401
|
Nezu Y, Kino Y, Sasagawa N, Nishino I, Ishiura S. Expression of MBNL and CELF mRNA transcripts in muscles with myotonic dystrophy. Neuromuscul Disord 2007; 17:306-12. [PMID: 17331722 DOI: 10.1016/j.nmd.2007.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/24/2006] [Accepted: 01/08/2007] [Indexed: 11/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder that causes muscle wasting, myotonia, cardiac conduction abnormalities, and other multi-systemic symptoms. Current evidence supports a pathogenic mechanism involving aberrantly expanded CTG repeats in the 3'-untranslated region of the DM protein kinase (DMPK) gene. The repeats are thought to recruit various RNA-binding proteins such as muscleblind-like (MBNL) proteins into foci in the nuclei of DM cells, resulting in loss of function. However, aberrant regulation of transcription or subsequent RNA processing of MBNL-family mRNAs might also be part of the pathogenic mechanism of DM. We used real-time RT-PCR analysis to examine the possibility that MBNL mRNA expression is altered in DM1 patients. We also examined mRNA expression for members of the CUG-BP and ETR-3-like factor (CELF) family of RNA-binding proteins given that CELF proteins regulate alternative splicing and are also implicated in DM. We found that DM1 muscles displayed aberrant regulation of alternative splicing as reported previously; however, the levels of MBNL and CELF mRNA expression did not show any significant changes. Our results suggest that the expression and stability of the mRNA for these RNA-binding proteins are unaffected in DM1.
Collapse
Affiliation(s)
- Yuriko Nezu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
402
|
Woulfe JM. Abnormalities of the nucleus and nuclear inclusions in neurodegenerative disease: a work in progress. Neuropathol Appl Neurobiol 2007; 33:2-42. [PMID: 17239006 DOI: 10.1111/j.1365-2990.2006.00819.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized pathologically by the abnormal accumulation of pathogenic protein species within the cell. Several neurodegenerative diseases feature intranuclear protein aggregation in the form of intranuclear inclusion bodies. Studies of these intranuclear inclusions are providing important clues regarding the cellular pathophysiology of these diseases, as exemplified by recent progress in defining the genetic basis of a subset of frontotemporal dementia cases. The precise role of intranuclear inclusion bodies in disease pathogenesis is currently a focus of debate. The present review provides an overview of the diverse family of neurodegenerative diseases in which nuclear inclusions form part of the neuropathological spectrum. In addition, current pathogenetic concepts relevant to these diseases will be reviewed and arguments for and against a protective role for intranuclear inclusions will be presented. The relationship of pathological intranuclear inclusions to functional intranuclear bodies will also be discussed. Finally, by analogy with pathological intranuclear inclusions, I will speculate on the possibility that intranuclear protein aggregation may represent a constitutive cellular protective mechanism occurring in neurons under physiological conditions.
Collapse
Affiliation(s)
- J M Woulfe
- Department of Pathology, The Ottawa Hospital, University of Ottawa, and Cancer Research Program, The Ottawa Health Research Institute, Ottawa, Canada.
| |
Collapse
|
403
|
Cho DH, Tapscott SJ. Myotonic dystrophy: Emerging mechanisms for DM1 and DM2. Biochim Biophys Acta Mol Basis Dis 2007; 1772:195-204. [PMID: 16876389 DOI: 10.1016/j.bbadis.2006.05.013] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 01/27/2023]
Abstract
Myotonic dystrophy (DM) is a complex multisystemic disorder linked to two different genetic loci. Myotonic dystrophy type 1 (DM1) is caused by an expansion of a CTG repeat located in the 3' untranslated region (UTR) of DMPK (myotonic dystrophy protein kinase) on chromosome 19q13.3. Myotonic dystrophy type 2 (DM2) is caused by an unstable CCTG repeat in intron 1 of ZNF9 (zinc finger protein 9) on chromosome 3q21. Therefore, both DM1 and DM2 are caused by a repeat expansion in a region transcribed into RNA but not translated into protein. The discovery that these two distinct mutations cause largely similar clinical syndromes put emphasis on the molecular properties they have in common, namely, RNA transcripts containing expanded, non-translated repeats. The mutant RNA transcripts of DM1 and DM2 aberrantly affect the splicing of the same target RNAs, such as chloride channel 1 (ClC-1) and insulin receptor (INSR), resulting in their shared myotonia and insulin resistance. Whether the entire disease pathology of DM1 and DM2 is caused by interference in RNA processing remains to be seen. This review focuses on the molecular significance of the similarities and differences between DM1 and DM2 in understanding the disease pathology of myotonic dystrophy.
Collapse
Affiliation(s)
- Diane H Cho
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
404
|
Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol 2007; 122:146-55. [PMID: 17046328 PMCID: PMC2791364 DOI: 10.1016/j.clim.2006.09.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/29/2022]
Abstract
The nonclassical MHC class-I molecule, FcRn, salvages both IgG and albumin from degradation. Here we introduce a mechanism-based kinetic model for human to quantify FcRn-mediated recycling of both ligands based on saturable kinetics and data from the literature using easily measurable plasma concentrations rather than unmeasurable endosomal concentrations. The FcRn-mediated fractional recycling rates of IgG and albumin were 142% and 44% of their fractional catabolic rates, respectively. Clearly, FcRn-mediated recycling is a major contributor to the high endogenous concentrations of these two important plasma proteins. While familial hypercatabolic hypoproteinemia is caused by complete FcRn deficiency, the hypercatabolic IgG deficiency of myotonic dystrophy could be explained, based on the kinetic analyses, by a normal number of FcRn with lowered affinity for IgG but normal affinity for albumin. A simulation study demonstrates that the plasma concentrations of IgG and albumin could be dynamically controlled by both FcRn-related and -unrelated parameters.
Collapse
Affiliation(s)
- Jonghan Kim
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - William L. Hayton
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - John M. Robinson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Clark L. Anderson
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
405
|
Kimura T, Pace SM, Wei L, Beard NA, Dirksen RT, Dulhunty AF. A variably spliced region in the type 1 ryanodine receptor may participate in an inter-domain interaction. Biochem J 2007; 401:317-24. [PMID: 16989644 PMCID: PMC1698670 DOI: 10.1042/bj20060686] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to examine residues that are variably spliced in the juvenile and adult isoforms of the skeletal-muscle RyR1 (type 1 ryanodine receptor). The juvenile ASI(-) splice variant is less active than the adult ASI(+) variant and is overexpressed in patients with DM (myotonic dystrophy) [Kimura, Nakamori, Lueck, Pouliquin, Aoike, Fujimura, Dirksen, Takahashi, Dulhunty and Sakoda (2005) Hum. Mol. Genet. 14, 2189-2200]. In the present study, we explore the ASI region using synthetic peptides corresponding to rabbit RyR1 residues Thr3471-Gly3500 either containing [PASI(+)] or lacking [PASI(-)] the ASI residues. Both peptides increased [3H]ryanodine binding to rabbit RyR1s, increased Ca2+ release from sarcoplasmic reti-culum vesicles and increased single RyR1 channel activity. The peptide PASI(-) was more active in each case than PASI(+). [3H]Ryanodine binding to recombinant ASI(+)RyR1 or ASI(-)-RyR1 was enhanced more by PASI(-) than PASI(+), with the greatest increase seen when PASI(-) was added to ASI(-)RyR1. The activation of the RyR channels is consistent with the hypo-thesis that the peptides interrupt an inhibitory inter-domain inter-action and that PASI(-) is more effective at interrupting this interaction than PASI(+). We therefore suggest that the ASI(-) sequence interacts more tightly than the ASI(+) sequence with its binding partner, so that the ASI(-)RyR1 is more strongly inhibited (less active) than the ASI(+)RyR1. Thus the affinity of the binding partners in this inter-domain interaction may deter-mine the activities of the mature and juvenile isoforms of RyR1 and the stronger inhibition in the juvenile isoform may contribute to the myopathy in DM.
Collapse
Affiliation(s)
- Takashi Kimura
- Division of Molecular Bioscience, JCSMR (John Curtin School of Medical Research), Australian National University, P.O. Box 334, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
406
|
Muscular Dystrophies Affecting the Heart. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
407
|
The coupling of alternative splicing and nonsense-mediated mRNA decay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:190-211. [PMID: 18380348 DOI: 10.1007/978-0-387-77374-2_12] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense-mediated mRNA decay (NMD) pathway. One explanation for the abundance of PTC-containing isoforms is that they represent splicing errors that are identified and degraded by the NMD pathway. Another potential explanation for this startling observation is that cells may link alternative splicing and NMD to regulate the abundance of mRNA transcripts. This mechanism, which we call "Regulated Unproductive Splicing and Translation" (RUST), has been experimentally shown to regulate expression of a wide variety of genes in many organisms from yeast to human. It is frequently employed for autoregulation of proteins that affect the splicing process itself. Thus, alternative splicing and NMD act together to play an important role in regulating gene expression.
