage in 12- or 13-nucleotide-long oligomers by prokaryotic-type dual incisions and performs transcription-coupled repair. J Biol Chem 2020; 295:17374-17380. [PMID: 33087442 PMCID: PMC7863889 DOI: 10.1074/jbc.ac120.016325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
In nucleotide excision repair, bulky DNA lesions such as UV-induced cyclobutane pyrimidine dimers are removed from the genome by concerted dual incisions bracketing the lesion, followed by gap filling and ligation. So far, two dual-incision patterns have been discovered: the prokaryotic type, which removes the damage in 11-13-nucleotide-long oligomers, and the eukaryotic type, which removes the damage in 24-32-nucleotide-long oligomers. However, a recent study reported that the UvrC protein of Mycobacterium tuberculosis removes damage in a manner analogous to yeast and humans in a 25-mer oligonucleotide arising from incisions at 15 nt from the 3´ end and 9 nt from the 5´ end flanking the damage. To test this model, we used the in vivo excision assay and the excision repair sequencing genome-wide repair mapping method developed in our laboratory to determine the repair pattern and genome-wide repair map of Mycobacterium smegmatis We find that M. smegmatis, which possesses homologs of the Escherichia coli uvrA, uvrB, and uvrC genes, removes cyclobutane pyrimidine dimers from the genome in a manner identical to the prokaryotic pattern by incising 7 nt 5´ and 3 or 4 nt 3´ to the photoproduct, and performs transcription-coupled repair in a manner similar to E. coli.
Collapse
Affiliation(s)
- Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
417
|
Schuster A, Klein E, Neirinckx V, Knudsen AM, Fabian C, Hau AC, Dieterle M, Oudin A, Nazarov PV, Golebiewska A, Muller A, Perez-Hernandez D, Rodius S, Dittmar G, Bjerkvig R, Herold-Mende C, Klink B, Kristensen BW, Niclou SP. AN1-type zinc finger protein 3 (ZFAND3) is a transcriptional regulator that drives Glioblastoma invasion. Nat Commun 2020; 11:6366. [PMID: 33311477 PMCID: PMC7732990 DOI: 10.1038/s41467-020-20029-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023] Open
Abstract
The infiltrative nature of Glioblastoma (GBM), the most aggressive primary brain tumor, critically prevents complete surgical resection and masks tumor cells behind the blood brain barrier reducing the efficacy of systemic treatment. Here, we use a genome-wide interference screen to determine invasion-essential genes and identify the AN1/A20 zinc finger domain containing protein 3 (ZFAND3) as a crucial driver of GBM invasion. Using patient-derived cellular models, we show that loss of ZFAND3 hampers the invasive capacity of GBM, whereas ZFAND3 overexpression increases motility in cells that were initially not invasive. At the mechanistic level, we find that ZFAND3 activity requires nuclear localization and integral zinc-finger domains. Our findings indicate that ZFAND3 acts within a nuclear protein complex to activate gene transcription and regulates the promoter of invasion-related genes such as COL6A2, FN1, and NRCAM. Further investigation in ZFAND3 function in GBM and other invasive cancers is warranted. Glioblastomas (GBMs) are highly invasive brain tumours, but the underlying mechanisms of GBM invasion are unclear. Here, the authors perform an RNA interference screen and identify AN1-Type Zinc Finger protein 3 (ZFAND3) as a regulator of GBM invasion, and find that it acts through the transcriptional regulation of invasion-related genes.
Collapse
Affiliation(s)
- Anne Schuster
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Virginie Neirinckx
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Arnon Møldrup Knudsen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Carina Fabian
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Monika Dieterle
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Arnaud Muller
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Sophie Rodius
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Gunnar Dittmar
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg.,Functional Tumor Genetics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg. .,Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
418
|
Ogata N, Nishimura A, Matsuda T, Kubota M, Omasa T. Single-cell transcriptome analyses reveal heterogeneity in suspension cultures and clonal markers of CHO-K1 cells. Biotechnol Bioeng 2020; 118:944-951. [PMID: 33179258 DOI: 10.1002/bit.27624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/11/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022]
Abstract
Cell-to-cell variability in cell populations arises from a combination of intrinsic factors and extrinsic factors related to the milieu. However, the heterogeneity of high cell density suspension cultures for therapeutic protein production remains unknown. Here, we illustrate the increasing heterogeneity in the cellular transcriptome of serum-free adapted CHO K1 cells during high cell density suspension culture over time without concomitant changes in the genomic sequence. Cell cycle-dependent subpopulations and cell clusters, which typically appear in other single-cell transcriptome analyses, were not found in these suspension cultures. Our results indicate that cell division changes the intracellular microenvironment and leads to cell cycle-dependent heterogeneity. Whole mitochondrial single-cell genome sequencing showed cell-to-cell mitochondrial genome variation and heteroplasmy within cells. The mitochondrial genome sequencing method developed here is potentially useful for the validation of cell clonality. The culture time-dependent increase in cellular heterogeneity observed in this study did not show any attenuation in this increasing heterogeneity. Future advances in bioengineering such as culture upscaling, prolonged culturing, and complex culture systems will be confronted with the need to assess and control cellular heterogeneity, and the method described here may prove useful for this purpose.
Collapse
Affiliation(s)
- Norichika Ogata
- Nihon BioData Corporation, Takatsu-ku, Kawasaki, Kanagawa, Japan.,Medicale Meccanica, Inc., Takatsu-ku, Kawasaki, Kanagawa, Japan.,Manufacturing Technology Association of Biologics, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Akio Nishimura
- Nihon BioData Corporation, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Tomoko Matsuda
- Nihon BioData Corporation, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Michi Kubota
- Chitose Laboratory Corporation, Nogawa, Miyamae, Kawasaki, Kanagawa, Japan
| | - Takeshi Omasa
- Manufacturing Technology Association of Biologics, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan.,Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
419
|
Mencía-Ares O, Cabrera-Rubio R, Cobo-Díaz JF, Álvarez-Ordóñez A, Gómez-García M, Puente H, Cotter PD, Crispie F, Carvajal A, Rubio P, Argüello H. Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. MICROBIOME 2020; 8:164. [PMID: 33213522 PMCID: PMC7678069 DOI: 10.1186/s40168-020-00941-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/17/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The global threat of antimicrobial resistance (AMR) is a One Health problem impacted by antimicrobial use (AMU) for human and livestock applications. Extensive Iberian swine production is based on a more sustainable and eco-friendly management system, providing an excellent opportunity to evaluate how sustained differences in AMU impact the resistome, not only in the animals but also on the farm environment. Here, we evaluate the resistome footprint of an extensive pig farming system, maintained for decades, as compared to that of industrialized intensive pig farming by analyzing 105 fecal, environmental and slurry metagenomes from 38 farms. RESULTS Our results evidence a significantly higher abundance of antimicrobial resistance genes (ARGs) on intensive farms and a link between AMU and AMR to certain antimicrobial classes. We observed differences in the resistome across sample types, with a higher richness and dispersion of ARGs within environmental samples than on those from feces or slurry. Indeed, a deeper analysis revealed that differences among the three sample types were defined by taxa-ARGs associations. Interestingly, mobilome analyses revealed that the observed AMR differences between intensive and extensive farms could be linked to differences in the abundance of mobile genetic elements (MGEs). Thus, while there were no differences in the abundance of chromosomal-associated ARGs between intensive and extensive herds, a significantly higher abundance of integrons in the environment and plasmids, regardless of the sample type, was detected on intensive farms. CONCLUSIONS Overall, this study shows how AMU, production system, and sample type influence, mainly through MGEs, the profile and dispersion of ARGs in pig production. Video Abstract.
Collapse
Affiliation(s)
- Oscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - José Francisco Cobo-Díaz
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Manuel Gómez-García
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Héctor Puente
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain.
