401
|
Guo R, Lu S, Merkel AR, Sterling JA, Guelcher SA. Substrate Modulus Regulates Osteogenic Differentiation of Rat Mesenchymal Stem Cells through Integrin β1 and BMP Receptor Type IA. J Mater Chem B 2016; 4:3584-3593. [PMID: 27551426 PMCID: PMC4991780 DOI: 10.1039/c5tb02747k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Osteoblast differentiation of mesenchymal stem cells is regulated by both soluble factor (e.g., bone morphogenetic proteins (BMP)) and mechanically transduced signaling, but the mechanisms have only been partially elucidated. In this study, physical association of BMP Receptor I (BMPRI) with integrin β1 sub-unit (Iβ1) was hypothesized to mediate osteoblast differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) on bone-like substrates. The effects of substrate modulus on osteoblast differentiation of MSCs were investigated for 2D poly(ester urethane) films with moduli varying from 5 - 266 MPa, which spans the range from collagen fibrils to trabecular bone. SMAD1/5 and p44/42 MAPK signaling, expression of markers of osteoblast differentiation, and matrix mineralization increased with increasing substrate modulus. The effects of substrate modulus on osteoblast differentiation were mediated by Iβ1, which was also expressed at higher levels on increasingly rigid substrates. Förster resonance energy transfer (FRET) and immunoprecipitation (IP) experiments showed that physical association of Iβ1 and BMP Receptor I (BMRPRI) increased with substrate modulus, resulting in activation of the BMP signaling pathway. Thus, these studies showed that integrin and BMP signaling converge to regulate osteoblast differentiation of MSCs, which may potentially guide the design of scaffolds and rhBMP-2 delivery systems for bone regeneration.
Collapse
Affiliation(s)
- R Guo
- Department of Chemical and BIomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - S Lu
- Department of Chemical and BIomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - A R Merkel
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J A Sterling
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - S A Guelcher
- Department of Chemical and BIomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
402
|
Antonova LV, Seifalian AM, Kutikhin AG, Sevostyanova VV, Krivkina EO, Mironov AV, Burago AY, Velikanova EA, Matveeva VG, Glushkova TV, Sergeeva EA, Vasyukov GY, Kudryavtseva YA, Barbarash OL, Barbarash LS. Bioabsorbable Bypass Grafts Biofunctionalised with RGD Have Enhanced Biophysical Properties and Endothelialisation Tested In vivo. Front Pharmacol 2016; 7:136. [PMID: 27252652 PMCID: PMC4879758 DOI: 10.3389/fphar.2016.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Small diameter arterial bypass grafts are considered as unmet clinical need since the current grafts have poor patency of 25% within 5 years. We have developed a 3D scaffold manufactured from natural and synthetic biodegradable polymers, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(𝜀-caprolactone) (PCL), respectively. Further to improve the biophysical properties as well as endothelialisation, the grafts were covalently conjugated with arginine-glycine-aspartic acid (RGD) bioactive peptides. The biophysical properties as well as endothelialisation of PHBV/PCL and PCL 2 mm diameter bypass grafts were assessed with and without biofunctionalisation with RGD peptides in vitro and in vivo. Morphology of the grafts was assessed by scanning electron microscopy, whereas physico-mechanical properties were evaluated using a physiological circulating system equipped with a state of art ultrasound vascular wall tracking system. Endothelialisation of the grafts in vitro and in vivo were assessed using a cell viability assay and rat abdominal aorta replacement model, respectively. The biofunctionalisation with RGD bioactive peptides decreased mean fiber diameter and mean pore area in PHBV/PCL grafts; however, this was not the case for PCL grafts. Both PHBV/PCL and PCL grafts with RGD peptides had lower durability compared to those without; these durability values were similar to those of internal mammary artery. Modification of PHBV/PCL and PCL grafts with RGD peptides increased endothelial cell viability in vitro by a factor of eight and enhanced the formation of an endothelial cell monolayer in vivo 1 month postimplantation. In conclusion, PHBV/PCL small-caliber graft can be a suitable 3D scaffold for the development of a tissue engineering arterial bypass graft.
Collapse
Affiliation(s)
- Larisa V Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Alexander M Seifalian
- Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, University College LondonLondon, UK; NanoRegMed LtdLondon, UK
| | - Anton G Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | | | - Evgeniya O Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Andrey V Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Andrey Y Burago
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Elena A Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Vera G Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Tatiana V Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Evgeniya A Sergeeva
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Georgiy Y Vasyukov
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | | | - Olga L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| | - Leonid S Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo, Russia
| |
Collapse
|
403
|
Lee JY, Chen JY, Shaw JL, Chang KT. Maintenance of Stem Cell Niche Integrity by a Novel Activator of Integrin Signaling. PLoS Genet 2016; 12:e1006043. [PMID: 27191715 PMCID: PMC4871447 DOI: 10.1371/journal.pgen.1006043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/19/2016] [Indexed: 01/22/2023] Open
Abstract
Stem cells depend critically on the surrounding microenvironment, or niche, for their maintenance and self-renewal. While much is known about how the niche regulates stem cell self-renewal and differentiation, mechanisms for how the niche is maintained over time are not well understood. At the apical tip of the Drosophila testes, germline stem cells (GSCs) and somatic stem cells share a common niche formed by hub cells. Here we demonstrate that a novel protein named Shriveled (Shv) is necessary for the maintenance of hub/niche integrity. Depletion of Shv protein results in age-dependent deterioration of the hub structure and loss of GSCs, whereas upregulation of Shv preserves the niche during aging. We find Shv is a secreted protein that modulates DE-cadherin levels through extracellular activation of integrin signaling. Our work identifies Shv as a novel activator of integrin signaling and suggests a new integration model in which crosstalk between integrin and DE-cadherin in niche cells promote their own preservation by maintaining the niche architecture. Stem cells are vital for development and for regeneration and repair of tissues in an organism. The ability of adult stem cells to maintain their “stemness” depends critically on the localized microenvironment, or niche. While much is known about how the niche regulates stem cell self-renewal and differentiation, mechanisms for how the niche is maintained during aging are not well understood. Using Drosophila testis as a model system, here we demonstrate that a protein we named Shriveled is a secreted protein that activates integrin signaling to preserve niche architecture. We also show that Shriveled-dependent activation of integrin maintains normal E-cadherin levels in the niche cells, providing a mechanism for niche maintenance. Interestingly, upregulation of Shriveled retards the loss of niche and stem cells seen during normal aging. Together, our work identifies Shriveled as a novel molecule required for preservation of the niche structure in the Drosophila testis.
Collapse
Affiliation(s)
- Joo Yeun Lee
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Jessica Y. Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jillian L. Shaw
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Karen T. Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
404
|
Wang Z, Shao Y, Li C, Lv Z, Wang H, Zhang W, Zhao X. A β-integrin from sea cucumber Apostichopus japonicus exhibits LPS binding activity and negatively regulates coelomocyte apoptosis. FISH & SHELLFISH IMMUNOLOGY 2016; 52:103-110. [PMID: 26994670 DOI: 10.1016/j.fsi.2016.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Integrins are a family of membrane glycoproteins, which are the major receptors for extracellular matrix and cell-cell adhesion molecules. In this study, a 1038 bp sequence representing the full-length cDNA of a novel β-integrin subunit (designated as AjITGB) was cloned from Apostichopus japonicas by using combined transcriptome sequencing and RACE approaches. The deduced amino acid sequence of AjITGB shared a conserved tripeptide Arg-Gly-Asp (RGD) binding domain with an S-diglyceridecysteine or N-Palm cysteine residue (C(31)), a transmembrane domain, and a β-integrin cytoplasmic domain. Spatial distribution analysis showed that AjITGB was constitutively expressed in all tested tissues with dominant expression in the muscles and weak expression in the respiratory tree. The pathogen Vibrio splendidus challenge and LPS stimulation could both significantly down-regulate the mRNA expression of AjITGB. Functional investigation revealed that recombinant AjITGB displayed higher LPS binding activity but lower binding activity to PGN and MAN. More importantly, knockdown of AjITGB by specific siRNA resulted in the significant promotion of coelomocyte apoptosis in vitro. Results indicated that AjITGB may serve as an apoptosis inhibitor with LPS binding activity during host-pathogen interaction in sea cucumber.