Collapse
|
408
|
Abstract
Myotonic dystrophy types 1 (DM1) and 2 (DM2) are similar yet distinct autosomal-dominant disorders characterized by muscle weakness, myotonia, cataracts, and multiple organ involvement, including the brain. One key difference between DM1 and DM2 is that a congenital form has been described for DM1 only. Expression of RNA transcripts containing pathogenic repeat lengths produces defects in alternative splicing of multiple RNAs, sequesters specific repeat-binding proteins, and ultimately leads to developmentally inappropriate splice products for a particular tissue. Whether brain pathology in its entirety in adult DM1 and DM2 is caused by interference in RNA processing remains to be determined. This review focuses on the similarities and differences between DM1 and DM2 with respect to neuropsychological, neuropathological, and neuroimaging data relating to cerebral involvement, with special emphasis on the clinical relevance and social consequences of such involvement.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, University of Milan, IRCCS Policlinico San Donato, San Donato Hospital, Via Morandi 30, 20097 San Donato Milanese, Milan, Italy.
| | | |
Collapse
|
409
|
|
410
|
Botta A, Vallo L, Rinaldi F, Bonifazi E, Amati F, Biancolella M, Gambardella S, Mancinelli E, Angelini C, Meola G, Novelli G. Gene expression analysis in myotonic dystrophy: indications for a common molecular pathogenic pathway in DM1 and DM2. Gene Expr 2007; 13:339-51. [PMID: 17708420 PMCID: PMC6032453 DOI: 10.3727/000000006781510705] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An RNA gain-of-function of expanded transcripts is the most accredited molecular mechanism for myotonic dystrophy type 1 (DM1) and 2 (DM2). To disclose molecular parallels and divergences in pathogenesis of both disorders, we compared the expression profile of muscle biopsies from DM1 and DM2 patients to controls. DM muscle tissues showed a reduction in the major skeletal muscle chloride channel (CLCN1) and transcription factor Sp1 transcript levels and an abnormal processing of the CLCN1 and insulin receptor (IR) pre-mRNAs. No essential differences were observed in the muscle blind-like gene (MBNL1) and CUG binding protein 1 (CUGBP1) transcript levels as well as in the splicing pattern of the myotubularin-related 1 (MTMR1) gene. Macroarray analysis of 96 neuroscience-related genes revealed a considerable similar expression profile between the DM samples, reflective of a common muscle pathology origin. Using a twofold threshold, we found six misregulated genes important in calcium and potassium metabolism and in mitochondrial functions. Our results indicate that the DM1 and DM2 overlapping clinical phenotypes may derive from a common trans acting mechanism that traps and influences shared genes and proteins. An RNA gain-of-function of expanded transcripts is the most accredited molecular mechanism for myotonic dystrophy type 1 (DM1) and 2 (DM2). To disclose molecular parallels and divergences in pathogenesis of both disorders, we compared the expression profile of muscle biopsies from DM1 and DM2 patients to controls. DM muscle tissues showed a reduction in the major skeletal muscle chloride channel (CLCN1) and transcription factor Sp1 transcript levels and an abnormal processing of the CLCN1 and insulin receptor (IR) pre-mRNAs. No essential differences were observed in the muscle blind-like gene (MBNL1) and CUG binding protein 1 (CUGBP1) transcript levels as well as in the splicing pattern of the myotubularin-related 1 (MTMR1) gene. Macroarray analysis of 96 neuroscience-related genes revealed a considerable similar expression profile between the DM samples, reflective of a common muscle pathology origin. Using a twofold threshold, we found six misregulated genes important in calcium and potassium metabolism and in mitochondrial functions. Our results indicate that the DM1 and DM2 overlapping clinical phenotypes may derive from a common trans acting mechanism that traps and influences shared genes and proteins.
Collapse
Affiliation(s)
- Annalisa Botta
- Department of Biopathology, Tor Vergata University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Abstract
Alternative splicing is a major source of diversity in the human proteome. The regulation of alternative splicingmodulates the composition of this diversity to fulfill the physiological requirements of a cell. When control of alternative splicing is disrupted, the result can be a failure to meet cellular and tissue requirements resulting in dysfunction and disease. There are several well-characterized examples in which disruption of alternative splicing is a cause of disease. Investigations into how the mis-regulation of alternative splicing causes disease complements investigations of normal regulatory processes and enhances our understanding of regulatory mechanisms in general Ultimately, an understanding of how alternative splicing is altered in disease will facilitate strategies directed at reversing or circumventing mis-regulated splicing events.
Collapse
|
412
|
Hagerman PJ. RNA-Based Disorders of Muscle and Brain. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
413
|
Marquis J, Paillard L, Audic Y, Cosson B, Danos O, Le Bec C, Osborne H. CUG-BP1/CELF1 requires UGU-rich sequences for high-affinity binding. Biochem J 2006; 400:291-301. [PMID: 16938098 PMCID: PMC1652823 DOI: 10.1042/bj20060490] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CUG-BP1 [CUG-binding protein 1 also called CELF (CUG-BP1 and ETR3 like factors) 1] is a human RNA-binding protein that has been implicated in the control of splicing and mRNA translation. The Xenopus homologue [EDEN-BP (embryo deadenylation element-binding protein)] is required for rapid deadenylation of certain maternal mRNAs just after fertilization. A variety of sequence elements have been described as target sites for these two proteins but their binding specificity is still controversial. Using a SELEX (systematic evolution of ligand by exponential enrichment) procedure and recombinant CUG-BP1 we selected two families of aptamers. Surface plasmon resonance and electrophoretic mobility-shift assays showed that these two families differed in their ability to bind CUG-BP1. Furthermore, the selected high-affinity aptamers form two complexes with CUG-BP1 in electrophoretic mobility assays whereas those that bind with low affinity only form one complex. The validity of the distinction between the two families of aptamers was confirmed by a functional in vivo deadenylation assay. Only those aptamers that bound CUG-BP1 with high affinity conferred deadenylation on a reporter mRNA. These high-affinity RNAs are characterized by a richness in UGU motifs. Using these binding site characteristics we identified the Xenopus maternal mRNA encoding the MAPK (mitogen-activated protein kinase) phosphatase (XCl100alpha) as a substrate for EDEN-BP. In conclusion, high-affinity CUG-BP1 binding sites are sequence elements at least 30 nucleotides in length that are enriched in combinations of U and G nucleotides and contain at least 4 UGU trinucleotide motifs. Such sequence elements are functionally competent to target an RNA for deadenylation in vivo.
Collapse
Affiliation(s)
- Julien Marquis
- *Généthon, CNRS UMR 8115, 1 bis rue de l'Internationale 91002 Evry cedex 2, France
| | - Luc Paillard
- †CNRS UMR 6061, Génétique et Développement, IFR 140 GFAS, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Yann Audic
- †CNRS UMR 6061, Génétique et Développement, IFR 140 GFAS, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Bertrand Cosson
- †CNRS UMR 6061, Génétique et Développement, IFR 140 GFAS, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Olivier Danos
- *Généthon, CNRS UMR 8115, 1 bis rue de l'Internationale 91002 Evry cedex 2, France
| | - Christine Le Bec
- *Généthon, CNRS UMR 8115, 1 bis rue de l'Internationale 91002 Evry cedex 2, France
| | - H. Beverley Osborne
- †CNRS UMR 6061, Génétique et Développement, IFR 140 GFAS, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
414
|
Abstract
Several examples have come to light in which mutations in non-protein-coding regions give rise to a deleterious gain-of-function by non-coding RNA. Expression of the toxic RNA is associated with formation of nuclear inclusions and late-onset degenerative changes in brain, heart or skeletal muscle. In the best studied example, myotonic dystrophy, it appears that the main pathogenic effect of the toxic RNA is to sequester binding proteins and compromise the regulation of alternative splicing. This review describes some of the recent advances in understanding the pathophysiology of RNA-dominant diseases.
Collapse
Affiliation(s)
- Robert J Osborne
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
415
|
Jolly C, Lakhotia SC. Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 2006; 34:5508-14. [PMID: 17020918 PMCID: PMC1636489 DOI: 10.1093/nar/gkl711] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure of cells to stressful conditions elicits a highly conserved defense mechanism termed the heat shock response, resulting in the production of specialized proteins which protect the cells against the deleterious effects of stress. The heat shock response involves not only a widespread inhibition of the ongoing transcription and activation of heat shock genes, but also important changes in post-transcriptional processing. In particular, a blockade in splicing and other post-transcriptional processing has been described following stress in different organisms, together with an altered spatial distribution of the proteins involved in these activities. However, the specific mechanisms that regulate these activities under conditions of stress are little understood. Non-coding RNA molecules are increasingly known to be involved in the regulation of various activities in the cell, ranging from chromatin structure to splicing and RNA degradation. In this review, we consider two non-coding RNAs, the hsrω transcripts in Drosophila and the sat III transcripts in human cells, that seem to be involved in the dynamics of RNA-processing factors in normal and/or stressed cells, and thus provide new paradigms for understanding transcriptional and post-transcriptional regulations in normal and stressed cells.
