401
|
Kukol A, Li P, Estrela P, Ko-Ferrigno P, Migliorato P. Label-free electrical detection of DNA hybridization for the example of influenza virus gene sequences. Anal Biochem 2008; 374:143-53. [PMID: 18023405 DOI: 10.1016/j.ab.2007.10.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
Microarrays based on DNA-DNA hybridization are potentially useful for detecting and subtyping viruses but require fluorescence labeling and imaging equipment. We investigated a label-free electrical detection system using electrochemical impedance spectroscopy that is able to detect hybridization of DNA target sequences derived from avian H5N1 influenza virus to gold surface-attached single-stranded DNA oligonucleotide probes. A 23-nt probe is able to detect a 120-nt base fragment of the influenza A hemagglutinin gene sequence. We describe a novel method of data analysis that is compatible with automatic measurement without operator input, contrary to curve fitting used in conventional electrochemical impedance spectroscopy (EIS) data analysis. A systematic investigation of the detection signal for various spacer molecules between the oligonucleotide probe and the gold surface revealed that the signal/background ratio improves as the length of the spacer increases, with a 12- to 18-atom spacer element being optimal. The optimal spacer molecule allows a detection limit between 30 and 100 fmol DNA with a macroscopic gold disc electrode of 1 mm radius. The dependence of the detection signal on the concentration of a 23-nt target follows a binding curve with an approximate 1:1 stoichiometry and a dissociation constant of KD=13+/-4 nM at 295 K.
Collapse
Affiliation(s)
- Andreas Kukol
- School of Life Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | | | | | | | | |
Collapse
|
402
|
Somvanshi P, Singh V, Seth P. Prediction of Epitopes in Hemagglutinin and Neuraminidase Proteins of Influenza A Virus H5N1 Strain: A Clue for Diagnostic and Vaccine Development. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2008; 12:61-9. [DOI: 10.1089/omi.2007.0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Pallavi Somvanshi
- Biotech Park, Sector-G Jankipuram, Lucknow-226021, Uttar Pradesh, India
| | - Vijay Singh
- Department of Biotechnology, National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - P.K. Seth
- CEO, Biotech Park, Sector-G Jankipuram, Lucknow-226021, Uttar Pradesh, India
| |
Collapse
|
403
|
NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens. J Virol 2008; 82:4544-53. [PMID: 18305037 DOI: 10.1128/jvi.02642-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence determinants for highly pathogenic avian influenza viruses (AIVs) are considered multigenic, although the best characterized virulence factor is the hemagglutinin (HA) cleavage site. The capability of influenza viruses to reassort gene segments is one potential way for new viruses to emerge with different virulence characteristics. To evaluate the role of other gene segments in virulence, we used reverse genetics to generate two H5N1 recombinant viruses with differing pathogenicity in chickens. Single-gene reassortants were used to determine which viral genes contribute to the altered virulence. Exchange of the PB1, PB2, and NP genes impacted replication of the reassortant viruses while also affecting the expression of specific host genes. Disruption of the parental virus' functional polymerase complexes by exchanging PB1 or PB2 genes decreased viral replication in tissues and consequently the pathogenicity of the viruses. In contrast, exchanging the NP gene greatly increased viral replication and expanded tissue tropism, thus resulting in decreased mean death times. Infection with the NP reassortant virus also resulted in the upregulation of gamma interferon and inducible nitric oxide synthase gene expression. In addition to the impact of PB1, PB2, and NP on viral replication, the HA, NS, and M genes also contributed to the pathogenesis of the reassortant viruses. While the pathogenesis of AIVs in chickens is clearly dependent on the interaction of multiple gene products, we have shown that single-gene reassortment events are sufficient to alter the virulence of AIVs in chickens.
Collapse
|
404
|
Campitelli L, Di Martino A, Spagnolo D, Smith GJD, Di Trani L, Facchini M, De Marco MA, Foni E, Chiapponi C, Martin AM, Chen H, Guan Y, Delogu M, Donatelli I. Molecular analysis of avian H7 influenza viruses circulating in Eurasia in 1999-2005: detection of multiple reassortant virus genotypes. J Gen Virol 2008; 89:48-59. [PMID: 18089728 DOI: 10.1099/vir.0.83111-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian influenza infections by high and low pathogenicity H7 influenza viruses have caused several outbreaks in European poultry in recent years, also resulting in human infections. Although in some cases the source of H7 strains from domestic poultry was shown to be the viruses circulating in the wild bird reservoir, a thorough characterization of the entire genome of H7 viruses from both wild and domestic Eurasian birds, and their evolutionary relationships, has not been conducted. In our study, we have analysed low pathogenicity H7 influenza strains isolated from wild and domestic ducks in Italy and southern China and compared them with those from reared terrestrial poultry such as chicken and turkey. Phylogenetic analysis demonstrated that the H7 haemagglutinin genes were all closely related to each other, whereas the remaining genes could be divided into two or more phylogenetic groups. Almost each year different H7 reassortant viruses were identified and in at least two different years more than one H7 genotype co-circulated. A recent precursor in wild waterfowl was identified for most of the gene segments of terrestrial poultry viruses. Our data suggest that reassortment allows avian influenza viruses, in their natural reservoir, to increase their genetic diversity. In turn this might help avian influenza viruses colonize a wider range of hosts, including domestic poultry.
Collapse
Affiliation(s)
- Laura Campitelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases and Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Angela Di Martino
- Department of Infectious, Parasitic and Immune-Mediated Diseases and Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Domenico Spagnolo
- Department of Infectious, Parasitic and Immune-Mediated Diseases and Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gavin J D Smith
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Livia Di Trani
- Department of Infectious, Parasitic and Immune-Mediated Diseases and Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marzia Facchini
- Department of Infectious, Parasitic and Immune-Mediated Diseases and Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Alessandra De Marco
- Department of Veterinary Public Health and Animal Pathology, Faculty of Veterinary Medicine, University of Bologna, Ozzano Emilia (BO), Italy
| | - Emanuela Foni
- Istituto Zooprofilattico Sperimentale of Lombardia and Emilia, Parma, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale of Lombardia and Emilia, Parma, Italy
| | - Ana Moreno Martin
- Istituto Zooprofilattico Sperimentale of Lombardia and Emilia, Brescia, Italy
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Mauro Delogu
- Department of Veterinary Public Health and Animal Pathology, Faculty of Veterinary Medicine, University of Bologna, Ozzano Emilia (BO), Italy
| | - Isabella Donatelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases and Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
405
|
Vana G, Westover KM. Origin of the 1918 Spanish influenza virus: a comparative genomic analysis. Mol Phylogenet Evol 2008; 47:1100-10. [PMID: 18353690 DOI: 10.1016/j.ympev.2008.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 12/09/2022]
Abstract
To test the avian-origin hypothesis of the 1918 Spanish influenza virus we surveyed influenza sequences from a broad taxonomic distribution and collected 65 full-length genomes representing avian, human and "classic" swine H1N1 lineages in addition to numerous other swine (H1N2, H3N1, and H3N2), human (H2N2, H3N2, and H5N1), and avian (H1N1, H4N6, H5N1, H6N1, H6N6, H6N8, H7N3, H8N4, H9N2, and H13N2) subtypes. Amino acids from all eight segments were concatenated, aligned, and used for phylogenetic analyses. In addition, the genes of the polymerase complex (PB1, PB2, and PA) were analyzed individually. All of our results showed the Brevig-Mission/1918 strain in a position basal to the rest of the clade containing human H1N1s and were consistent with a reassortment hypothesis for the origin of the 1918 virus. Our genome phylogeny further indicates a sister relationship with the "classic" swine H1N1 lineage. The individual PB1, PB2, and PA phylogenies were consistent with reassortment/recombination hypotheses for these genes. These results demonstrate the importance of using a complete-genome approach for addressing the avian-origin hypothesis and predicting the emergence of new pandemic influenza strains.