Collapse
Affiliation(s)
- Zhenhui Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| | - Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Haihong Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
405
|
Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice. Cell Signal 2016; 28:1124-36. [PMID: 27140681 PMCID: PMC4913618 DOI: 10.1016/j.cellsig.2016.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 11/21/2022]
Abstract
Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO-induced invasive carcinoma. Our study therefore uncovers similarities and differences in the roles of IP6K1 and IP6K2 in cancer progression, and we propose that an isoform-specific IP6K1 inhibitor may provide a novel route to suppress carcinogenesis. Gene-expression analysis of Ip6k1 knockout MEFs reveals down-regulation of cell surface-extracellular matrix signaling. Ip6k1 knockout MEFs show reduced adhesion-dependent signaling, cell spreading and migration. Cancer cells deficient in IP6K1 display reduced migration, invasion and anchorage independent growth. Mice lacking IP6K1 are resistant to progression from epithelial dysplasia to invasive carcinoma.
Collapse
|
406
|
More SK, Chiplunkar SV, Kalraiya RD. Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin. Mol Cell Biochem 2016; 416:179-91. [DOI: 10.1007/s11010-016-2706-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
|
407
|
Erdoğan Ö, Xie L, Wang L, Wu B, Kong Q, Wan Y, Chen X. Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation. Sci Rep 2016; 6:24833. [PMID: 27112199 PMCID: PMC4845005 DOI: 10.1038/srep24833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
Endotoxin (LPS)-induced changes in histone lysine methylation contribute to the gene-specific transcription for control of inflammation. Still unidentified are the chromatin regulators that drive the transition from a transcriptional-repressive to a transcriptional-active chromatin state of pro-inflammatory genes. Here, using combined approaches to analyze LPS-induced changes in both gene-specific transcription and protein secretion to the extracellular compartment, we characterize novel functions of the lysine demethylase PHF8 as a pro-inflammatory, gene-specific chromatin regulator. First, in the LPS-induced, acute-inflamed macrophages, PHF8 knockdown led to both a reduction of pro-inflammatory factors and an increase in a transcriptional-repressive code (H3K9me2) written by the methyltransferase G9a. Through unbiased quantitative secretome screening we discovered that LPS induces the secretion of a cluster of PHF8-dependent, 'tolerizable' proteins that are related to diverse extracellular pathways/processes including those for the activation of adaptive immunity. Specifically, we determined that PHF8 promotes T-cell activation and proliferation, thus providing the first link between the epigenetic regulation of inflammation and adaptive immunity. Further, we found that, in the acute-inflamed macrophages, the acute-active PHF8 opposes the H3K9me1/2-writing activity of G9a to activate specific protein secretions that are suppressed by G9a in the endotoxin-tolerant cells, revealing the inflammatory-phenotypic chromatin drivers that regulate the gene-specific chromatin plasticity.
Collapse
Affiliation(s)
- Özgün Erdoğan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Ling Xie
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Li Wang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Department of Chemistry, Fudan University, Shanghai, China
| | - Bing Wu
- Departement of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Qing Kong
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Yisong Wan
- Departement of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, US
| | - Xian Chen
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Department of Chemistry, Fudan University, Shanghai, China
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, US
| |
Collapse
|
408
|
Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency. Sci Rep 2016; 6:24264. [PMID: 27080570 PMCID: PMC4832181 DOI: 10.1038/srep24264] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/23/2016] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage.
Collapse
|
409
|
Ratcliffe CDH, Sahgal P, Parachoniak CA, Ivaska J, Park M. Regulation of Cell Migration and β1 Integrin Trafficking by the Endosomal Adaptor GGA3. Traffic 2016; 17:670-88. [PMID: 26935970 DOI: 10.1111/tra.12390] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
The integrin family of cell adhesion receptors link extracellular matrices to intracellular signaling pathways and the actin cytoskeleton; and regulate cell migration, proliferation and survival in normal and diseased tissues. The subcellular location of integrin receptors is critical for their function and deregulated trafficking is implicated in various human diseases. Here we identify a role for Golgi-localized gamma-ear containing Arf-binding protein 3 (GGA3), in regulating trafficking of β1 integrin. GGA3 knockdown reduces cell surface and total levels of α2, α5 and β1 integrin subunits, inhibits cell spreading, reduces focal adhesion number, as well as cell migration. In the absence of GGA3, integrins are increasingly retained inside the cell, traffic toward the perinuclear lysosomal compartment and their degradation is enhanced. Integrin traffic and maintenance of integrin levels are dependent on the integrity of the Arf binding site of GGA3. Furthermore, sorting nexin 17 (SNX17), a critical regulator of integrin recycling, becomes mislocalized to enlarged late endosomes upon GGA3 depletion. These data support a model whereby GGA3, through its ability to regulate SNX17 endosomal localization and through interaction with Arf6 diverts integrins from the degradative pathway supporting cell migration.
Collapse
Affiliation(s)
- Colin D H Ratcliffe
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku, 20520, Finland
| | - Christine A Parachoniak
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku, 20520, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, 20500, Finland
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
410
|
Hung YC, Hsu CC, Chung CH, Huang TF. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:723-37. [PMID: 27030393 DOI: 10.1007/s00210-016-1233-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 01/13/2023]
Abstract
In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.
Collapse
Affiliation(s)
- Yu-Chun Hung
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No1, Sec1, Jen-Ai Rd, Taipei, Taiwan
| | - Chun-Chieh Hsu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No1, Sec1, Jen-Ai Rd, Taipei, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tur-Fu Huang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No1, Sec1, Jen-Ai Rd, Taipei, Taiwan.
| |
Collapse
|
411
|
Shams H, Golji J, Garakani K, Mofrad MRK. Dynamic Regulation of α-Actinin's Calponin Homology Domains on F-Actin. Biophys J 2016; 110:1444-55. [PMID: 27028653 PMCID: PMC4816760 DOI: 10.1016/j.bpj.2016.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/24/2022] Open
Abstract
α-Actinin is an essential actin cross-linker involved in cytoskeletal organization and dynamics. The molecular conformation of α-actinin's actin-binding domain (ABD) regulates its association with actin and thus mutations in this domain can lead to severe pathogenic conditions. A point mutation at lysine 255 in human α-actinin-4 to glutamate increases the binding affinity resulting in stiffer cytoskeletal structures. The role of different ABD conformations and the effect of K255E mutation on ABD conformations remain elusive. To evaluate the impact of K255E mutation on ABD binding to actin we use all-atom molecular dynamics and free energy calculation methods and study the molecular mechanism of actin association in both wild-type α-actinin and in the K225E mutant. Our models illustrate that the strength of actin association is indeed sensitive to the ABD conformation, predict the effect of K255E mutation--based on simulations with the K237E mutant chicken α-actinin--and evaluate the mechanism of α-actinin binding to actin. Furthermore, our simulations showed that the calmodulin domain binding to the linker region was important for regulating the distance between actin and ABD. Our results provide valuable insights into the molecular details of this critical cellular phenomenon and further contribute to an understanding of cytoskeletal dynamics in health and disease.
Collapse
Affiliation(s)
- Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Javad Golji
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Kiavash Garakani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
412
|
Tian X, Ishibe S. Targeting the podocyte cytoskeleton: from pathogenesis to therapy in proteinuric kidney disease. Nephrol Dial Transplant 2016; 31:1577-83. [PMID: 26968197 DOI: 10.1093/ndt/gfw021] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023] Open
Abstract
Glomerular injury often incites a progression to chronic kidney disease, which affects millions of patients worldwide. Despite our current understanding of this disease's pathogenesis, there is still a lack of therapy available to curtail its progression. However, exciting new data strongly suggest the podocyte-an actin-rich, terminally differentiated epithelial cell that lines the outside of the glomerular filtration barrier-as a therapeutic target. The importance of podocytes in the pathogenesis of human nephrotic syndrome is best characterized by identification of genetic mutations, many of which regulate the actin cytoskeleton. The intricate regulation of the podocyte actin cytoskeleton is fundamental in preserving an intact glomerular filtration barrier, and this knowledge has inspired new research targeting actin-regulating proteins in these cells. This review will shed light on recent findings, which have furthered our understanding of the molecular mechanisms regulating podocyte actin dynamics, as well as discoveries that have therapeutic implications in the treatment of proteinuric kidney disease.
