401
|
Vigor C, Züllig T, Eichmann TO, Oger C, Zhou B, Rechberger GN, Hilsberg L, Trötzmüller M, Pellegrino RM, Alabed HBR, Hartler J, Wolinski H, Galano JM, Durand T, Spener F. α-Linolenic acid and product octadecanoids in Styrian pumpkin seeds and oils: How processing impacts lipidomes of fatty acid, triacylglycerol and oxylipin molecular structures. Food Chem 2022; 371:131194. [PMID: 34600364 DOI: 10.1016/j.foodchem.2021.131194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Styrian pumpkin seed oil is a conditioned green-colored oil renowned for nutty smell and taste. Due to α-linolenic acid (ALA) contents below 1% of total fatty acids and the prospect of nutritional health claims based on its potential oxidation products, we investigated the fate of ALA and product oxylipins in the course of down-stream processing of seeds and in oils. Lipidomic analyses with Lipid Data Analyzer 2.8.1 revealed: Processing did not change (1) main fatty acid composition in the oils, (2) amounts of triacylglycerol species, (3) structures of triacylglycerol molecular species containing ALA. (4) Minor precursor ALA in fresh Styrian and normal pumpkins produced 6 product phytoprostanes in either cultivar, quantitatively more in the latter. (5) In oil samples 7 phytoprostanes and 2 phytofurans were detected. The latter two are specific for their presence in pumpkin seed oils, of note, quantitatively more in conditioned oils than in cold-pressed native oils.
Collapse
Affiliation(s)
- Claire Vigor
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Thomas O Eichmann
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Camille Oger
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Bingqing Zhou
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Gerald N Rechberger
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | | | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Roberto M Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria; Field of Excellence BioHealth - University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Jean-Marie Galano
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thierry Durand
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria; Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6/6, 8010 Graz, Austria.
| |
Collapse
|
402
|
Morozumi S, Ueda M, Okahashi N, Arita M. Structures and functions of the gut microbial lipidome. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159110. [PMID: 34995792 DOI: 10.1016/j.bbalip.2021.159110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022]
Abstract
Microbial lipids provide signals that are responsible for maintaining host health and controlling disease. The differences in the structures of microbial lipids have been shown to alter receptor selectivity and agonist/antagonist activity. Advanced lipidomics is an emerging field that helps to elucidate the complex bacterial lipid diversity. The use of cutting-edge technologies is expected to lead to the discovery of new functional metabolites involved in host homeostasis. This review aims to describe recent updates on functional lipid metabolites derived from gut microbiota, their structure-activity relationships, and advanced lipidomics technologies.
Collapse
Affiliation(s)
- Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masahiro Ueda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; JSR Bioscience and Informatics R&D Center, JSR Corporation, 3-103-9 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyuki Okahashi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
403
|
Recent trends in the field of lipid engineering. J Biosci Bioeng 2022; 133:405-413. [DOI: 10.1016/j.jbiosc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
|
404
|
Stankeviciute G, Tang P, Ashley B, Chamberlain JD, Hansen ME, Coleman A, D’Emilia R, Fu L, Mohan EC, Nguyen H, Guan Z, Campopiano DJ, Klein EA. Convergent evolution of bacterial ceramide synthesis. Nat Chem Biol 2022; 18:305-312. [PMID: 34969973 PMCID: PMC8891067 DOI: 10.1038/s41589-021-00948-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial domain produces numerous types of sphingolipids with various physiological functions. In the human microbiome, commensal and pathogenic bacteria use these lipids to modulate the host inflammatory system. Despite their growing importance, their biosynthetic pathway remains undefined since several key eukaryotic ceramide synthesis enzymes have no bacterial homolog. Here we used genomic and biochemical approaches to identify six proteins comprising the complete pathway for bacterial ceramide synthesis. Bioinformatic analyses revealed the widespread potential for bacterial ceramide synthesis leading to our discovery of a Gram-positive species that produces ceramides. Biochemical evidence demonstrated that the bacterial pathway operates in a different order from that in eukaryotes. Furthermore, phylogenetic analyses support the hypothesis that the bacterial and eukaryotic ceramide pathways evolved independently.
Collapse
Affiliation(s)
- Gabriele Stankeviciute
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Peijun Tang
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Ben Ashley
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Joshua D. Chamberlain
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Matthew E.B. Hansen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimiyah Coleman
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Rachel D’Emilia
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Larina Fu
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Eric C. Mohan
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Hung Nguyen
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
| | - Dominic J. Campopiano
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom,Correspondence to: , , and
| | - Eric A. Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA,Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA.,Correspondence to: , , and
| |
Collapse
|
405
|
Poad BLJ, Young RSE, Marshall DL, Trevitt AJ, Blanksby SJ. Accelerating Ozonolysis Reactions Using Supplemental RF-Activation of Ions in a Linear Ion Trap Mass Spectrometer. Anal Chem 2022; 94:3897-3903. [PMID: 35201768 DOI: 10.1021/acs.analchem.1c04915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas-phase ion-molecule reactions provide structural insights across a range of analytical applications. A hindrance to the wider use of ion-molecule reactions is that they are relatively slow compared to other ion activation modalities and can thereby impose a bottleneck on the time required to analyze each sample. Here we describe a method for accelerating the rate of ion-molecule reactions involving ozone, implemented by supplementary RF-activation of mass-selected ions within a linear ion trap. Reaction rate accelerations between 15-fold (for ozonolysis of alkenes in ionised lipids) and 90-fold (for ozonation of halide anions) are observed compared to thermal conditions. These enhanced reaction rates with ozone increase sample throughput, aligning the reaction time with the overall duty cycle of the mass spectrometer. We demonstrate that the acceleration is due to the supplementary RF-activation surmounting the activation barrier energy of the entrance channel of the ion-molecule reaction. This rate acceleration is subsequently shown to aid identification of new, low abundance lipid isomers and enables an equivalent increase in the number of lipid species that can be analyzed.
Collapse
Affiliation(s)
- Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Adam J Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2552, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
406
|
Mocciaro G, Gastaldelli A. Obesity-Related Insulin Resistance: The Central Role of Adipose Tissue Dysfunction. Handb Exp Pharmacol 2022; 274:145-164. [PMID: 35192055 DOI: 10.1007/164_2021_573] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Obesity is a key player in the onset and progression of insulin resistance (IR), a state by which insulin-sensitive cells fail to adequately respond to insulin action. IR is a reversible condition, but if untreated leads to type 2 diabetes alongside increasing cardiovascular risk. The link between obesity and IR has been widely investigated; however, some aspects are still not fully characterized.In this chapter, we introduce key aspects of the pathophysiology of IR and its intimate connection with obesity. Specifically, we focus on the role of adipose tissue dysfunction (quantity, quality, and distribution) as a driver of whole-body IR. Furthermore, we discuss the obesity-related lipidomic remodeling occurring in adipose tissue, liver, and skeletal muscle. Key mechanisms linking lipotoxicity to IR in different tissues and metabolic alterations (i.e., fatty liver and diabetes) and the effect of weight loss on IR are also reported while highlighting knowledge gaps.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
407
|
Good CJ, Neumann EK, Butrico CE, Cassat JE, Caprioli RM, Spraggins JM. High Spatial Resolution MALDI Imaging Mass Spectrometry of Fresh-Frozen Bone. Anal Chem 2022; 94:3165-3172. [PMID: 35138834 PMCID: PMC9741954 DOI: 10.1021/acs.analchem.1c04604] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone and bone marrow are vital to mammalian structure, movement, and immunity. These tissues are also commonly subjected to molecular alterations giving rise to debilitating diseases like rheumatoid arthritis and osteomyelitis. Technologies such as matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) facilitate the discovery of spatially resolved chemical information in biological tissue samples to help elucidate the complex molecular processes underlying pathology. Traditionally, preparation of osseous tissue for MALDI IMS has been difficult due to its mineralized composition and heterogeneous morphology, and compensation for these challenges with decalcification and fixation protocols can remove or delocalize molecular species. Here, sample preparation methods were advanced to enable multimodal MALDI IMS of undecalcified, fresh-frozen murine femurs, allowing the distribution of endogenous lipids to be linked to tissue structures and cell types. Adhesive-bound bone sections were mounted onto conductive glass slides with microscopy-compatible glue and freeze-dried to minimize artificial bone marrow damage. High spatial resolution (10 μm) MALDI IMS was employed to characterize lipid distributions, and use of complementary microscopy modalities aided tissue and cell assignments. For example, various phosphatidylcholines localize to the bone marrow, adipose tissue, marrow adipose tissue, and muscle. Further, sphingomyelin(42:1) was abundant in megakaryocytes, whereas sphingomyelin(42:2) was diminished in this cell type. These data reflect the vast molecular and cellular heterogeneity indicative of the bone marrow and the soft tissue surrounding the femur. Multimodal MALDI IMS has the potential to advance bone-related biomedical research by offering deep molecular coverage with spatial relevance in a preserved native bone microenvironment.