Collapse
|
416
|
Singh G, Cooper TA. Minigene reporter for identification and analysis of cis elements and trans factors affecting pre-mRNA splicing. Biotechniques 2006; 41:177-81. [PMID: 16925019 DOI: 10.2144/000112208] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
All human genes contain a diverse array of cis-acting elements within introns and exons that are required for correct and efficient precursor messenger RNA (pre-mRNA) splicing. Recent computational analyses predict that most human exons contain elements required for splicing coinciding with an appreciation for the high frequency with which mutations that disruption pre-mRNA splicing cause disease. Minigenes provide a means to directly determine whether disease-causing mutations or single nucleotide polymorphisms (SNPs) affect splicing efficiency. Minigenes have also been instrumental in investigations of alternative splicing to identify cis elements required for cell-specific splicing events, demonstrating regulation of individual splicing events by specific RNA binding proteins, and correlating binding of these splicing regulators with splicing regulation. Here we present a versatile minigene plasmid vector designed for rapid cloning and analysis of cis elements and trans-acting factors that influence splicing efficiency or regulate cell-specific splicing. Ubiquitous expression and unique restriction sites allow for straightforward replacement of a variety of gene segments to analyze the effects of nucleotide substitutions on splicing, to identify tissue-specific regulatory elements, or to determine responsiveness to coexpressed proteins or small molecules.
Collapse
Affiliation(s)
- Gopal Singh
- Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
417
|
Paul S, Dansithong W, Kim D, Rossi J, Webster NJG, Comai L, Reddy S. Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J 2006; 25:4271-83. [PMID: 16946708 PMCID: PMC1570429 DOI: 10.1038/sj.emboj.7601296] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 07/25/2006] [Indexed: 12/17/2022] Open
Abstract
In myotonic dystrophy (DM1), both inactivation of muscleblind proteins and increased levels of CUG-BP1 are reported. These events have been shown to contribute independently to aberrant splicing of a subset RNAs. We demonstrate that steady-state levels of the splice regulator, hnRNP H, are elevated in DM1 myoblasts and that increased hnRNP H levels in normal myoblasts results in the inhibition of insulin receptor (IR) exon 11 splicing in a manner similar to that observed in DM1. In normal myoblasts, overexpression of either hnRNP H or CUG-BP1 results in the formation of an RNA-dependent suppressor complex consisting of both hnRNP H and CUG-BP1, which is required to maximally inhibit IR exon 11 inclusion. Elevated levels of MBNL1 show RNA-independent interaction with hnRNP H and dampen the inhibitory activity of increased hnRNP H levels on IR splicing in normal myoblasts. In DM1 myoblasts, overexpression of MBNL1 in conjunction with si-RNA mediated depletion of hnRNP H contributes to partial rescue of the IR splicing defect. These data demonstrate that coordinated physical and functional interactions between hnRNP H, CUG-BP1 and MBNL1 dictate IR splicing in normal and DM1 myoblasts.
Collapse
Affiliation(s)
- Sharan Paul
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Warunee Dansithong
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dongho Kim
- Division of Molecular Biology, City of Hope, Duarte, CA, USA
| | - John Rossi
- Division of Molecular Biology, City of Hope, Duarte, CA, USA
| | - Nicholas J G Webster
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA
| | - Lucio Comai
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Institute for Genetic Medicine (IGM), Keck School of Medicine, University of Southern California, Room 240, 2250 Alcazar Street, Los Angeles, CA 90033, USA. Tel.: +1 323 442 2457/3950; Fax: +1 323 442 2764;
| | - Sita Reddy
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Institute for Genetic Medicine (IGM), Keck School of Medicine, University of Southern California, Room 240, 2250 Alcazar Street, Los Angeles, CA 90033, USA. Tel.: +1 323 442 2457/3950; Fax: +1 323 442 2764; E-mails:
| |
Collapse
|
418
|
Machuca-Tzili L, Thorpe H, Robinson TE, Sewry C, Brook JD. Flies deficient in Muscleblind protein model features of myotonic dystrophy with altered splice forms of Z-band associated transcripts. Hum Genet 2006; 120:487-99. [PMID: 16927100 DOI: 10.1007/s00439-006-0228-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 07/03/2006] [Indexed: 11/24/2022]
Abstract
Myotonic dystrophy (DM) is a dominantly inherited neuromuscular disorder characterised by muscle weakness and wasting. There are two forms of DM; both of which are caused by the expansion of repeated DNA sequences. DM1 is associated with a CTG repeat located in the 3' untranslated region of a gene, DMPK and DM2 with a tetranucleotide repeat expansion, CCTG, located in the first intron of a different gene, ZNF9. Recent data suggest a dominant RNA gain-of-function mechanism underlying DM, as transcripts containing either CUG or CCUG repeat expansions accumulate as foci in the nuclei of DM1 and DM2 cells respectively, where they exert a toxic effect, sequestering specific RNA binding proteins such as Muscleblind, which leads to splicing defects and the disruption of normal cellular functions. Z-band disruption is a well-known histological feature of DM1 muscle, which has also been reported in Muscleblind deficient flies. In order to determine whether there is a common molecular basis for this abnormality we have examined the alternative splicing pattern of transcripts that encode proteins associated with the Z-band in both organisms. Our results demonstrate that the missplicing of ZASP/LDB3 leads to the expression of an isoform in DM1 patient muscle, which is not present in normal controls, nor in other myopathies. Furthermore the Drosophila homologue, CG30084, is also misspliced, in Muscleblind deficient flies. Another Z-band transcript, alpha actinin, is misspliced in mbl mutant flies, but not in DM1 patient samples. These results point to similarities but subtle differences in the molecular breakdown of Z-band structures in flies and DM patients and emphasise the relevance of Muscleblind proteins in DM pathophysiology.
Collapse
Affiliation(s)
- Laura Machuca-Tzili
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | |
Collapse
|
419
|
Dulhunty AF, Beard NA, Pouliquin P, Kimura T. Novel regulators of RyR Ca2+ release channels: insight into molecular changes in genetically-linked myopathies. J Muscle Res Cell Motil 2006; 27:351-65. [PMID: 16909197 DOI: 10.1007/s10974-006-9086-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
There are many mutations in the ryanodine receptor (RyR) Ca2+ release channel that are implicated in skeletal muscle disorders and cardiac arrhythmias. More than 80 mutations in the skeletal RyR1 have been identified and linked to malignant hyperthermia, central core disease or multi-minicore disease, while more than 40 mutations in the cardiac RyR2 lead to ventricular arrhythmias and sudden cardiac death in patients with structurally normal hearts. These RyR mutations cause diverse changes in RyR activity which either excessively activate or block the channel in a manner that disrupts Ca2+ signalling in the muscle fibres. In a different myopathy, myotonic dystrophy (DM), a juvenile isoform of the skeletal RyR is preferentially expressed in adults. There are two regions of RyR1 that are variably spiced and developmentally regulated (ASI and ASII). The juvenile isoform (ASI(-)) is less active than the adult isoform (ASI(+)) and its over-expression in adults with DM may contribute to functional changes. Finally, mutations in an important regulator of the RyR, the Ca2+ binding protein calsequestrin (CSQ), have been linked to a disruption of Ca2+ homeostasis in cardiac myocytes that results in arrhythmias. We discuss evidence supporting the hypothesis that mutations in each of these situations alter protein/protein interactions within the RyR complex or between the RyR and its associated proteins. The disruption of these protein-protein interactions can lead either to excess Ca2+ release or reduced Ca2+ release and thus to abnormal Ca2+ homeostasis. Much of the evidence for disruption of protein-protein interactions has been provided by the actions of a group of novel RyR regulators, domain peptides with sequences that correspond to sequences within the RyR and which compete with the endogenous residues for their interaction sites.
Collapse
Affiliation(s)
- A F Dulhunty
- Division of Molecular Bioscience, JCSMR and RSC, ANU, Canberra, ACT, 2601, Australia.
| | | | | | | |
Collapse
|
420
|
Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, Swanson MS. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A 2006; 103:11748-53. [PMID: 16864772 PMCID: PMC1544241 DOI: 10.1073/pnas.0604970103] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Indexed: 01/19/2023] Open
Abstract
RNA-mediated pathogenesis is a recently developed disease model that proposes that certain types of mutant genes produce toxic transcripts that inhibit the activities of specific proteins. This pathogenesis model was proposed first for the neuromuscular disease myotonic dystrophy (DM), which is associated with the expansion of structurally related (CTG)(n) and (CCTG)(n) microsatellites in two unrelated genes. At the RNA level, these expansions form stable hairpins that alter the pre-mRNA splicing activities of two antagonistic factor families, the MBNL and CELF proteins. It is unclear which altered activity is primarily responsible for disease pathogenesis and whether other factors and biochemical pathways are involved. Here, we show that overexpression of Mbnl1 in vivo mediated by transduction of skeletal muscle with a recombinant adeno-associated viral vector rescues disease-associated muscle hyperexcitability, or myotonia, in the HSA(LR) poly(CUG) mouse model for DM. Myotonia reversal occurs concurrently with restoration of the normal adult-splicing patterns of four pre-mRNAs that are misspliced during postnatal development in DM muscle. Our results support the hypothesis that the loss of MBNL1 activity is a primary pathogenic event in the development of RNA missplicing and myotonia in DM and provide a rationale for therapeutic strategies designed either to overexpress MBNL1 or inhibit MBNL1 interactions with CUG and CCUG repeat expansions.