Collapse
Affiliation(s)
- Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
413
|
Endosomes: Emerging Platforms for Integrin-Mediated FAK Signalling. Trends Cell Biol 2016; 26:391-398. [PMID: 26944773 DOI: 10.1016/j.tcb.2016.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022]
Abstract
Integrins are vital cell adhesion receptors with the ability to transmit extracellular matrix (ECM) cues to intracellular signalling pathways. ECM-integrin signalling regulates various cellular functions such as cell survival and movement. Integrin signalling has been considered to occur exclusively from adhesion sites at the plasma membrane (PM). However, recent data demonstrates integrin signalling also from endosomes. Integrin-mediated focal adhesion kinase (FAK) signalling is strongly dependent on integrin endocytosis, and endosomal FAK signalling facilitates cancer metastasis by supporting anchorage-independent growth and anoikis resistance. Here we discuss the possible mechanisms and functions of endosomal FAK signalling compared with its previously known roles in other cellular locations and discuss the potential of endosomal FAK as novel target for future cancer therapies.
Collapse
|
414
|
Affiliation(s)
- Jonna Alanko
- a Turku Center for Biotechnology, University of Turku , Finland
| | - Johanna Ivaska
- a Turku Center for Biotechnology, University of Turku , Finland
| |
Collapse
|
415
|
Tahimic CGT, Long RK, Kubota T, Sun MY, Elalieh H, Fong C, Menendez AT, Wang Y, Vilardaga JP, Bikle DD. Regulation of Ligand and Shear Stress-induced Insulin-like Growth Factor 1 (IGF1) Signaling by the Integrin Pathway. J Biol Chem 2016; 291:8140-9. [PMID: 26865633 DOI: 10.1074/jbc.m115.693598] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/30/2023] Open
Abstract
Mechanical loading of the skeleton, as achieved during daily movement and exercise, preserves bone mass and stimulates bone formation, whereas skeletal unloading from prolonged immobilization leads to bone loss. A functional interplay between the insulin-like growth factor 1 receptor (IGF1R), a major player in skeletal development, and integrins, mechanosensors, is thought to regulate the anabolic response of osteogenic cells to mechanical load. The mechanistic basis for this cross-talk is unclear. Here we report that integrin signaling regulates activation of IGF1R and downstream targets in response to both IGF1 and a mechanical stimulus. In addition, integrins potentiate responsiveness of IGF1R to IGF1 and mechanical forces. We demonstrate that integrin-associated kinases, Rous sarcoma oncogene (SRC) and focal adhesion kinase (FAK), display distinct actions on IGF1 signaling; FAK regulates IGF1R activation and its downstream effectors, AKT and ERK, whereas SRC controls signaling downstream of IGF1R. These findings linked to our observation that IGF1 assembles the formation of a heterocomplex between IGF1R and integrin β3 subunit indicate that the regulation of IGF1 signaling by integrins proceeds by direct receptor-receptor interaction as a possible means to translate biomechanical forces into osteoanabolic signals.
Collapse
Affiliation(s)
- Candice G T Tahimic
- From the Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California 94121, University of California, San Francisco, California 94158
| | - Roger K Long
- Department of Pediatrics, University of California, San Francisco, California 94143
| | - Takuo Kubota
- Department of Pediatrics, Osaka University, Osaka, Japan 565-0871, and
| | - Maggie Yige Sun
- From the Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California 94121, University of California, San Francisco, California 94158
| | - Hashem Elalieh
- From the Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California 94121, University of California, San Francisco, California 94158
| | - Chak Fong
- From the Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California 94121, University of California, San Francisco, California 94158
| | - Alicia T Menendez
- From the Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California 94121, University of California, San Francisco, California 94158
| | - Yongmei Wang
- From the Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California 94121, University of California, San Francisco, California 94158
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Daniel D Bikle
- From the Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California 94121, University of California, San Francisco, California 94158,
| |
Collapse
|
416
|
Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair? J Cell Sci 2016; 129:653-64. [PMID: 26857815 DOI: 10.1242/jcs.180992] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|
417
|
Deford P, Brown K, Richards RL, King A, Newburn K, Westover K, Albig AR. MAGP2 controls Notch via interactions with RGD binding integrins: Identification of a novel ECM-integrin-Notch signaling axis. Exp Cell Res 2016; 341:84-91. [PMID: 26808411 DOI: 10.1016/j.yexcr.2016.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/01/2023]
Abstract
Canonical Notch signaling involves Notch receptor activation via interaction with cell surface bound Notch ligand. Recent findings also indicate that Notch signaling may be modulated by cross-talk with other signaling mechanisms. The ECM protein MAGP2 was previously shown to regulate Notch in a cell type dependent manner, although the molecular details of this interaction have not been dissected. Here, we report that MAGP2 cell type specific control of Notch is independent of individual Notch receptor-ligand combinations but dependent on interaction with RGD binding integrins. Overexpressed MAGP2 was found to suppress transcriptional activity from the Notch responsive Hes1 promoter activity in endothelial cells, while overexpression of a RGD→RGE MAGP2 mutant increased Notch signaling in the same cell type. This effect was not unique to MAGP2 since the RGD domain of the ECM protein EGFL7 was also found to be an important modulator of Hes1 promoter activity. Independently of MAGP2 or EGFL7, inhibition of RGD-binding integrins with soluble RGD peptides also increased accumulation of active N1ICD fragments and Notch responsive promoter activity independently of changes in Notch1, Jag1, or Dll4 expression. Finally, β1 or β3 integrin blocking antibodies also enhanced Notch signaling. Collectively, these results answer the question of how MAGP2 controls cell type dependent Notch signaling, but more importantly uncover a new mechanism to understand how extracellular matrices and cellular environments impact Notch signaling.
Collapse
Affiliation(s)
- Peter Deford
- Department of Biology, Boise State University, Boise, ID 83725, United States
| | - Kasey Brown
- Department of Biology, Indiana State University, Terre Haute, IN 47809, United States
| | - Rae Lee Richards
- Department of Biology, Indiana State University, Terre Haute, IN 47809, United States
| | - Aric King
- Department of Biology, Indiana State University, Terre Haute, IN 47809, United States
| | - Kristin Newburn
- Department of Biology, Indiana State University, Terre Haute, IN 47809, United States
| | - Katherine Westover
- Department of Biology, Boise State University, Boise, ID 83725, United States
| | - Allan R Albig
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, United States; Department of Biology, Boise State University, Boise, ID 83725, United States.
| |
Collapse
|
418
|
HOSHIBA T, TANAKA M. Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research. ANAL SCI 2016; 32:1151-1158. [DOI: 10.2116/analsci.32.1151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takashi HOSHIBA
- Frontier Center for Organic Materials, Yamagata University
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Masaru TANAKA
- Frontier Center for Organic Materials, Yamagata University
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
419
|
Vilas-Boas F, Bagulho A, Tenente R, Teixeira VH, Martins G, da Costa G, Jerónimo A, Cordeiro C, Machuqueiro M, Real C. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA. Free Radic Biol Med 2016; 90:145-57. [PMID: 26603095 DOI: 10.1016/j.freeradbiomed.2015.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/28/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023]
Abstract
To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment.