Collapse
Affiliation(s)
- Christopher J Good
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Elizabeth K Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Casey E Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
408
|
Gao Z, Mi R, Cheng Z, Li X, Zeng H, Wu G, Zhao J, Zhang W, Ye J. Integrated Metabolomics and Network Pharmacology Revealed Hong-Hua-Xiao-Yao Tablet's Effect of Mediating Hormone Synthesis in the Treatment of Mammary Gland Hyperplasia. Front Pharmacol 2022; 13:788019. [PMID: 35177987 PMCID: PMC8846323 DOI: 10.3389/fphar.2022.788019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Hong-Hua-Xiao-Yao Tablet (HHXYT) is a traditional Chinese medicine (TCM) formula that has been approved for the treatment of mammary gland hyperplasia (MGH), but its mechanism of action is unclear. In this study, a strategy that integrated metabolomics and network pharmacology was applied to systemically reveal the mechanism of HHXYT in the treatment of MGH. Our pharmacodynamic study indicated that the proliferation of mammary gland was inhibited in rats, and serum-level disorder of estradiol and progesterone was reversed after HHXYT treatment. 54 compounds absorbed in rat plasma were identified after administration of HHXYT. The serum metabolome revealed 58 endogenous differential metabolites, of which 31% were steroid lipids metabolites, with steroid hormone biosynthesis being the most significant metabolic module. 7 targets, 6 herbs, and 17 ingredients were found to play key roles in HHXYT’s treatment of MGH. 3 of the 7 key targets (CYP11A1, HSD3B2, and CYP17A1) were directly involved in androgen synthesis, while 2 targets (AR and ESR1) were receptors for the direct action of androgens and estrogens. Molecular docking was utilized to confirm the bindings between the 5 targets and their corresponding compounds. In an in vitro test, HHXYT (50 µg/ml) and its ingredient formononetin (3.2, 6.3, and 12.5 µM) were found to significantly reduce the increase of testosterone level induced by dexamethasone (10 µM) in thecal cells. In summary, this study illustrated that the mechanism of HHXYT’s treatment of MGH was to regulate hormone disorder. HHXYT could reduce estrogen-stimulated hyperplasia by inhibiting the production of its precursor androgen.
Collapse
Affiliation(s)
- Ziqing Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Mi
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhaoxi Cheng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiaofeng Li
- School of Pharmacy, Fudan University, Shanghai, China
| | - Huawu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ji Ye
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
409
|
Odenkirk M, Horman BM, Dodds JN, Patisaul HB, Baker ES. Combining Micropunch Histology and Multidimensional Lipidomic Measurements for In-Depth Tissue Mapping. ACS MEASUREMENT SCIENCE AU 2022; 2:67-75. [PMID: 35647605 PMCID: PMC9139744 DOI: 10.1021/acsmeasuresciau.1c00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While decades of technical and analytical advancements have been utilized to discover novel lipid species, increase speciation, and evaluate localized lipid dysregulation at subtissue, cellular, and subcellular levels, many challenges still exist. One limitation is that the acquisition of both in-depth spatial information and comprehensive lipid speciation is extremely difficult, especially when biological material is limited or lipids are at low abundance. In neuroscience, for example, it is often desired to focus on only one brain region or subregion, which can be well under a square millimeter for rodents. Herein, we evaluate a micropunch histology method where cortical brain tissue at 2.0, 1.25, 1.0, 0.75, 0.5, and 0.25 mm diameter sizes and 1 mm depth was collected and analyzed with multidimensional liquid chromatography, ion mobility spectrometry, collision induced dissociation, and mass spectrometry (LC-IMS-CID-MS) measurements. Lipid extraction was optimized for the small sample sizes, and assessment of lipidome coverage for the 2.0 to 0.25 mm diameter sizes showed a decline from 304 to 198 lipid identifications as validated by all 4 analysis dimensions (~35% loss in coverage for ~88% less tissue). While losses were observed, the ~200 lipids and estimated 4630 neurons contained within the 0.25 punch still provided in-depth characterization of the small tissue region. Furthermore, while localization routinely achieved by mass spectrometry imaging (MSI) and single cell analyses is greater, this diameter is sufficiently small to isolate subcortical, hypothalamic, and other brain regions in adult rats, thereby increasing the coverage of lipids within relevant spatial windows without sacrificing speciation. Therefore, micropunch histology enables in-depth, region-specific lipid evaluations, an approach that will prove beneficial to a variety of lipidomic applications.
Collapse
Affiliation(s)
- Melanie
T. Odenkirk
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brian M. Horman
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - James N. Dodds
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Heather B. Patisaul
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S. Baker
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
410
|
Kotlova ER, Senik SV, Manzhieva BS, Kiyashko AA, Shakhova NV, Puzansky RK, Volobuev SV, Misharev AD, Serebryakov EB, Psurtseva NV. Diversity of ESI-MS Based Phosphatidylcholine Profiles in Basidiomycetes. J Fungi (Basel) 2022; 8:177. [PMID: 35205932 PMCID: PMC8879007 DOI: 10.3390/jof8020177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphatidylcholines (PC) are the main membrane lipid constituents comprising more than 50% of total glycerophospholipids. They coordinate a number of cell functions, particularly cell growth, homeostasis, secretion, recognition and communication. In basidial fungi PC are synthesized via the Kennedy pathway as well as through methylation of phosphatidylethanolamines (PE) and then undergo remodeling in Lands cycle that replaces fatty acids in PC molecules. The molecular profile of PC is determined by the genetic features that are characteristic for every species and depend on the environment. Here we present the results of ESI-MS based analyses of PC profiles of 38 species of basidiomycetes belonging to Agaricales (12), Polyporales (17), Russulales (5), Gleophyllales (2), Cantharellales (1), Auriculariales (1), Phallales (1). Although the variety of PC molecular species of basidiomycetes is rather diverse (20-38 molecular species in every profile), only 1-3 main molecular species represent 70-90% of total PC content. The most abundant of them are C36:4 and C36:3, followed by C34:1, C34:2, C36:5, C36:2. In the majority of basidiomycetes, C36:4 reaches up to 50-70% of total PC molecular species. Based on the results of hierarchical cluster analysis four main types of PC profiles which characterized the studied fungi independently from their taxonomic position, ecology, trophic status, and hyphal differentiation have been revealed. Comparative analyses of studied fungi using PCA method have shown that species of Polyporales differ from those of Agaricales by higher variability of PC profiles.
Collapse
Affiliation(s)
- Ekaterina R. Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Svetlana V. Senik
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Bairta S. Manzhieva
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Anna A. Kiyashko
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Natalia V. Shakhova
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Roman K. Puzansky
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Sergei V. Volobuev
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Alexander D. Misharev
- Chemical Analysis and Materials Research Centre, Saint-Petersburg State University, 198504 Saint-Petersburg, Russia; (A.D.M.); (E.B.S.)
| | - Eugeny B. Serebryakov
- Chemical Analysis and Materials Research Centre, Saint-Petersburg State University, 198504 Saint-Petersburg, Russia; (A.D.M.); (E.B.S.)
| | - Nadezhda V. Psurtseva
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| |
Collapse
|
411
|
Melero-Fernandez de Mera RM, Villaseñor A, Rojo D, Carrión-Navarro J, Gradillas A, Ayuso-Sacido A, Barbas C. Ceramide Composition in Exosomes for Characterization of Glioblastoma Stem-Like Cell Phenotypes. Front Oncol 2022; 11:788100. [PMID: 35127492 PMCID: PMC8814423 DOI: 10.3389/fonc.2021.788100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is one of the most malignant central nervous system tumor types. Comparative analysis of GBM tissues has rendered four major molecular subtypes. From them, two molecular subtypes are mainly found in their glioblastoma cancer stem-like cells (GSCs) derived in vitro: proneural (PN) and mesenchymal (MES) with nodular (MES-N) and semi-nodular (MES-SN) disseminations, which exhibit different metabolic, growth, and malignancy properties. Many studies suggest that cancer cells communicate between them, and the surrounding microenvironment, via exosomes. Identifying molecular markers that allow the specific isolation of GSC-derived exosomes is key in the development of new therapies. However, the differential exosome composition produced by main GSCs remains unknown. The aim of this study was to determine ceramide (Cer) composition, one of the critical lipids in both cells and their cell-derived exosomes, from the main three GSC phenotypes using mass spectrometry-based lipidomics. GSCs from human tissue samples and their cell-derived exosomes were measured using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) in an untargeted analysis. Complete characterization of the ceramide profile, in both cells and cell-derived exosomes from GSC phenotypes, showed differential distributions among them. Results indicate that such differences of ceramide are chain-length dependent. Significant changes for the C16 Cer and C24:1 Cer and their ratio were observed among GSC phenotypes, being different for cells and their cell-derived exosomes.