Collapse
Affiliation(s)
- Geoff Vana
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | | |
Collapse
|
406
|
Zohari S, Gyarmati P, Thorén P, Czifra G, Bröjer C, Belák S, Berg M. Genetic characterization of the NS gene indicates co-circulation of two sub-lineages of highly pathogenic avian influenza virus of H5N1 subtype in Northern Europe in 2006. Virus Genes 2008; 36:117-25. [PMID: 18172752 DOI: 10.1007/s11262-007-0188-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/13/2007] [Indexed: 01/05/2023]
Abstract
The non-structural (NS) gene of highly pathogenic avian influenza viruses of the H5N1 subtype (HPAI-H5N1) isolated in Baltic Sea area of Sweden in 2006 was studied. The phylogenetic analysis data demonstrated that two distinct sub-lineages of HPAI-H5N1 were circulating during the outbreak in Northern Europe in Spring 2006. Sub-lineage I viruses fell into the same clade as viruses found in Denmark and Germany and formed a sub-clade which also included viruses isolated in the Russian Federation in late 2005. Sub-lineage II viruses formed a sub-clade closely related to European, Middle Eastern and African isolates reported in 2006. Analysis of the inferred amino acid sequences of the NS1 protein showed a deletion of five amino acids at positions 80-84. No viruses represented in this study contained Glu92 in the NS1 and all isolates contained the avian-like ESKV amino acid sequences at the NS1 C-terminal end. Sub-lineage I isolates contained unique substitutions V194I in NS1 and G63E in Nuclear export protein (NEP).
Collapse
Affiliation(s)
- Siamak Zohari
- Department of Virology, Joint Research and Development in Virology, National Veterinary Institute (SVA), Ulls väg 2B, 751 89 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
407
|
Hale BG, Batty IH, Downes CP, Randall RE. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation. J Biol Chem 2008; 283:1372-1380. [PMID: 18029356 DOI: 10.1074/jbc.m708862200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.
Collapse
Affiliation(s)
- Benjamin G Hale
- Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom.
| | - Ian H Batty
- Division of Molecular Physiology, Faculty of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - C Peter Downes
- Division of Molecular Physiology, Faculty of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Richard E Randall
- Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
408
|
Proteotyping: A new approach studying influenza virus evolution at the protein level. Virol Sin 2008. [DOI: 10.1007/s12250-007-0039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
409
|
Abstract
The identification of the Ras superfamily of small molecular weight GTPases (G-proteins) has opened up new fields in cancer biology, immunity and infectious disease research. Because of their ubiquitous role in cellular homeostasis, small G-proteins are common targets for several pathogens, including bacteria. It is well known that pathogenic bacteria have evolved virulence factors that chemically modify GTPases or directly mimic the activities of key regulatory proteins. However, recent studies now suggest that bacterial 'effector' proteins can also mimic the activities of Ras small G-proteins despite their lack of guanine nucleotide binding or GTPase enzymatic activity. The study of these unique pathogenic strategies continues to reveal novel mechanistic insights into host cellular communication networks and the role of small G-protein signalling during human infectious disease.
Collapse
Affiliation(s)
- Neal M Alto
- Department of Microbiology, University of Texas Southwestern, Dallas, Texas 75235-9028, USA.
| |
Collapse
|
410
|
Mathew B, Daniel R, Campbell I. Swine-Origin Influenza A (H1N1) Pandemic Revisited. Libyan J Med 2008. [DOI: 10.3402/ljm.v4i3.4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- B.C. Mathew
- Department of Medical Biochemistry, Faculty of Medicine, El Gabal El Gharby University, Gharyan, Libya
| | - R.S. Daniel
- Department of Medical Biochemistry, Faculty of Medicine, El Gabal El Gharby University, Gharyan, Libya
| | - I.W. Campbell
- Victoria Hospital, Bute Medical School, University of St Andrews, Scotland, United Kingdom
| |
Collapse
|
411
|
Roberts B. Influenza: Biology, Infection, and Control. EMERGING INFECTIONS IN ASIA 2008. [PMCID: PMC7120528 DOI: 10.1007/978-0-387-75722-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The growth of the human population has profoundly affected the global ecosystem, influencing the animal population balance, the availability of fresh water, arable land, biotic production, and atmospheric gases. The human ecological impact has significantly accelerated the evolutionary change of numerous organisms. For example, the production of human medicine and food has resulted in the rapid evolution of drug-resistant pathogenic organisms as well as plants and insects resistant to pesticides (Palumbi, 2001). Recently, the nutritional support of the human population has relied on the vast monoculture of domestic mammals and birds, which has facilitated the emergence of pathogenic enzootic organisms that infect both animals and humans. This chapter will focus on the global threat to human health represented by the highly contagious enzootic virus influenza. It will also discuss current efforts and future improvements to protect humans from global influenza epidemics and pandemics.
Collapse
|
412
|
Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D. The influenza virus resource at the National Center for Biotechnology Information. J Virol 2008; 82:596-601. [PMID: 17942553 PMCID: PMC2224563 DOI: 10.1128/jvi.02005-07] [Citation(s) in RCA: 758] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yiming Bao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | | | | | | | | | | | |
Collapse
|
413
|
Abstract
Influenza viruses are significant human respiratory pathogens that cause both seasonal, endemic infections and periodic, unpredictable pandemics. The worst pandemic on record, in 1918, killed approximately 50 million people worldwide. Human infections caused by H5N1 highly pathogenic avian influenza viruses have raised concern about the emergence of another pandemic. The histopathology of fatal influenza virus pneumonias as documented over the past 120 years is reviewed here. Strikingly, the spectrum of pathologic changes described in the 1918 influenza pandemic is not significantly different from the histopathology observed in other less lethal pandemics or even in deaths occurring during seasonal influenza outbreaks.
Collapse
Affiliation(s)
- Jeffery K Taubenberger
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
414
|
Heikkinen LS, Kazlauskas A, Melén K, Wagner R, Ziegler T, Julkunen I, Saksela K. Avian and 1918 Spanish influenza a virus NS1 proteins bind to Crk/CrkL Src homology 3 domains to activate host cell signaling. J Biol Chem 2007; 283:5719-27. [PMID: 18165234 DOI: 10.1074/jbc.m707195200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NS1 (nonstructural protein 1) is an important virulence factor of the influenza A virus. We observed that NS1 proteins of the 1918 pandemic virus (A/Brevig Mission/1/18) and many avian influenza A viruses contain a consensus Src homology 3 (SH3) domain-binding motif. Screening of a comprehensive human SH3 phage library revealed the N-terminal SH3 of Crk and CrkL as the preferred binding partners. Studies with recombinant proteins confirmed avid binding of NS1 proteins of the 1918 virus and a representative avian H7N3 strain to Crk/CrkL SH3 but not to other SH3 domains tested, including p85alpha and p85beta. Endogenous CrkL readily co-precipitated NS1 from cells infected with the H7N3 virus. In transfected cells association with CrkL was observed for NS1 of the 1918 and H7N3 viruses but not A/Udorn/72 or A/WSN/33 NS1 lacking this sequence motif. SH3 binding was dispensable for suppression of interferon-induced gene expression by NS1 but was associated with enhanced phosphatidylinositol 3-kinase signaling, as evidenced by increased Akt phosphorylation. Thus, the Spanish Flu virus resembles avian influenza A viruses in its ability to recruit Crk/CrkL to modulate host cell signaling.
Collapse
Affiliation(s)
- Leena S Heikkinen
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 3 POB 21, FIN-00014, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
415
|
Mukhtar MM, Rasool ST, Song D, Zhu C, Hao Q, Zhu Y, Wu J. Origin of highly pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and recipient viruses. J Gen Virol 2007; 88:3094-3099. [PMID: 17947535 DOI: 10.1099/vir.0.83129-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic analysis of all eight genes of two Nanchang avian influenza viruses, A/Duck/Nanchang/1681/92 (H3N8-1681) and A/Duck/Nanchang/1904/92 (H7N1-1904), isolated from Jiangxi province, China, in 1992, showed that six internal genes of H3N8-1681 virus and five internal (except NS gene) genes of H7N1-1904 virus were closely similar to A/Goose/Guangdong/1/96 (H5N1) virus, the first highly pathogenic avian influenza (HPAI) virus of subtype H5N1 isolated in Asia. The neuraminidase (NA) gene of Gs/Gd/1/96 had the highest genetic similarity with A/Duck/Hokkaido/55/96 (H1N1-55) virus. The haemagglutinin (HA) gene of Gs/Gd/1/96 virus might have originated as a result of mutation of H5 HA gene from A/Swan/Hokkaido/51/96 (H5N3-51)-like viruses. The PA gene of H5N3-51 virus had the highest similarity with Gs/Gd/1/96. This study explains the origin of first Asian HPAI H5N1 virus in Guangdong by the reassortment of Nanchang (close to Guangdong) and Hokkaido (Japan) (H1N1-55 and H5N3-51) viruses. Genetic characteristics of donor and recipient viruses were also studied.