Collapse
Affiliation(s)
- Filipe Vilas-Boas
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Ana Bagulho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rita Tenente
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Vitor H Teixeira
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Gabriel Martins
- Instituto Gulbenkian de Ciência, R. Quinta Grande 6, 2780-156 Oeiras, Portugal; CE3C - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Gonçalo da Costa
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Ana Jerónimo
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Carlos Cordeiro
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
420
|
Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype. Acta Biomater 2016; 30:26-48. [PMID: 26596568 DOI: 10.1016/j.actbio.2015.11.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
Abstract
The chemistry, geometry, topography and mechanical properties of biomaterials modulate biochemical signals (in particular ligand-receptor binding events) that control cells-matrix interactions. In turn, the regulation of cell adhesion by the biochemical and physical properties of the matrix controls cell phenotypes such as proliferation, motility and differentiation. In particular, nanoscale geometrical, topographical and mechanical properties of biomaterials are essential to achieve control of the cell-biomaterials interface. The design of such nanoscale architectures and platforms requires understanding the molecular mechanisms underlying adhesion formation and the assembly of the actin cytoskeleton. This review presents some of the important molecular mechanisms underlying cell adhesion to biomaterials mediated by integrins and discusses the nanoscale engineered platforms used to control these processes. Such nanoscale understanding of the cell-biomaterials interface offers exciting opportunities for the design of biomaterials and their application to the field of tissue engineering. STATEMENT OF SIGNIFICANCE Biomaterials design is important in the fields of regenerative medicine and tissue engineering, in particular to allow the long term expansion of stem cells and the engineering of scaffolds for tissue regeneration. Cell adhesion to biomaterials often plays a central role in regulating cell phenotype. It is emerging that physical properties of biomaterials, and more generally the microenvironment, regulate such behaviour. In particular, cells respond to nanoscale physical properties of their matrix. Understanding how such nanoscale physical properties control cell adhesion is therefore essential for biomaterials design. To this aim, a deeper understanding of molecular processes controlling cell adhesion, but also a greater control of matrix engineering is required. Such multidisciplinary approaches shed light on some of the fundamental mechanisms via which cell adhesions sense their nanoscale physical environment.
Collapse
|
421
|
Rasmussen CH, Petersen DR, Moeller JB, Hansson M, Dufva M. Collagen Type I Improves the Differentiation of Human Embryonic Stem Cells towards Definitive Endoderm. PLoS One 2015; 10:e0145389. [PMID: 26713616 PMCID: PMC4694921 DOI: 10.1371/journal.pone.0145389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022] Open
Abstract
Human embryonic stem cells have the ability to generate all cell types in the body and can potentially provide an unlimited source of cells for cell replacement therapy to treat degenerative diseases such as diabetes. Current differentiation protocols of human embryonic stem cells towards insulin producing beta cells focus on soluble molecules whereas the impact of cell-matrix interactions has been mainly unattended. In this study almost 500 different extracellular matrix protein combinations were screened to systemically identify extracellular matrix proteins that influence differentiation of human embryonic stem cells to the definitive endoderm lineage. The percentage of definitive endoderm cells after differentiation on collagen I and fibronectin was >85% and 65%, respectively. The cells on collagen I substrates displayed different morphology and gene expression during differentiation as assessed by time lapse studies compared to cells on the other tested substrates. Global gene expression analysis showed that cells differentiated on collagen I were largely similar to cells on fibronectin after completed differentiation. Collectively, the data suggest that collagen I induces a more rapid and consistent differentiation of stem cells to definitive endoderm. The results shed light on the importance of extracellular matrix proteins for differentiation and also points to a cost effective and easy method to improve differentiation.
Collapse
Affiliation(s)
| | | | | | | | - Martin Dufva
- DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail: (MH); (MD)
| |
Collapse
|
422
|
Topalovski M, Brekken RA. Matrix control of pancreatic cancer: New insights into fibronectin signaling. Cancer Lett 2015; 381:252-8. [PMID: 26742464 DOI: 10.1016/j.canlet.2015.12.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly metastatic disease that resists most current therapies. A defining characteristic of PDA is an intense fibrotic response that promotes tumor cell invasion and chemoresistance. Efforts to understand the complex relationship between the tumor and its extracellular network and to therapeutically perturb tumor-stroma interactions are ongoing. Fibronectin (FN), a provisional matrix protein abundant in PDA stroma but not normal tissues, supports metastatic spread and chemoresistance of this deadly disease. FN also supports angiogenesis, which is required for even hypovascular tumors such as PDA to develop and progress. Targeting components of the tumor stroma, such as FN, can effectively reduce tumor growth and spread while also enhancing delivery of chemotherapy. Here, we review the molecular mechanisms by which FN drives angiogenesis, metastasis and chemoresistance in PDA. In light of these new findings, we also discuss therapeutic strategies to inhibit FN signaling.
Collapse
Affiliation(s)
- Mary Topalovski
- Hamon Center for Therapeutic Oncology Research and the Division of Surgical Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research and the Division of Surgical Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Surgery and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
423
|
Abstract
Tenascin-C (TNC) is highly expressed in cancer tissues. Its cellular sources are cancer and stromal cells, including fibroblasts/myofibroblasts, and also vascular cells. TNC expressed in cancer tissues dominantly contains large splice variants. Deposition of the stroma promotes the epithelial-mesenchymal transition, proliferation, and migration of cancer cells. It also facilitates the formation of cancer stroma including desmoplasia and angiogenesis. Integrin receptors that mediate the signals of TNC have also been discussed.
Collapse
Key Words
- CAF, cancer-associated fibroblasts
- ECM, extracellular matrix
- EDA, extra domain A
- EMT, epithelial-mesenchymal transition
- FAK, focal adhesion kinase
- FBG, fibrinogen-like globe
- FN, fibronectin
- FNIII, fibronectin type III-like
- HS, heparan sulfate
- ISH, in situ hybridization
- LAP, latency-associated peptide
- MMPs, matrix metalloproteinases
- OPN, osteopontin
- PDGF, platelet-derived growth factor
- RPTP, receptor protein-tyrosine phosphatase
- Stromal cell
- TGF, transforming growth factor
- TNC, tenascin-C
- VN, vitronectin
- cancer cell
- integrins
- splice variant
- tenascin-C
Collapse
Affiliation(s)
- Toshimichi Yoshida
- a Department of Pathology and Matrix Biology ; Mie University Graduate School of Medicine
| | | | | |
Collapse
|
424
|
Felgueiras HP, Evans MD, Migonney V. Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V. Acta Biomater 2015; 28:225-233. [PMID: 26415777 DOI: 10.1016/j.actbio.2015.09.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
This study is focused on understanding the underlying mechanisms involved in the improved in vitro and in vivo responses of osteoblasts on poly(sodium styrene sulfonate) (poly(NaSS)) functionalized Ti6Al4V surfaces. We probed the contribution of cell-adhesive glycoproteins fibronectin (Fn) and vitronectin (Vn) in the initial adhesion of MC3T3-E1 osteoblastic cells to poly(NaSS) functionalized and control Ti6Al4V surfaces. Firstly, culture media containing serum depleted of Fn and Vn (DD) were used to establish the contribution of Fn and Vn in the adhesion and spreading of cells on poly(NaSS) grafted and control surfaces. Compared to ungrafted surfaces, poly(NaSS) grafted surfaces enhanced the levels of cell adhesion, cell spreading and the formation of intracellular actin cytoskeleton and focal contacts in serum treatments where Fn or Vn were present (FBS, DD+Fn, DD+Vn). Cell responses to Fn were more significant than to Vn. Secondly, blocking Fn and Vn integrin receptors using antibodies to α5β1 (Fn) and αvβ1 (Vn) showed that adhesion of cells to poly(NaSS) grafted surfaces principally involved the Fn integrin receptor α5β1. Thirdly, blocking of the heparin and cell-binding regions of Fn molecule (RGD, C-HB, N-HB) showed that grafting with poly(NaSS) altered the conformation of Fn. Together these outcomes explained why the presence of sulfonate (SO3(-)) groups grafted on the Ti6Al4V surface enhanced the early cell adhesion and spreading processes which determine clinical success for applications that require osseointegration. STATEMENT OF SIGNIFICANCE This study is devoted to the basic analysis of the mechanism at the origin of the improved in vitro and in vivo osteoblast cell responses exhibited by poly(sodium styrene sulfonate) (poly(NaSS)) functionalized Ti6Al4V surfaces. The aim was to probe the contribution of cell adhesive glycoproteins fibronectin and vitronectin in the initial adhesion of MC3T3-E1 osteoblastic cells to poly(NaSS) functionalized Ti6Al4V surfaces. The outcomes of this research explained why the presence of SO3(-) (sulfonate) groups grafted on the Ti6Al4V surface enhanced the early cell adhesion and spreading processes which determine clinical success for applications that require osseointegration. This work is a step further in the research of poly(NaSS), a very promising bioactive polymer with potential to the orthopedic and dental fields.