Collapse
Affiliation(s)
- Raquel M Melero-Fernandez de Mera
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Josefa Carrión-Navarro
- Brain Tumor Laboratory, Faculty of Experimental Sciences and Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Angel Ayuso-Sacido
- Brain Tumor Laboratory, Faculty of Experimental Sciences and Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain.,Fundación Vithas, Grupo Vithas Hospitales, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
412
|
Rodríguez‐Barrueco R, Latorre J, Devis‐Jáuregui L, Lluch A, Bonifaci N, Llobet FJ, Olivan M, Coll‐Iglesias L, Gassner K, Davis ML, Moreno‐Navarrete JM, Castells‐Nobau A, Plata‐Peña L, Dalmau‐Pastor M, Höring M, Liebisch G, Olkkonen VM, Arnoriaga‐Rodríguez M, Ricart W, Fernández‐Real JM, Silva JM, Ortega FJ, Llobet‐Navas D. A microRNA Cluster Controls Fat Cell Differentiation and Adipose Tissue Expansion By Regulating SNCG. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104759. [PMID: 34898027 PMCID: PMC8811811 DOI: 10.1002/advs.202104759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 05/08/2023]
Abstract
The H19X-encoded miR-424(322)/503 cluster regulates multiple cellular functions. Here, it is reported for the first time that it is also a critical linchpin of fat mass expansion. Deletion of this miRNA cluster in mice results in obesity, while increasing the pool of early adipocyte progenitors and hypertrophied adipocytes. Complementary loss and gain of function experiments and RNA sequencing demonstrate that miR-424(322)/503 regulates a conserved genetic program involved in the differentiation and commitment of white adipocytes. Mechanistically, it is demonstrated that miR-424(322)/503 targets γ-Synuclein (SNCG), a factor that mediates this program rearrangement by controlling metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement. Accordingly, diminished miR-424(322) in mice and obese humans co-segregate with increased SNCG in fat and peripheral blood as mutually exclusive features of obesity, being normalized upon weight loss. The data unveil a previously unknown regulatory mechanism of fat mass expansion tightly controlled by the miR-424(322)/503 through SNCG.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Barrueco
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
| | - Jessica Latorre
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Laura Devis‐Jáuregui
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Aina Lluch
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
| | - Nuria Bonifaci
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| | - Francisco J. Llobet
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Mireia Olivan
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
| | - Laura Coll‐Iglesias
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Katja Gassner
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| | - Meredith L. Davis
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Department of PathologyDuke University School of MedicineDurhamNC27710USA
| | - José M. Moreno‐Navarrete
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Anna Castells‐Nobau
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
| | - Laura Plata‐Peña
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Miki Dalmau‐Pastor
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
- MIFAS by GRECMIP (Minimally Invasive Foot and Ankle Society)Merignac33700France
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory MedicineRegensburg University HospitalRegensburg93053Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory MedicineRegensburg University HospitalRegensburg93053Germany
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research (Biomedicum 2U)and Department of AnatomyFaculty of MedicineUniversity of HelsinkiHelsinki00290Finland
| | - Maria Arnoriaga‐Rodríguez
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Wifredo Ricart
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - José M. Fernández‐Real
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - José M. Silva
- Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Francisco J. Ortega
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - David Llobet‐Navas
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| |
Collapse
|
413
|
Macabuhay A, Arsova B, Walker R, Johnson A, Watt M, Roessner U. Modulators or facilitators? Roles of lipids in plant root-microbe interactions. TRENDS IN PLANT SCIENCE 2022; 27:180-190. [PMID: 34620547 DOI: 10.1016/j.tplants.2021.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 05/15/2023]
Abstract
Lipids have diverse functions in regulating the plasma membrane's cellular processes and signaling mediation. Plasma membrane lipids are also involved in the plant's complex interactions with the surrounding microorganisms, with which plants are in various forms of symbiosis. The roles of lipids influence the whole microbial colonization process, thus shaping the rhizomicrobiome. As chemical signals, lipids facilitate the stages of rhizospheric interactions - from plant root to microbe, microbe to microbe, and microbe to plant root - and modulate the plant's defense responses upon perception or contact with either beneficial or phytopathogenic microorganisms. Although studies have come a long way, further investigation is needed to discover more lipid species and elucidate novel lipid functions and profiles under various stages of plant root-microbe interactions.
Collapse
Affiliation(s)
- Allene Macabuhay
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Borjana Arsova
- Institute for Bio- & Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, 52428, Germany
| | - Robert Walker
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alexander Johnson
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michelle Watt
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ute Roessner
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
414
|
Geibel C, Zhang L, Serafimov K, Gross H, Lämmerhofer M. Towards enantioselective ultrahigh performance liquid chromatography–mass spectrometry‐based metabolomics of branched‐chain fatty acids and
anteiso
‐fatty acids under reversed‐phase conditions using sub‐2‐μm amylose‐ and cellulose‐derived chiral stationary phases. Chirality 2022; 34:484-497. [DOI: 10.1002/chir.23413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Geibel
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio‐)Analysis University of Tübingen Tübingen Germany
| | - Li Zhang
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio‐)Analysis University of Tübingen Tübingen Germany
| | - Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio‐)Analysis University of Tübingen Tübingen Germany
| | - Harald Gross
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology University of Tübingen Tübingen Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio‐)Analysis University of Tübingen Tübingen Germany
| |
Collapse
|
415
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
416
|
Dumas T, Courant F, Almunia C, Boccard J, Rosain D, Duporté G, Armengaud J, Fenet H, Gomez E. An integrated metabolomics and proteogenomics approach reveals molecular alterations following carbamazepine exposure in the male mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 286:131793. [PMID: 34364230 DOI: 10.1016/j.chemosphere.2021.131793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Carbamazepine is one of the most abundant pharmaceutical active compounds detected in aquatic systems. Based on laboratory exposures, carbamazepine has been proven to adversely affect aquatic organisms. However, the underlying molecular events remain poorly understood. This study aims to investigate the molecular mechanisms potentially associated with toxicological effects of carbamazepine on the mussel Mytilus galloprovincialis exposed for 3 days at realistic concentrations encountered in coastal environments (80 ng/L and 8 μg/L). An integrated metabolomics and proteogenomics approach, including data fusion strategy, was applied to gain more insight in molecular events and cellular processes triggered by carbamazepine exposure. Consistent metabolic and protein signatures revealed a metabolic rewiring and cellular stress at both concentrations (e.g. intensification of protein synthesis, transport and catabolism processes, disruption of lipid and amino acid metabolisms). These highlighted molecular signatures point to the induction of autophagy, closely related with carbamazepine mechanism of action, as well as a destabilization of the lysosomal membranes and an enzymatic overactivity of the peroxisomes. Induction of programmed cell death was highlighted by the modulation of apoptotic cognate proteins. The proposed integrative omics data analysis was shown to be highly relevant to identify the modulations of the two molecular levels, i.e. metabolites and proteins. Multi-omics approach is able to explain the resulting complex biological system, and document stronger toxicological pieces of evidence on pharmaceutical active compounds at environmental concentrations in sentinel organisms.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - Christine Almunia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
| | - David Rosain
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Geoffroy Duporté
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
417
|
Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst 2022; 147:2115-2123. [DOI: 10.1039/d2an00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By coupling O-benzylhydroxylamine derivatization and tandem mass spectrometry, nitroxide radical-induced dissociation can be initiated via collisional activation which enables the analysis of methyl branching(s) in fatty acids.
Collapse
Affiliation(s)
- Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
418
|
Wolrab D, Peterka O, Chocholoušková M, Holčapek M. Ultrahigh-Performance Supercritical Fluid Chromatography / Mass Spectrometry in the Lipidomic Analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
419
|
Baumann A, Denninger AR, Domin M, Demé B, Kirschner DA. Metabolically-incorporated deuterium in myelin localized by neutron diffraction and identified by mass spectrometry. Curr Res Struct Biol 2022; 4:231-245. [PMID: 35941866 PMCID: PMC9356250 DOI: 10.1016/j.crstbi.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Myelin is a natural and dynamic multilamellar membrane structure that continues to be of significant biological and neurological interest, especially with respect to its biosynthesis and assembly during its normal formation, maintenance, and pathological breakdown. To explore the usefulness of neutron diffraction in the structural analysis of myelin, we investigated the use of in vivo labeling by metabolically incorporating non-toxic levels of deuterium (2H; D) via drinking water into a pregnant dam (D-dam) and her developing embryos. All of the mice were sacrificed when the pups (D-pups) were 55 days old. Myelinated sciatic nerves were dissected, fixed in glutaraldehyde and examined by neutron diffraction. Parallel samples that were unfixed (trigeminal nerves) were frozen for mass spectrometry (MS). The diffraction patterns of the nerves from deuterium-fed mice (D-mice) vs. the controls (H-mice) had major differences in the intensities of the Bragg peaks but no appreciable differences in myelin periodicity. Neutron scattering density profiles showed an appreciable increase in density at the center of the lipid-rich membrane bilayer. This increase was greater in D-pups than in D-dam, and its localization was consistent with deuteration of lipid hydrocarbon, which predominates over transmembrane protein in myelin. MS analysis of the lipids isolated from the trigeminal nerves demonstrated that in the pups the percentage of lipids that had one or more deuterium atoms was uniformly high across lipid species (97.6% ± 2.0%), whereas in the mother the lipids were substantially less deuterated (60.6% ± 26.4%) with levels varying among lipid species and subspecies. The mass distribution pattern of deuterium-containing isotopologues indicated the fraction (in %) of each lipid (sub-)species having one or more deuteriums incorporated: in the D-pups, the pattern was always bell-shaped, and the average number of D atoms ranged from a low of ∼4 in fatty acid to a high of ∼9 in cerebroside. By contrast, in D-dam most lipids had more complex, overlapping distributions that were weighted toward a lower average number of deuteriums, which ranged from a low of ∼3–4 in fatty acid and in one species of sulfatide to a high of 6–7 in cerebroside and sphingomyelin. The consistently high level of deuteration in D-pups can be attributed to their de novo lipogenesis during gestation and rapid, postnatal myelination. The widely varying levels of deuteration in D-dam, by contrast, likely depends on the relative metabolic stability of the particular lipid species during myelin maintenance. Our current findings demonstrate that stably-incorporated D label can be detected and localized using neutron diffraction in a complex tissue such as myelin; and moreover, that MS can be used to screen a broad range of deuterated lipid species to monitor differential rates of lipid turnover. In addition to helping to develop a comprehensive understanding of the de novo synthesis and turnover of specific lipids in normal and abnormal myelin, our results also suggest application to studies on myelin proteins (which constitute only 20–30% by dry mass of the myelin, vs. 70–80% for lipid), as well as more broadly to the molecular constituents of other biological tissues. Deuterium metabolically assimilated into gestating mouse pups via drinking water. Neutron diffraction localized deuterium to middle of myelin membrane bilayers. Mass spectrometry identified 26 deuterated lipid species as myelinic. Myelin of pups substantially more deuterated than that of their dam. Deuterium differentially distributed among lipid species and subspecies. De novo lipid biogenesis vs. steady-state maintenance readily distinguished. Novel paradigm suggests application to animal models of human myelinopathies.