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Héctor Argüello
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| |
Collapse
|
420
|
Bathke J, Gauernack AS, Rupp O, Weber L, Preusser C, Lechner M, Rossbach O, Goesmann A, Evguenieva-Hackenberg E, Klug G. iCLIP analysis of RNA substrates of the archaeal exosome. BMC Genomics 2020; 21:797. [PMID: 33198623 PMCID: PMC7667871 DOI: 10.1186/s12864-020-07200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3′ to 5′ direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3′-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core. Its RNA-binding subunits aRrp4 and aDnaG confer poly(A) preference to the complex. The archaeal exosome was intensely characterized in vitro, but still little is known about its interaction with natural substrates in the cell, particularly because analysis of the transcriptome-wide interaction of an exoribonuclease with RNA is challenging. Results To determine binding sites of the exosome to RNA on a global scale, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) analysis with antibodies directed against aRrp4 and aRrp41 of the chrenarchaeon Sulfolobus solfataricus. A relatively high proportion (17–19%) of the obtained cDNA reads could not be mapped to the genome. Instead, they corresponded to adenine-rich RNA tails, which are post-transcriptionally synthesized by the exosome, and to circular RNAs (circRNAs). We identified novel circRNAs corresponding to 5′ parts of two homologous, transposase-related mRNAs. To detect preferred substrates of the exosome, the iCLIP reads were compared to the transcript abundance using RNA-Seq data. Among the strongly enriched exosome substrates were RNAs antisense to tRNAs, overlapping 3′-UTRs and RNAs containing poly(A) stretches. The majority of the read counts and crosslink sites mapped in mRNAs. Furthermore, unexpected crosslink sites clustering at 5′-ends of RNAs was detected. Conclusions In this study, RNA targets of an exoribonuclease were analyzed by iCLIP. The data documents the role of the archaeal exosome as an exoribonuclease and RNA-tailing enzyme interacting with all RNA classes, and underlines its role in mRNA turnover, which is important for adaptation of prokaryotic cells to changing environmental conditions. The clustering of crosslink sites near 5′-ends of genes suggests simultaneous binding of both RNA ends by the S. solfataricus exosome. This may serve to prevent translation of mRNAs dedicated to degradation in 3′-5′ direction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07200-x.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany.,Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - A Susann Gauernack
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Oliver Rupp
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Lennart Weber
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Christian Preusser
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology & Department of Pharmaceutical Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Alexander Goesmann
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| |
Collapse
|
421
|
Eto H, Kishi Y, Yakushiji-Kaminatsui N, Sugishita H, Utsunomiya S, Koseki H, Gotoh Y. The Polycomb group protein Ring1 regulates dorsoventral patterning of the mouse telencephalon. Nat Commun 2020; 11:5709. [PMID: 33177537 PMCID: PMC7658352 DOI: 10.1038/s41467-020-19556-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
Dorsal-ventral patterning of the mammalian telencephalon is fundamental to the formation of distinct functional regions including the neocortex and ganglionic eminence. While Bone morphogenetic protein (BMP), Wnt, and Sonic hedgehog (Shh) signaling are known to determine regional identity along the dorsoventral axis, how the region-specific expression of these morphogens is established remains unclear. Here we show that the Polycomb group (PcG) protein Ring1 contributes to the ventralization of the mouse telencephalon. Deletion of Ring1b or both Ring1a and Ring1b in neuroepithelial cells induces ectopic expression of dorsal genes, including those for BMP and Wnt ligands, as well as attenuated expression of the gene for Shh, a key morphogen for ventralization, in the ventral telencephalon. We observe PcG protein–mediated trimethylation of histone 3 at lysine-27 and binding of Ring1B at BMP and Wnt ligand genes specifically in the ventral region. Furthermore, forced activation of BMP or Wnt signaling represses Shh expression. Our results thus indicate that PcG proteins suppress BMP and Wnt signaling in a region-specific manner and thereby allow proper Shh expression and development of the ventral telencephalon. NCOMMS-19-38235B Dorsal-ventral patterning of the mammalian telencephalon is fundamental to the formation of distinct functional regions. Here, the authors find that PcG proteins suppress BMP and Wnt signaling in a region-specific manner, allowing for proper Shh expression and development of the ventral telencephalon.
Collapse
Affiliation(s)
- Hikaru Eto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Nayuta Yakushiji-Kaminatsui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hiroki Sugishita
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shun Utsunomiya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-0033, Japan.,Neuroscience 2, Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd.; Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
422
|
Wilton R, Szalay AS. Arioc: High-concurrency short-read alignment on multiple GPUs. PLoS Comput Biol 2020; 16:e1008383. [PMID: 33166275 PMCID: PMC7676696 DOI: 10.1371/journal.pcbi.1008383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 11/19/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
In large DNA sequence repositories, archival data storage is often coupled with computers that provide 40 or more CPU threads and multiple GPU (general-purpose graphics processing unit) devices. This presents an opportunity for DNA sequence alignment software to exploit high-concurrency hardware to generate short-read alignments at high speed. Arioc, a GPU-accelerated short-read aligner, can compute WGS (whole-genome sequencing) alignments ten times faster than comparable CPU-only alignment software. When two or more GPUs are available, Arioc's speed increases proportionately because the software executes concurrently on each available GPU device. We have adapted Arioc to recent multi-GPU hardware architectures that support high-bandwidth peer-to-peer memory accesses among multiple GPUs. By modifying Arioc's implementation to exploit this GPU memory architecture we obtained a further 1.8x-2.9x increase in overall alignment speeds. With this additional acceleration, Arioc computes two million short-read alignments per second in a four-GPU system; it can align the reads from a human WGS sequencer run–over 500 million 150nt paired-end reads–in less than 15 minutes. As WGS data accumulates exponentially and high-concurrency computational resources become widespread, Arioc addresses a growing need for timely computation in the short-read data analysis toolchain.
Collapse
Affiliation(s)
- Richard Wilton
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Alexander S. Szalay
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
423
|
Bansal A, Balasubramanian S, Dhawan S, Leung A, Chen Z, Natarajan R. Integrative Omics Analyses Reveal Epigenetic Memory in Diabetic Renal Cells Regulating Genes Associated With Kidney Dysfunction. Diabetes 2020; 69:2490-2502. [PMID: 32747424 PMCID: PMC7576555 DOI: 10.2337/db20-0382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes and the leading cause of end-stage renal failure. Epigenetics has been associated with metabolic memory in which prior periods of hyperglycemia enhance the future risk of developing DKD despite subsequent glycemic control. To understand the mechanistic role of such epigenetic memory in human DKD and to identify new therapeutic targets, we profiled gene expression, DNA methylation, and chromatin accessibility in kidney proximal tubule epithelial cells (PTECs) derived from subjects with and without type 2 diabetes (T2D). T2D-PTECs displayed persistent gene expression and epigenetic changes with and without transforming growth factor-β1 treatment, even after culturing in vitro under similar conditions as nondiabetic PTECs, signified by deregulation of fibrotic and transport-associated genes (TAGs). Motif analysis of differential DNA methylation and chromatin accessibility regions associated with genes differentially regulated in T2D revealed enrichment for SMAD3, HNF4A, and CTCF transcription factor binding sites. Furthermore, the downregulation of several TAGs in T2D (including CLDN10, CLDN14, CLDN16, SLC16A2, and SLC16A5) was associated with promoter hypermethylation, decreased chromatin accessibility, and reduced enrichment of HNF4A, histone H3-lysine-27-acetylation, and CTCF. Together, these integrative analyses reveal epigenetic memory underlying the deregulation of key target genes in T2D-PTECs that may contribute to sustained renal dysfunction in DKD.