Collapse
Affiliation(s)
- Muhammad Mahmood Mukhtar
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Sahibzada T Rasool
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Degui Song
- College of Life Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Chengliang Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Qian Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
416
|
Cinatl J, Michaelis M, Doerr HW. The threat of avian influenza A (H5N1). Part I: Epidemiologic concerns and virulence determinants. Med Microbiol Immunol 2007; 196:181-90. [PMID: 17492465 DOI: 10.1007/s00430-007-0042-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Indexed: 11/26/2022]
Abstract
Among emerging and re-emerging infectious diseases, influenza constitutes one of the major threats to mankind. In this review series epidemiologic, virologic and pathologic concerns raised by infections of humans with avian influenza virus A/H5N1 are discussed. This first part concentrates on epidemiologic concerns and virulence determinants. H5N1 spread over the world and caused a series of fowl pest outbreaks. Significant human-to-human transmissions have not been observed yet. Mutations that make the virus more compatible with human-to-human transmission may occur at any time. Nevertheless, no one can currently predict with certainty whether H5N1 will become a human pandemic virus.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Institute for Medical Virology, Hospital of the Johann Wolfgang Goethe University, Paul-Ehrlich-Str. 40, 60596, Frankfurt/M, Germany.
| | | | | |
Collapse
|
417
|
Cinatl J, Michaelis M, Doerr HW. The threat of avian influenza a (H5N1): part II: Clues to pathogenicity and pathology. Med Microbiol Immunol 2007; 196:191-201. [PMID: 17406895 DOI: 10.1007/s00430-007-0045-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Indexed: 12/21/2022]
Abstract
Among emerging and re-emerging infectious diseases, influenza constitutes one of the major threats to mankind. In this review series epidemiologic, virologic and pathologic concerns raised by infections of humans with avian influenza virus A/H5N1 are discussed. The second part focuses on experimental and clinical results, which give insights in the pathogenic mechanisms of H5N1 infection in humans. H5N1 is poorly transmitted to humans. However, H5N1-induced disease is very severe. More information on the role entry barriers, H5N1 target cells and on H5N1-induced modulation of the host immune response is needed to learn more about the determinants of H5N1 pathogenicity.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Institute for Medical Virology, Hospital of the Johann Wolfgang Goethe University, Paul-Ehrlich-Str. 40, 60596, Frankfurt/M, Germany.
| | | | | |
Collapse
|
418
|
Heiny AT, Miotto O, Srinivasan KN, Khan AM, Zhang GL, Brusic V, Tan TW, August JT. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS One 2007; 2:e1190. [PMID: 18030326 PMCID: PMC2065905 DOI: 10.1371/journal.pone.0001190] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 10/17/2007] [Indexed: 01/16/2023] Open
Abstract
Background Influenza A viruses generate an extreme genetic diversity through point mutation and gene segment exchange, resulting in many new strains that emerge from the animal reservoirs, among which was the recent highly pathogenic H5N1 virus. This genetic diversity also endows these viruses with a dynamic adaptability to their habitats, one result being the rapid selection of genomic variants that resist the immune responses of infected hosts. With the possibility of an influenza A pandemic, a critical need is a vaccine that will recognize and protect against any influenza A pathogen. One feasible approach is a vaccine containing conserved immunogenic protein sequences that represent the genotypic diversity of all current and future avian and human influenza viruses as an alternative to current vaccines that address only the known circulating virus strains. Methodology/Principal Findings Methodologies for large-scale analysis of the evolutionary variability of the influenza A virus proteins recorded in public databases were developed and used to elucidate the amino acid sequence diversity and conservation of 36,343 sequences of the 11 viral proteins of the recorded virus isolates of the past 30 years. Technologies were also applied to identify the conserved amino acid sequences from isolates of the past decade, and to evaluate the predicted human lymphocyte antigen (HLA) supertype-restricted class I and II T-cell epitopes of the conserved sequences. Fifty-five (55) sequences of 9 or more amino acids of the polymerases (PB2, PB1, and PA), nucleoprotein (NP), and matrix 1 (M1) proteins were completely conserved in at least 80%, many in 95 to 100%, of the avian and human influenza A virus isolates despite the marked evolutionary variability of the viruses. Almost all (50) of these conserved sequences contained putative supertype HLA class I or class II epitopes as predicted by 4 peptide-HLA binding algorithms. Additionally, data of the Immune Epitope Database (IEDB) include 29 experimentally identified HLA class I and II T-cell epitopes present in 14 of the conserved sequences. Conclusions/Significance This study of all reported influenza A virus protein sequences, avian and human, has identified 55 highly conserved sequences, most of which are predicted to have immune relevance as T-cell epitopes. This is a necessary first step in the design and analysis of a polyepitope, pan-influenza A vaccine. In addition to the application described herein, these technologies can be applied to other pathogens and to other therapeutic modalities designed to attack DNA, RNA, or protein sequences critical to pathogen function.
Collapse
Affiliation(s)
- A. T. Heiny
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olivo Miotto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Systems Science, National University of Singapore, Singapore, Singapore
| | - Kellathur N. Srinivasan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Maryland, United States of America
- Product Evaluation and Registration Division, Centre for Drug Administration, Health Sciences Authority, Singapore, Singapore
| | - Asif M. Khan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - G. L. Zhang
- Institute for Infocomm Research, Singapore, Singapore
| | - Vladimir Brusic
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
419
|
Du X, Wang Z, Wu A, Song L, Cao Y, Hang H, Jiang T. Networks of genomic co-occurrence capture characteristics of human influenza A (H3N2) evolution. Genome Res 2007; 18:178-87. [PMID: 18032723 DOI: 10.1101/gr.6969007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The recent availability of full genomic sequence data for a large number of human influenza A (H3N2) virus isolates over many years provides us an opportunity to analyze human influenza virus evolution by considering all gene segments simultaneously. However, such analysis requires development of new computational models that can capture the complex evolutionary features over the entire genome. By analyzing nucleotide co-occurrence over the entire genome of human H3N2 viruses, we have developed a network model to describe H3N2 virus evolutionary patterns and dynamics. The network model effectively captures the evolutionary antigenic features of H3N2 virus at the whole-genome level and accurately describes the complex evolutionary patterns between individual gene segments. Our analyses show that the co-occurring nucleotide modules apparently underpin the dynamics of human H3N2 evolution and that amino acid substitutions corresponding to nucleotide co-changes cluster preferentially in known antigenic regions of the viral HA. Therefore, our study demonstrates that nucleotide co-occurrence networks represent a powerful method for tracking influenza A virus evolution and that cooperative genomic interaction is a major force underlying influenza virus evolution.
Collapse
Affiliation(s)
- Xiangjun Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
420
|
Krauss S, Obert CA, Franks J, Walker D, Jones K, Seiler P, Niles L, Pryor SP, Obenauer JC, Naeve CW, Widjaja L, Webby RJ, Webster RG. Influenza in migratory birds and evidence of limited intercontinental virus exchange. PLoS Pathog 2007; 3:e167. [PMID: 17997603 PMCID: PMC2065878 DOI: 10.1371/journal.ppat.0030167] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 09/24/2007] [Indexed: 12/21/2022] Open
Abstract
Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay (New Jersey), United States, and examine the frequency of exchange of influenza viruses between the Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248 complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the Americas by migratory birds is likely to be a rare event.