Collapse
|
425
|
Goto K, Kimura T, Kitamura N, Semba S, Ohmiya Y, Aburatani S, Matsukura S, Tsuda M, Kurokawa T, Ping Gong J, Tanaka S, Yasuda K. Synthetic PAMPS gel activates BMP/Smad signaling pathway in ATDC5 cells, which plays a significant role in the gel-induced chondrogenic differentiation. J Biomed Mater Res A 2015; 104:734-746. [DOI: 10.1002/jbm.a.35615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Keiko Goto
- Department of Sports Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Taichi Kimura
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Nobuto Kitamura
- Department of Sports Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Shingo Semba
- Department of Sports Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; Tsukuba Japan
| | - Sachiyo Aburatani
- Computational Biology Research Center; National Institute of Advanced Industrial Science and Technology; Tokyo Japan
| | - Satoko Matsukura
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; Tsukuba Japan
| | - Masumi Tsuda
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Takayuki Kurokawa
- Laboratory of Soft and Wet Matter; Department of Advanced Transdisciplinary Sciences; Hokkaido University Faculty of Advanced Life Science; Sapporo Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter; Department of Advanced Transdisciplinary Sciences; Hokkaido University Faculty of Advanced Life Science; Sapporo Japan
| | - Shinya Tanaka
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Kazunori Yasuda
- Department of Sports Medicine; Hokkaido University Graduate School of Medicine; Sapporo Japan
| |
Collapse
|
426
|
Dhaliwal K, Kunchur R, Farhadieh R. Review of the cellular and biological principles of distraction osteogenesis: An in vivo bioreactor tissue engineering model. J Plast Reconstr Aesthet Surg 2015; 69:e19-26. [PMID: 26725979 DOI: 10.1016/j.bjps.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/22/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
Distraction osteogenesis (DO) is a widely used technique in plastic and orthopaedic surgery. During the process, mechanical force is applied to fractured bone to enhance the regenerative processes and induce new bone formation. Although there is an abundance of literature on the clinical process of DO, there is a distinct lack of focus on the underlying biological principles governing this process. DO follows the basic premises of tissue engineering. The mechanical stress stimulates mesenchymal stem cell differentiation down an osteoblastic lineage on a matrix background. The aim of this review is to give an overview of the current knowledge of the molecular mechanism governing this process.
Collapse
Affiliation(s)
- K Dhaliwal
- St George's NHS Trust, Tooting, London, SW17 0QT, UK.
| | - R Kunchur
- Plastic & Reconstructive Surgery Department, Australian National University, Canberra ACT 0200, Australia
| | - R Farhadieh
- Plastic & Reconstructive Surgery Department, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
427
|
Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho-Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics 2015; 16:944. [PMID: 26572553 PMCID: PMC4647640 DOI: 10.1186/s12864-015-2036-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an important process in embryonic development, especially during gastrulation and organ formation. Furthermore EMT is widely observed in pathological conditions, e.g., fibrosis, tumor progression and metastasis. Madin-Darby Canine Kidney (MDCK) cells are widely used for studies of EMT and epithelial plasticity. MDCK cells show an epithelial phenotype, while oncogenic Ras-transformed MDCK (MDCK-Ras) cells undergo EMT and show a mesenchymal phenotype. METHODS RNA-Seq and miRNA-Seq analyses were performed on MDCK and MDCK-Ras cells. Data were validated by qRT-PCR. Gene signature analyses were carried out to identify pathways and gene ontology terms. For selected miRNAs target prediction was performed. RESULTS With RNA-Seq, mRNAs of approximately half of the genes known for dog were detected. These were screened for differential regulation during Ras-induced EMT. We went further and performed gene signature analyses and found Gene Ontology (GO) terms and pathways important for epithelial polarity and implicated in EMT. Among the identified pathways, TGFβ1 emerged as a central signaling factor in many EMT related pathways and biological processes. With miRNA-Seq, approximately half of the known canine miRNAs were found expressed in MDCK and MDCK-Ras cells. Furthermore, among differentially expressed miRNAs, miRNAs that are known to be important regulators of EMT were detected and new candidates were predicted. New dog miRNAs were discovered after aligning our reads to that of other species in miRBase. Importantly, we could identify 25 completely novel miRNAs with a stable hairpin structure. Two of these novel miRNAs were differentially expressed. We validated the two novel miRNAs with the highest read counts by RT-qPCR. Target prediction of a particular novel miRNA highly expressed in mesenchymal MDCK-Ras cells revealed that it targets components of epithelial cell junctional complexes. Combining target prediction for the most upregulated miRNAs and validation of the targets in MDCK-Ras cells with pathway analysis allowed us to identify two novel pathways, e.g., JAK/STAT signaling and pancreatic cancer pathways. These pathways could not be detected solely by gene set enrichment analyses of RNA-Seq data. CONCLUSION With deep sequencing data of mRNAs and miRNAs of MDCK cells and of Ras-induced EMT in MDCK cells, differentially regulated mRNAs and miRNAs are identified. Many of the identified genes are within pathways known to be involved in EMT. Novel differentially upregulated genes in MDCK cells are interferon stimulated genes and genes involved in Slit and Netrin signaling. New pathways not yet linked to these processes were identified. A central pathway in Ras induced EMT is TGFβ signaling, which leads to differential regulation of many target genes, including miRNAs. With miRNA-Seq we identified miRNAs involved in either epithelial cell biology or EMT. Finally, we describe completely novel miRNAs and their target genes.
Collapse
Affiliation(s)
- Priyank Shukla
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Macho-Maschler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
428
|
Kang CW, Park MS, Kim NH, Lee JH, Oh CW, Kim HR, Kim GD. Hexane extract from Sargassum serratifolium inhibits the cell proliferation and metastatic ability of human glioblastoma U87MG cells. Oncol Rep 2015; 34:2602-8. [PMID: 26323587 DOI: 10.3892/or.2015.4222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 11/06/2022] Open
Abstract
The present study is the first to demonstrate the anticancer effects of a hexane extract from the brown algae Sargassum serratifolium (HES) on human cancer cell lines, including glioblastoma U87MG, cervical cancer HeLa and gastric cancer MKN-28 cells, as well as liver cancer SK-HEP 1 cells. Among these cancer cell lines, U87MG cells were most sensitive to the cell death induced by HES. HES exhibited a cytotoxic effect on U87MG cells at concentrations of 14-16 µg/ml, yet an effect was not observed in human embryonic kidney HEK293 cells. The antiproliferative effects of HES were regulated by inhibition of the MAPK/ERK signaling pathway which plays a pivotal role in the proliferation of glioblastoma U87MG cells. In addition, treatment with HES led to cell morphological changes and cell cytoskeleton degradation through regulation of actin dynamic signaling. Furthermore, migration and invasion of the U87MG cells were inhibited by HES via suppression of matrix metalloproteinase (MMP)-2 and -9 expression. Thus, our results suggest that HES is a potential therapeutic agent which has anticancer effects on glioblastoma.
Collapse
Affiliation(s)
- Chang-Won Kang
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Min-Seok Park
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Nan-Hee Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Ji-Hyun Lee
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Chul-Woong Oh
- Department of Marine Biology, College of Fisheries Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
429
|
Felgueiras HP, Aissa IB, Evans MDM, Migonney V. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:261. [PMID: 26449451 DOI: 10.1007/s10856-015-5596-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/01/2015] [Indexed: 05/25/2023]
Abstract
The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast-like cells while reducing bacterial adhesion to create a bioactive surface with potential for orthopaedic applications.