Collapse
Affiliation(s)
- Anita Bansal
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Sreeram Balasubramanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
424
|
May SM, Abbott TEF, Del Arroyo AG, Reyes A, Martir G, Stephens RCM, Brealey D, Cuthbertson BH, Wijeysundera DN, Pearse RM, Ackland GL. MicroRNA signatures of perioperative myocardial injury after elective noncardiac surgery: a prospective observational mechanistic cohort study. Br J Anaesth 2020; 125:661-671. [PMID: 32718726 PMCID: PMC7678162 DOI: 10.1016/j.bja.2020.05.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Elevated plasma or serum troponin, indicating perioperative myocardial injury (PMI), is common after noncardiac surgery. However, underlying mechanisms remain unclear. Acute coronary syndrome (ACS) is associated with the early appearance of circulating microRNAs, which regulate post-translational gene expression. We hypothesised that if PMI and ACS share pathophysiological mechanisms, common microRNA signatures should be evident. METHODS We performed a nested case control study of samples obtained before and after noncardiac surgery from patients enrolled in two prospective observational studies of PMI (postoperative troponin I/T>99th centile). In cohort one, serum microRNAs were compared between patients with or without PMI, matched for age, gender, and comorbidity. Real-time polymerase chain reaction quantified (qRT-PCR) relative microRNA expression (cycle quantification [Cq] threshold <37) before and after surgery for microRNA signatures associated with ACS, blinded to PMI. In cohort two, we analysed (EdgeR) microRNA from plasma extracellular vesicles using next-generation sequencing (Illumina HiSeq 500). microRNA-messenger RNA-function pathway analysis was performed (DIANA miRPath v3.0/TopGO). RESULTS MicroRNAs were detectable in all 59 patients (median age 67 yr [61-75]; 42% male), who had similar clinical characteristics independent of developing PMI. In cohort one, serum microRNA expression increased after surgery (mean fold-change) hsa-miR-1-3p: 3.99 (95% confidence interval [CI: 1.95-8.19]; hsa-miR-133-3p: 5.67 [95% CI: 2.94-10.91]; P<0.001). These changes were not associated with PMI. Bioinformatic analysis of differentially expressed microRNAs from cohorts one (n=48) and two (n=11) identified pathways associated with adrenergic stress and calcium dysregulation, rather than ischaemia. CONCLUSIONS Circulating microRNAs associated with cardiac ischaemia were universally elevated in patients after surgery, independent of development of myocardial injury.
Collapse
Affiliation(s)
- Shaun M May
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Tom E F Abbott
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ana G Del Arroyo
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anna Reyes
- University College London NHS Hospitals Trust, London, UK
| | - Gladys Martir
- University College London NHS Hospitals Trust, London, UK
| | | | - David Brealey
- University College London NHS Hospitals Trust, London, UK
| | - Brian H Cuthbertson
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Duminda N Wijeysundera
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Rupert M Pearse
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
425
|
Nelson CW, Ardern Z, Goldberg TL, Meng C, Kuo CH, Ludwig C, Kolokotronis SO, Wei X. Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. eLife 2020; 9:e59633. [PMID: 33001029 PMCID: PMC7655111 DOI: 10.7554/elife.59633] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the emergence of novel viruses requires an accurate and comprehensive annotation of their genomes. Overlapping genes (OLGs) are common in viruses and have been associated with pandemics but are still widely overlooked. We identify and characterize ORF3d, a novel OLG in SARS-CoV-2 that is also present in Guangxi pangolin-CoVs but not other closely related pangolin-CoVs or bat-CoVs. We then document evidence of ORF3d translation, characterize its protein sequence, and conduct an evolutionary analysis at three levels: between taxa (21 members of Severe acute respiratory syndrome-related coronavirus), between human hosts (3978 SARS-CoV-2 consensus sequences), and within human hosts (401 deeply sequenced SARS-CoV-2 samples). ORF3d has been independently identified and shown to elicit a strong antibody response in COVID-19 patients. However, it has been misclassified as the unrelated gene ORF3b, leading to confusion. Our results liken ORF3d to other accessory genes in emerging viruses and highlight the importance of OLGs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/immunology
- Antibody Specificity
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Betacoronavirus/genetics
- Betacoronavirus/pathogenicity
- Betacoronavirus/physiology
- COVID-19
- China/epidemiology
- Chiroptera/virology
- Coronavirus/genetics
- Coronavirus Infections/epidemiology
- Coronavirus Infections/virology
- Epitopes/genetics
- Epitopes/immunology
- Europe/epidemiology
- Eutheria/virology
- Evolution, Molecular
- Gene Expression Regulation, Viral
- Genes, Overlapping
- Genes, Viral
- Genetic Variation
- Haplotypes/genetics
- Host Specificity/genetics
- Humans
- Models, Molecular
- Mutation
- Open Reading Frames/genetics
- Pandemics
- Phylogeny
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/virology
- Protein Biosynthesis
- Protein Conformation
- RNA, Viral/genetics
- SARS-CoV-2
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Chase W Nelson
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
- Institute for Comparative Genomics, American Museum of Natural HistoryNew YorkUnited States
| | - Zachary Ardern
- Chair for Microbial Ecology, Technical University of MunichFreisingGermany
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-MadisonMadisonUnited States
- Global Health Institute, University of Wisconsin-MadisonMadisonUnited States
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of MunichFreisingGermany
| | - Chen-Hao Kuo
- Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of MunichFreisingGermany
| | - Sergios-Orestis Kolokotronis
- Institute for Comparative Genomics, American Museum of Natural HistoryNew YorkUnited States
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences UniversityBrooklynUnited States
- Institute for Genomic Health, SUNY Downstate Health Sciences UniversityBrooklynUnited States
- Division of Infectious Diseases, Department of Medicine, SUNY Downstate Health Sciences UniversityBrooklynUnited States
| | - Xinzhu Wei
- Departments of Integrative Biology and Statistics, University of California, BerkeleyBerkeleyUnited States
- Departments of Computer Science, Human Genetics, and Computational Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
426
|
Abstract
By analyzing successive lifestyle stages of a model Rhizobium-legume symbiosis using mariner-based transposon insertion sequencing (INSeq), we have defined the genes required for rhizosphere growth, root colonization, bacterial infection, N2-fixing bacteroids, and release from legume (pea) nodules. While only 27 genes are annotated as nif and fix in Rhizobium leguminosarum, we show 603 genetic regions (593 genes, 5 transfer RNAs, and 5 RNA features) are required for the competitive ability to nodulate pea and fix N2 Of these, 146 are common to rhizosphere growth through to bacteroids. This large number of genes, defined as rhizosphere-progressive, highlights how critical successful competition in the rhizosphere is to subsequent infection and nodulation. As expected, there is also a large group (211) specific for nodule bacteria and bacteroid function. Nodule infection and bacteroid formation require genes for motility, cell envelope restructuring, nodulation signaling, N2 fixation, and metabolic adaptation. Metabolic adaptation includes urea, erythritol and aldehyde metabolism, glycogen synthesis, dicarboxylate metabolism, and glutamine synthesis (GlnII). There are 17 separate lifestyle adaptations specific to rhizosphere growth and 23 to root colonization, distinct from infection and nodule formation. These results dramatically highlight the importance of competition at multiple stages of a Rhizobium-legume symbiosis.
Collapse
|
427
|
Liou CS, Sirk SJ, Diaz CAC, Klein AP, Fischer CR, Higginbottom SK, Erez A, Donia MS, Sonnenburg JL, Sattely ES. A Metabolic Pathway for Activation of Dietary Glucosinolates by a Human Gut Symbiont. Cell 2020; 180:717-728.e19. [PMID: 32084341 DOI: 10.1016/j.cell.2020.01.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.
Collapse
Affiliation(s)
- Catherine S Liou
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shannon J Sirk
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Camil A C Diaz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrew P Klein
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Curt R Fischer
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Erez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
428
|
Gómez JM, Perfectti F, Armas C, Narbona E, González-Megías A, Navarro L, DeSoto L, Torices R. Within-individual phenotypic plasticity in flowers fosters pollination niche shift. Nat Commun 2020; 11:4019. [PMID: 32782255 PMCID: PMC7419554 DOI: 10.1038/s41467-020-17875-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain.