Collapse
|
420
|
Phillips GR, Saville JT, Hancock SE, Brown SHJ, Jenner AM, McLean C, Fuller M, Newell KA, Mitchell TW. The long and the short of Huntington’s disease: how the sphingolipid profile is shifted in the caudate of advanced clinical cases. Brain Commun 2021; 4:fcab303. [PMID: 35169703 PMCID: PMC8833324 DOI: 10.1093/braincomms/fcab303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Huntington’s disease is a devastating neurodegenerative disorder that onsets in late adulthood as progressive and terminal cognitive, psychiatric and motor deficits. The disease is genetic, triggered by a CAG repeat (polyQ) expansion mutation in the Huntingtin gene and resultant huntingtin protein. Although the mutant huntingtin protein is ubiquitously expressed, the striatum degenerates early and consistently in the disease. The polyQ mutation at the N-terminus of the huntingtin protein alters its natural interactions with neural phospholipids in vitro, suggesting that the specific lipid composition of brain regions could influence their vulnerability to interference by mutant huntingtin; however, this has not yet been demonstrated in vivo. Sphingolipids are critical cell signalling molecules, second messengers and membrane components. Despite evidence of sphingolipid disturbance in Huntington’s mouse and cell models, there is limited knowledge of how these lipids are affected in human brain tissue. Using post-mortem brain tissue from five brain regions implicated in Huntington’s disease (control n = 13, Huntington’s n = 13), this study aimed to identify where and how sphingolipid species are affected in the brain of clinically advanced Huntington’s cases. Sphingolipids were extracted from the tissue and analysed using targeted mass spectrometry analysis; proteins were analysed by western blot. The caudate, putamen and cerebellum had distinct sphingolipid changes in Huntington’s brain whilst the white and grey frontal cortex were spared. The caudate of Huntington’s patients had a shifted sphingolipid profile, favouring long (C13–C21) over very-long-chain (C22–C26) ceramides, sphingomyelins and lactosylceramides. Ceramide synthase 1, which synthesizes the long-chain sphingolipids, had a reduced expression in Huntington’s caudate, correlating positively with a younger age at death and a longer CAG repeat length of the Huntington’s patients. The expression of ceramide synthase 2, which synthesizes very-long-chain sphingolipids, was not different in Huntington’s brain. However, there was evidence of possible post-translational modifications in the Huntington’s patients only. Post-translational modifications to ceramide synthase 2 may be driving the distinctive sphingolipid profile shifts of the caudate in advanced Huntington’s disease. This shift in the sphingolipid profile is also found in the most severely affected brain regions of several other neurodegenerative conditions and may be an important feature of region-specific cell dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Gabrielle R. Phillips
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jennifer T. Saville
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Sarah E. Hancock
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon H. J. Brown
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Andrew M. Jenner
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health and Florey Neuroscience, Parkville, VIC 3052, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
421
|
Lin Q, Li P, Fang M, Zhang D, Xia Y. Deep Profiling of Aminophospholipids Reveals a Dysregulated Desaturation Pattern in Breast Cancer Cell Lines. Anal Chem 2021; 94:820-828. [PMID: 34931817 DOI: 10.1021/acs.analchem.1c03494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylethanolamines (PEs), ether-PEs, and phosphatidylserines (PSs) are glycerophospholipids harboring a primary amino group in their headgroups. They are key components of mammalian cell membranes and play pivotal roles in cell signaling and apoptosis. In this study, a liquid chromatography-mass spectrometry (LC-MS) workflow for deep profiling of PEs, ether-PEs, and PSs has been developed by integrating two orthogonal derivatizations: (1) derivatization of the primary amino group by 4-trimethylammoniumbutyryl-N-hydroxysuccinimide (TMAB-NHS) for enhanced LC separation and MS detection and (2) the Paternò-Büchi (PB) reaction for carbon-carbon double bond (C═C) derivatization and localization. Significant improvement of the limit of identification down to the C═C location has been achieved for the standards of PSs (3 nM) and ether-PEs (20 nM). This workflow facilitates an identification of more than 200 molecular species of aminophospholipids in the porcine brain, two times more than those identified without TMAB-NHS derivatization. Importantly, we discovered that the n-10 isomers in C16:1 and C18:1 of aminophospholipids showed elevated contribution among other isomers, which correlated well with an increased transcription of the corresponding desaturase (FADS2) in the human breast cancer cell line (MDA-MB-231) relative to that in the normal cell line (HMEC). The abovementioned data suggest that lipid reprograming via forming different C═C location isomers might be an alternative mechanism in cancer cells.
Collapse
Affiliation(s)
- Qiaohong Lin
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Pengyun Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengxuan Fang
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China.,School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Donghui Zhang
- Department of Precision Instrument, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
422
|
Qi T, Li L, Weidong T. The Role of Sphingolipid Metabolism in Bone Remodeling. Front Cell Dev Biol 2021; 9:752540. [PMID: 34912800 PMCID: PMC8666436 DOI: 10.3389/fcell.2021.752540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging studies of bioactive lipids have made many exciting discoveries in recent years. Sphingolipids and their metabolites perform a wide variety of cellular functions beyond energy metabolism. Emerging evidence based on genetically manipulated mouse models and molecular biology allows us to obtain new insights into the role sphingolipid played on skeletal remodeling. This review summarizes studies or understandings of the crosstalk between sphingomyelin, ceramide, and sphingosine-1-phosphate (S1P) of sphingolipids family and the cells, especially osteoblasts and osteoclasts of the bone through which bone is remodeled during life constantly. This review also shows agonists and antagonists of S1P as possible therapeutic options and opportunities on bone diseases.
Collapse
Affiliation(s)
- Tang Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tian Weidong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
423
|
Ghorasaini M, Mohammed Y, Adamski J, Bettcher L, Bowden JA, Cabruja M, Contrepois K, Ellenberger M, Gajera B, Haid M, Hornburg D, Hunter C, Jones CM, Klein T, Mayboroda O, Mirzaian M, Moaddel R, Ferrucci L, Lovett J, Nazir K, Pearson M, Ubhi BK, Raftery D, Riols F, Sayers R, Sijbrands EJG, Snyder MP, Su B, Velagapudi V, Williams KJ, de Rijke YB, Giera M. Cross-Laboratory Standardization of Preclinical Lipidomics Using Differential Mobility Spectrometry and Multiple Reaction Monitoring. Anal Chem 2021; 93:16369-16378. [PMID: 34859676 PMCID: PMC8674878 DOI: 10.1021/acs.analchem.1c02826] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Modern biomarker and translational research as well as personalized health care studies rely heavily on powerful omics' technologies, including metabolomics and lipidomics. However, to translate metabolomics and lipidomics discoveries into a high-throughput clinical setting, standardization is of utmost importance. Here, we compared and benchmarked a quantitative lipidomics platform. The employed Lipidyzer platform is based on lipid class separation by means of differential mobility spectrometry with subsequent multiple reaction monitoring. Quantitation is achieved by the use of 54 deuterated internal standards and an automated informatics approach. We investigated the platform performance across nine laboratories using NIST SRM 1950-Metabolites in Frozen Human Plasma, and three NIST Candidate Reference Materials 8231-Frozen Human Plasma Suite for Metabolomics (high triglyceride, diabetic, and African-American plasma). In addition, we comparatively analyzed 59 plasma samples from individuals with familial hypercholesterolemia from a clinical cohort study. We provide evidence that the more practical methyl-tert-butyl ether extraction outperforms the classic Bligh and Dyer approach and compare our results with two previously published ring trials. In summary, we present standardized lipidomics protocols, allowing for the highly reproducible analysis of several hundred human plasma lipids, and present detailed molecular information for potentially disease relevant and ethnicity-related materials.
Collapse
Affiliation(s)
- Mohan Ghorasaini
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Yassene Mohammed
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
- Genome
BC Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7X8, Canada
| | - Jerzy Adamski
- Institute
of Experimental Genetics, German Research Center for Environmental
Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute
of Biochemistry, Faculty of Medicine, University
of Ljubljana, Vrazov
Trg 2, Ljubljana 1000, Slovenia
| | - Lisa Bettcher
- Northwest
Metabolomics Research Center, Department of Anesthesiology, University of Washington, Seattle, Washington 98109, United States
| | - John A. Bowden
- Department
of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Matias Cabruja
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Kévin Contrepois
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Mathew Ellenberger
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Bharat Gajera
- Metabolomics
Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, Biomedicum 2U, Helsinki 00014, Finland
| | - Mark Haid
- Metabolomics
and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - Daniel Hornburg
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | | | - Christina M. Jones
- Material Measurement Laboratory, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Theo Klein
- Department
of Clinical Chemistry, University Medical Center, Erasmus MC, Rotterdam, 3000CA, The Netherlands
| | - Oleg Mayboroda
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Mina Mirzaian
- Department
of Clinical Chemistry, University Medical Center, Erasmus MC, Rotterdam, 3000CA, The Netherlands
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United
States
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United
States
| | - Jacqueline Lovett
- National Institute on Aging, National Institutes of
Health, Baltimore, Maryland 21224, United
States
| | - Kenneth Nazir
- Metabolomics
Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, Biomedicum 2U, Helsinki 00014, Finland
| | | | | | - Daniel Raftery
- Northwest
Metabolomics Research Center, Department of Anesthesiology, University of Washington, Seattle, Washington 98109, United States
| | - Fabien Riols
- Metabolomics
and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | | | - Eric J. G. Sijbrands
- Department of Internal Medicine, University
Medical Center, Erasmus MC, Rotterdam 3000CA, The Netherlands
| | - Michael P. Snyder
- Department
of Genetics, School of Medicine, Stanford
University, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Baolong Su
- Department of Biological
Chemistry, University
of California, Los Angeles, California 90095, United States
| | - Vidya Velagapudi
- Metabolomics
Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, Biomedicum 2U, Helsinki 00014, Finland
| | - Kevin J. Williams
- Department of Biological
Chemistry, University
of California, Los Angeles, California 90095, United States
| | - Yolanda B. de Rijke
- Department
of Clinical Chemistry, University Medical Center, Erasmus MC, Rotterdam, 3000CA, The Netherlands
| | - Martin Giera
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| |
Collapse
|
424
|
Ma Q, Hu Y, Dong X, Zhou G, Liu X, Gu Q, Wei Q. Metabolic Profiling and Gene Expression Analysis Unveil Differences in Flavonoid and Lipid Metabolisms Between 'Huapi' Kumquat ( Fortunella crassifolia Swingle) and Its Wild Type. FRONTIERS IN PLANT SCIENCE 2021; 12:759968. [PMID: 34925410 PMCID: PMC8675212 DOI: 10.3389/fpls.2021.759968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
To elucidate the mechanism underlying special characteristic differences between a spontaneous seedling mutant 'Huapi' kumquat (HP) and its wild-type 'Rongan' kumquat (RA), the fruit quality, metabolic profiles, and gene expressions of the peel and flesh were comprehensively analyzed. Compared with RA, HP fruit has distinctive phenotypes such as glossy peel, light color, and few amounts of oil glands. Interestingly, HP also accumulated higher flavonoid (approximately 4.1-fold changes) than RA. Based on metabolomics analysis, we identified 201 differential compounds, including 65 flavonoids and 37 lipids. Most of the differential flavonoids were glycosylated by hexoside and accumulated higher contents in the peel but lower in the flesh of HP than those of RA fruit. For differential lipids, most of them belonged to lysophosphatidycholines (LysoPCs) and lysophosphatidylethanolamines (LysoPEs) and exhibited low abundance in both peel and flesh of HP fruit. In addition, structural genes associated with the flavonoid and lipid pathways were differentially regulated between the two kumquat varieties. Gene expression analysis also revealed the significant roles of UDP-glycosyltransferase (UGT) and phospholipase genes in flavonoid and glycerophospholipid metabolisms, respectively. These findings provide valuable information for interpreting the mutation mechanism of HP kumquat.