Collapse
Affiliation(s)
- Scott Krauss
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Caroline A Obert
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - John Franks
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - David Walker
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kelly Jones
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Patrick Seiler
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Larry Niles
- Conserve Wildlife Foundation, Bordentown, New Jersey, United States of America
| | - S. Paul Pryor
- Environment Canada, Canadian Wildlife Service, Edmonton, Alberta, Canada
| | - John C Obenauer
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Clayton W Naeve
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Linda Widjaja
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
421
|
Han GZ, He CQ, Ding NZ, Ma LY. Identification of a natural multi-recombinant of Newcastle disease virus. Virology 2007; 371:54-60. [PMID: 18028976 DOI: 10.1016/j.virol.2007.09.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/03/2007] [Accepted: 09/27/2007] [Indexed: 01/05/2023]
Abstract
Newcastle disease (ND), caused by ND virus (NDV), is one of the most serious illnesses of birds, particularly chickens, and has been one of the major causes of economic losses in the poultry industry. Live vaccines are widely used to prevent chicken from NDV all over the world. Given the implications that recombination has for RNA virus evolution, it is clearly important to determine the extent to which recombination plays a role in NDV evolution. In this study, we performed the phylogenetic and recombination analysis on complete NDV genomes. A natural multi-recombinant cockatoo/Indonesia/14698/90 (AY562985) was identified. Its two minor parental-like strains might be from the NDV vaccine lineage and anhinga/U.S.(Fl)/44083/93 lineage, respectively. Our study suggests that recombination plays a role in NDV evolution. Especially, the study also suggests that live vaccines have capacity to play roles in shaping NDV evolution by homologous recombination with circulating virus.
Collapse
Affiliation(s)
- Guan-Zhu Han
- College of Life Science, Shandong Normal University, Shandong Province, Jinan, 250014, China
| | | | | | | |
Collapse
|
422
|
Zhirnov OP, Poyarkov SV, Vorob'eva IV, Safonova OA, Malyshev NA, Klenk HD. Segment NS of influenza A virus contains an additional gene NSP in positive-sense orientation. DOKL BIOCHEM BIOPHYS 2007; 414:127-33. [PMID: 17695319 DOI: 10.1134/s1607672907030106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- O P Zhirnov
- Ivanovsky Research Institute of Virology, Russian Academy of Medical Sciences, ul. Gamalei 16, Moscow, 123098 Russia
| | | | | | | | | | | |
Collapse
|
423
|
McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, Yewdell JW, McCullers JA. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2007; 2:240-9. [PMID: 18005742 PMCID: PMC2083255 DOI: 10.1016/j.chom.2007.09.001] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/31/2007] [Accepted: 09/05/2007] [Indexed: 12/14/2022]
Abstract
Secondary bacterial pneumonia frequently claimed the lives of victims during the devastating 1918 influenza A virus pandemic. Little is known about the viral factors contributing to the lethality of the 1918 pandemic. Here we show that expression of the viral accessory protein PB1-F2 enhances inflammation during primary viral infection of mice and increases both the frequency and severity of secondary bacterial pneumonia. The priming effect of PB1-F2 on bacterial pneumonia could be recapitulated in mice by intranasal delivery of a synthetic peptide derived from the C-terminal portion of the PB1-F2. Relative to its isogenic parent, an influenza virus engineered to express a PB1-F2 with coding changes matching the 1918 pandemic strain was more virulent in mice, induced more pulmonary immunopathology, and led to more severe secondary bacterial pneumonia. These findings help explain both the unparalleled virulence of the 1918 strain and the high incidence of fatal pneumonia during the pandemic.
Collapse
Affiliation(s)
- Julie L. McAuley
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN
| | - Felicita Hornung
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Kelli L. Boyd
- Animal Resources Center, St. Jude Children’s Research Hospital, Memphis, TN
| | - Amber M. Smith
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| | - Raelene McKeon
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jack Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Jonathan A. McCullers
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
424
|
Homology modeling and examination of the effect of the D92E mutation on the H5N1 nonstructural protein NS1 effector domain. J Mol Model 2007; 13:1237-44. [DOI: 10.1007/s00894-007-0245-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 09/19/2007] [Indexed: 11/25/2022]
|
425
|
Evseenko VA, Bukin EK, Zaykovskaya AV, Sharshov KA, Ternovoi VA, Ignatyev GM, Shestopalov AM. Experimental infection of H5N1 HPAI in BALB/c mice. Virol J 2007; 4:77. [PMID: 17662125 PMCID: PMC1973068 DOI: 10.1186/1743-422x-4-77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/27/2007] [Indexed: 11/28/2022] Open
Abstract
Background In 2005 huge epizooty of H5N1 HPAI occurred in Russia. It had been clear that territory of Russia becoming endemic for H5N1 HPAI. In 2006 several outbreaks have occurred. To develop new vaccines and antiviral therapies, animal models had to be investigated. We choose highly pathogenic strain for these studies. Results A/duck/Tuva/01/06 belongs to Quinghai-like group viruses. Molecular markers – cleavage site, K627 in PB2 characterize this virus as highly pathogenic. This data was confirmed by direct pathogenic tests: IVPI = 3.0, MLD50 = 1,4Log10EID50. Also molecular analysis showed sensivity of the virus to adamantanes and neuraminidase inhibitors. Serological analysis showed wide cross-reactivity of this virus with sera produced to H5N1 HPAI viruses isolated earlier in South-East Asia. Mean time to death of infected animals was 8,19+/-0,18 days. First time acute delayed hemorrhagic syndrome was observed in mice lethal model. Hypercytokinemia was determined by elevated sera levels of IFN-gamma, IL-6, IL-10. Conclusion Assuming all obtained data we can conclude that basic model parameters were characterized and virus A/duck/Tuva/01/06 can be used to evaluate anti-influenza vaccines and therapeutics.
Collapse
Affiliation(s)
- Vasily A Evseenko
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor, Koltsovo, Russia
| | - Eugeny K Bukin
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor, Koltsovo, Russia
| | - Anna V Zaykovskaya
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor, Koltsovo, Russia
| | - Kirill A Sharshov
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor, Koltsovo, Russia
| | - Vladimir A Ternovoi
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor, Koltsovo, Russia
| | - George M Ignatyev
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor, Koltsovo, Russia
| | - Alexander M Shestopalov
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor, Koltsovo, Russia
| |
Collapse
|
426
|
Hammond MC, Harris BZ, Lim WA, Bartlett PA. Beta strand peptidomimetics as potent PDZ domain ligands. ACTA ACUST UNITED AC 2007; 13:1247-51. [PMID: 17185220 DOI: 10.1016/j.chembiol.2006.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
The search for general strategies for inhibiting protein-protein interactions has been stimulated by recognition of the key role they play in virtually every process of living systems. Multiprotein complex assembly and localization by PDZ domain-containing proteins exemplify processes critical to cell physiology and function that are mediated by beta strand association. Here we describe the development of substituted "@-tides," protease-resistant peptidomimetics incorporating conformationally restricted amino acid surrogates that reproduce the hydrogen-bonding pattern and side-chain functionality of a beta strand. The synthetic flexibility and generality of the substituted @-tide design was demonstrated by the synthesis of a panel of ligands for the alpha1-syntrophin PDZ domain. The rational design of a small molecule of unprecedented affinity for the PDZ domain suggests that these peptidomimetics may provide a general method for inhibiting protein-protein interactions involving extended peptide chains.