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain.
- Departamento de Genética, Universidad de Granada, Granada, Spain.
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Spain
| | - Lucía DeSoto
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Rubén Torices
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
429
|
Abstract
Form diversity is fueled by changes in the expression of genes that build organisms. New expression often results from the emergence of new DNA switches, known as transcriptional enhancers. Many enhancers are thought to appear through the recycling of older enhancers, a process called evolutionary co-option. Enhancer co-option is difficult to assess, and the molecular mechanisms explaining its prevalence are elusive. Using state-of-the-art quantification and analyses, we reveal that the sequences of an ancestral and a derived enhancer overlap extensively. They contain specific binding sites for regulators imparting spatial activities. We found that the two enhancers also share a site facilitating access to chromatin in a region where they overlap. The diversity of forms in multicellular organisms originates largely from the spatial redeployment of developmental genes [S. B. Carroll, Cell 134, 25–36 (2008)]. Several scenarios can explain the emergence of cis-regulatory elements that govern novel aspects of a gene expression pattern [M. Rebeiz, M. Tsiantis, Curr. Opin. Genet. Dev. 45, 115–123 (2017)]. One scenario, enhancer co-option, holds that a DNA sequence producing an ancestral regulatory activity also becomes the template for a new regulatory activity, sharing regulatory information. While enhancer co-option might fuel morphological diversification, it has rarely been documented [W. J. Glassford et al., Dev. Cell 34, 520–531 (2015)]. Moreover, if two regulatory activities are borne from the same sequence, their modularity, considered a defining feature of enhancers [J. Banerji, L. Olson, W. Schaffner, Cell 33, 729–740 (1983)], might be affected by pleiotropy. Sequence overlap may thereby play a determinant role in enhancer function and evolution. Here, we investigated this problem with two regulatory activities of the Drosophila gene yellow, the novel spot enhancer and the ancestral wing blade enhancer. We used precise and comprehensive quantification of each activity in Drosophila wings to systematically map their sequences along the locus. We show that the spot enhancer has co-opted the sequences of the wing blade enhancer. We also identified a pleiotropic site necessary for DNA accessibility of a shared regulatory region. While the evolutionary steps leading to the derived activity are still unknown, such pleiotropy suggests that enhancer accessibility could be one of the molecular mechanisms seeding evolutionary co-option.
Collapse
|
430
|
Farinas C, Jourdan PS, Paul PA, Slot JC, Daughtrey ML, Ganeshan VD, Baysal-Gurel F, Hand FP. Phlox Species Show Quantitative and Qualitative Resistance to a Population of Powdery Mildew Isolates from the Eastern United States. PHYTOPATHOLOGY 2020; 110:1410-1418. [PMID: 32252592 DOI: 10.1094/phyto-12-19-0473-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ornamental plants in the genus Phlox are extensively planted in landscapes and home gardens around the world. A major limitation to a more widespread use of these plants is their susceptibility to powdery mildew (PM). In this study, we used multilocus sequence typing (MLST) analysis to gain insights into the population diversity of 32 Phlox PM pathogen (Golovinomyces magnicellulatus and Podosphaera sp.) isolates collected from the eastern United States and relate it to the ability to overcome host resistance. Low genetic diversity and a lack of structure were found within our population. Whole genome comparison of two isolates was used to support low genetic diversity evidence found with the MLST analysis. Recombination was suggested by the incongruences observed in the six phylogenetic trees generated from the housekeeping genes TEF-1α, CSI, ITS, IGS, H3, and TUB. Contrasting with low genetic diversity, we found high phenotypic diversity when using 10 of the 32 isolates to evaluate host resistance in four different Phlox species (P. paniculata 'Dunbar Creek', P. amoena OPGC 3598, P. glaberrima OPGC 3594, and P. subulata OPGC 4185) using in vitro bioassays. We observed quantitative and qualitative resistance in all Phlox species and a consistent low disease severity in our control, P. paniculata 'Dunbar Creek'. Taken together, the results generated in this study constitute a robust screening of popular Phlox germplasm that can be incorporated into breeding programs for PM resistance and provides significant information on the evolution of PM pathogens.
Collapse
Affiliation(s)
- Coralie Farinas
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
| | - Pablo S Jourdan
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210
| | - Pierce A Paul
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
| | - Margery L Daughtrey
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901
| | - Veena Devi Ganeshan
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
| | - Fulya Baysal-Gurel
- Department of Agricultural and Environmental Sciences, Tennessee State University, McMinnville, TN 37110
| | | |
Collapse
|
431
|
Tomofuji Y, Takaba H, Suzuki HI, Benlaribi R, Martinez CDP, Abe Y, Morishita Y, Okamura T, Taguchi A, Kodama T, Takayanagi H. Chd4 choreographs self-antigen expression for central immune tolerance. Nat Immunol 2020; 21:892-901. [PMID: 32601470 DOI: 10.1038/s41590-020-0717-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Autoreactive T cells are eliminated in the thymus to prevent autoimmunity by promiscuous expression of tissue-restricted self-antigens in medullary thymic epithelial cells. This expression is dependent on the transcription factor Fezf2, as well as the transcriptional regulator Aire, but the entire picture of the transcriptional program has been obscure. Here, we found that the chromatin remodeler Chd4, also called Mi-2β, plays a key role in the self-antigen expression in medullary thymic epithelial cells. To maximize the diversity of self-antigen expression, Fezf2 and Aire utilized completely distinct transcriptional mechanisms, both of which were under the control of Chd4. Chd4 organized the promoter regions of Fezf2-dependent genes, while contributing to the Aire-mediated induction of self-antigens via super-enhancers. Mice deficient in Chd4 specifically in thymic epithelial cells exhibited autoimmune phenotypes, including T cell infiltration. Thus, Chd4 plays a critical role in integrating Fezf2- and Aire-mediated gene induction to establish central immune tolerance.
Collapse
Affiliation(s)
- Yoshihiko Tomofuji
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rayene Benlaribi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Cristian David Peña Martinez
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Abe
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Section of Animal Models, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akashi Taguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
432
|
Mohamed M, Dang NTM, Ogyama Y, Burlet N, Mugat B, Boulesteix M, Mérel V, Veber P, Salces-Ortiz J, Severac D, Pélisson A, Vieira C, Sabot F, Fablet M, Chambeyron S. A Transposon Story: From TE Content to TE Dynamic Invasion of Drosophila Genomes Using the Single-Molecule Sequencing Technology from Oxford Nanopore. Cells 2020; 9:E1776. [PMID: 32722451 PMCID: PMC7465170 DOI: 10.3390/cells9081776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
Transposable elements (TEs) are the main components of genomes. However, due to their repetitive nature, they are very difficult to study using data obtained with short-read sequencing technologies. Here, we describe an efficient pipeline to accurately recover TE insertion (TEI) sites and sequences from long reads obtained by Oxford Nanopore Technology (ONT) sequencing. With this pipeline, we could precisely describe the landscapes of the most recent TEIs in wild-type strains of Drosophila melanogaster and Drosophila simulans. Their comparison suggests that this subset of TE sequences is more similar than previously thought in these two species. The chromosome assemblies obtained using this pipeline also allowed recovering piRNA cluster sequences, which was impossible using short-read sequencing. Finally, we used our pipeline to analyze ONT sequencing data from a D. melanogaster unstable line in which LTR transposition was derepressed for 73 successive generations. We could rely on single reads to identify new insertions with intact target site duplications. Moreover, the detailed analysis of TEIs in the wild-type strains and the unstable line did not support the trap model claiming that piRNA clusters are hotspots of TE insertions.