Collapse
Affiliation(s)
- Rahul N. Kanadia
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Jihae Shin
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Yuan Yuan
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Stuart G. Beattie
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Thurman M. Wheeler
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642
| | - Charles A. Thornton
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| |
Collapse
|
421
|
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG expansion mutation located in the 3' untranslated portion of the dystrophica myotonin protein kinase gene. The identification and characterization of RNA-binding proteins that interact with expanded CUG repeats and the discovery that a similar transcribed but untranslated CCTG expansion in an intron causes myotonic dystrophy type 2 (DM2) have uncovered a new type of mechanism in which microsatellite expansion mutations cause disease through an RNA gain-of-function mechanism. This review discusses RNA pathogenesis in DM1 and DM2 and evidence that similar mechanisms may play a role in a growing number of dominant noncoding expansion disorders, including fragile X tremor ataxia syndrome (FXTAS), spinocerebellar ataxia type 8 (SCA8), SCA10, SCA12, and Huntington's disease-like 2 (HDL2).
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics and Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
422
|
Hui J, Bindereif A. Alternative pre-mRNA splicing in the human system: unexpected role of repetitive sequences as regulatory elements. Biol Chem 2006; 386:1265-71. [PMID: 16336120 DOI: 10.1515/bc.2005.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alternative splicing is a process by which multiple messenger RNAs (mRNAs) are generated from a single pre-mRNA, resulting in functionally distinct protein products. This is accomplished by the differential recognition of splice sites in the pre-mRNA, often regulated in a tissue- or development-specific manner. Alternative splicing constitutes not only an important mechanism in controlling gene expression in humans, but also an essential source for increasing proteome diversity. In this review we summarize the underlying mechanistic principles, focussing on the cis-acting regulatory elements. In particular, the role of short sequence repeats, which are often polymorphic, in splicing regulation is discussed.
Collapse
Affiliation(s)
- Jingyi Hui
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | |
Collapse
|
423
|
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ, Day JW, Ranum LPW. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 2006; 38:758-69. [PMID: 16804541 DOI: 10.1038/ng1827] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/22/2006] [Indexed: 11/08/2022]
Abstract
We previously reported that a (CTG)n expansion causes spinocerebellar ataxia type 8 (SCA8), a slowly progressive ataxia with reduced penetrance. We now report a transgenic mouse model in which the full-length human SCA8 mutation is transcribed using its endogenous promoter. (CTG)116 expansion, but not (CTG)11 control lines, develop a progressive neurological phenotype with in vivo imaging showing reduced cerebellar-cortical inhibition. 1C2-positive intranuclear inclusions in cerebellar Purkinje and brainstem neurons in SCA8 expansion mice and human SCA8 autopsy tissue result from translation of a polyglutamine protein, encoded on a previously unidentified antiparallel transcript (ataxin 8, ATXN8) spanning the repeat in the CAG direction. The neurological phenotype in SCA8 BAC expansion but not BAC control lines demonstrates the pathogenicity of the (CTG-CAG)n expansion. Moreover, the expression of noncoding (CUG)n expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and the discovery of intranuclear polyglutamine inclusions suggests SCA8 pathogenesis involves toxic gain-of-function mechanisms at both the protein and RNA levels.
Collapse
Affiliation(s)
- Melinda L Moseley
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Karagiannides I, Thomou T, Tchkonia T, Pirtskhalava T, Kypreos KE, Cartwright A, Dalagiorgou G, Lash TL, Farmer SR, Timchenko NA, Kirkland JL. Increased CUG triplet repeat-binding protein-1 predisposes to impaired adipogenesis with aging. J Biol Chem 2006; 281:23025-33. [PMID: 16754681 DOI: 10.1074/jbc.m513187200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preadipocyte differentiation capacity declines between middle and old age. Expression of the adipogenic transcription factors, CCAAT/enhancer-binding protein (C/EBP) alpha and peroxisome proliferator-activated receptor gamma (PPARgamma), is lower in differentiating preadipocytes from old than young animals, although no age-related changes occur in C/EBPbeta mRNA, which is upstream of C/EBPalpha and PPARgamma. C/EBPbeta-liver-enriched inhibitory protein (C/EBPbeta-LIP), a truncated C/EBPbeta isoform that is a dominant inhibitor of differentiation, increases with aging in rat fat tissue and preadipocytes. CUG triplet repeat-binding protein-1 (CUGBP1) binds to C/EBPbeta mRNA, increasing C/EBPbeta-LIP translation. Abundance and nucleotide binding activity of CUGBP1 increased with aging in preadipocytes. CUGBP1 overexpression in preadipocytes from young animals increased C/EBPbeta-LIP and impaired adipogenesis. Decreasing CUGBP1 in preadipocytes from old rats by RNA interference reduced C/EBPbeta-LIP abundance and promoted adipogenesis. Tumor necrosis factor-alpha, levels of which are elevated in fat tissue with aging, increased CUGBP1 protein, CUGBP1 binding activity, and C/EBPbeta-LIP in preadipocytes from young rats. Thus, CUGBP1 contributes to regulation of adipogenesis in primary preadipocytes and is responsive to tumor necrosis factor-alpha. With aging, preadipocyte CUGBP1 abundance and activity increases, resulting in enhanced translation of the C/EBPbeta-LIP isoform, thereby blocking effects of adipogenic transcription factors, predisposing preadipocytes from old animals to resist adipogenesis. Altered translational processing, possibly related to changes in cytokine milieu and activation of stress responses, may contribute to changes in progenitor differentiation and tissue function with aging.
Collapse
|
425
|
Moraes KCM, Wilusz CJ, Wilusz J. CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA (NEW YORK, N.Y.) 2006; 12:1084-91. [PMID: 16601207 PMCID: PMC1464848 DOI: 10.1261/rna.59606] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CUG-BP is the human homolog of the Xenopus EDEN-BP, which was shown previously to bind to mRNAs, such as c-mos, that exhibit rapid deadenylation following fertilization of the oocyte. While several studies have focused on roles of CUG-BP as a splicing or translation regulator in mammalian cells, its role in mRNA decay has not been examined in detail. Here, we have used an in vitro deadenylation assay to dissect the function of CUG-BP in the decay of two ARE-containing mRNAs: c-fos and TNFalpha. CUG-BP binds specifically to both of these RNAs and stimulates poly(A) shortening by PARN. Moreover, CUG-BP interacts with PARN in extracts by coimmunoprecipitation, and this interaction can be recapitulated using recombinant proteins. CUG-BP, therefore, is the first RNA-binding protein shown to directly recruit a deadenylase to an RNA substrate.
Collapse
Affiliation(s)
- Karen C M Moraes
- Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, 80523, USA
| | | | | |
Collapse
|
426
|
de Haro M, Al-Ramahi I, De Gouyon B, Ukani L, Rosa A, Faustino NA, Ashizawa T, Cooper TA, Botas J. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Hum Mol Genet 2006; 15:2138-45. [PMID: 16723374 DOI: 10.1093/hmg/ddl137] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a CTG expansion in the 3' UTR of the dystrophia myotonica protein kinase (DMPK) gene. It has been hypothesized that the pathogenesis in DM1 is triggered by a toxic gain of function of the expanded DMPK RNA. This expanded RNA is retained in nuclear foci where it sequesters and induces alterations in the levels of RNA-binding proteins (RNA-BP). To model DM1 and study the implication of RNA-BP in CUG-induced toxicity, we have generated a Drosophila DM1 model expressing a non-coding mRNA containing 480 interrupted CUG repeats; i.e. [(CUG)20CUCGA]24. This (iCUG)480 transcript accumulates in nuclear foci and its expression leads to muscle wasting and degeneration in Drosophila. We also report that altering the levels of two RNA-BP known to be involved in DM1 pathogenesis, MBNL1 and CUGBP1, modify the (iCUG)480 degenerative phenotypes. Expanded CUG-induced toxicity in Drosophila is suppressed when MBNL1 expression levels are increased, and enhanced when MBNL1 levels are reduced. In addition, (iCUG)480 also causes a decrease in the levels of soluble MBNL1 that is sequestered in the CUG-containing nuclear foci. In contrast, increasing the levels of CUGBP1 worsens (iCUG)480-induced degeneration even though CUGBP1 distribution is not altered by the expression of the expanded triplet repeat. Our data supports a mechanism for DM1 pathogenesis in which decreased levels of MBNL and increased levels of CUGBP mediate the RNA-induced toxicity observed in DM1. Perhaps more importantly, they also provide proof of the principle that CUG-induced muscle toxicity can be suppressed.