Collapse
Affiliation(s)
- Helena P Felgueiras
- Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France
| | - Ines Ben Aissa
- Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France
| | - Margaret D M Evans
- CSIRO Biomedical Materials Program, 11 Julius Avenue, North Ride, Sydney, NSW, 2113, Australia
| | - Véronique Migonney
- Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France.
| |
Collapse
|
430
|
D’Alessandria C, Pohle K, Rechenmacher F, Neubauer S, Notni J, Wester HJ, Schwaiger M, Kessler H, Beer AJ. In vivo biokinetic and metabolic characterization of the 68Ga-labelled α5β1-selective peptidomimetic FR366. Eur J Nucl Med Mol Imaging 2015; 43:953-963. [DOI: 10.1007/s00259-015-3218-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/06/2015] [Indexed: 01/04/2023]
|
431
|
Frohnmayer JP, Brüggemann D, Eberhard C, Neubauer S, Mollenhauer C, Boehm H, Kessler H, Geiger B, Spatz JP. Minimal synthetic cells to study integrin-mediated adhesion. Angew Chem Int Ed Engl 2015; 54:12472-8. [PMID: 26257266 PMCID: PMC4675076 DOI: 10.1002/anie.201503184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/28/2015] [Indexed: 11/12/2022]
Abstract
To shed light on cell-adhesion-related molecular pathways, synthetic cells offer the unique advantage of a well-controlled model system with reduced molecular complexity. Herein, we show that liposomes with the reconstituted platelet integrin αIIb β3 as the adhesion-mediating transmembrane protein are a functional minimal cell model for studying cellular adhesion mechanisms in a defined environment. The interaction of these synthetic cells with various extracellular matrix proteins was analyzed using a quartz crystal microbalance with dissipation monitoring. The data indicated that integrin was functionally incorporated into the lipid vesicles, thus enabling integrin-specific adhesion of the engineered liposomes to fibrinogen- and fibronectin-functionalized surfaces. Then, we were able to initiate the detachment of integrin liposomes from these surfaces in the presence of the peptide GRGDSP, a process that is even faster with our newly synthesized peptide mimetic SN529, which specifically inhibits the integrin αIIb β3 .
Collapse
Affiliation(s)
- Johannes P Frohnmayer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Dorothea Brüggemann
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Christian Eberhard
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Stefanie Neubauer
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität MünchenLichtenbergstrasse 4, 85747 Garching (Germany)
| | - Christine Mollenhauer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
- CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
- CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität MünchenLichtenbergstrasse 4, 85747 Garching (Germany)
| | - Benjamin Geiger
- The Weizmann Institute of Science, Department of Molecular Cell BiologyRehovot (Israel)
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| |
Collapse
|
432
|
Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal 2015; 9:309-25. [PMID: 26449569 DOI: 10.1007/s12079-015-0307-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/29/2015] [Indexed: 12/26/2022] Open
Abstract
Fibrillins constitute the backbone of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Mutations in fibrillins are associated with a wide range of connective tissue disorders, the most common is Marfan syndrome. Microfibrils are on one hand important for structural stability in some tissues. On the other hand, microfibrils are increasingly recognized as critical mediators and drivers of cellular signaling. This review focuses on the signaling mechanisms initiated by fibrillins and microfibrils, which are often dysregulated in fibrillin-associated disorders. Fibrillins regulate the storage and bioavailability of growth factors of the TGF-β superfamily. Cells sense microfibrils through integrins and other receptors. Fibrillins potently regulate pathways of the immune response, inflammation and tissue homeostasis. Emerging evidence show the involvement of microRNAs in disorders caused by fibrillin deficiency. A thorough understanding of fibrillin-mediated cell signaling pathways will provide important new leads for therapeutic approaches of the underlying disorders.
Collapse
|
433
|
Integrin endosomal signalling suppresses anoikis. Nat Cell Biol 2015; 17:1412-21. [PMID: 26436690 DOI: 10.1038/ncb3250] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
Integrin-containing focal adhesions transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, the potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localizes with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage independence and metastasis.
Collapse
|
434
|
Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015; 36:564-91. [PMID: 26357922 PMCID: PMC4591527 DOI: 10.1210/er.2014-1101] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Spermatogenesis is the cellular process by which spermatogonia develop into mature spermatids within seminiferous tubules, the functional unit of the mammalian testis, under the structural and nutritional support of Sertoli cells and the precise regulation of endocrine factors. As germ cells develop, they traverse the seminiferous epithelium, a process that involves restructuring of Sertoli-germ cell junctions, as well as Sertoli-Sertoli cell junctions at the blood-testis barrier. The blood-testis barrier, one of the tightest tissue barriers in the mammalian body, divides the seminiferous epithelium into 2 compartments, basal and adluminal. The blood-testis barrier is different from most other tissue barriers in that it is not only comprised of tight junctions. Instead, tight junctions coexist and cofunction with ectoplasmic specializations, desmosomes, and gap junctions to create a unique microenvironment for the completion of meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis. Studies from the past decade or so have identified the key structural, scaffolding, and signaling proteins of the blood-testis barrier. More recent studies have defined the regulatory mechanisms that underlie blood-testis barrier function. We review here the biology and regulation of the mammalian blood-testis barrier and highlight research areas that should be expanded in future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
435
|
Huang Y, Zhao LL, Feng JL, Zhu HX, Huang X, Ren Q, Wang W. A novel integrin function in innate immunity from Chinese mitten crab (Eriocheir sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:155-165. [PMID: 26004499 DOI: 10.1016/j.dci.2015.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Integrins belong to a superfamily of conserved α β heterodimeric cell surface receptors that have critical function in cell migration, differentiation, and survival. In this study, an integrin called EsIntegrin was identified from Chinese mitten crab Eriocheir sinensis. EsIntegrin cDNA is 4415 bp long with a 2457 bp open reading frame that encodes an 818 amino acid protein. EsIntegrin contains a signal peptide, an integrin beta subunit (N-terminal portion of extracellular region) INB domain, an epidermal growth factor (hEGF) domain, an integrin B tail domain, a transmembrane region, and an integrin b cyt domain. EsIntegrin was mainly expressed in hemocytes and the heart, with a relatively lower expression level in gills, nerves, intestine, hepatopancreas, muscles, and eyestalk. When healthy crabs were challenged with LPS, PGN, Staphyloccocus aureus, or Vibrio parahaemolyticus, EsIntegrin expression level was upregulated significantly. Recombinant EsIntegrin has agglutination activity to Gram-positive (e.g., S. aureus and Bacillus subtilis) and Gram-negative bacteria (e.g., V. parahaemolyticus and Aeromonas hydrophila) in the presence of calcium. Furthermore, rEsIntegrin could not only bind to various bacteria such as S. aureus, Micrococcus luteus, B. subtilis, Bacillus megaterium, Bacillus thuringiensis, V. parahaemolyticus, Vibrio anguillarum, A. hydrophila, Vibrio natriegens, and Escherichia coli, but this compound also helped crabs in clearing virulent Gram-negative bacterium, V. parahaemolyticus, in vivo. These data suggested that EsIntegrin might function as cellular receptor that is involved in anti-bacterial immunity from E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Ling-Ling Zhao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Jin-Ling Feng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Huan-Xi Zhu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
436
|
Wu Q, Zhang J, Koh W, Yu Q, Zhu X, Amsterdam A, Davis GE, Arnaout MA, Xiong JW. Talin1 is required for cardiac Z-disk stabilization and endothelial integrity in zebrafish. FASEB J 2015; 29:4989-5005. [PMID: 26310270 DOI: 10.1096/fj.15-273409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 01/20/2023]
Abstract
Talin (tln) binds and activates integrins to couple extracellular matrix-bound integrins to the cytoskeleton; however, its role in heart development is not well characterized. We identified the defective gene and the resulting cardiovascular phenotypes in zebrafish tln1(fl02k) mutants. The ethylnitrosourea-induced fl02k mutant showed heart failure, brain hemorrhage, and diminished cardiac and vessel lumens at 52 h post fertilization. Positional cloning revealed a nonsense mutation of tln1 in this mutant. tln1, but neither tln2 nor -2a, was dominantly expressed in the heart and vessels. Unlike tln1 and -2 in the mouse heart, the unique tln1 expression in the heart enabled us, for the first time, to determine the critical roles of Tln1 in the maintenance of cardiac sarcomeric Z-disks and endothelial/endocardial cell integrity, partly through regulating F-actin networks in zebrafish. The similar expression profiles of tln1 and integrin β1b (itgb1b) and synergistic function of the 2 genes revealed that itgb1b is a potential partner for tln1 in the stabilization of cardiac Z-disks and vessel lumens. Taken together, the results of this work suggest that Tln1-mediated Itgβ1b plays a crucial role in maintaining cardiac sarcomeric Z-disks and endothelial/endocardial cell integrity in zebrafish and may also help to gain molecular insights into congenital heart diseases.