Collapse
Affiliation(s)
- Qiaoli Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yongwei Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xinghua Dong
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Gaofeng Zhou
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Xiao Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qingqing Gu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qingjiang Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
425
|
da Silva KM, Iturrospe E, Heyrman J, Koelmel JP, Cuykx M, Vanhaecke T, Covaci A, van Nuijs ALN. Optimization of a liquid chromatography-ion mobility-high resolution mass spectrometry platform for untargeted lipidomics and application to HepaRG cell extracts. Talanta 2021; 235:122808. [PMID: 34517665 DOI: 10.1016/j.talanta.2021.122808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022]
Abstract
Analytical methods to evaluate the lipidome of biological samples need to provide high data quality to ensure comprehensive profiling and reliable structural elucidation. In this perspective, liquid chromatography-high resolution mass spectrometry (LC-HRMS) is the state-of-the-art technique for lipidomic analysis of biological samples. There are thousands of lipids in most biological samples, and therefore separation methods before introduction to the mass spectrometer is key for relative quantitation and identification. Chromatographic methods differ across laboratories, without any consensus on the best methodologies. Therefore, we designed an experiment to determine the optimal LC methodology, and assessed the value of ion mobility for an additional dimension of separation. To apply an untargeted method for hypothesis generation focused on lipidomics, LC-HRMS parameters were optimized based on the measurement of 50 panel lipids covering key human metabolic pathways. Reversed-phase liquid chromatography columns were compared based on a quality scoring system considering the signal-to-noise ratio, peak shape, and retention factor. Furthermore, drift tube ion mobility spectrometry (DTIMS) was implemented to increase peak capacity and confidence during annotation by providing collision cross section (CCS) values for the analytes under investigation. However, hyphenating DTIMS to LC-HRMS may result in a reduced sensitivity due to impaired duty cycles. To increase the signal intensity, a Box-Behnken design (BBD) was used to optimize four key factors, i.e. drift entrance voltage, drift exit voltage, rear funnel entrance, and rear funnel exit voltages. Application of a maximized desirability function provided voltages for the above-mentioned parameters resulting in higher signal intensity compared to each combination of parameters used during the BBD. In addition, the influence of single pulse and Hadamard 4-bit multiplexed modes on signal intensity was explored and different trap filling and release times of ions were evaluated. The optimized LC-DTIM-HRMS platform was applied to extracts from HepaRG cells and resulted in 3912 high-quality features (<30% median relative standard deviation; n = 6, t = 24 h). From these features, 436 lipid species could be annotated (i.e., matching based on accurate mass <5 ppm, isotopic pattern, in-silico MS/MS fragmentation, and in-silico CCS database matching <3%). The application of LC-DTIM-HRMS for untargeted analysis workflows is growing and the platform optimization, as described here, can be used to guide the method development and CCS database comparison for high confidence lipid annotation.
Collapse
Affiliation(s)
| | - Elias Iturrospe
- University of Antwerp, Toxicological Centre, Universiteitsplein 1, 2610, Antwerp, Belgium; Vrije Universiteit Brussel, Department of In Vitro Toxicology and Dermato-cosmetology, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Joris Heyrman
- University of Antwerp, Toxicological Centre, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Jeremy P Koelmel
- Yale University, School of Public Health, New Haven, CT, 06520, United States
| | - Matthias Cuykx
- Antwerp University Hospital, Laboratory of Clinical Medicine, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Tamara Vanhaecke
- Vrije Universiteit Brussel, Department of In Vitro Toxicology and Dermato-cosmetology, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Adrian Covaci
- University of Antwerp, Toxicological Centre, Universiteitsplein 1, 2610, Antwerp, Belgium
| | | |
Collapse
|
426
|
Lima AR, Carvalho M, Aveiro SS, Melo T, Domingues MR, Macedo-Silva C, Coimbra N, Jerónimo C, Henrique R, Bastos MDL, Guedes de Pinho P, Pinto J. Comprehensive Metabolomics and Lipidomics Profiling of Prostate Cancer Tissue Reveals Metabolic Dysregulations Associated with Disease Development. J Proteome Res 2021; 21:727-739. [PMID: 34813334 DOI: 10.1021/acs.jproteome.1c00754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is a global health problem that affects millions of men every year. In the past decade, metabolomics and related subareas, such as lipidomics, have demonstrated an enormous potential to identify novel mechanisms underlying PCa development and progression, providing a good basis for the development of new and more effective therapies and diagnostics. In this study, a multiplatform metabolomics and lipidomics approach, combining untargeted mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based techniques, was applied to PCa tissues to investigate dysregulations associated with PCa development, in a cohort of 40 patients submitted to radical prostatectomy for PCa. Results revealed significant alterations in the levels of 26 metabolites and 21 phospholipid species in PCa tissue compared with adjacent nonmalignant tissue, suggesting dysregulation in 13 metabolic pathways associated with PCa development. The most affected metabolic pathways were amino acid metabolism, nicotinate and nicotinamide metabolism, purine metabolism, and glycerophospholipid metabolism. A clear interconnection between metabolites and phospholipid species participating in these pathways was observed through correlation analysis. Overall, these dysregulations may reflect the reprogramming of metabolic responses to produce high levels of cellular building blocks required for rapid PCa cell proliferation.
Collapse
Affiliation(s)
- Ana Rita Lima
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,FP-I3ID, FP-ENAS, CEBIMED, University Fernando Pessoa, 4249-004 Porto, Portugal.,Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| | - Susana S Aveiro
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,GreenCoLab - Green Ocean Association, University of Algarve, 8005-139 Faro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina Macedo-Silva
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Nuno Coimbra
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
427
|
Antonelo D, Beline M, Silva SL, Gómez JFM, Ferreira C, Zhang X, Pavan B, Koulicoff L, Rosa A, Goulart R, Gerrard DE, Suman SP, Schilling W, Balieiro JC. Variations in intramuscular fat content and profile in Angus x Nellore steers under different feeding strategies contribute to color and tenderness development in longissimus thoracis. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Muscle from cattle reared under different finishing regime (grain vs. forage) and growth rate may have divergent metabolic signatures that are reflective of their inherent differences in biochemical processes that may impact its subsequent transformation into high quality beef. Differences in muscle lipid profiles were characterized in Angus x Nellore crossbred steers, using multiple reaction monitoring (MRM)-profiling, to identify potential metabolic signatures correlated to beef color and tenderness in the longissimus thoracis muscle of cattle fed in either a feedlot- or pasture-based system programmed to achieve either a high or low growth rate. A total of 440 MRMs were significant, which were related mainly to triglycerides and phosphatidylcholine lipids. Distinct clusters between feeding strategies for the lipid dataset were revealed, which affected glycerolipid metabolism (P = 0.004), phospholipid metabolism (P = 0.009), sphingolipid metabolism (P = 0.050) and mitochondrial beta-oxidation of long chain saturated fatty acids (P = 0.073) pathways. Lipid content and profile differed to feeding strategies, which were related to L*, a*, and tenderness. These findings provide a comprehensive and in-depth understanding of lipidomic profiling of beef cattle finished under different feeding strategies and provides a basis for the relationship between lipid content and profiles and beef quality development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wes Schilling
- Mississippi State University Department of Food Science, Nutrition and Health Promotion
| | | |
Collapse
|
428
|
Perez-Valle A, Abad-García B, Fresnedo O, Barreda-Gómez G, Aspichueta P, Asumendi A, Astigarraga E, Fernández JA, Boyano MD, Ochoa B. A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma. Int J Mol Sci 2021; 22:12061. [PMID: 34769491 PMCID: PMC8585039 DOI: 10.3390/ijms222112061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer due to its ability to colonize distant sites and initiate metastasis. Although these processes largely depend on the lipid-based cell membrane scaffold, our understanding of the melanoma lipid phenotype lags behind most other aspects of this tumor cell. Here, we examined a panel of normal human epidermal and nevus melanocytes and primary and metastatic melanoma cell lines to determine whether distinctive cell-intrinsic lipidomes can discern non-neoplastic from neoplastic melanocytes and define their metastatic potential. Lipidome profiles were obtained by UHPLC-ESI mass-spectrometry, and differences in the signatures were analyzed by multivariate statistical analyses. Significant and highly specific changes in more than 30 lipid species were annotated in the initiation of melanoma, whereas less numerous changes were associated with melanoma progression and the non-malignant transformation of nevus melanocytes. Notably, the "malignancy lipid signature" features marked drops in pivotal membrane lipids, like sphingomyelins, and aberrant elevation of ether-type lipids and phosphatidylglycerol and phosphatidylinositol variants, suggesting a previously undefined remodeling of sphingolipid and glycerophospholipid metabolism. Besides broadening the molecular definition of this neoplasm, the different lipid profiles identified may help improve the clinical diagnosis/prognosis and facilitate therapeutic interventions for cutaneous melanoma.