Collapse
Affiliation(s)
- Ming C Hammond
- Center for New Directions in Organic Synthesis, Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
427
|
Pavesi A. Pattern of nucleotide substitution in the overlapping nonstructural genes of influenza A virus and implication for the genetic diversity of the H5N1 subtype. Gene 2007; 402:28-34. [PMID: 17825505 DOI: 10.1016/j.gene.2007.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/24/2022]
Abstract
In viruses under strong pressure to minimize genome size, overlapping genes represent a fine strategy to condense a maximum amount of information into short nucleotide sequences. Here, we investigated the evolution of the genes encoding the nonstructural proteins NS1 and NS2 of influenza A virus (IAV), which are one of the best characterized cases of gene overlap. By a detailed analysis of about four hundred sequences grouped into 11 IAV subtypes, we found that the overlapping coding region of the NS1 gene shows a significant increase of the rate of nonsynonymous change, with respect to its nonoverlapping counterpart. The same feature was observed in the overlapping coding region of the NS2 gene. Such a variation pattern, which implies the occurrence of several amino acid substitutions in the protein regions encoded by overlapping frames, is different from the pattern of constrained evolution typical of other viral overlapping-gene systems. Amino acid sequence analysis of the NS1 and NS2 proteins revealed that some nonsynonymous substitutions, located in the region of gene overlap, play a critical role in shaping the genetic diversity of the highly pathogenic subtype H5N1. Since both proteins contribute to disease pathogenesis by affecting many virus and host-cell processes, information provided by this study should be useful to highlight the impact of nonstructural gene variation on the pathogenicity of H5N1 viruses.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Genetics, Biology of Microorganisms, Anthropology, Evolution, University of Parma, V. le G. P. Usberti 11/A, I-43100 Parma, Italy.
| |
Collapse
|
428
|
Finkelstein DB, Mukatira S, Mehta PK, Obenauer JC, Su X, Webster RG, Naeve CW. Persistent host markers in pandemic and H5N1 influenza viruses. J Virol 2007; 81:10292-9. [PMID: 17652405 PMCID: PMC2045501 DOI: 10.1128/jvi.00921-07] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Avian influenza viruses have adapted to human hosts, causing pandemics in humans. The key host-specific amino acid mutations required for an avian influenza virus to function in humans are unknown. Through multiple-sequence alignment and statistical testing of each aligned amino acid, we identified markers that discriminate human influenza viruses from avian influenza viruses. We applied strict thresholds to select only markers which are highly preserved in human influenza virus isolates over time. We found that a subset of these persistent host markers exist in all human pandemic influenza virus sequences from 1918, 1957, and 1968, while others are acquired as the virus becomes a seasonal influenza virus. We also show that human H5N1 influenza viruses are significantly more likely to contain the amino acid predominant in human strains for a few persistent host markers than avian H5N1 influenza viruses. This sporadic enrichment of amino acids present in human-hosted viruses may indicate that some H5N1 viruses have made modest adaptations to their new hosts in the recent past. The markers reported here should be useful in monitoring potential pandemic influenza viruses.
Collapse
Affiliation(s)
- David B Finkelstein
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, and Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | |
Collapse
|
429
|
Amonsin A, Songserm T, Chutinimitkul S, Jam-On R, Sae-Heng N, Pariyothorn N, Payungporn S, Theamboonlers A, Poovorawan Y. Genetic analysis of influenza A virus (H5N1) derived from domestic cat and dog in Thailand. Arch Virol 2007; 152:1925-1933. [PMID: 17577611 DOI: 10.1007/s00705-007-1010-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Complete genome sequences of H5N1 viruses derived from a domestic cat "A/Cat/Thailand/KU-02/04" and dog "A/Dog/Thailand/KU-08/04" were comprehensively analyzed and compared with H5N1 isolates obtained during the 2004 and 2005 outbreaks. Phylogenetic analysis of both cat and dog viruses revealed that they are closely related to the H5N1 viruses recovered from avian influenza outbreaks of the same period. Genetic analysis of 8 viral gene segments showed some evidence of virulence in mammalian species. In summary, the H5N1 viruses that infected a domestic cat and dog are highly pathogenic avian influenza viruses that are virulent in mammalian species, potentially indicating transmission of H5N1 viruses from domestic animals to humans.
Collapse
Affiliation(s)
- A Amonsin
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Abstract
MOTIVATION The Alvira tool is a general purpose multiple sequence alignment viewer with a special emphasis on the comparative analysis of viral genomes. This new tool has been devised specifically to address the problem of the simultaneous analysis of a large number of viral strains. The multiple alignment is embedded in a graph that can be explored at different levels of resolution. AVAILABILITY The Alvira software is available at: http://bioinfo.genopole-toulouse.prd.fr/Alvira. SUPPLEMENTARY INFORMATION A tutorial is available at Alvira's homepage.
Collapse
Affiliation(s)
- François Enault
- Laboratoire de Génétique Cellulaire INRA UMR444, Chemin de Borde Rouge BP52627 31326 Castanet Tolosan Cedex, France.
| | | | | | | |
Collapse
|
431
|
Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Tatusova T. FLAN: a web server for influenza virus genome annotation. Nucleic Acids Res 2007; 35:W280-4. [PMID: 17545199 PMCID: PMC1933127 DOI: 10.1093/nar/gkm354] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
FLAN (short for FLu ANnotation), the NCBI web server for genome annotation of influenza virus (http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/annotation.cgi) is a tool for user-provided influenza A virus or influenza B virus sequences. It can validate and predict protein sequences encoded by an input flu sequence. The input sequence is BLASTed against a database containing influenza sequences to determine the virus type (A or B), segment (1 through 8) and subtype for the hemagglutinin and neuraminidase segments of influenza A virus. For each segment/subtype of the viruses, a set of sample protein sequences is maintained. The input sequence is then aligned against the corresponding protein set with a 'Protein to nucleotide alignment tool' (ProSplign). The translated product from the best alignment to the sample protein sequence is used as the predicted protein encoded by the input sequence. The output can be a feature table that can be used for sequence submission to GenBank (by Sequin or tbl2asn), a GenBank flat file, or the predicted protein sequences in FASTA format. A message showing the length of the input sequence, the predicted virus type, segment and subtype for the hemagglutinin and neuraminidase segments of Influenza A virus will also be displayed.
Collapse
|
432
|
Bragstad K, Jørgensen PH, Handberg K, Hammer AS, Kabell S, Fomsgaard A. First introduction of highly pathogenic H5N1 avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe. Virol J 2007; 4:43. [PMID: 17498292 PMCID: PMC1876802 DOI: 10.1186/1743-422x-4-43] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 05/11/2007] [Indexed: 11/11/2022] Open
Abstract
Background Since 2005 highly pathogenic (HP) avian influenza A H5N1 viruses have spread from Asia to Africa and Europe infecting poultry, humans and wild birds. HP H5N1 virus was isolated in Denmark for the first time in March 2006. A total of 44 wild birds were found positive for the HP H5N1 infection. In addition, one case was reported in a backyard poultry flock. Results Full-genome characterisation of nine isolates revealed that the Danish H5N1 viruses were highly similar to German H5N1 isolates in all genes from the same time period. The haemagglutinin gene grouped phylogenetically in H5 clade 2 subclade 2 and closest relatives besides the German isolates were isolates from Croatia in 2005, Nigeria and Niger in 2006 and isolates from Astrakhan in Russia 2006. The German and Danish isolates shared unique substitutions in the NA, PB1 and NS2 proteins. Conclusion The first case of HP H5N1 infection of wild and domestic birds in Denmark was experienced in March 2006. This is the first full genome characterisation of HP H5N1 avian influenza A virus in the Nordic countries. The Danish viruses from this time period have their origin from the wild bird strains from Qinghai in 2005. These viruses may have been introduced to the Northern Europe through unusual migration due to the cold weather in Eastern Europe at that time.
Collapse
Affiliation(s)
- Karoline Bragstad
- Laboratory for Virus Research and Development, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Poul H Jørgensen
- National Veterinary Institute, Technical University of Denmark, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Kurt Handberg
- National Veterinary Institute, Technical University of Denmark, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Anne S Hammer
- National Veterinary Institute, Technical University of Denmark, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Susanne Kabell
- National Veterinary Institute, Technical University of Denmark, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Anders Fomsgaard
- Laboratory for Virus Research and Development, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| |
Collapse
|
433
|
De Clercq E, Neyts J. Avian influenza A (H5N1) infection: targets and strategies for chemotherapeutic intervention. Trends Pharmacol Sci 2007; 28:280-5. [PMID: 17481739 PMCID: PMC7112898 DOI: 10.1016/j.tips.2007.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 03/21/2007] [Accepted: 04/19/2007] [Indexed: 11/22/2022]
Abstract
In an avian flu pandemic, which drugs could be used to treat or prevent infection with influenza A (H5N1) virus? Foremost are the viral neuraminidase inhibitors oseltamivir and zanamivir, which have already been used to treat human influenza A (H1N1 and H3N2) and B virus infections. The use of the M2 ion channel blockers amantadine and rimantadine is compounded by the rapid development of drug resistance. Although formally approved for other indications (i.e. treatment of hepatitis C), ribavirin and pegylated interferon might also be useful for controlling avian flu. Combined use of the currently available drugs should be taken into account and attempts should be made to develop new strategies directed at unexplored targets such as the viral proteins hemagglutinin, the viral polymerase (and endonuclease) and the non-structural protein NS1. As has been shown for other viral infections, RNA interference could be a powerful means with which to suppress the replication of avian H5N1.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | |
Collapse
|
434
|
Yin C, Khan JA, Swapna GVT, Ertekin A, Krug RM, Tong L, Montelione GT. Conserved surface features form the double-stranded RNA binding site of non-structural protein 1 (NS1) from influenza A and B viruses. J Biol Chem 2007; 282:20584-92. [PMID: 17475623 DOI: 10.1074/jbc.m611619200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-A x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier "working models" of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an approximately 45 degrees angle relative to the axes of helices alpha2/alpha2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses.