Collapse
Affiliation(s)
- Mourdas Mohamed
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| | - Nguyet Thi-Minh Dang
- IRD/UM UMR DIADE, 911 avenue Agropolis BP64501, 34394 Montpellier, France; (N.T.-M.D.); (F.S.)
| | - Yuki Ogyama
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| | - Nelly Burlet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Bruno Mugat
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Philippe Veber
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Judit Salces-Ortiz
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Montpellier, France;
| | - Alain Pélisson
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - François Sabot
- IRD/UM UMR DIADE, 911 avenue Agropolis BP64501, 34394 Montpellier, France; (N.T.-M.D.); (F.S.)
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; (N.B.); (M.B.); (V.M.); (P.V.); (J.S.-O.); (C.V.)
| | - Séverine Chambeyron
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, 34396 Montpellier, France; (M.M.); (Y.O.); (B.M.); (A.P.)
| |
Collapse
|
433
|
Alonso P, Blondin L, Gladieux P, Mahé F, Sanguin H, Ferdinand R, Filloux D, Desmarais E, Cerqueira F, Jin B, Huang H, He X, Morel JB, Martin DP, Roumagnac P, Vernière C. Heterogeneity of the rice microbial community of the Chinese centuries-old Honghe Hani rice terraces system. Environ Microbiol 2020; 22:3429-3445. [PMID: 32510843 PMCID: PMC7497281 DOI: 10.1111/1462-2920.15114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022]
Abstract
The Honghe Hani rice terraces system (HHRTS) is a traditional rice cultivation system where Hani people cultivate remarkably diverse rice varieties. Recent introductions of modern rice varieties to the HHRTS have significantly increased the severity of rice diseases within the terraces. Here, we determine the impacts of these recent introductions on the composition of the rice-associated microbial communities. We confirm that the HHRTS contains a range of both traditional HHRTS landraces and introduced modern rice varieties and find differences between the microbial communities of these two groups. However, this introduction of modern rice varieties has not strongly impacted the overall diversity of the HHRTS rice microbial community. Furthermore, we find that the rice varieties (i.e. groups of closely related genotypes) have significantly structured the rice microbial community composition (accounting for 15%-22% of the variance) and that the core microbial community of HHRTS rice plants represents less than 3.3% of all the microbial taxa identified. Collectively, our study suggests a highly diverse HHRTS rice holobiont (host with its associated microbes) where the diversity of rice hosts mirrors the diversity of their microbial communities. Further studies will be needed to better determine how such changes might impact the sustainability of the HHRTS.
Collapse
Affiliation(s)
- Pascal Alonso
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Laurence Blondin
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Pierre Gladieux
- BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France.,INRA, BGPI, Montpellier, France
| | - Frédéric Mahé
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Hervé Sanguin
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Romain Ferdinand
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Denis Filloux
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Eric Desmarais
- ISEM, CNRS, University of Montpellier, IRD, EPHE, Montpellier, France
| | | | - Baihui Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Southwest Forestry University, Kunming, China
| | - Jean-Benoit Morel
- BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France.,INRA, BGPI, Montpellier, France
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 4579, South Africa
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Christian Vernière
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
434
|
Kaukonen D, Kaukonen R, Polit L, Hennessy BT, Lund R, Madden SF. Analysis of H3K4me3 and H3K27me3 bivalent promotors in HER2+ breast cancer cell lines reveals variations depending on estrogen receptor status and significantly correlates with gene expression. BMC Med Genomics 2020; 13:92. [PMID: 32620123 PMCID: PMC7333309 DOI: 10.1186/s12920-020-00749-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The role of histone modifications is poorly characterized in breast cancer, especially within the major subtypes. While epigenetic modifications may enhance the adaptability of a cell to both therapy and the surrounding environment, the mechanisms by which this is accomplished remains unclear. In this study we focus on the HER2 subtype and investigate two histone trimethylations that occur on the histone 3; the trimethylation located at lysine 4 (H3K4me3) found in active promoters and the trimethylation located at lysine 27 (H3K27me3) that correlates with gene repression. A bivalency state is the result of the co-presence of these two marks at the same promoter. METHODS In this study we investigated the relationship between these histone modifications in promoter regions and their proximal gene expression in HER2+ breast cancer cell lines. In addition, we assessed these patterns with respect to the presence or absence of the estrogen receptor (ER). To do this, we utilized ChIP-seq and matching RNA-seq from publicly available data for the AU565, SKBR3, MB361 and UACC812 cell lines. In order to visualize these relationships, we used KEGG pathway enrichment analysis, and Kaplan-Meyer plots. RESULTS We found that the correlation between the three types of promoter trimethylation statuses (H3K4me3, H3K27me3 or both) and the expression of the proximal genes was highly significant overall, while roughly a third of all genes are regulated by this phenomenon. We also show that there are several pathways related to cancer progression and invasion that are associated with the bivalent status of the gene promoters, and that there are specific differences between ER+ and ER- HER2+ breast cancer cell lines. These specific differences that are differentially trimethylated are also shown to be differentially expressed in patient samples. One of these genes, HIF1AN, significantly correlates with patient outcome. CONCLUSIONS This study highlights the importance of looking at epigenetic markings at a subtype specific level by characterizing the relationship between the bivalent promoters and gene expression. This provides a deeper insight into a mechanism that could lead to future targets for treatment and prognosis, along with oncogenesis and response to therapy of HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Damien Kaukonen
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Riina Kaukonen
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lélia Polit
- Institute Cochin, University Paris Descartes, Paris, France
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Riikka Lund
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
435
|
Chen YT, Zeng Y, Wang HZ, Zheng D, Kamagata Y, Narihiro T, Nobu MK, Tang YQ. Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats. MICROBIAL ECOLOGY 2020; 80:120-132. [PMID: 31982930 DOI: 10.1007/s00248-020-01485-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Propionate is one of the major intermediates in anaerobic digestion of organic waste to CO2 and CH4. In methanogenic environments, propionate is degraded through a mutualistic interaction between symbiotic propionate oxidizers and methanogens. Although temperature heavily influences the microbial ecology and performance of methanogenic processes, its effect on syntrophic interaction during propionate degradation remains poorly understood. In this study, metagenomics and metatranscriptomics were employed to compare mesophilic and thermophilic propionate degradation communities. Mesophilic propionate degradation involved multiple syntrophic organisms (Syntrophobacter, Smithella, and Syntrophomonas), pathways, interactions, and preference toward formate-based electron transfer to methanogenic partners (i.e., Methanoculleus). In thermophilic propionate degradation, one syntrophic organism predominated (Pelotomaculum), interspecies H2 transfer played a major role, and phylogenetically and metabolically diverse H2-oxidizing methanogens were present (i.e., Methanoculleus, Methanothermobacter, and Methanomassiliicoccus). This study showed that microbial interactions, metabolic pathways, and niche diversity are distinct between mesophilic and thermophilic microbial communities responsible for syntrophic propionate degradation.
Collapse
Affiliation(s)
- Ya-Ting Chen
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Hui-Zhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Dan Zheng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
436
|
Alvisi G, Brummelman J, Puccio S, Mazza EM, Tomada EP, Losurdo A, Zanon V, Peano C, Colombo FS, Scarpa A, Alloisio M, Vasanthakumar A, Roychoudhuri R, Kallikourdis M, Pagani M, Lopci E, Novellis P, Blume J, Kallies A, Veronesi G, Lugli E. IRF4 instructs effector Treg differentiation and immune suppression in human cancer. J Clin Invest 2020; 130:3137-3150. [PMID: 32125291 PMCID: PMC7260038 DOI: 10.1172/jci130426] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/26/2020] [Indexed: 12/29/2022] Open
Abstract
The molecular mechanisms responsible for the high immunosuppressive capacity of CD4+ Tregs in tumors are not well known. High-dimensional single-cell profiling of T cells from chemotherapy-naive individuals with non-small-cell lung cancer identified the transcription factor IRF4 as specifically expressed by a subset of intratumoral CD4+ effector Tregs with superior suppressive activity. In contrast to the IRF4- counterparts, IRF4+ Tregs expressed a vast array of suppressive molecules, and their presence correlated with multiple exhausted subpopulations of T cells. Integration of transcriptomic and epigenomic data revealed that IRF4, either alone or in combination with its partner BATF, directly controlled a molecular program responsible for immunosuppression in tumors. Accordingly, deletion of Irf4 exclusively in Tregs resulted in delayed tumor growth in mice while the abundance of IRF4+ Tregs correlated with poor prognosis in patients with multiple human cancers. Thus, a common mechanism underlies immunosuppression in the tumor microenvironment irrespective of the tumor type.