Collapse
Affiliation(s)
- Arantza Perez-Valle
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
| | - Beatriz Abad-García
- Central Analysis Service, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
| | - Gabriel Barreda-Gómez
- IMG Pharma Biotech S.L., Bizkaia Technological Park, 48160 Derio, Spain; (G.B.-G.); (E.A.)
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Egoitz Astigarraga
- IMG Pharma Biotech S.L., Bizkaia Technological Park, 48160 Derio, Spain; (G.B.-G.); (E.A.)
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
| |
Collapse
|
429
|
Ethanol Extraction of Polar Lipids from Nannochloropsis oceanica for Food, Feed, and Biotechnology Applications Evaluated Using Lipidomic Approaches. Mar Drugs 2021; 19:md19110593. [PMID: 34822464 PMCID: PMC8624173 DOI: 10.3390/md19110593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Nannochloropsis oceanica can accumulate lipids and is a good source of polar lipids, which are emerging as new value-added compounds with high commercial value for the food, nutraceutical, and pharmaceutical industries. Some applications may limit the extraction solvents, such as food applications that require safe food-grade solvents, such as ethanol. However, the effect of using ethanol as an extraction solvent on the quality of the extracted polar lipidome, compared to other more traditional methods, is not yet well established. In this study, the polar lipid profile of N. oceanica extracts was obtained using different solvents, including chloroform/methanol (CM), dichloromethane/methanol (DM), dichloromethane/ethanol (DE), and ethanol (E), and evaluated by modern lipidomic methods using LC-MS/MS. Ultrasonic bath (E + USB)- and ultrasonic probe (E + USP)-assisted methodologies were implemented to increase the lipid extraction yields using ethanol. The polar lipid signature and antioxidant activity of DM, E + USB, and E + USP resemble conventional CM, demonstrating a similar extraction efficiency, while the DE and ethanol extracts were significantly different. Our results showed the impact of different extraction solvents in the polar lipid composition of the final extracts and demonstrated the feasibility of E + USB and E + USP as safe and food-grade sources of polar lipids, with the potential for high-added-value biotechnological applications.
Collapse
|
430
|
Ding H, Zhang Q, Yu X, Chen L, Wang Z, Feng J. Lipidomics reveals perturbations in the liver lipid profile of iron-overloaded mice. Metallomics 2021; 13:6375437. [PMID: 34562083 DOI: 10.1093/mtomcs/mfab057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Iron overload is an important contributor to disease. The liver, the major site of iron storage in the body, is a key organ impacted by iron overload. While several studies have reported perturbations in liver lipids in iron overload, it is not clear, on a global scale, how individual liver lipid ions are altered. Here, we used lipidomics to study the changes in hepatic lipid ions in iron-overloaded mice. Iron overload was induced by daily intraperitoneal injections of 100 mg/kg body weight iron dextran for 1 week. Iron overload was verified by serum markers of iron status, liver iron quantitation, and Perls stain. Compared with the control group, the serum of iron-overload mice exhibited low levels of urea nitrogen and high-density lipoprotein (HDL), and high concentrations of total bile acid, low-density lipoprotein (LDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), suggestive of liver injury. Moreover, iron overload disrupted liver morphology, induced reactive oxygen species (ROS) production, reduced superoxide dismutase (SOD) activity, caused lipid peroxidation, and led to DNA fragmentation. Iron overload altered the overall composition of lipid ions in the liver, with significant changes in over 100 unique lipid ions. Notably, iron overload selectively increased the overall abundance of glycerolipids and changed the composition of glycerophospholipids and sphingolipids. This study, one of the first to report iron-overload induced lipid alterations on a global lipidomics scale, provides early insight into lipid ions that may be involved in iron overload-induced pathology.
Collapse
Affiliation(s)
- Haoxuan Ding
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Qian Zhang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Xiaonan Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Lingjun Chen
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Zhonghang Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
431
|
Peterka O, Jirásko R, Vaňková Z, Chocholoušková M, Wolrab D, Kulhánek J, Bureš F, Holčapek M. Simple and Reproducible Derivatization with Benzoyl Chloride: Improvement of Sensitivity for Multiple Lipid Classes in RP-UHPLC/MS. Anal Chem 2021; 93:13835-13843. [PMID: 34623138 DOI: 10.1021/acs.analchem.1c02463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical derivatization of multiple lipid classes was developed using benzoyl chloride as a nonhazardous derivatization agent at ambient conditions. The derivatization procedure was optimized with standards for 4 nonpolar and 8 polar lipid classes and measured by reversed-phase ultrahigh-performance liquid chromatography-tandem mass spectrometry. The derivatization and nonderivatization approaches were compared on the basis of the calibration curves of 22 internal standards from 12 lipid classes. The new method decreased the limit of detection 9-fold for monoacylglycerols (0.9-1.0 nmol/mL), 6.5-fold for sphingoid base (0.2 nmol/mL), and 3-fold for diacylglycerols (0.9 nmol/mL). The sensitivity expressed by the ratio of calibration slopes was increased 2- to 10-fold for almost all investigated lipid classes and even more than 100-fold for monoacylglycerols. Moreover, the benzoylation reaction produces a more stable derivative of cholesterol in comparison to the easily in-source fragmented nonderivatized form and enabled the detection of fatty acids in a positive ion mode, which does not require polarity switching as for the nonderivatized form. The intralaboratory comparison with an additional operator without previous derivatization experiences shows the simplicity, robustness, and reproducibility. The stability of the derivatives was determined by periodical measurements during a one month period and five freeze/thaw cycles. The fully optimized derivatization method was applied to human plasma, which allows the detection of 169 lipid species from 11 lipid classes using the high confidence level of identification in reversed-phase (RP)-ultra high performance liquid chromatography (UHPLC)/mass spectrometry (MS). Generally, we detected more lipid species for monoacylglycerols, diacylglycerols, and sphingoid bases in comparison with previously reported papers without the derivatization.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Michaela Chocholoušková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Denise Wolrab
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jiří Kulhánek
- University of Pardubice, Institute of Organic Chemistry and Technology, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Filip Bureš
- University of Pardubice, Institute of Organic Chemistry and Technology, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
432
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
433
|
Wasito H, Hermann G, Fitz V, Troyer C, Hann S, Koellensperger G. Yeast-based reference materials for quantitative metabolomics. Anal Bioanal Chem 2021; 414:4359-4368. [PMID: 34642781 PMCID: PMC9142427 DOI: 10.1007/s00216-021-03694-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022]
Abstract
We introduce a new concept of yeast-derived biological matrix reference material for metabolomics research relying on in vivo synthesis of a defined biomass, standardized extraction followed by absolute quantification with isotope dilution. The yeast Pichia pastoris was grown using full control- and online monitoring fed-batch fermentations followed by fast cold methanol quenching and boiling ethanol extraction. Dried extracts served for the quantification campaign. A metabolite panel of the evolutionarily conserved primary metabolome (amino acids, nucleotides, organic acids, and metabolites of the central carbon metabolism) was absolutely quantified by isotope dilution utilizing uniformly labeled 13C-yeast-based internal standards. The study involved two independent laboratories employing complementary mass spectrometry platforms, namely hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS) and gas chromatography-tandem mass spectrometry (GC–MS/MS). Homogeneity, stability tests (on a panel of >70 metabolites over a period of 6 months), and excellent biological repeatability of independent fermentations over a period of 2 years showed the feasibility of producing biological reference materials on demand. The obtained control ranges proved to be fit for purpose as they were either superior or comparable to the established reference materials in the field.
Collapse
Affiliation(s)
- Hendri Wasito
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190, Vienna, Austria.,Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Dr. Soeparno Street, 53122, Purwokerto, Indonesia
| | - Gerrit Hermann
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 11, 1190, Vienna, Austria.,ISOtopic Solutions, Waehringer Str. 38, 1090, Vienna, Austria
| | - Veronika Fitz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Christina Troyer
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria. .,Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
434
|
Investigation of Lipoproteins Oxidation Mechanisms by the Analysis of Lipid Hydroperoxide Isomers. Antioxidants (Basel) 2021; 10:antiox10101598. [PMID: 34679733 PMCID: PMC8533262 DOI: 10.3390/antiox10101598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
The continuous formation and accumulation of oxidized lipids (e.g., lipid hydroperoxides (LOOH)) which are present even in plasma lipoproteins of healthy subjects, are ultimately considered to be linked to various diseases. Because lipid peroxidation mechanisms (i.e., radical, singlet oxygen, and enzymatic oxidation) can be suppressed by certain proper antioxidants (e.g., radical oxidation is efficiently suppressed by tocopherol), in order to suppress lipid peroxidation successfully, the determination of the peroxidation mechanism involved in the formation of LOOH is deemed crucial. In this study, to determine the peroxidation mechanisms of plasma lipoproteins of healthy subjects, we develop novel analytical methods using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PC 16:0/18:2;OOH) and cholesteryl linoleate hydroperoxide (CE 18:2;OOH) isomers. Using the newly developed methods, these PC 16:0/18:2;OOH and CE 18:2;OOH isomers in the low-density lipoprotein (LDL) and high-density lipoprotein (HDL) of healthy subjects are analyzed. Consequently, it is found that predominant PC 16:0/18:2;OOH and CE 18:2;OOH isomers in LDL and HDL are PC 16:0/18:2;9OOH, PC 16:0/18:2;13OOH, CE 18:2;9OOH, and CE 18:2;13OOH, which means that PC and CE in LDL and HDL are mainly oxidized by radical and/or enzymatic oxidation. In conclusion, the insights about the oxidation mechanisms shown in this study would be useful for a more effective suppression of oxidative stress in the human organism.