Collapse
MESH Headings
- Crystallography, X-Ray
- Dimerization
- Humans
- Influenza A virus/chemistry
- Influenza A virus/metabolism
- Influenza A virus/pathogenicity
- Influenza B virus/chemistry
- Influenza B virus/metabolism
- Influenza B virus/pathogenicity
- Influenza, Human/metabolism
- Influenza, Human/mortality
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Folding
- Protein Structure, Quaternary
- Protein Structure, Secondary
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Cuifeng Yin
- Center for Advanced Biotechnology and Medicine, Northeast Structural Genomics Consortium, Department of Molecular Biology and Biochemistry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
435
|
Kochs G, García-Sastre A, Martínez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 2007; 81:7011-21. [PMID: 17442719 PMCID: PMC1933316 DOI: 10.1128/jvi.02581-06] [Citation(s) in RCA: 370] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The replication and pathogenicity of influenza A virus (FLUAV) are controlled in part by the alpha/beta interferon (IFN-alpha/beta) system. This virus-host interplay is dependent on the production of IFN-alpha/beta and on the capacity of the viral nonstructural protein NS1 to counteract the IFN system. Two different mechanisms have been described for NS1, namely, blocking the activation of IFN regulatory factor 3 (IRF3) and blocking posttranscriptional processing of cellular mRNAs. Here we directly compare the abilities of NS1 gene products from three different human FLUAV (H1N1) strains to counteract the antiviral host response. We found that A/PR/8/34 NS1 has a strong capacity to inhibit IRF3 and activation of the IFN-beta promoter but is unable to suppress expression of other cellular genes. In contrast, the NS1 proteins of A/Tx/36/91 and of A/BM/1/18, the virus that caused the Spanish influenza pandemic, caused suppression of additional cellular gene expression. Thus, these NS1 proteins prevented the establishment of an IFN-induced antiviral state, allowing virus replication even in the presence of IFN. Interestingly, the block in gene expression was dependent on a newly described NS1 domain that is important for interaction with the cleavage and polyadenylation specificity factor (CPSF) component of the cellular pre-mRNA processing machinery but is not functional in A/PR/8/34 NS1. We identified the Phe-103 and Met-106 residues in NS1 as being critical for CPSF binding, together with the previously described C-terminal binding domain. Our results demonstrate the capacity of FLUAV NS1 to suppress the antiviral host defense at multiple levels and the existence of strain-specific differences that may modulate virus pathogenicity.
Collapse
Affiliation(s)
- Georg Kochs
- Department of Virology, University of Freiburg, D-79008 Freiburg, Germany
| | | | | |
Collapse
|
436
|
Garcia-Sastre A, Whitley RJ. Lessons learned from reconstructing the 1918 influenza pandemic. J Infect Dis 2007; 194 Suppl 2:S127-32. [PMID: 17163385 DOI: 10.1086/507546] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The "Spanish influenza" pandemic of 1918 was the most devastating influenza epidemic reported in history and killed >30 million people worldwide. The factors contributing to the severe pathogenicity of this influenza virus are of great interest, because avian influenza viruses circulating today pose the threat of a new pandemic if they develop sustained human-to-human transmissibility. Recent characterization of the 1918 virus has illuminated which determinants may be the cause of virulence. Here, we wish to shed light on what has been learned to date about the 1918 virus with regard to pathogenicity and transmissibility, to supplement our understanding of the determinants of human virulence and transmission of pandemic influenza viruses. Monitoring the sequences of avian influenza viruses for genetic changes and diversity may help us to predict the risks that these viruses pose of causing a new pandemic.
Collapse
Affiliation(s)
- Adolfo Garcia-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY, 10029, USA.
| | | |
Collapse
|
437
|
Lipatov AS, Evseenko VA, Yen HL, Zaykovskaya AV, Durimanov AG, Zolotykh SI, Netesov SV, Drozdov IG, Onishchenko GG, Webster RG, Shestopalov AM. Influenza (H5N1) viruses in poultry, Russian Federation, 2005-2006. Emerg Infect Dis 2007; 13:539-46. [PMID: 17553267 PMCID: PMC2725974 DOI: 10.3201/eid1304.061266] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We studied 7 influenza (H5N1) viruses isolated from poultry in western Siberia and the European part of the Russian Federation during July 2005-February 2006. Full genome sequences showed high homology to Qinghai-like influenza (H5N1) viruses. Phylogenetic analysis not only showed a close genetic relationship between the H5N1 strains isolated from poultry and wild migratory waterfowls but also suggested genetic reassortment among the analyzed isolates. Analysis of deduced amino acid sequences of the M2 and neuraminidase proteins showed that all isolates are potentially sensitive to currently available antiviral drugs. Pathogenicity testing showed that all studied viruses were highly pathogenic in chickens; for 3 isolates tested in mice and 2 tested in ferrets, pathogenicity was heterogeneous. Pathogenicity in mammalian models was generally correlated with Lys at residue 627 of polymerase basic protein 2.
Collapse
Affiliation(s)
- Aleksandr S. Lipatov
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- These authors contributed equally to this work
- Current affiliation: US Department of Agriculture, Athens, Georgia, USA
| | - Vasily A. Evseenko
- Federal State Research Institute Research Center for Virology and Biotechnology “Vector,” Koltsovo, Novosibirsk Region, Russian Federation
- These authors contributed equally to this work
| | - Hui-Ling Yen
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Anna V. Zaykovskaya
- Federal State Research Institute Research Center for Virology and Biotechnology “Vector,” Koltsovo, Novosibirsk Region, Russian Federation
| | - Alexander G. Durimanov
- Federal State Research Institute Research Center for Virology and Biotechnology “Vector,” Koltsovo, Novosibirsk Region, Russian Federation
| | - Sergey I. Zolotykh
- Federal State Research Institute Research Center for Virology and Biotechnology “Vector,” Koltsovo, Novosibirsk Region, Russian Federation
| | - Sergey V. Netesov
- Federal State Research Institute Research Center for Virology and Biotechnology “Vector,” Koltsovo, Novosibirsk Region, Russian Federation
| | - Ilya G. Drozdov
- Federal State Research Institute Research Center for Virology and Biotechnology “Vector,” Koltsovo, Novosibirsk Region, Russian Federation
| | - Gennadiy G. Onishchenko
- Federal Service for Surveillance in Consumer Rights Protection and Human Well-being, Moscow, Russian Federation
| | | | - Alexander M. Shestopalov
- Federal State Research Institute Research Center for Virology and Biotechnology “Vector,” Koltsovo, Novosibirsk Region, Russian Federation
| |
Collapse
|
438
|
Banet-Noach C, Panshin A, Golender N, Simanov L, Rozenblut E, Pokamunski S, Pirak M, Tendler Y, García M, Gelman B, Pasternak R, Perk S. Genetic analysis of nonstructural genes (NS1 and NS2) of H9N2 and H5N1 viruses recently isolated in Israel. Virus Genes 2007; 34:157-68. [PMID: 17171546 DOI: 10.1007/s11262-006-0057-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
The avian influenza virus subtype H9N2 affects wild birds, domestic poultry, swine, and humans; it has circulated amongst domestic poultry in Israel during the last 6 years. The H5N1 virus was recorded in Israel for the first time in March 2006. Nonstructural (NS) genes and NS proteins are important in the life cycle of the avian influenza viruses. In the present study, NS genes of 21 examples of H9N2 and of two examples of H5N1 avian influenza viruses, isolated in Israel during 2000-2006, were completely sequenced and phylogenetically analyzed. All the H9N2 isolates fell into a single group that, in turn, was subdivided into three subgroups in accordance with the time of isolation; their NS1 and NS2 proteins possessed 230 and 121 amino acids, respectively. The NS1 protein of the H5N1 isolates had five amino acid deletions, which was typical of highly pathogenic H5N1 viruses isolated in various countries during 2005-2006. Comparative analysis showed that the NS proteins of the H9N2 Israeli isolates contained few amino acid sequences associated with high pathogenicity or human host specificity.