Collapse
Affiliation(s)
- María de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 2006; 15:2087-97. [PMID: 16717059 DOI: 10.1093/hmg/ddl132] [Citation(s) in RCA: 398] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In myotonic dystrophy (DM), expression of RNA containing expanded CUG or CCUG repeats leads to misregulated alternative splicing of pre-mRNA. The repeat-bearing transcripts accumulate in nuclear foci, together with proteins in the muscleblind family, MBNL1 and MBNL2. In transgenic mice that express expanded CUG repeats, we show that the splicing defect selectively targets a group of exons that share a common temporal pattern of developmental regulation. These exons undergo a synchronized splicing switch between post-natal day 2 and 20 in wild-type mice. During this post-natal interval, MBNL1 protein translocates from a predominantly cytoplasmic to nuclear distribution. In the absence of MBNL1, these physiological splicing transitions do not occur. The splicing defect induced by expanded CUG repeats in mature muscle fibers is closely reproduced by deficiency of MBNL1 but not by deficiency of MBNL2. A parallel situation exists in human DM type 1 and type 2. MBNL1 is depleted from the muscle nucleoplasm because of sequestration in nuclear foci, and the associated splicing defects are remarkably similar to those observed in MBNL1 knockout mice. These results indicate that MBNL1 participates in the post-natal remodeling of skeletal muscle by controlling a key set of developmentally regulated splicing switches. Sequestration of MBNL1, and failure to maintain these splicing transitions, has a pivotal role in the pathogenesis of muscle disease in DM.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
428
|
Barreau C, Paillard L, Méreau A, Osborne HB. Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions. Biochimie 2006; 88:515-25. [PMID: 16480813 DOI: 10.1016/j.biochi.2005.10.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 10/27/2005] [Indexed: 11/24/2022]
Abstract
In mammals, the CELF/Bruno-like family of RNA-binding proteins contains six members. The founder members of the family are the CUG-BP1 (CELF1) and ETR-3 (CELF2) proteins. Four other members have been identified mainly by sequence similarity. The founder members were cloned or identified in a number of laboratories which has lead to a profusion of names and two separate naming systems. In addition, different members of the CELF/Bruno-like protein family have been shown to be implicated in two major post-transcriptional regulatory processes, namely the alternative splicing and the control of translation and stability of target mRNAs. Several studies have indicated a certain functional redundancy between the CELF proteins in fulfilling these functions. The multiplicity of gene names and the eventual functional redundancy is a source of potential confusion in published work. We present here a synthetic picture of the present situation and, where possible, models are proposed that can account for the data obtained in the various laboratories with different biological models. Furthermore, we have highlighted some important questions that still need to be resolved.
Collapse
Affiliation(s)
- Carine Barreau
- UMR 6061 CNRS-Université de Rennes-I, IFR 140, 2, avenue Léon-Bernard, CS 34317, 35043 Rennes cedex, France
| | | | | | | |
Collapse
|
429
|
Helmke SM, Lu SM, Harmon M, Glasford JW, Larsen TD, Kwok SC, Hodges RS, Perryman MB. Myotonic dystrophy protein kinase monoclonal antibody generation from a coiled-coil template. J Mol Recognit 2006; 19:215-26. [PMID: 16680721 DOI: 10.1002/jmr.769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myotonic dystrophy protein kinase (DMPK) was the initial representative of a ubiquitous protein kinase family that regulates cell size and shape. DMPK is highly expressed in heart and skeletal muscle and transgenic over-expression induces cardiac hypertrophy. The characterization of DMPK has been limited by the paucity of immunological reagents with high affinity and well-defined specificity. Amino acid sequence data was used to predict the surface exposure of the coil-coiled domain of DMPK. These exposed amino acids were substituted into an extremely stable coiled-coil template to produce a peptide antigen. Sera from mice immunized with the peptide conjugated to keyhole limpet hemocyanin were screened against recombinant DMPK using Western blots. Murine spleens expressing DMPK antibodies were used to produce hybridoma cell lines. Hybridoma supernatants were further screened against recombinant DMPK and four clonal hybridoma cell lines expressing DMPK antibodies were generated. These four monoclonal antibodies recognized recombinant DMPK in Western blots of COS-1 cell lysates expressing high levels of recombinant DMPK and immunoprecipitated recombinant DMPK from COS-1 cell lysates. The identity of the immunoprecipitated DMPK was confirmed by MALDI-TOF mass spectrometry and peptide mass fingerprinting. DMPK was the only protein detected in the immunoprecipitates, indicating the high specificity of the antibodies. Western blots immunostained with two of the monoclonal antibodies specifically recognized the two isoforms of endogenous DMPK, DMPK-1 and DMPK-2, that are expressed at low levels in the human heart. The recognition of low amounts of DMPK-1 and DMPK-2 indicates the high affinity of these antibodies. A human heart lysate was subjected to ammonium sulfate precipitation and column chromatography to produce a fraction that was enriched in DMPK. One of the monoclonal antibodies immunoprecipitated endogenous DMPK from this fraction. This antibody was used for immuno-localization studies of an adenoviral DMPK construct, expressed in adult mouse cardiac myocytes. This construct was localized to the intercalated disc, the site of endogenous DMPK, indicating that this antibody is applicable to immuno-localization studies. This study demonstrates the utility of the described procedure for generation of specific monoclonal antibodies with high affinity for epitopes in coiled-coiled domains of mammalian proteins expressed at low levels.
Collapse
Affiliation(s)
- Steve M Helmke
- Deparment of Pediatrics, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
430
|
Pascual M, Vicente M, Monferrer L, Artero R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 2006; 74:65-80. [PMID: 16533306 DOI: 10.1111/j.1432-0436.2006.00060.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alternative splicing is widely used to generate protein diversity and to control gene expression in many biological processes, including cell fate determination and apoptosis. In this review, we focus on the Muscleblind family of tissue-specific alternative splicing regulators. Muscleblind proteins bind pre-mRNA through an evolutionarily conserved tandem CCCH zinc finger domain. Human Muscleblind homologs MBNL1, MBNL2 and MBNL3 promote inclusion or exclusion of specific exons on different pre-mRNAs by antagonizing the activity of CUG-BP and ETR-3-like factors (CELF proteins) bound to distinct intronic sites. The relative activities of Muscleblind and CELF proteins control a key developmental switch. Defined transcripts follow an embryonic splice pattern when CELF activity predominates, whereas they follow an adult pattern when Muscleblind activity prevails. Human MBNL proteins show functional specializations. While MBNL1 seems to promote muscle differentiation, MBNL3 appears to function in an opposing manner inhibiting expression of muscle differentiation markers. MBNL2, on the other hand, participates in a new RNA-dependent protein localization mechanism involving recruitment of integrin alpha3 protein to focal adhesions. Both muscleblind mutant Drosophila embryos and Mbnl1 knockout mice show muscle abnormalities and altered splicing of specific transcripts. In addition to regulating terminal muscle differentiation through alternative splicing control, results by several groups suggest that Muscleblind participates in the differentiation of photoreceptors, neurons, adipocytes and blood cell types. Misregulation of MBNL activity can lead to human pathologies. Through mechanisms not completely identified yet, expression of transcripts containing large non-coding CUG or CCUG repeat expansions mimics muscleblind loss-of-function phenotypes. Archetypical within this class of disorders are myotonic dystrophies. Our understanding of the biology of Muscleblind proteins has increased dramatically over the last few years, but several key issues remain unsolved. Defining the mechanism of the activity of Muscleblind proteins, their splicing partners, and the functional relevance of its several protein isoforms are just a few examples.
Collapse
Affiliation(s)
- Maya Pascual
- Department of Genetics, University of Valencia, Doctor Moliner, 50, 46100 Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
431
|
Abstract
The cardiac conduction system can be anatomically, developmentally, and molecularly distinguished from the working myocardium. Abnormalities in cardiac conduction can occur due to a variety of factors, including developmental and congenital defects, acquired injury or ischemia of portions of the conduction system, or less commonly due to inherited diseases that alter cardiac conduction system function. So called "idiopathic" conduction system degeneration may have familial clustering, and therefore is consistent with a hereditary basis. This "Molecular Perspectives" will highlight several diverse mechanisms of isolated conduction system disease as well as conduction system degeneration associated with other cardiac and non-cardiac disorders. The first part of this review focuses on channelopathies associated with conduction system disease. Human genetic studies have identified mutations in the sodium channel SCN5A gene causing tachyarrhythmia disorders, as well as progressive cardiac conduction system diseases, or overlapping syndromes. Next, the importance of embryonic developmental genes such as homeobox and T-box transcription factors are highlighted in conduction system development and function. Conduction system diseases associated with multisystem disorders, such as muscular and myotonic dystrophies, will be described. Last, a new glycogen storage cardiomyopathy associated with ventricular preexcitation and progressive conduction system degeneration will be reviewed. There are a myriad of mutations identified in genes encoding cardiac transcription factors, ion channels, gap junctions, energy metabolism regulators, lamins and other structural proteins. Understanding of the molecular and ionic mechanisms underlying cardiac conduction is essential for the appreciation of the pathogenesis of conduction abnormalities in structurally normal and altered hearts.