Collapse
Affiliation(s)
- Qing Wu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jiaojiao Zhang
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wonshill Koh
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Qingming Yu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaojun Zhu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam Amsterdam
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - George E Davis
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - M Amin Arnaout
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jing-Wei Xiong
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
437
|
Colinas O, Moreno-Domínguez A, Zhu HL, Walsh EJ, Pérez-García MT, Walsh MP, Cole WC. α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries. Biochem Pharmacol 2015; 97:281-91. [PMID: 26278977 DOI: 10.1016/j.bcp.2015.08.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The myogenic response of resistance arterioles and small arteries involving constriction in response to intraluminal pressure elevation and dilation on pressure reduction is fundamental to local blood flow regulation in the microcirculation. Integrins have garnered considerable attention in the context of initiating the myogenic response, but evidence indicative of mechanotransduction by integrin adhesions, for example established changes in tyrosine phosphorylation of key adhesion proteins, has not been obtained to substantiate this interpretation. Here, we evaluated the role of integrin adhesions and associated cellular signaling in the rat cerebral arterial myogenic response using function-blocking antibodies against α5β1-integrins, pharmacological inhibitors of focal adhesion kinase (FAK) and Src family kinase (SFK), an ultra-high-sensitivity western blotting technique, site-specific phosphoprotein antibodies to quantify adhesion and contractile filament protein phosphorylation, and differential centrifugation to determine G-actin levels in rat cerebral arteries at varied intraluminal pressures. Pressure-dependent increases in the levels of phosphorylation of FAK (FAK-Y397, Y576/Y577), SFK (SFK-Y416; Y527 phosphorylation was reduced), vinculin-Y1065, paxillin-Y118 and phosphoinositide-specific phospholipase C-γ1 (PLCγ1)-Y783 were detected. Treatment with α5-integrin function-blocking antibodies, FAK inhibitor FI-14 or SFK inhibitor SU6656 suppressed the changes in adhesion protein phosphorylation, and prevented pressure-dependent phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) at T855 and 20kDa myosin regulatory light chains (LC20) at S19, as well as actin polymerization that are necessary for myogenic constriction. We conclude that mechanotransduction by integrin adhesions and subsequent cellular signaling play a fundamental role in the cerebral arterial myogenic response.
Collapse
Affiliation(s)
- Olaia Colinas
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Alejandro Moreno-Domínguez
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Hai-Lei Zhu
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Emma J Walsh
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - M Teresa Pérez-García
- Department of Physiology, Instituto de Biología y Genética Molecular, University of Valladolid, Valladolid, Spain.
| | - Michael P Walsh
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - William C Cole
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| |
Collapse
|
438
|
Yamada M, Sekiguchi K. Molecular Basis of Laminin-Integrin Interactions. CURRENT TOPICS IN MEMBRANES 2015; 76:197-229. [PMID: 26610915 DOI: 10.1016/bs.ctm.2015.07.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laminins are composed of three polypeptide chains, designated as α, β, and γ. The C-terminal region of laminin heterotrimers, containing coiled-coil regions, short tails, and laminin globular (LG) domains, is necessary and sufficient for binding to integrins, which are the major laminin receptor class. Laminin recognition by integrins critically requires the α chain LG domains and a glutamic acid residue of the γ chain at the third position from the C-terminus. Furthermore, the C-terminal region of the β chain contains a short amino acid sequence that modulates laminin affinity for integrins. Thus, all three of the laminin chains act cooperatively to facilitate integrin binding. Mammals possess 5 α (α1-5), 3 β (β1-3), and 3 γ (γ1-3) chains, combinations of which give rise to 16 distinct laminin isoforms. Each isoform is expressed in a tissue-specific and developmental stage-specific manner, exerting its functions through binding of integrins. In this review, we detail the current knowledge surrounding the molecular basis and physiological relevance of specific interactions between laminins and integrins, and describe the mechanisms underlying laminin action through integrins.
Collapse
Affiliation(s)
- Masashi Yamada
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
439
|
|
440
|
Auernheimer V, Lautscham LA, Leidenberger M, Friedrich O, Kappes B, Fabry B, Goldmann WH. Vinculin phosphorylation at residues Y100 and Y1065 is required for cellular force transmission. J Cell Sci 2015; 128:3435-43. [PMID: 26240176 DOI: 10.1242/jcs.172031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
The focal adhesion protein vinculin connects the actin cytoskeleton, through talin and integrins, with the extracellular matrix. Vinculin consists of a globular head and tail domain, which undergo conformational changes from a closed auto-inhibited conformation in the cytoplasm to an open conformation in focal adhesions. Src-mediated phosphorylation has been suggested to regulate this conformational switch. To explore the role of phosphorylation in vinculin activation, we used knock-out mouse embryonic fibroblasts re-expressing different vinculin mutants in traction microscopy, magnetic tweezer microrheology, FRAP and actin-binding assays. Compared to cells expressing wild-type or constitutively active vinculin, we found reduced tractions, cytoskeletal stiffness, adhesion strength, and increased vinculin dynamics in cells expressing constitutively inactive vinculin or vinculin where Src-mediated phosphorylation was blocked by replacing tyrosine at position 100 and/or 1065 with a non-phosphorylatable phenylalanine residue. Replacing tyrosine residues with phospho-mimicking glutamic acid residues restored cellular tractions, stiffness and adhesion strength, as well as vinculin dynamics, and facilitated vinculin-actin binding. These data demonstrate that Src-mediated phosphorylation is necessary for vinculin activation, and that phosphorylation controls cytoskeletal mechanics by regulating force transmission between the actin cytoskeleton and focal adhesion proteins.
Collapse
Affiliation(s)
- Vera Auernheimer
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Lena A Lautscham
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Ben Fabry
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| |
Collapse
|
441
|
Bachman H, Nicosia J, Dysart M, Barker TH. Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses. Adv Wound Care (New Rochelle) 2015; 4:501-511. [PMID: 26244106 DOI: 10.1089/wound.2014.0621] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/12/2015] [Indexed: 01/11/2023] Open
Abstract
Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin-Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis.
Collapse
Affiliation(s)
- Haylee Bachman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - John Nicosia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Marilyn Dysart
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Thomas H. Barker
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- The Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
442
|
Di Donato M, Bilancio A, D'Amato L, Claudiani P, Oliviero MA, Barone MV, Auricchio A, Appella E, Migliaccio A, Auricchio F, Castoria G. Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells. Mol Biol Cell 2015; 26:2858-72. [PMID: 26063730 PMCID: PMC4571344 DOI: 10.1091/mbc.e14-09-1352] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
Abstract
Steroids and growth factors control neuronal development through their receptors under physiological and pathological conditions. We show that PC12 cells harbor endogenous androgen receptor (AR), whose inhibition or silencing strongly interferes with neuritogenesis stimulated by the nonaromatizable synthetic androgen R1881 or NGF. This implies a role for AR not only in androgen signaling, but also in NGF signaling. In turn, a pharmacological TrkA inhibitor interferes with NGF- or androgen-induced neuritogenesis. In addition, androgen or NGF triggers AR association with TrkA, TrkA interaction with PI3-K δ, and downstream activation of PI3-K δ and Rac in PC12 cells. Once associated with AR, filamin A (FlnA) contributes to androgen or NGF neuritogenesis, likely through its interaction with signaling effectors, such as Rac. This study thus identifies a previously unrecognized reciprocal cross-talk between AR and TrkA, which is controlled by β1 integrin. The contribution of FlnA/AR complex and PI3-K δ to neuronal differentiation by androgens and NGF is also novel. This is the first description of AR function in PC12 cells.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Antonio Bilancio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Loredana D'Amato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Pamela Claudiani
- Telethon Institute of Genetics and Medicine and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Maria Antonietta Oliviero
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892-4256
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Ferdinando Auricchio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Gabriella Castoria
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| |
Collapse
|
443
|
Cai J, Tian AX, Wang QS, Kong PZ, Du X, Li XQ, Feng YM. FOXF2 suppresses the FOXC2-mediated epithelial-mesenchymal transition and multidrug resistance of basal-like breast cancer. Cancer Lett 2015. [PMID: 26210254 DOI: 10.1016/j.canlet.2015.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Forkhead box (FOX) F2 and FOXC2 belong to the FOX transcription factor superfamily. FOXC2 is recognized as an inducer of epithelial-mesenchymal transition (EMT), and its overexpression promotes basal-like breast cancer (BLBC) metastasis. Our previous study demonstrated that FOXF2 functions as an EMT suppressor and that FOXF2 deficiency promotes BLBC metastasis. However, the relationship between the opposite EMT-related transcription factors FOXF2 and FOXC2 remains unknown. Here, we found that FOXF2 directly targets FOXC2 to negatively regulate FOXC2 transcription in BLBC cells. Functionally, we observed that FOXC2 mediates the FOXF2-regulated EMT phenotype, aggressive behavior, and multiple chemotherapy drug resistance of BLBC cells. Additionally, we detected a significant negative correlation between the FOXF2 and FOXC2 mRNA levels in triple-negative breast cancer (TNBC) tissues. TNBC patients in the FOXF2high/FOXC2low and FOXF2low/FOXC2high groups exhibited the best and worst disease-free survival (DFS), respectively, whereas the patients in the FOXF2high/FOXC2high and FOXF2low/FOXC2low groups exhibited moderate DFS. In summary, we found that FOXF2 transcriptionally targets FOXC2 and suppresses EMT and multidrug resistance by negatively regulating the transcription of FOXC2 in BLBC cells. The combined expression levels of FOXF2 and FOXC2 mRNA might serve as an effective prognostic indicator and could guide tailored therapy for TNBC or BLBC patients.