Collapse
Affiliation(s)
- Giorgia Alvisi
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jolanda Brummelman
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Emilia M.C. Mazza
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Elisa Paoluzzi Tomada
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Agnese Losurdo
- Humanitas Clinical and Research Center – IRCCS, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Veronica Zanon
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Clelia Peano
- Division of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy
- Genomic Unit and
| | - Federico S. Colombo
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alice Scarpa
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
- Biomedical Science Department, Humanitas University, Rozzano, Milan, Italy
| | - Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan
| | - Massimiliano Pagani
- Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi,” Milan, Italy
| | - Egesta Lopci
- Nuclear Medicine Department, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Pierluigi Novellis
- Division of Thoracic Surgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Jonas Blume
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Giulia Veronesi
- Division of Thoracic Surgery, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
437
|
Nedoluzhko AV, Slobodova NV, Sharko F, Shalgimbayeva GM, Tsygankova SV, Boulygina ES, Jeney Z, Nguyen VQ, Pham TT, Nguyen ĐT, Volkov AA, Fernandes JM, Rastorguev SM. A new strain group of common carp: The genetic differences and admixture events between Cyprinus carpio breeds. Ecol Evol 2020; 10:5431-5439. [PMID: 32607164 PMCID: PMC7319122 DOI: 10.1002/ece3.6286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Common carp (Cyprinus carpio) has an outstanding economic importance in freshwater aquaculture due to its high adaptive capacity to both food and environment. In fact, it is the third most farmed fish species worldwide according to the Food and Agriculture Organization. More than four million tons of common carp are produced annually in aquaculture, and more than a hundred thousand tons are caught from the wild. Historically, the common carp was also the first fish species to be domesticated in ancient China, and now, there is a huge variety of domestic carp strains worldwide. In the present study, we used double digestion restriction site-associated DNA sequencing to genotype several European common carp strains and showed that they are divided into two distinct groups. One of them includes central European common carp strains as well as Ponto-Caspian wild common carp populations, whereas the other group contains several common carp strains that originated in the Soviet Union, mostly as cold-resistant strains. We believe that breeding with wild Amur carp and subsequent selection of the hybrids for resistance to adverse environmental conditions was the attribute of the second group. We assessed the contribution of wild Amur carp inheritance to the common carp strains and discovered discriminating genes, which differed in allele frequencies between groups. Taken together, our results improve our current understanding of the genetic variability of common carp, namely the structure of natural and artificial carp populations, and the contribution of wild carp traits to domestic strains.
Collapse
Affiliation(s)
| | | | - Fedor Sharko
- National Research Center “Kurchatov Institute”MoscowRussia
- Institute of BioengineeringResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| | | | | | | | - Zsigmond Jeney
- National Agricultural Research and Innovation CenterResearch Institute for Fisheries and Aquaculture (HAKI)SzarvasHungary
| | - Van Q. Nguyen
- Institute of Marine Environment and ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
- Graduate University of Science and TechnologyHanoiVietnam
| | - Thế T. Pham
- Institute of Marine Environment and ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
| | - Đức T. Nguyen
- Institute of Marine Environment and ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
| | - Alexander A. Volkov
- Russian Federal Research Institute of Fisheries and OceanographyMoscowRussia
| | | | | |
Collapse
|
438
|
Cao J, Zhang Y, Dai M, Xu J, Chen L, Zhang F, Zhao N, Wang J. Profiling of Human Gut Virome with Oxford Nanopore Technology. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
439
|
Cronk Q, Soolanayakanahally R, Bräutigam K. Gene expression trajectories during male and female reproductive development in balsam poplar (Populus balsamifera L.). Sci Rep 2020; 10:8413. [PMID: 32439903 PMCID: PMC7242425 DOI: 10.1038/s41598-020-64938-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Plant reproductive development from the first appearance of reproductively committed axes through to floral maturation requires massive and rapid remarshalling of gene expression. In dioecious species such as poplar this is further complicated by divergent male and female developmental programs. We used seven time points in male and female balsam poplar (Populus balsamifera L.) buds and catkins representing the full annual flowering cycle, to elucidate the effects of time and sex on gene expression during reproductive development. Time (developmental stage) is dominant in patterning gene expression with the effect of sex nested within this. Here, we find (1) evidence for five successive waves of alterations to the chromatin landscape which may be important in setting the overall reproductive trajectory, regardless of sex. (2) Each individual developmental stage is further characterized by marked sex-differential gene expression. (3) Consistent sexually differentiated gene expression regardless of developmental stage reveal candidates for high-level regulators of sex and include the female-specific poplar ARR17 homologue. There is also consistent male-biased expression of the MADS-box genes PISTILLATA and APETALA3. Our work provides insights into expression trajectories shaping reproductive development, its potential underlying mechanisms, and sex-specific translation of the genome information into reproductive structures in balsam poplar.
Collapse
Affiliation(s)
- Quentin Cronk
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Raju Soolanayakanahally
- Indian Head Research Farm, Agriculture and Agri-Food Canada, Indian Head, SK, S0G 2K0, Canada
| | - Katharina Bräutigam
- Department of Biology, University of Toronto, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
440
|
Koreski KP, Rieder LE, McLain LM, Chaubal A, Marzluff WF, Duronio RJ. Drosophila histone locus body assembly and function involves multiple interactions. Mol Biol Cell 2020; 31:1525-1537. [PMID: 32401666 PMCID: PMC7359574 DOI: 10.1091/mbc.e20-03-0176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent (RD) histone loci and concentrates factors required for RD histone mRNA biosynthesis. The Drosophila melanogaster genome has a single locus comprised of ∼100 copies of a tandemly arrayed 5-kB repeat unit containing one copy of each of the 5 RD histone genes. To determine sequence elements required for D. melanogaster HLB formation and histone gene expression, we used transgenic gene arrays containing 12 copies of the histone repeat unit that functionally complement loss of the ∼200 endogenous RD histone genes. A 12x histone gene array in which all H3-H4 promoters were replaced with H2a-H2b promoters (12xPR) does not form an HLB or express high levels of RD histone mRNA in the presence of the endogenous histone genes. In contrast, this same transgenic array is active in HLB assembly and RD histone gene expression in the absence of the endogenous RD histone genes and rescues the lethality caused by homozygous deletion of the RD histone locus. The HLB formed in the absence of endogenous RD histone genes on the mutant 12x array contains all known factors present in the wild-type HLB including CLAMP, which normally binds to GAGA repeats in the H3-H4 promoter. These data suggest that multiple protein–protein and/or protein–DNA interactions contribute to HLB formation, and that the large number of endogenous RD histone gene copies sequester available factor(s) from attenuated transgenic arrays, thereby preventing HLB formation and gene expression on these arrays.