Collapse
Affiliation(s)
- Caroline Banet-Noach
- Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, P.O.B. 12, Beit Dagan, ZC, 50250, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Janies D, Hill AW, Guralnick R, Habib F, Waltari E, Wheeler WC. Genomic Analysis and Geographic Visualization of the Spread of Avian Influenza (H5N1). Syst Biol 2007; 56:321-9. [PMID: 17464886 DOI: 10.1080/10635150701266848] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Daniel Janies
- Department of Biomedical Informatics, The Ohio State University, 3190 Graves Hall, 333 W. 10th Ave., Columbus, Ohio 43210-1239, USA.
| | | | | | | | | | | |
Collapse
|
440
|
Abstract
Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management.
Collapse
Affiliation(s)
- J S Malik Peiris
- Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong, SAR, People's Republic of China.
| | | | | |
Collapse
|
441
|
Zell R, Krumbholz A, Eitner A, Krieg R, Halbhuber KJ, Wutzler P. Prevalence of PB1-F2 of influenza A viruses. J Gen Virol 2007; 88:536-546. [PMID: 17251572 DOI: 10.1099/vir.0.82378-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PB1-F2 is a pro-apoptotic polypeptide of many influenza A virus (FLUAV) isolates encoded by an alternative ORF of segment 2. A comprehensive GenBank search was conducted to analyse its prevalence. This search yielded 2226 entries of 80 FLUAV subtypes. Of these sequences, 87 % encode a PB1-F2 polypeptide greater than 78 aa. However, classic swine influenza viruses and human H1N1 isolates collected since 1950 harbour a truncated PB1-F2 sequence. While PB1-F2 of human H1N1 viruses terminates after 57 aa, classic swine H1N1 sequences have in-frame stop codons after 11, 25 and 34 codons. Of the avian sequences, 96 % encode a full-length PB1-F2. One genetic lineage of segment 2 sequences which is avian-like and different from the classic swine FLUAV comprises PB1-F2 sequences of porcine FLUAVs isolated in Europe (H1N1, H1N2, H3N2). Of these PB1-F2 sequences, 42 % also exhibit stop codons after 11, 25 and 34 codons. These amino acid positions are highly conserved among all FLUAV isolates irrespective of their origin. Molecular genetic analyses reveal that PB1-F2 is under constraint of the PB1 gene. The PB1-F2 polypeptide of FLUAVs isolated from European pigs is expressed in host cells as demonstrated by immunohistochemistry. Using different PB1-F2 versions fused to an enhanced GFP, mitochondrial localization is demonstrated for those PB1-F2 polypeptides which are greater than 78 aa while a truncated version (57 aa) shows a diffuse cytoplasmic distribution. This indicates similar properties and function of porcine and human FLUAV PB1-F2.
Collapse
Affiliation(s)
- Roland Zell
- Institute of Virology and Antiviral Therapy, Medical Center at the Friedrich Schiller University, Hans-Knoell-Str. 2, D-07745 Jena, Germany
| | - Andi Krumbholz
- Institute of Virology and Antiviral Therapy, Medical Center at the Friedrich Schiller University, Hans-Knoell-Str. 2, D-07745 Jena, Germany
| | - Annett Eitner
- Institute of Anatomy II, Medical Center at the Friedrich Schiller University, Teichgraben 7, D-07743 Jena, Germany
| | - Reimar Krieg
- Institute of Anatomy II, Medical Center at the Friedrich Schiller University, Teichgraben 7, D-07743 Jena, Germany
| | - Karl-Jürgen Halbhuber
- Institute of Anatomy II, Medical Center at the Friedrich Schiller University, Teichgraben 7, D-07743 Jena, Germany
| | - Peter Wutzler
- Institute of Virology and Antiviral Therapy, Medical Center at the Friedrich Schiller University, Hans-Knoell-Str. 2, D-07745 Jena, Germany
| |
Collapse
|
442
|
Hayman A, Comely S, Lackenby A, Hartgroves LCS, Goodbourn S, McCauley JW, Barclay WS. NS1 proteins of avian influenza A viruses can act as antagonists of the human alpha/beta interferon response. J Virol 2007; 81:2318-27. [PMID: 17182679 PMCID: PMC1865923 DOI: 10.1128/jvi.01856-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 12/01/2006] [Indexed: 11/20/2022] Open
Abstract
Many viruses, including human influenza A virus, have developed strategies for counteracting the host type I interferon (IFN) response. We have explored whether avian influenza viruses were less capable of combating the type I IFN response in mammalian cells, as this might be a determinant of host range restriction. A panel of avian influenza viruses isolated between 1927 and 1997 was assembled. The selected viruses showed variation in their ability to activate the expression of a reporter gene under the control of the IFN-beta promoter and in the levels of IFN induced in mammalian cells. Surprisingly, the avian NS1 proteins expressed alone or in the genetic background of a human influenza virus controlled IFN-beta induction in a manner similar to the NS1 protein of human strains. There was no direct correlation between the IFN-beta induction and replication of avian influenza viruses in human A549 cells. Nevertheless, human cells deficient in the type I IFN system showed enhanced replication of the avian viruses studied, implying that the human type I IFN response limits avian influenza viruses and can contribute to host range restriction.
Collapse
Affiliation(s)
- A Hayman
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
443
|
Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences. BMC Bioinformatics 2007; 8:63. [PMID: 17319966 PMCID: PMC1805764 DOI: 10.1186/1471-2105-8-63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/24/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. RESULTS A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. CONCLUSION With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL http://biocomp.iis.sinica.edu.tw/phylomlogo.
Collapse
|
444
|
Mehlmann M, Bonner AB, Williams JV, Dankbar DM, Moore CL, Kuchta RD, Podsiad AB, Tamerius JD, Dawson ED, Rowlen KL. Comparison of the MChip to viral culture, reverse transcription-PCR, and the QuickVue influenza A+B test for rapid diagnosis of influenza. J Clin Microbiol 2007; 45:1234-7. [PMID: 17301287 PMCID: PMC1865827 DOI: 10.1128/jcm.02202-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The performance of a diagnostic microarray (the MChip assay) for influenza was compared in a blind study to that of viral culture, reverse transcription (RT)-PCR, and the QuickVue Influenza A+B test. The patient sample data set was composed of 102 respiratory secretion specimens collected between 29 December 2005 and 2 February 2006 at Scott & White Hospital and Clinic in Temple, Texas. Samples were collected from a wide range of age groups by using direct collection, nasal/nasopharyngeal swabs, or nasopharyngeal aspiration. Viral culture and the QuickVue assay were performed at the Texas site at the time of collection. Aliquots for each sample, identified only by study numbers, were provided to the University of Colorado and Vanderbilt University teams for blinded analysis. When referenced to viral culture, the MChip exhibited a clinical sensitivity of 98% and a clinical specificity of 98%. When referenced to RT-PCR, the MChip assay exhibited a clinical sensitivity of 92% and a clinical specificity of 98%. While the MChip assay currently requires 7 to 8 h to complete the analysis, a significant advantage of the test for influenza virus-positive samples is simultaneous detection and full subtype identification for the two subtypes currently circulating in humans (A/H3N2 and A/H1N1) and avian (A/H5N1) viruses.