Collapse
|
435
|
Tötsch K, Fjeldsted JC, Stow SM, Schmitz OJ, Meckelmann SW. Effect of Sampling Rate and Data Pretreatment for Targeted and Nontargeted Analysis by Means of Liquid Chromatography Coupled to Drift Time Ion Mobility Quadruple Time-of-Flight Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2592-2603. [PMID: 34515480 DOI: 10.1021/jasms.1c00217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion mobility as an additional separation dimension can help to resolve and annotate metabolite and lipid biomarkers and provides important information about the components in a sample. Identifying relevant information in the resulting data is challenging because of the complexity of the data and data evaluation strategies for both targeted or nontargeted workflows. Frequently, feature analysis is used as a first step to search for differences between samples in discovery workflows. However, follow-up experimentation often leads to more targeted data extraction methods. In both cases, optimizing data sets for data extraction can make an important contribution to the overall results. In this work, we evaluate the effect of experimental conditions including acquisition sampling rate and data pretreatment on lipid standards and lipid extracts as examples of complex biological samples analyzed by liquid chromatography coupled to drift time ion mobility quadrupole time-of-flight mass spectrometry. The results show that a reduction of both peak variation and background noise can be achieved by optimizing the sampling rate. The use of data pretreatment including data smoothing, intensity thresholding, and spike removal also play an important role in improving detection and annotation of analytes from complex biological samples, whereas nonoptimal data sampling rates and preprocessing can lead to adverse effects including the loss or alternation of small, or closely eluting, low-abundant peaks.
Collapse
Affiliation(s)
- Kristina Tötsch
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - John C Fjeldsted
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Sarah M Stow
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
436
|
Villaseñor A, Godzien J, Barker-Tejeda TC, Gonzalez-Riano C, López-López Á, Dudzik D, Gradillas A, Barbas C. Analytical approaches for studying oxygenated lipids in the search of potential biomarkers by LC-MS. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
437
|
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Anal Bioanal Chem 2021; 413:5927-5948. [PMID: 34142202 PMCID: PMC8440309 DOI: 10.1007/s00216-021-03425-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Metabolomics and lipidomics are new drivers of the omics era as molecular signatures and selected analytes allow phenotypic characterization and serve as biomarkers, respectively. The growing capabilities of untargeted and targeted workflows, which primarily rely on mass spectrometric platforms, enable extensive charting or identification of bioactive metabolites and lipids. Structural annotation of these compounds is key in order to link specific molecular entities to defined biochemical functions or phenotypes. Tandem mass spectrometry (MS), first and foremost collision-induced dissociation (CID), is the method of choice to unveil structural details of metabolites and lipids. But CID fragment ions are often not sufficient to fully characterize analytes. Therefore, recent years have seen a surge in alternative tandem MS methodologies that aim to offer full structural characterization of metabolites and lipids. In this article, principles, capabilities, drawbacks, and first applications of these "advanced tandem mass spectrometry" strategies will be critically reviewed. This includes tandem MS methods that are based on electrons, photons, and ion/molecule, as well as ion/ion reactions, combining tandem MS with concepts from optical spectroscopy and making use of derivatization strategies. In the final sections of this review, the first applications of these methodologies in combination with liquid chromatography or mass spectrometry imaging are highlighted and future perspectives for research in metabolomics and lipidomics are discussed.
Collapse
Affiliation(s)
- Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
438
|
New Advances in Tissue Metabolomics: A Review. Metabolites 2021; 11:metabo11100672. [PMID: 34677387 PMCID: PMC8541552 DOI: 10.3390/metabo11100672] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolomics offers a hypothesis-generating approach for biomarker discovery in clinical medicine while also providing better understanding of the underlying mechanisms of chronic diseases. Clinical metabolomic studies largely rely on human biofluids (e.g., plasma, urine) as a more convenient specimen type for investigation. However, biofluids are non-organ specific reflecting complex biochemical processes throughout the body, which may complicate biochemical interpretations. For these reasons, tissue metabolomic studies enable deeper insights into aberrant metabolism occurring at the direct site of disease pathogenesis. This review highlights new advances in metabolomics for ex vivo analysis, as well as in situ imaging of tissue specimens, including diverse tissue types from animal models and human participants. Moreover, we discuss key pre-analytical and post-analytical challenges in tissue metabolomics for robust biomarker discovery with a focus on new methodological advances introduced over the past six years, including innovative clinical applications for improved screening, diagnostic testing, and therapeutic interventions for cancer.
Collapse
|
439
|
Katz L, Tata A, Woolman M, Zarrine-Afsar A. Lipid Profiling in Cancer Diagnosis with Hand-Held Ambient Mass Spectrometry Probes: Addressing the Late-Stage Performance Concerns. Metabolites 2021; 11:metabo11100660. [PMID: 34677375 PMCID: PMC8537725 DOI: 10.3390/metabo11100660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes without chromatographic separation has shown promise in the rapid characterization of cancers. As human cancers present significant molecular heterogeneities, careful molecular modeling and data validation strategies are required to minimize late-stage performance variations of these models across a large population. This review utilizes parallels from the pitfalls of conventional protein biomarkers in reaching bedside utility and provides recommendations for robust modeling as well as validation strategies that could enable the next logical steps in large scale assessment of the utility of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from careful initial determination of clinical added value to moving beyond just statistical associations to validate lipid involvements in disease processes mechanistically. Further guidelines for careful selection of suitable samples to capture expected and unexpected intragroup variance are provided and discussed in the context of demographic heterogeneities in the lipidome, further influenced by lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass spectrometry profiling studies.
Collapse
Affiliation(s)
- Lauren Katz
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy;
| | - Michael Woolman
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Arash Zarrine-Afsar
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence: ; Tel.: +1-416-581-8473
| |
Collapse
|
440
|
Castor K, Dawlaty J, Arakaki X, Gross N, Woldeamanuel YW, Harrington MG, Cowan RP, Fonteh AN. Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migraine. Front Mol Neurosci 2021; 14:691733. [PMID: 34531722 PMCID: PMC8438335 DOI: 10.3389/fnmol.2021.691733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. Methods We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. Results Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. Conclusions Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.
Collapse
Affiliation(s)
- Katherine Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Jessica Dawlaty
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Noah Gross
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Robert P Cowan
- Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
441
|
da Silva KM, Iturrospe E, Bars C, Knapen D, Van Cruchten S, Covaci A, van Nuijs ALN. Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges. Metabolites 2021; 11:metabo11090635. [PMID: 34564451 PMCID: PMC8467701 DOI: 10.3390/metabo11090635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.
Collapse
Affiliation(s)
- Katyeny Manuela da Silva
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| | - Elias Iturrospe
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Campus Jette, Free University of Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Chloe Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
| | - Alexander L. N. van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| |
Collapse
|
442
|
Bistaffa MJ, Camacho SA, Melo CFOR, Catharino RR, Toledo KA, Aoki PHB. Plasma membrane permeabilization to explain erythrosine B phototoxicity on in vitro breast cancer cell models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112297. [PMID: 34482154 DOI: 10.1016/j.jphotobiol.2021.112297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Lipid oxidation is ubiquitous in cell life under oxygen and essential for photodynamic therapy (PDT) of carcinomas. However, the mechanisms underlying lipid oxidation in rather complex systems such as plasma membranes remain elusive. Herein, Langmuir monolayers were assembled with the lipid extract of glandular breast cancer (MCF7) cells and used to probe the molecular interactions allowing adsorption of the photosensitizer (PS) erythrosine B and subsequent photooxidation outcomes. Surface pressure (π) versus area (cm2/mL) isotherms of MCF7 lipid extract shifted to larger areas upon erythrosine incorporation, driven by secondary interactions that affected the orientation of the carbonyl groups and lipid chain organization. Light-irradiation increased the surface area of the MCF7 lipid extract monolayer containing erythrosine owing to the lipid hydroperoxidation, which may further undergo decomposition, resulting in the chain cleavage of phospholipids and membrane permeabilization. Incorporation of erythrosine by MCF7 cells induced slight toxic effects on in vitro assays, differently of the severe phototoxicity caused by light-irradiation, which significantly decreased cell viability by more than 75% at 2.5 × 10-6 mol/L of erythrosine incubated for 3 and 24 h, reaching nearly 90% at 48 h of incubation. The origin of the phototoxic effects is in the rupture of the plasma membrane shown by the frontal (FSC) and side (SSC) light scattering of flow cytometry. Consistent with hydroperoxide decomposition, membrane permeabilization was also confirmed by cleaved lipids detected in mass spectrometry and subsidizes the necrotic pathway of cell death.
Collapse
Affiliation(s)
- Maria J Bistaffa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Carlos F O R Melo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Rodrigo R Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil..
| |
Collapse
|
443
|
Kato S, Shimizu N, Ogura Y, Otoki Y, Ito J, Sakaino M, Sano T, Kuwahara S, Takekoshi S, Imagi J, Nakagawa K. Structural Analysis of Lipid Hydroperoxides Using Mass Spectrometry with Alkali Metals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2399-2409. [PMID: 34382801 DOI: 10.1021/jasms.1c00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid oxidation is involved in various biological phenomena (e.g., oxylipin generation and oxidative stress). Of oxidized lipid structures, the hydroperoxyl group position of lipid hydroperoxides (LOOHs) is a critical factor in determining their biological roles. Despite such interest, current methods to determine hydroperoxyl group positions possess some drawbacks such as selectivity. While we previously reported mass spectrometric methods using Na+ for the highly selective determination of hydroperoxyl group positions, nothing was known except for the fact that sodiated LOOHs (mainly linoleate) provide specific fragment ions. Thus, this study was aimed to investigate the effects of different alkali metals on the fragmentation of LOOHs, assuming its further application to analysis of other complex LOOHs. From the analysis of PC 16:0/18:2;OOH (phosphatidylcholine) and FA 18:2;OOH (fatty acid), we found that fragmentation pathways and ion intensities largely depend on the binding position and type of alkali metals (i.e., Li+, Hock fragmentation; Na+ and K+, α-cleavage (Na+ > K+); Rb+ and Cs+, no fragmentation). Furthermore, we proved that this method can be applied to determine the hydroperoxyl group position of esterified lipids (e.g., phospholipids and cholesterol esters) as well as polyunsaturated fatty acids (PUFAs) including n-3, n-6, and n-9 FA. We anticipate that the insights described in this study provide additional unique insights to conventional lipid oxidation research.