Collapse
Affiliation(s)
- Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Lyndsey M McLain
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
441
|
Kakebeen AD, Chitsazan AD, Williams MC, Saunders LM, Wills AE. Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors. eLife 2020; 9:e52648. [PMID: 32338593 PMCID: PMC7250574 DOI: 10.7554/elife.52648] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/25/2020] [Indexed: 12/24/2022] Open
Abstract
Vertebrate appendage regeneration requires precisely coordinated remodeling of the transcriptional landscape to enable the growth and differentiation of new tissue, a process executed over multiple days and across dozens of cell types. The heterogeneity of tissues and temporally-sensitive fate decisions involved has made it difficult to articulate the gene regulatory programs enabling regeneration of individual cell types. To better understand how a regenerative program is fulfilled by neural progenitor cells (NPCs) of the spinal cord, we analyzed pax6-expressing NPCs isolated from regenerating Xenopus tropicalis tails. By intersecting chromatin accessibility data with single-cell transcriptomics, we find that NPCs place an early priority on neuronal differentiation. Late in regeneration, the priority returns to proliferation. Our analyses identify Pbx3 and Meis1 as critical regulators of tail regeneration and axon organization. Overall, we use transcriptional regulatory dynamics to present a new model for cell fate decisions and their regulators in NPCs during regeneration.
Collapse
Affiliation(s)
| | | | | | - Lauren M Saunders
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | | |
Collapse
|
442
|
Genomic Evidence for Formate Metabolism by Chloroflexi as the Key to Unlocking Deep Carbon in Lost City Microbial Ecosystems. Appl Environ Microbiol 2020; 86:AEM.02583-19. [PMID: 32033949 PMCID: PMC7117926 DOI: 10.1128/aem.02583-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor. The Lost City hydrothermal field on the Mid-Atlantic Ridge supports dense microbial life on the lofty calcium carbonate chimney structures. The vent field is fueled by chemical reactions between the ultramafic rock under the chimneys and ambient seawater. These serpentinization reactions provide reducing power (as hydrogen gas) and organic compounds that can serve as microbial food; the most abundant of these are methane and formate. Previous studies have characterized the interior of the chimneys as a single-species biofilm inhabited by the Lost City Methanosarcinales, but they also indicated that this methanogen is unable to metabolize formate. The new metagenomic results presented here indicate that carbon cycling in these Lost City chimney biofilms could depend on the metabolism of formate by Chloroflexi populations. Additionally, we present evidence for metabolically diverse, formate-utilizing Sulfurovum populations and new genomic and phylogenetic insights into the unique Lost City Methanosarcinales. IMPORTANCE Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor.
Collapse
|
443
|
Raffeiner P, Hart JR, García-Caballero D, Bar-Peled L, Weinberg MS, Vogt PK. An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. Proc Natl Acad Sci U S A 2020; 117:6571-6579. [PMID: 32156728 PMCID: PMC7104257 DOI: 10.1073/pnas.1921786117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MYC controls the transcription of large numbers of long noncoding RNAs (lncRNAs). Since MYC is a ubiquitous oncoprotein, some of these lncRNAs probably play a significant role in cancer. We applied CRISPR interference (CRISPRi) to the identification of MYC-regulated lncRNAs that are required for MYC-driven cell proliferation in the P493-6 and RAMOS human lymphoid cell lines. We identified 320 noncoding loci that play positive roles in cell growth. Transcriptional repression of any one of these lncRNAs reduces the proliferative capacity of the cells. Selected hits were validated by RT-qPCR and in CRISPRi competition assays with individual GFP-expressing sgRNA constructs. We also showed binding of MYC to the promoter of two candidate genes by chromatin immunoprecipitation. In the course of our studies, we discovered that the repressor domain SID (SIN3-interacting domain) derived from the MXD1 protein is highly effective in P493-6 and RAMOS cells in terms of the number of guides depleted in library screening and the extent of the induced transcriptional repression. In the cell lines used, SID is superior to the KRAB repressor domain, which serves routinely as a transcriptional repressor domain in CRISPRi. The SID transcriptional repressor domain is effective as a fusion to the MS2 aptamer binding protein MCP, allowing the construction of a doxycycline-regulatable CRISPRi system that allows controlled repression of targeted genes and will facilitate the functional analysis of growth-promoting lncRNAs.
Collapse
Affiliation(s)
- Philipp Raffeiner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Jonathan R Hart
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Liron Bar-Peled
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Marc S Weinberg
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Peter K Vogt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
444
|
Satou Y, Nakamura R, Yu D, Yoshida R, Hamada M, Fujie M, Hisata K, Takeda H, Satoh N. A Nearly Complete Genome of Ciona intestinalis Type A (C. robusta) Reveals the Contribution of Inversion to Chromosomal Evolution in the Genus Ciona. Genome Biol Evol 2020; 11:3144-3157. [PMID: 31621849 PMCID: PMC6836712 DOI: 10.1093/gbe/evz228] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Since its initial publication in 2002, the genome of Ciona intestinalis type A (Ciona robusta), the first genome sequence of an invertebrate chordate, has provided a valuable resource for a wide range of biological studies, including developmental biology, evolutionary biology, and neuroscience. The genome assembly was updated in 2008, and it included 68% of the sequence information in 14 pairs of chromosomes. However, a more contiguous genome is required for analyses of higher order genomic structure and of chromosomal evolution. Here, we provide a new genome assembly for an inbred line of this animal, constructed with short and long sequencing reads and Hi-C data. In this latest assembly, over 95% of the 123 Mb of sequence data was included in the chromosomes. Short sequencing reads predicted a genome size of 114-120 Mb; therefore, it is likely that the current assembly contains almost the entire genome, although this estimate of genome size was smaller than previous estimates. Remapping of the Hi-C data onto the new assembly revealed a large inversion in the genome of the inbred line. Moreover, a comparison of this genome assembly with that of Ciona savignyi, a different species in the same genus, revealed many chromosomal inversions between these two Ciona species, suggesting that such inversions have occurred frequently and have contributed to chromosomal evolution of Ciona species. Thus, the present assembly greatly improves an essential resource for genome-wide studies of ascidians.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Reiko Yoshida
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
445
|
The genomic survey of Tc1-like elements in the silkworm microsporidia Nosema bombycis. Acta Parasitol 2020; 65:193-202. [PMID: 31832922 DOI: 10.2478/s11686-019-00153-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/29/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Microsporidia Nosema bombycis is the destructive pathogen in the production of sericulture. The Tc1/mariner elements belong to important component of DNA transposon. METHODS The genomic data of N. bombycis and related Nosema species were screened to identify the Tc1-like elements and analyzed the phylogenetic relationship, based on bioinformational analysis. High-throughput data of transcriptomes and small RNAs were used to evaluate the expressed level and potential rasiRNAs for the Tc1-like elements of N. bombycis. RESULTS Twelve complete Tc1-like elements belonging to DD34,E clade is confirmed in the whole genome of N. bombycis, and divided into two branches. Six of them are sole in N. bombycis and thereby would be the molecular marker to differentiate this species from others Nosema spp. Most of the elements have the transcriptional active and are the source of sRNAs. CONCLUSION Abundant Tc1-like elements in N. bombycis reflect the expansion of transposons for this genomic characters, comparing with others Nosema spp. The finding of distribution, phylogeny and potential functional activity for Tc1Nbs in N. bombycis will help understanding the role of the DNA transposon in genomic evolution of microsporidia.