Collapse
Affiliation(s)
- Martin Mehlmann
- Department of Chemistry and Biochemistry, UCB 215, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Dawson ED, Moore CL, Smagala JA, Dankbar DM, Mehlmann M, Townsend MB, Smith CB, Cox NJ, Kuchta RD, Rowlen KL. MChip: a tool for influenza surveillance. Anal Chem 2007; 78:7610-5. [PMID: 17105150 DOI: 10.1021/ac061739f] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and characterization of a low-density microarray for subtyping influenza A is presented. The microarray consisted of 15 distinct oligonucleotides designed to target only the matrix gene segment of influenza A. An artificial neural network was utilized to automate microarray image interpretation. The neural network was trained to recognize fluorescence image patterns for 68 known influenza viruses and subsequently used to identify 53 unknowns in a blind study that included 39 human patient samples and 14 negative control samples. The assay exhibited a clinical sensitivity of 95% and clinical specificity of 92%.
Collapse
Affiliation(s)
- Erica D Dawson
- Department of Chemistry and Biochemistry, UCB 215, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Cauthen AN, Swayne DE, Sekellick MJ, Marcus PI, Suarez DL. Amelioration of influenza virus pathogenesis in chickens attributed to the enhanced interferon-inducing capacity of a virus with a truncated NS1 gene. J Virol 2007; 81:1838-47. [PMID: 17121796 PMCID: PMC1797581 DOI: 10.1128/jvi.01667-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022] Open
Abstract
Avian influenza virus (AIV) A/turkey/Oregon/71-SEPRL (TK/OR/71-SEPRL) (H7N3) encodes a full-length NS1 protein and is a weak inducer of interferon (IFN). A variant, TK/OR/71-delNS1 (H7N3), produces a truncated NS1 protein and is a strong inducer of IFN. These otherwise genetically related variants differ 20-fold in their capacities to induce IFN in primary chicken embryo cells but are similar in their sensitivities to the action of IFN. Furthermore, the weak IFN-inducing strain actively suppresses IFN induction in cells that are otherwise programmed to produce it. These phenotypic differences are attributed to the enhanced IFN-inducing capacity that characterizes type A influenza virus strains that produce defective NS1 protein. The pathogenesis of these two variants was evaluated in 1-day-old and 4-week-old chickens. The cell tropisms of both viruses were similar. However, the lesions in chickens produced by the weak IFN inducer were more severe and differed somewhat in character from those observed for the strong IFN inducer. Differences in lesions included the nature of inflammation, the rate of resolution of the infection, and the extent of viral replication and/or virus dissemination. The amelioration of pathogenesis is attributed to the higher levels of IFN produced by the variant encoding the truncated NS1 protein and the antiviral state subsequently induced by that IFN. The high titer of virus observed in kidney tissue ( approximately 10(9) 50% embryo lethal doses/g) from 1-day-old chickens infected intravenously by the weak IFN-inducing strain is attributed to the capacity of chicken kidney cells to activate the hemagglutinin fusion peptide along with their unresponsiveness to inducers of IFN as measured in vitro. Thus, the IFN-inducing capacity of AIV appears to be a significant factor in regulating the pathogenesis, virulence, and viral transmission of AIV in chickens. This suggests that the IFN-inducing and IFN induction suppression phenotypes of AIV should be considered when characterizing strains of influenza virus.
Collapse
Affiliation(s)
- Angela N Cauthen
- Southeast Poultry Research Laboratory, ARS/USDA, 934 College Station Road, Athens, GA 30605, USA
| | | | | | | | | |
Collapse
|
447
|
Habib F, Johnson AD, Bundschuh R, Janies D. Large scale genotype-phenotype correlation analysis based on phylogenetic trees. Bioinformatics 2007; 23:785-8. [PMID: 17267431 DOI: 10.1093/bioinformatics/btm003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We provide two methods for identifying changes in genotype that are correlated with changes in a phenotype implied by phylogenetic trees. The first method, VENN, works when the number of branches over which the change occurred are modest. VENN looks for genetic changes that are completely penetrant with phenotype changes on a tree. The second method, CCTSWEEP, allows for a partial matching between changes in phenotypes and genotypes and provides a score for each change using Maddison's concentrated changes test. The mutations that are highly correlated with phenotypic change can be ranked by score. We use these methods to find SNPs correlated with resistance to Bacillus anthracis in inbred mouse strains. Our findings are consistent with the current biological literature, and also suggest potential novel candidate genes.
Collapse
Affiliation(s)
- Farhat Habib
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
448
|
Labadie K, Dos Santos Afonso E, Rameix-Welti MA, van der Werf S, Naffakh N. Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology 2007; 362:271-82. [PMID: 17270230 DOI: 10.1016/j.virol.2006.12.027] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/08/2006] [Accepted: 12/21/2006] [Indexed: 11/27/2022]
Abstract
The transcription/replication activity of ribonucleoproteins derived from influenza A primary isolates of human (A/Paris/908/97) or avian origin (A/Mallard/Marquenterre/MZ237/83, A/Hong Kong/156/97) was compared upon reconstitution in mammalian or avian cells, using viral-like reporter RNAs synthesized under the control of the human and chicken RNA polymerase I promoters, respectively. In avian cells, transcription/replication activities were in the same range with all ribonucleoproteins tested. In human cells, ribonucleoproteins derived from A/Mallard/Marquenterre/MZ237/83 showed reduced transcription/replication activity and reduced NP binding to the PB1-PB2-PA complex (P) or to the isolated PB2 subunit, as compared to the ribonucleoproteins derived from A/Paris/908/97. Both defects were restored when PB2 residue Glu-627 was changed to a Lys. Ribonucleoproteins derived from the human A/Hong Kong/156/97 H5N1 isolate showed efficient NP-P interaction in human cells, and high levels of activity which were determined mostly by the PB2 and PA proteins. Our data suggest that PB2 might play a pivotal role in molecular interactions involving both the viral nucleoprotein and cellular proteins.
Collapse
MESH Headings
- Animals
- COS Cells
- Cell Line
- Chickens
- Chloramphenicol O-Acetyltransferase/analysis
- Chloramphenicol O-Acetyltransferase/genetics
- Chlorocebus aethiops
- Genes, Reporter
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A virus/genetics
- Influenza A virus/physiology
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Interaction Mapping
- RNA Polymerase I
- RNA, Viral/biosynthesis
- Ribonucleoproteins/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic
- Viral Plaque Assay
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Karine Labadie
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, EA302 Université Paris 7, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
449
|
Coleman JR. The PB1-F2 protein of Influenza A virus: increasing pathogenicity by disrupting alveolar macrophages. Virol J 2007; 4:9. [PMID: 17224071 PMCID: PMC1781424 DOI: 10.1186/1743-422x-4-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 01/15/2007] [Indexed: 11/10/2022] Open
Abstract
With the prospect of another pandemic Influenza fresh in our consciousness, the pathogenic nature of the Influenza A virus and its ability to induce high rates of mortality are ever more pertinent. Recently a novel protein encoded by an alternate reading frame in the PB1 Gene segment of Influenza A virus has been discovered and in turn shown to enhance viral virulence in a mouse model 1. This protein has been shown to specifically target and destroy alveolar macrophages 2. This review suggests that this protein, present in all previous pandemic strains, may reappear as a virulence factor in a subsequent pandemic strain. This PB1-F2 protein will enhance the mortality rate of the virus by increasing the likelihood of a secondary bacterial infection, which is the primary cause of death to a patient infected with Influenza A.
Collapse
Affiliation(s)
- J Robert Coleman
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
450
|
Abstract
Highly pathogenic H5N1 influenza viruses have become endemic in poultry populations throughout Southeast Asia and continue to infect humans with a greater than 50% case fatality rate. So far, human-to-human transmission of these viruses has been limited. Here, we discuss the molecular features of H5N1 influenza viruses that might affect their pathogenicity, and explain the current lack of efficient human-to-human transmission. Such knowledge is critical in evaluating the pandemic risk these viruses pose.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kyoko Shinya
- The Avian Zoonosis Research Centre, Tottori University, Tottori, Japan
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|