Collapse
Affiliation(s)
- Shunji Kato
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Yusuke Ogura
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Masayoshi Sakaino
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Takashi Sano
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Susumu Takekoshi
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Jun Imagi
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Kiyotaka Nakagawa
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| |
Collapse
|
444
|
Moroz LL, Romanova DY. Selective Advantages of Synapses in Evolution. Front Cell Dev Biol 2021; 9:726563. [PMID: 34490275 PMCID: PMC8417881 DOI: 10.3389/fcell.2021.726563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Lab of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
445
|
Matsuzawa Y, Higashi Y, Takano K, Takahashi M, Yamada Y, Okazaki Y, Nakabayashi R, Saito K, Tsugawa H. Food Lipidomics for 155 Agricultural Plant Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8981-8990. [PMID: 33570932 DOI: 10.1021/acs.jafc.0c07356] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipids exhibit functional bioactivities based on their polar and acyl chain properties; humans obtain lipids from dietary plant product intake. Therefore, the identification of different molecular species facilitates the evaluation of biological functions and nutrition levels and new phenotype-modulating lipid structures. As a rapid screening strategy, we performed untargeted lipidomics for 155 agricultural products in 58 species from 23 plant families, wherein product-specific lipid diversities were shown using computational mass spectrometry. We characterized 716 lipid species, for which the profiles revealed the National Center for Biotechnology Information-established organismal classification and unique plant tissue metabotypes. Moreover, we annotated unreported subclasses in plant lipidology; e.g., triacylglycerol estolide (TG-EST) was detected in rice seeds (Oryza sativa) and several plant species. TG-EST is known as the precursor molecule producing the fatty acid ester of hydroxy fatty acid, which lowers ambient glycemia and improves glucose tolerance. Hence, our method can identify agricultural plant products containing valuable lipid ingredients.
Collapse
Affiliation(s)
- Yuki Matsuzawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yasuhiro Higashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kouji Takano
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mikiko Takahashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Yamada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
446
|
Belcastro L, Ferreira CS, Saraiva MA, Mucci DB, Murgia A, Lai C, Vigor C, Oger C, Galano JM, Pinto GDA, Griffin JL, Torres AG, Durand T, Burton GJ, Sardinha FLC, El-Bacha T. Decreased Fatty Acid Transporter FABP1 and Increased Isoprostanes and Neuroprostanes in the Human Term Placenta: Implications for Inflammation and Birth Weight in Maternal Pre-Gestational Obesity. Nutrients 2021; 13:2768. [PMID: 34444927 PMCID: PMC8398812 DOI: 10.3390/nu13082768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
The rise in prevalence of obesity in women of reproductive age in developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health. Placental lipid metabolism is disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism in women with pre-gestational obesity as a sole pregnancy complication and compared it to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidised products of docosahexaenoic (DHA) and arachidonic acid (AA), respectively, neuroprostanes and isoprostanes. Despite no overall signs of lipid accumulation, DHA and AA levels in placentas from obese women were, respectively, 2.2 and 2.5 times higher than those from lean women. Additionally, a 2-fold increase in DHA-derived neuroprostanes and a 1.7-fold increase in AA-derived isoprostanes were seen in the obese group. These changes correlated with a 70% decrease in placental FABP1 protein. Multivariate analyses suggested that neuroprostanes and isoprostanes are associated with maternal and placental inflammation and with birth weight. These results might shed light on the molecular mechanisms associated with altered placental fatty acid metabolism in maternal pre-gestational obesity, placing these oxidised fatty acids as novel mediators of placental function.
Collapse
Affiliation(s)
- Livia Belcastro
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Carolina S. Ferreira
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
| | - Marcelle A. Saraiva
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Daniela B. Mucci
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Antonio Murgia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; (A.M.); (J.L.G.)
| | - Carla Lai
- Department of Environmental and Life Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Gabriela D. A. Pinto
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; (A.M.); (J.L.G.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Alexandre G. Torres
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
- Lipid Biochemistry and Lipidomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK;
| | - Fátima L. C. Sardinha
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK;
| |
Collapse
|
447
|
Quality control requirements for the correct annotation of lipidomics data. Nat Commun 2021; 12:4771. [PMID: 34362906 PMCID: PMC8346590 DOI: 10.1038/s41467-021-24984-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
|
448
|
Cebo M, Calderón Castro C, Schlotterbeck J, Gawaz M, Chatterjee M, Lämmerhofer M. Untargeted UHPLC-ESI-QTOF-MS/MS analysis with targeted feature extraction at precursor and fragment level for profiling of the platelet lipidome with ex vivo thrombin-activation. J Pharm Biomed Anal 2021; 205:114301. [PMID: 34391135 DOI: 10.1016/j.jpba.2021.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/17/2023]
Abstract
Lipids play a major role in platelet signaling and activation. In this study, we analyzed the platelet lipidome in an untargeted manner by reversed-phase UHPLC for lipid species separation coupled to high-resolution QTOF-MS/MS in data-independent acquisition (DIA) mode with sequential window acquisition of all theoretical fragment ion mass spectra (SWATH) for compound detection. Lipid identification and peak picking was supported by the characteristic regular elution pattern of lipids differing in carbon and double bond numbers. It was primarily based on post-acquisition targeted feature extraction from the SWATH data. Multiple extracted ion chromatograms (EICs) from SWATH data of diagnostic ions on MS1 and MS2 level from both positive and negative ion mode allowed to distinguish between poorly resolved isomeric lipids based on their distinct fragment ions, which were used for relative quantification at a molecular lipid species level. It supports assay specificity for relative lipid quantitation via multiple quantifiably ions unlike to data-dependent acquisition methods which rely on precursor ions only. This approach was used to analyze human platelet samples. 457 lipids were annotated. Concentrations of lipids were estimated by stable isotope-labelled lipid class-specific internal standards as surrogate calibrants. Heatmaps of lipid concentrations in dependence on carbon and double bond numbers for the distinct lipid classes revealed a snapshot of the platelet lipidome in the resting state with lipid species distributions within classes supporting some functional interpretations. As expected, activation of the platelets by thrombin has led to significant alterations in the platelet lipidome as proven by univariate (volcano plot) and multivariate (PLS-DA) statistics. Several lipids were significantly up-regulated (lysophosphatidylinositols, oxylipins such as thromboxane B2 (TXB2), hydroxyheptadecatrienoic acid (HHT), hydroxyeicosatetraenoic acid (HETE), hydroxyoctadecadienoic acid (HODE), sphingoid-bases, (very) long chain saturated fatty acids) or down-regulated (lysophosphatidylethanolamines, polyunsaturated fatty acids, phosphatidylinositols). Several of them are well known as biomarkers of platelet activation while others may provide some further insights into pathways of platelet activation and platelet metabolism.
Collapse
Affiliation(s)
- Malgorzata Cebo
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | | | - Jörg Schlotterbeck
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
449
|
Phospholipids: Identification and Implication in Muscle Pathophysiology. Int J Mol Sci 2021; 22:ijms22158176. [PMID: 34360941 PMCID: PMC8347011 DOI: 10.3390/ijms22158176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype.
Collapse
|
450
|
Matthiesen R, Lauber C, Sampaio JL, Domingues N, Alves L, Gerl MJ, Almeida MS, Rodrigues G, Araújo Gonçalves P, Ferreira J, Borbinha C, Pedro Marto J, Neves M, Batista F, Viana-Baptista M, Alves J, Simons K, Vaz WLC, Vieira OV. Shotgun mass spectrometry-based lipid profiling identifies and distinguishes between chronic inflammatory diseases. EBioMedicine 2021; 70:103504. [PMID: 34311325 PMCID: PMC8330692 DOI: 10.1016/j.ebiom.2021.103504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/12/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lipids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However, deep lipid profiles of major chronic inflammatory diseases have not been compared. Methods Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analysis without liquid chromatographic separation and compared to each other and to age-matched controls. Lipid profiling of 596 lipids was performed on a cohort of 427 individuals. Machine learning classifiers based on the plasma lipidomes were used to distinguish the two chronic inflammatory diseases from each other and from the controls. Findings Analysis of the lipidomes enabled separation of the studied chronic inflammatory diseases from controls based on independent validation test set classification performance (CVD vs control - Sensitivity: 0.94, Specificity: 0.88; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control – Sensitivity: 1, Specificity: 0.93) and from each other (SLE vs CVD ‒ Sensitivity: 0.91, Specificity: 1; IS vs SLE - Sensitivity: 1, Specificity: 0.82). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups from each other and from the controls, and partially separated CVD severities, as classified into five clinical groups. Dysregulated lipids are partially but not fully counterbalanced by statin treatment. Interpretation Dysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes. Funding Full list of funding sources at the end of the manuscript.
Collapse
Affiliation(s)
- Rune Matthiesen
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Chris Lauber
- Lipotype GmbH, Tatzberg 47, 01307 Dresden, Germany
| | | | - Neuza Domingues
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Liliana Alves
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | | | - Manuel S Almeida
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Pedro Araújo Gonçalves
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Cláudia Borbinha
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - João Pedro Marto
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - Marisa Neves
- Hospital Dr. Fernando da Fonseca, IC 19, 2720-276 Amadora, Portugal
| | | | - Miguel Viana-Baptista
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - Jose Alves
- Hospital Dr. Fernando da Fonseca, IC 19, 2720-276 Amadora, Portugal
| | - Kai Simons
- Lipotype GmbH, Tatzberg 47, 01307 Dresden, Germany
| | - Winchil L C Vaz
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Otilia V Vieira
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|