Collapse
|
446
|
Tao SQ, Auer L, Morin E, Liang YM, Duplessis S. Transcriptome Analysis of Apple Leaves Infected by the Rust Fungus Gymnosporangium yamadae at Two Sporulation Stages. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:444-461. [PMID: 31765287 DOI: 10.1094/mpmi-07-19-0208-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apple rust disease caused by Gymnosporangium yamadae is one of the major threats to apple orchards. In this study, dual RNA-seq analysis was conducted to simultaneously monitor gene expression profiles of G. yamadae and infected apple leaves during the formation of rust spermogonia and aecia. The molecular mechanisms underlying this compatible interaction at 10 and 30 days postinoculation (dpi) indicate a significant reaction from the host plant and comprise detoxication pathways at the earliest stage and the induction of secondary metabolism pathways at 30 dpi. Such host reactions have been previously reported in other rust pathosystems and may represent a general reaction to rust infection. G. yamadae transcript profiling indicates a conserved genetic program in spermogonia and aecia that is shared with other rust fungi, whereas secretome prediction reveals the presence of specific secreted candidate effector proteins expressed during apple infection. Unexpectedly, the survey of fungal unigenes in the transcriptome assemblies of inoculated and mock-inoculated apple leaves reveals that G. yamadae infection may modify the fungal community composition in the apple phyllosphere at 30 dpi. Collectively, our results provide novel insights into the compatible apple-G. yamadae interaction and advance the knowledge of this heteroecious demicyclic rust fungus.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University
| | - Sébastien Duplessis
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
447
|
Zhu W, Winter MG, Spiga L, Hughes ER, Chanin R, Mulgaonkar A, Pennington J, Maas M, Behrendt CL, Kim J, Sun X, Beiting DP, Hooper LV, Winter SE. Xenosiderophore Utilization Promotes Bacteroides thetaiotaomicron Resilience during Colitis. Cell Host Microbe 2020; 27:376-388.e8. [PMID: 32075741 DOI: 10.1016/j.chom.2020.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
During short-lived perturbations, such as inflammation, the gut microbiota exhibits resilience and reverts to its original configuration. Although microbial access to the micronutrient iron is decreased during colitis, pathogens can scavenge iron by using siderophores. How commensal bacteria acquire iron during gut inflammation is incompletely understood. Curiously, the human commensal Bacteroides thetaiotaomicron does not produce siderophores but grows under iron-limiting conditions using enterobacterial siderophores. Using RNA-seq, we identify B. thetaiotaomicron genes that were upregulated during Salmonella-induced gut inflammation and were predicted to be involved in iron uptake. Mutants in the xusABC locus (BT2063-2065) were defective for xenosiderophore-mediated iron uptake in vitro. In the normal mouse gut, the XusABC system was dispensable, while a xusA mutant colonized poorly during colitis. This work identifies xenosiderophore utilization as a critical mechanism for B. thetaiotaomicron to sustain colonization during inflammation and suggests a mechanism of how interphylum iron metabolism contributes to gut microbiota resilience.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria G Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth R Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachael Chanin
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aditi Mulgaonkar
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenelle Pennington
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michelle Maas
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
448
|
Zhou W, Spoto M, Hardy R, Guan C, Fleming E, Larson PJ, Brown JS, Oh J. Host-Specific Evolutionary and Transmission Dynamics Shape the Functional Diversification of Staphylococcus epidermidis in Human Skin. Cell 2020; 180:454-470.e18. [PMID: 32004459 PMCID: PMC7192218 DOI: 10.1016/j.cell.2020.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.
Collapse
Affiliation(s)
- Wei Zhou
- The Jackson Laboratory, Farmington, CT, USA
| | | | | | | | | | | | | | - Julia Oh
- The Jackson Laboratory, Farmington, CT, USA.
| |
Collapse
|
449
|
Lawrence SD, Novak NG, Shao J, Ghosh SKB, Blackburn MB. Cabbage looper (Trichoplusia ni Hübner) labial glands contain unique bacterial flora in contrast with their alimentary canal, mandibular glands, and Malpighian tubules. Microbiologyopen 2020; 9:e994. [PMID: 31990149 PMCID: PMC7142365 DOI: 10.1002/mbo3.994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/05/2022] Open
Abstract
In recent years, several studies have examined the gut microbiome of lepidopteran larvae and how factors such as host plant affect it, and in turn, how gut bacteria affect host plant responses to herbivory. In addition, other studies have detailed how secretions of the labial (salivary) glands can alter host plant defense responses. We examined the gut microbiome of the cabbage looper (Trichoplusia ni) feeding on collards (Brassica oleracea) and separately analyzed the microbiomes of various organs that open directly into the alimentary canal, including the labial glands, mandibular glands, and the Malpighian tubules. In this study, the gut microbiome of T. ni was found to be generally consistent with those of other lepidopteran larvae in prior studies. The greatest diversity of bacteria appeared in the Firmicutes, Actinobacteria, Proteobacteria, and Bacteriodetes. Well‐represented genera included Staphylococcus, Streptococcus, Corynebacterium, Pseudomonas, Diaphorobacter, Methylobacterium, Flavobacterium, and Cloacibacterium. Across all organs, two amplicon sequence variants (ASVs) associated with the genera Diaphorobacter and Cloacibacterium appeared to be most abundant. In terms of the most prevalent ASVs, the alimentary canal, Malpighian tubules, and mandibular glands appeared to have similar complements of bacteria, with relatively few significant differences evident. However, aside from the Diaphorobacter and Cloacibacterium ASVs common to all the organs, the labial glands appeared to possess a distinctive complement of bacteria which was absent or poorly represented in the other organs. Among these were representatives of the Pseudomonas, Flavobacterium, Caulobacterium, Anaerococcus, and Methylobacterium. These results suggest that the labial glands present bacteria with different selective pressures than those occurring in the mandibular gland, Malpighian tubules and the alimentary canal. Given the documented effects that labial gland secretions and the gut microbiome can exert on host plant defenses, the effects exerted by the bacteria inhabiting the labial glands themselves deserve further study.
Collapse
Affiliation(s)
- Susan D Lawrence
- Invasive Insect Biocontrol and Behavior Lab, USDA-ARS, Beltsville, Maryland
| | - Nicole G Novak
- Invasive Insect Biocontrol and Behavior Lab, USDA-ARS, Beltsville, Maryland
| | | | - Saikat Kumar B Ghosh
- School of Medicine, Center for Inflammatory and Vascular Diseases, University of Maryland, Baltimore, Maryland
| | | |
Collapse
|
450
|
Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606-D612. [PMID: 31667520 PMCID: PMC7145515 DOI: 10.1093/nar/gkz943] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
The PathoSystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center funded by the National Institute of Allergy and Infectious Diseases (https://www.patricbrc.org). PATRIC supports bioinformatic analyses of all bacteria with a special emphasis on pathogens, offering a rich comparative analysis environment that provides users with access to over 250 000 uniformly annotated and publicly available genomes with curated metadata. PATRIC offers web-based visualization and comparative analysis tools, a private workspace in which users can analyze their own data in the context of the public collections, services that streamline complex bioinformatic workflows and command-line tools for bulk data analysis. Over the past several years, as genomic and other omics-related experiments have become more cost-effective and widespread, we have observed considerable growth in the usage of and demand for easy-to-use, publicly available bioinformatic tools and services. Here we report the recent updates to the PATRIC resource, including new web-based comparative analysis tools, eight new services and the release of a command-line interface to access, query and analyze data.
Collapse
Affiliation(s)
- James J Davis
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alice R Wattam
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904, USA
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, 11562 Cairo, Egypt
| | - Thomas Brettin
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Ralph Butler
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
- Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Rory M Butler
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Neal Conrad
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Allan Dickerman
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904, USA
| | - Emily M Dietrich
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | - Andrew Guard
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ronald W Kenyon
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904, USA
| | - Dustin Machi
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904, USA
| | - Chunhong Mao
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904, USA
| | - Dan Murphy-Olson
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marcus Nguyen
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Eric K Nordberg
- Transportation Institute, Virginia Tech University, Blacksburg, VA 24061, USA
| | - Gary J Olsen
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Robert D Olson
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jamie C Overbeek
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Ross Overbeek
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Bruce Parrello
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gordon D Pusch
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | - Maulik Shukla
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Chris Thomas
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Andrew S Warren
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904, USA
| | - Fangfang Xia
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Dawen Xie
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904, USA
| | - Hyunseung Yoo
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Rick Stevens
- Computing Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
- University of Chicago, Department of Computer Science, Chicago, IL 60637, USA
| |
Collapse
|