Collapse
Affiliation(s)
- Cordula M Wolf
- Department of Cardiology, Children's Hospital, Boston Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
432
|
Gomes-Pereira M, Monckton DG. Chemical modifiers of unstable expanded simple sequence repeats: what goes up, could come down. Mutat Res 2006; 598:15-34. [PMID: 16500684 DOI: 10.1016/j.mrfmmm.2006.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A mounting number of inherited human disorders, including Huntington disease, myotonic dystrophy, fragile X syndrome, Friedreich ataxia and several spinocerebellar ataxias, have been associated with the expansion of unstable simple sequence DNA repeats. Despite a similar genetic basis, pathogenesis in these disorders is mediated by a variety of both loss and gain of function pathways. Thus, therapies targeted at downstream pathology are likely to be disease specific. Characteristically, disease-associated expanded alleles in these disorders are highly unstable in the germline and somatic cells, with a tendency towards further expansion. Whereas germline expansion accounts for the phenomenon of anticipation, tissue-specific, age-dependent somatic expansion may contribute towards the tissue-specificity and progressive nature of the symptoms. Thus, somatic expansion presents as a novel therapeutic target in these disorders. Suppression of somatic expansion should be therapeutically beneficial, whilst reductions in repeat length could be curative. It is well established that both cis- and trans-acting genetic modifiers play key roles in the control of repeat dynamics. Importantly, recent data have revealed that expanded CAG.CTG repeats are also sensitive to a variety of trans-acting chemical modifiers. These data provide an exciting proof of principle that drug induced suppression of somatic expansion might indeed be feasible. Moreover, as our understanding of the mechanism of expansion is refined more rational approaches to chemical intervention in the expansion pathway can be envisioned. For instance, the demonstration that expansion of CAG.CTG repeats is dependent on the Msh2, Msh3 and Pms2 genes, highlights components of the DNA mismatch repair pathway as therapeutic targets. In addition to potential therapeutic applications, the response of expanded simple repeats to genotoxic assault suggests such sequences could also have utility as bio-monitors of environmentally induced genetic damage in the soma.
Collapse
Affiliation(s)
- Mário Gomes-Pereira
- Inserm U383, Clinique Maurice Lamy, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | | |
Collapse
|
433
|
Leroy O, Dhaenens CM, Schraen-Maschke S, Belarbi K, Delacourte A, Andreadis A, Sablonnière B, Buée L, Sergeant N, Caillet-Boudin ML. ETR-3 represses Tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type I. J Neurosci Res 2006; 84:852-9. [PMID: 16862542 DOI: 10.1002/jnr.20980] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered splicing of transcripts, including the insulin receptor (IR) and the cardiac troponin (cTNT), is a key feature of myotonic dystrophy type I (DM1). CELF and MBNL splicing factor members regulate the splicing of those transcripts. We have previously described an alteration of Tau exon 2 splicing in DM1 brain, resulting in the favored exclusion of exon 2. However, the factors required for alternative splicing of Tau exon 2 remain undetermined. Here we report a decreased expression of CELF family member and MBNL transcripts in DM1 brains as assessed by RT-PCR. By using cellular models with a control- or DM1-like splicing pattern of Tau transcripts, we demonstrate that ETR-3 promotes selectively the exclusion of Tau exon 2. These results together with the analysis of Tau exon 6 and IR exon 11 splicing in brain, muscle, and cell models suggest that DM1 splicing alteration of several transcripts involves various factors.
Collapse
|
434
|
Kuyumcu-Martinez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:133-59. [PMID: 17076268 PMCID: PMC4127983 DOI: 10.1007/978-3-540-34449-0_7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy (DM), the most common form of adult onset muscular dystrophy, affects skeletal muscle, heart, and the central nervous system (CNS). Mortality results primarily from muscle wasting and cardiac arrhythmias. There are two forms of the disease: DM1 and DM2. DM1, which constitutes 98% of cases, is caused by a CTG expansion in the 3' untranslated region (UTR) of the DMPK gene. DM2 is caused by a CCTG expansion in the first intron of the ZNF9 gene. RNA containing CUG- or CCUG-expanded repeats are transcribed but are retained in the nucleus in foci. Disease pathogenesis results primarily from a gain of function of the expanded RNAs, which alter developmentally regulated alternative splicing as well as pathways of muscle differentiation. The toxic RNA has been implicated in sequestration of splicing regulators and transcription factors thereby causing specific symptoms of the disease. Here we review the proposed mechanisms for the toxic effects of the expanded repeats and discuss the molecular mechanisms of splicing misregulation and disease pathogenesis.
Collapse
|
435
|
Abstract
Several studies have suggested the presence of central nervous system involvement manifesting as cognitive impairment in diseases traditionally confined to the peripheral nervous system. The aim of this review is to highlight the character of clinical, genetic, neurofunctional, cognitive, and psychiatric deficits in neuromuscular disorders. A high correlation between cognitive features and cerebral protein expression or function is evident in Duchenne muscular dystrophy, myotonic dystrophy (Steinert disease), and mitochondrial encephalomyopathies; direct correlation between tissue-specific protein expression and cognitive deficits is still elusive in certain neuromuscular disorders presenting with or without a cerebral abnormality, such as congenital muscular dystrophies, congenital myopathies, amyotrophic lateral sclerosis, adult polyglucosan body disease, and limb-girdle muscular dystrophies. No clear cognitive deficits have been found in spinal muscular atrophy and facioscapulohumeral dystrophy.
Collapse
Affiliation(s)
- Maria Grazia D'Angelo
- Istituto di Ricerca e Cura a Carattere Scientifico E. Medea, La Nostra Famiglia, Via don Luigi Monza 20, 23842 Bosisio Parini, Italy.
| | | |
Collapse
|
436
|
Hernández-Hernández O, Bermúdez-de-León M, Gómez P, Velázquez-Bernardino P, García-Sierra F, Cisneros B. Myotonic dystrophy expanded CUG repeats disturb the expression and phosphorylation of τ in PC12 cells. J Neurosci Res 2006; 84:841-51. [PMID: 16862553 DOI: 10.1002/jnr.20989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mental retardation is a main feature of the congenital form of myotonic dystrophy (DM1), however, the molecular mechanisms underlying the central nervous system symptoms of DM1 are poorly understood. We have established a PC12 cell line-based model expressing the DM1 expanded CUG repeats (CTG90 cells) to analyze the effects of this mutation on neuronal functions. Previously, we have reported that CTG90 cells displayed impaired NGF-induced neuronal differentiation. Because disruption of normal expression of the microtubule associated protein tau and neuronal aggregates of hyperphosphorylated tau have been associated with DM1, this study analyzes the behavior of tau in the CTG90 cells. Several alterations of tau were observed in the PC12 cells that express expanded CUG repeats, including a subtle but reproducible reduction in the expression of the tau mRNA splicing isoform containing exon 10, decreased expression of tau and hyperphosphorylation of both tau and high molecular weight tau as well as abnormal nuclear localization of tau phosphorylated at Ser396/404. Interestingly, phosphorylation regulates negatively the activity of tau as microtubule-associated protein. In addition, impaired activity of the Akt/GSK3beta pathway, which phosphorylates tau, was also identified in the CTG90 cells. Besides tau phosphorylation, the Akt/GSK3beta signaling pathway regulates other key processes of PC12 cells, such as apoptosis and neuronal differentiation. Our results indicate that defective neuronal differentiation exhibited by the PC12 cells expressing expanded CUG repeats could be the result of combinatory effects derived from the altered behavior of tau and the impaired activation of the Akt/GSK3beta signaling pathway.
Collapse
Affiliation(s)
- Oscar Hernández-Hernández
- Department of Genetics and Molecular Biology, Centro de Investigación y de EstudiosAvanzados del I.P.N., México, D.F., México
| | | | | | | | | | | |
Collapse
|
437
|
Leroy O, Wang J, Maurage CA, Parent M, Cooper T, Buée L, Sergeant N, Andreadis A, Caillet-Boudin ML. Brain-specific change in alternative splicing of Tau exon 6 in myotonic dystrophy type 1. Biochim Biophys Acta Mol Basis Dis 2005; 1762:460-7. [PMID: 16487687 DOI: 10.1016/j.bbadis.2005.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/21/2005] [Accepted: 12/01/2005] [Indexed: 12/18/2022]
Abstract
Alternative splicing is altered in myotonic dystrophy of type 1 (DM1), a syndrome caused by an increase of CTG triplet repeats in the 3' untranslated region of the myotonic dystrophy protein kinase gene. Previously, we reported the preferential skipping of Tau exon 2 in DM1 brains. In this study, we analyze the alternative splicing of Tau exon 6 which can be inserted in three different forms (c, p and d) depending on the 3' splice site used. In fact, inclusion of exon 6c decreases in DM1 brains compared to control brains whereas inclusion of 6d increases. Alteration of exon 6 splicing was not observed in DM1 muscle although this exon was inserted in RNAs from normal muscle and DM1 splicing alterations were first described in this organ. In contrast, alteration of exon 2 of Tau mRNA was observed in both muscle and brain. However, co-transfections of a minigene containing exon 6 with CELF or MBNL1 cDNAs, two splicing factor families suspected to be involved in DM1, showed that they influence exon 6 splicing. Altogether, these results show the importance of determining all the exons and organs targeted by mis-splicing to determine the dysregulation mechanisms of mis-splicing in DM1.
Collapse
Affiliation(s)
- Olivier Leroy
- INSERM U422, Pl. de Verdun. 59045 Lille Cedex- France
| | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Mitrasinovic PM. On the structural features of hairpin triloops in rRNA: from nucleotide to global conformational change upon ligand binding. J Struct Biol 2005; 153:207-22. [PMID: 16439157 DOI: 10.1016/j.jsb.2005.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/01/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
RNA structure can be viewed as both a construct composed of various structural motifs and a flexible polymer that is substantially influenced by its environment. In this light, the present paper represents an attempt to reconcile the two standpoints. By using the 3D structures both of four (16S and 23S) portions of unbound 50S, H50S, and T30S ribosomal subunits and of 38 large ribonucleoligand complexes as the starting point, the behavior, which is induced by ligand binding, of 73 hairpin triloops with closing g-c and c-g base pairs was investigated using root-mean-square deviation (RMSD) approach and pseudotorsional (eta,theta) convention at the nucleotide-by-nucleotide level. Triloops were annotated in accordance with a recent proposal of geometric nomenclature. A simple measure for the determination of the strain of a triloop is introduced. It is believed that a possible classification of the interior triloops, based on the 2D eta-theta unique path, will aid to conceive their local behavior upon ligand binding. All rRNA residues in contact with ligands as well as regions of considerable conformational changes upon complex formation were identified. The analysis offers the answer to: how proximal to and how far from the actual ligand-binding sites the structural changes occur?
Collapse
Affiliation(s)
- Petar M Mitrasinovic
- RNA Maturation and Molecular Enzymology Laboratory, Faculty of Sciences, Henri Poincaré University, UMR 7567 CNRS-UHP Nancy I, BP 239-54506 Vandoeuvre-Lès-Nancy, France.
| |
Collapse
|
439
|
Oh JH, Yang JO, Hahn Y, Kim MR, Byun SS, Jeon YJ, Kim JM, Song KS, Noh SM, Kim S, Yoo HS, Kim YS, Kim NS. Transcriptome analysis of human gastric cancer. Mamm Genome 2005; 16:942-54. [PMID: 16341674 DOI: 10.1007/s00335-005-0075-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/09/2005] [Indexed: 12/01/2022]
Abstract
To elucidate the genetic events associated with gastric cancer, 124,704 cDNA clones were collected from 37 human gastric cDNA libraries, including 20 full-length enriched cDNA libraries of gastric cancer cell lines and tissues from Korean patients. An analysis of the collected ESTs revealed that 97,930 high-quality ESTs coalesced into 13,001 clusters, of which 11,135 clusters (85.6%) were annotated to known ESTs. The analysis of the full-length cDNAs also revealed that 4862 clusters (51.7%) contained at least one putative full-length cDNA clone with an initiation codon, with the average length of the 5' UTR of 140 bp. A large number appear to have a diverse transcription start site (TSS). An examination of the TSS of some genes, such as TEGT and GAPD, using 5' RACE revealed that the predicted TSSs are actually found in human gastric cancer cells and that several TSSs differ depending on the specific gastric cell line. Furthermore, of the human gastric ESTs, 766 genes (9.5%) were present as putative alternatively spliced variants. Confirmation of the predicted spliced isoforms using RT-PCR showed that the predicted isoforms exist in gastric cancer cells and some isoforms coexist in gastric cell lines. These results provide potentially useful information for elucidating the molecular mechanisms associated with gastric oncogenesis.
Collapse
Affiliation(s)
- Jung-Hwa Oh
- Laboratory of Human Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon , 305-333, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Abstract
The disease mechanism underlying myotonic dystrophy type 1 (DM1) pathogenesis in skeletal muscle may involve sequestration of RNA binding proteins in nuclear foci of expanded poly(CUG) RNA. Here we report evidence for a parallel mechanism in the heart. Accumulation of expanded poly(CUG) RNA in nuclear foci is associated with sequestration of muscleblind proteins and abnormal regulation of alternative splicing in DM1 cardiac muscle. A toxic effect of RNA with an expanded repeat may contribute to cardiac disease in DM1.
Collapse
Affiliation(s)
- Ami Mankodi
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
441
|
Mooers BHM, Logue JS, Berglund JA. The structural basis of myotonic dystrophy from the crystal structure of CUG repeats. Proc Natl Acad Sci U S A 2005; 102:16626-31. [PMID: 16269545 PMCID: PMC1283809 DOI: 10.1073/pnas.0505873102] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy (DM) type 1 is associated with an expansion of (>50) CTG repeats within the 3' untranslated region (UTR) of the dystrophin myotonin protein kinase gene (dmpk). In the corresponding mRNA transcript, the CUG repeats form an extended stem-loop structure. The double-stranded RNA of the stem sequesters RNA binding proteins away from their normal cellular targets resulting in aberrant transcription, alternative splicing patterns, or both, thereby leading to DM. To better understand the structural basis of DM type 1, we determined to 1.58-A resolution the x-ray crystal structure of an 18-bp RNA containing six CUG repeats. The CUG repeats form antiparallel double-stranded helices that stack end-on-end in the crystal to form infinite, pseudocontinuous helices similar to the long CUG stem loops formed by the expanded CUG repeats in DM type 1. The CUG helix is very similar in structure to A-form RNA with the exception of the unique U-U mismatches. This structure provides a high-resolution view of a toxic, trinucleotide repeat RNA.
Collapse
Affiliation(s)
- Blaine H M Mooers
- Department of Chemistry, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | |
Collapse
|
442
|
Ladd AN, Stenberg MG, Swanson MS, Cooper TA. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn 2005; 233:783-93. [PMID: 15830352 DOI: 10.1002/dvdy.20382] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiac troponin T (cTNT) exon 5 splicing is developmentally regulated such that it is included in embryonic but not adult heart. CUG-BP and ETR-3-like factor (CELF) proteins promote exon inclusion, whereas polypyrimidine tract binding protein (PTB) and muscleblind-like (MBNL) proteins repress inclusion. In this study, we addressed what happens to these regulatory proteins during heart development to shift the regulatory balance of cTNT alternative splicing. Using dominant-negative proteins, we found that both CELF and PTB activities are required for appropriate splicing in cardiomyocytes. Two CELF proteins, CUG-BP and ETR-3, are nuclear and cytoplasmic in embryonic heart but are down-regulated in adult heart concomitant with loss of exon inclusion. In contrast, PTB and MBNL1 are expressed throughout heart development. The patterns of cTNT splicing and expression of its regulatory factors are conserved between mouse and chicken. Thus, alternative splicing is determined by a balance between positive and negative regulation, and modulation of expression levels of auxiliary splicing regulators may drive developmental splicing changes. ETR-3 and CUG-BP proteins are also down-regulated in other tissues during development, suggesting that CELF proteins play a broad role in developmental splicing regulation.
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
443
|
Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S, Zoghbi HY. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 2005; 102:17551-8. [PMID: 16251272 PMCID: PMC1266160 DOI: 10.1073/pnas.0507856102] [Citation(s) in RCA: 354] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome (RTT) is a postnatal neurodevelopmental disorder characterized by the loss of acquired motor and language skills, autistic features, and unusual stereotyped movements. RTT is caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Mutations in MECP2 cause a variety of neurodevelopmental disorders including X-linked mental retardation, psychiatric disorders, and some cases of autism. Although MeCP2 was identified as a methylation-dependent transcriptional repressor, transcriptional profiling of RNAs from mice lacking MeCP2 did not reveal significant gene expression changes, suggesting that MeCP2 does not simply function as a global repressor. Changes in expression of a few genes have been observed, but these alterations do not explain the full spectrum of Rett-like phenotypes, raising the possibility that additional MeCP2 functions play a role in pathogenesis. In this study, we show that MeCP2 interacts with the RNA-binding protein Y box-binding protein 1 and regulates splicing of reporter minigenes. Importantly, we found aberrant alternative splicing patterns in a mouse model of RTT. Thus, we uncovered a previously uncharacterized function of MeCP2 that involves regulation of splicing, in addition to its role as a transcriptional repressor.
Collapse
Affiliation(s)
- Juan I Young
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 2005; 6:743-55. [PMID: 16205714 DOI: 10.1038/nrg1691] [Citation(s) in RCA: 569] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The list of developmental and degenerative diseases that are caused by expansion of unstable repeats continues to grow, and is now approaching 20 disorders. The pathogenic mechanisms that underlie these disorders involve either loss of protein function or gain of function at the protein or RNA level. Common themes have emerged within and between these different classes of disease; for example, among disorders that are caused by gain-of-function mechanisms, altered protein conformations are central to pathogenesis, leading to changes in protein activity or abundance. In all these diseases, the context of the expanded repeat and the abundance, subcellular localization and interactions of the proteins and RNAs that are affected have key roles in disease-specific phenotypes.
Collapse
Affiliation(s)
- Jennifer R Gatchel
- Department of Neuroscience, Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
445
|
Ladd AN, Taffet G, Hartley C, Kearney DL, Cooper TA. Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol Cell Biol 2005; 25:6267-78. [PMID: 15988035 PMCID: PMC1168813 DOI: 10.1128/mcb.25.14.6267-6278.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the CELF family of RNA binding proteins have been implicated in alternative splicing regulation in developing heart. Transgenic mice that express a nuclear dominant-negative CELF protein specifically in the heart (MHC-CELFDelta) develop cardiac hypertrophy and dilated cardiomyopathy with defects in alternative splicing beginning as early as 3 weeks after birth. MHC-CELFDelta mice exhibit extensive cardiac fibrosis, severe cardiac dysfunction, and premature death. Interestingly, the penetrance of the phenotype is greater in females than in males despite similar levels of dominant-negative expression, suggesting that there is sex-specific modulation of splicing activity. The cardiac defects in MHC-CELFdelta mice are directly attributable to reduced levels of CELF activity, as crossing these mice with mice overexpressing CUG-BP1, a wild-type CELF protein, rescues defects in alternative splicing, the severity and incidence of cardiac hypertrophy, and survival. We conclude that CELF protein activity is required for normal alternative splicing in the heart in vivo and that normal CELF-mediated alternative splicing regulation is in turn required for normal cardiac function.
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
446
|
Mastroyiannopoulos NP, Feldman ML, Uney JB, Mahadevan MS, Phylactou LA. Woodchuck post-transcriptional element induces nuclear export of myotonic dystrophy 3' untranslated region transcripts. EMBO Rep 2005; 6:458-63. [PMID: 15832171 PMCID: PMC1299300 DOI: 10.1038/sj.embor.7400390] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/07/2005] [Accepted: 03/15/2005] [Indexed: 11/09/2022] Open
Abstract
The woodchuck post-transcriptional regulatory element (WPRE) can naturally accumulate hepatitis transcripts in the cytoplasm, and has been recently exploited as an enhancer of transgene expression. The retention of mutant myotonic dystrophy protein kinase (DMPK) transcripts in the nucleus of myotonic dystrophy (DM) cells has an important pathogenic role in the disease, resulting in pleiotropic effects including delayed myoblast differentiation. In this study, we report the first use of WPRE as a tool to enhance nuclear export of an aberrantly retained messenger RNA. Stable cell lines expressing the normal and mutant DMPK 3' UTR (3' untranslated region) complementary DNA, with or without WPRE, were produced. It is noteworthy that WPRE stimulated extensive transport of mutant transcripts to the cytoplasm. This was associated with repair of the defective cellular MyoD levels and a subsequent increase in myoblast differentiation. These results provide the basis for a cellular model that can be exploited in DM and in the study of RNA transport mechanisms.
Collapse
Affiliation(s)
| | - Mariana L Feldman
- The Cyprus Institute of Neurology & Genetics, PO Box 23462, 1683, Nicosia, Cyprus
| | - James B Uney
- The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Mani S Mahadevan
- Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA
| | - Leonidas A Phylactou
- The Cyprus Institute of Neurology & Genetics, PO Box 23462, 1683, Nicosia, Cyprus
- Tel: +357 22 358600; Fax +357 22 358237; E-mail:
| |
Collapse
|
447
|
Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve 2005; 32:1-18. [PMID: 15770660 DOI: 10.1002/mus.20301] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type 1 myotonic dystrophy or DM1 (Steinert's disease), which is the commonest muscular dystrophy in adults, has intrigued physicians for over a century. Unusual features, compared with other dystrophies, include myotonia, anticipation, and involvement of other organs, notably the brain, eyes, smooth muscle, cardiac conduction apparatus, and endocrine system. Morbidity is high, with a substantial mortality relating to cardiorespiratory dysfunction. More recently a second form of multisystem myotonic disorder has been recognized and variously designated as proximal myotonic myopathy (PROMM), proximal myotonic dystrophy (PDM), or DM2. For both DM1 and DM2 the molecular basis is expansion of an unstable repeat sequence in a noncoding part of a gene (DMPK in DM1 and ZNF9 in DM2). There is accumulating evidence that the basic molecular mechanism is disruption of mRNA metabolism, which has far-reaching effects on many other genes, in part through the induction of aberrant splicing, explaining the multisystemic nature of the disease. The unstable nature of the expansion provides a molecular explanation for anticipation. This review emphasizes the clinical similarities and differences between DM1 and DM2. It examines current views about the molecular basis of these disorders, and contrasts them with other repeat expansion disorders that have increasingly been recognized as a cause of neurological disease.
Collapse
Affiliation(s)
- Laura Machuca-Tzili
- Department of Genetics, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
448
|
Kim DH, Langlois MA, Lee KB, Riggs AD, Puymirat J, Rossi JJ. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic Acids Res 2005; 33:3866-74. [PMID: 16027111 PMCID: PMC1176012 DOI: 10.1093/nar/gki698] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular disorder associated with a (CUG)n expansion in the 3′-untranslated region of the DMPK (DM1 protein kinase) gene. Mutant DMPK mRNAs containing the trinucleotide expansion are retained in the nucleus of DM1 cells and form discrete foci. The nuclear sequestration of RNA binding proteins and associated factors binding to the CUG expansions is believed to be responsible for several of the splicing defects observed in DM1 patients and could ultimately be linked to DM1 muscular pathogenesis. Several RNA binding proteins capable of co-localizing with the nuclear-retained mutant DMPK mRNAs have already been identified but none can account for the nuclear retention of the mutant transcripts. Here, we have employed a modified UV crosslinking assay to isolate proteins bound to mutant DMPK-derived RNA and have identified hnRNP H as an abundant candidate. The specific binding of hnRNP H requires not only a CUG repeat expansion but also a splicing branch point distal to the repeats. Suppression of hnRNP H expression by RNAi rescued nuclear retention of RNA with CUG repeat expansions. The identification of hnRNP H as a factor capable of binding and possibly modulating nuclear retention of mutant DMPK mRNA may prove to be an important link in our understanding of the molecular mechanisms that lead to DM1 pathogenesis.
Collapse
Affiliation(s)
| | - Marc-Andre Langlois
- Department of Human Genetics, CHUQ, Pavillon CHUL and Laval UniversityQuebec City, Canada
| | - Kwang-Back Lee
- Department of Human Genetics, CHUQ, Pavillon CHUL and Laval UniversityQuebec City, Canada
| | - Arthur D. Riggs
- Department of Biology, Beckman Research Institute of the City of HopeDuarte, CA, USA
| | - Jack Puymirat
- Department of Human Genetics, CHUQ, Pavillon CHUL and Laval UniversityQuebec City, Canada
| | - John J. Rossi
- To whom correspondence should be addressed. Tel: +1 626 301 8360; Fax: +1 626 301 8271;
| |
Collapse
|
449
|
Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 2005; 14:2189-200. [PMID: 15972723 DOI: 10.1093/hmg/ddi223] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene. Aberrant splicing of several genes has been reported to contribute to some symptoms of DM1, but the cause of muscle weakness in DM1 and elevated Ca2+ concentrations in cultured DM muscle cells is unknown. Here, we investigated the alternative splicing of mRNAs of two major proteins of the sarcoplasmic reticulum, the ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) 1 or 2. The fetal variants, ASI(-) of RyR1 which lacks residue 3481-3485, and SERCA1b which differs at the C-terminal were significantly increased in skeletal muscles from DM1 patients and the transgenic mouse model of DM1 (HSA(LR)). In addition, a novel variant of SERCA2 was significantly decreased in DM1 patients. The total amount of mRNA for RyR1, SERCA1 and SERCA2 in DM1 and the expression levels of their proteins in HSA(LR) mice were not significantly different. However, heterologous expression of ASI(-) in cultured cells showed decreased affinity for [3H]ryanodine but similar Ca2+ dependency, and decreased channel activity in single-channel recording when compared with wild-type (WT) RyR1. In support of this, RyR1-knockout myotubes expressing ASI(-) exhibited a decreased incidence of Ca2+ oscillations during caffeine exposure compared with that observed for myotubes expressing WT-RyR1. We suggest that aberrant splicing of RyR1 and SERCA1 mRNAs might contribute to impaired Ca2+ homeostasis in DM1 muscle.
Collapse
Affiliation(s)
- Takashi Kimura
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Ho TH, Savkur RS, Poulos MG, Mancini MA, Swanson MS, Cooper TA. Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci 2005; 118:2923-33. [PMID: 15961406 DOI: 10.1242/jcs.02404] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy type I (DM1), which is caused by a non-coding CTG-repeat expansion in the dystrophia myotonica-protein kinase (DMPK) gene, is an RNA-mediated disease. Expanded CUG repeats in transcripts of mutant DMPK form nuclear foci that recruit muscleblind-like (MBNL) proteins, a family of alternative splicing factors. Although transcripts of mutant DMPK and MBNL proteins accumulate in nuclear RNA foci, it is not clear whether foci formation is required for splicing mis-regulation. Here, we use a co-transfection strategy to show that both CUG and CAG repeats form RNA foci that colocalize with green fluorescent protein (GFP)-MBNL1 and endogenous MBNL1. However, only CUG repeats alter splicing of the two tested pre-mRNAs, cardiac troponin T (cTNT) and insulin receptor (IR). Using FRAP, we demonstrate that GFP-MBNL1 in CUG and CAG foci have similar half-times of recovery and fractions of immobile molecules, suggesting that GFP-MBNL1 is bound by both CUG and CAG repeats. We also find an immobile fraction of GFP-MBNL1 in DM1 fibroblasts and a similar rapid exchange in endogenous CUG RNA foci. Therefore, formation of RNA foci and disruption of MBNL1-regulated splicing are separable events.
Collapse
Affiliation(s)
- Thai H Ho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|