Collapse
Affiliation(s)
- Jun Cai
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Ai-Xian Tian
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Peng-Zhou Kong
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Xin Du
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China.
| |
Collapse
|
444
|
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 2015; 36:41-7. [PMID: 26189062 DOI: 10.1016/j.ceb.2015.06.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022]
Abstract
Integrins are heterodimeric transmembrane adhesion receptors that couple the actin cytoskeleton to the extracellular environment and bidirectionally relay signals across the cell membrane. These processes are critical for cell attachment, migration, differentiation, and survival, and therefore play essential roles in metazoan development, physiology, and pathology. Integrin-mediated adhesions are regulated by diverse factors, including the conformation-specific affinities of integrin receptors for their extracellular ligands, the clustering of integrins and their intracellular binding partners into discrete adhesive structures, mechanical forces exerted on the adhesion, and the intracellular trafficking of integrins themselves. Recent advances shed light onto how the interaction of specific intracellular proteins with the short cytoplasmic tails of integrins controls each of these activities.
Collapse
Affiliation(s)
- Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
445
|
Burkhalter RJ, Westfall SD, Liu Y, Stack MS. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma. J Biol Chem 2015; 290:22143-54. [PMID: 26175151 DOI: 10.1074/jbc.m115.641092] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/06/2022] Open
Abstract
During tumor progression, epithelial ovarian cancer (EOC) cells undergo epithelial-to-mesenchymal transition (EMT), which influences metastatic success. Mutation-dependent activation of Wnt/β-catenin signaling has been implicated in gain of mesenchymal phenotype and loss of differentiation in several solid tumors; however, similar mutations are rare in most EOC histotypes. Nevertheless, evidence for activated Wnt/β-catenin signaling in EOC has been reported, and immunohistochemical analysis of human EOC tumors demonstrates nuclear staining in all histotypes. This study addresses the hypothesis that the bioactive lipid lysophosphatidic acid (LPA), prevalent in the EOC microenvironment, functions to regulate EMT in EOC. Our results demonstrate that LPA induces loss of junctional β-catenin, stimulates clustering of β1 integrins, and enhances the conformationally active population of surface β1 integrins. Furthermore, LPA treatment initiates nuclear translocation of β-catenin and transcriptional activation of Wnt/β-catenin target genes resulting in gain of mesenchymal marker expression. Together these data suggest that LPA initiates EMT in ovarian tumors through β1-integrin-dependent activation of Wnt/β-catenin signaling, providing a novel mechanism for mutation-independent activation of this pathway in EOC progression.
Collapse
Affiliation(s)
- Rebecca J Burkhalter
- From the Departments of Medical Pharmacology and Physiology and the Harper Cancer Research Institute
| | - Suzanne D Westfall
- Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri 65212 and
| | - Yueying Liu
- the Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46617
| | - M Sharon Stack
- the Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46617
| |
Collapse
|
446
|
Lee KJ, Yoo YH, Kim MS, Yadav BK, Kim Y, Lim D, Hwangbo C, Moon KW, Kim D, Jeoung D, Lee H, Lee JH, Hahn JH. CD99 inhibits CD98-mediated β1 integrin signaling through SHP2-mediated FAK dephosphorylation. Exp Cell Res 2015; 336:211-22. [PMID: 26172215 DOI: 10.1016/j.yexcr.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/28/2015] [Accepted: 07/10/2015] [Indexed: 01/18/2023]
Abstract
The human CD99 protein is a 32-kDa type I transmembrane glycoprotein, while CD98 is a disulfide-linked 125-kDa heterodimeric type II transmembrane glycoprotein. It has been previously shown that CD99 and CD98 oppositely regulate β1 integrin signaling, though the mechanisms by which this regulation occurs are not known. Our results revealed that antibody-mediated crosslinking of CD98 induced FAK phosphorylation at Y397 and facilitated the formation of the protein kinase Cα (PKCα)-syntenin-focal adhesion kinase (FAK), focal adhesions (FAs), and IPP-Akt1-syntenin complex, which mediates β1 integrin signaling. In contrast, crosslinking of CD99 disrupted the formation of the PKCα-syntenin-FAK complex as well as FA via FAK dephosphorylation. The CD99-induced dephosphorylation of FAK was apparently mediated by the recruitment of Src homology region 2 domain-containing phosphatase-2 (SHP2) to the plasma membrane and subsequent activation of its phosphatase activity. Further consequences of the activation of SHP2 included the disruption of FAK-talin and talin-β1 integrin interactions and attenuation in the formation of the IPP-Akt1-syntenin complex at the plasma membrane, which resulted in reduced cell-ECM adhesion. This report uncovers the molecular mechanisms underlying the inverse regulation of β1 integrin signaling by CD99 and CD98 and may provide a novel therapeutic approach to treat inflammation and cancer.
Collapse
Affiliation(s)
- Kyoung Jin Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yeon Ho Yoo
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Min Seo Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Birendra Kumar Yadav
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yuri Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Dongyoung Lim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Cheol Hwangbo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ki Won Moon
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Daejoong Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hansoo Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jang-Hee Hahn
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
447
|
Pasipoularides A. Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2. J Cardiovasc Transl Res 2015; 8:293-318. [PMID: 25971844 PMCID: PMC4519381 DOI: 10.1007/s12265-015-9630-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023]
Abstract
Epigenetic mechanisms are fundamental in cardiac adaptations, remodeling, reverse remodeling, and disease. A primary goal of translational cardiovascular research is recognizing whether disease-related changes in phenotype can be averted by eliminating or reducing the effects of environmental epigenetic risks. There may be significant medical benefits in using gene-by-environment interaction knowledge to prevent or reverse organ abnormalities and disease. This survey proposes that "environmental" forces associated with diastolic RV/LV rotatory flows exert important, albeit still unappreciated, epigenetic actions influencing functional and morphological cardiac adaptations. Mechanisms analogous to Murray's law of hydrodynamic shear-induced endothelial cell modulation of vascular geometry are likely to link diastolic vortex-associated shear, torque and "squeeze" forces to RV/LV adaptations. The time has come to explore a new paradigm in which such forces play a fundamental epigenetic role, and to work out how heart cells react to them. Findings from various imaging modalities, computational fluid dynamics, molecular cell biology and cytomechanics are considered. The following are examined, among others: structural dynamics of myocardial cells (endocardium, cardiomyocytes, and fibroblasts), cytoskeleton, nucleoskeleton, and extracellular matrix; mechanotransduction and signaling; and mechanical epigenetic influences on genetic expression. To help integrate and focus relevant pluridisciplinary research, rotatory RV/LV filling flow is placed within a working context that has a cytomechanics perspective. This new frontier in cardiac research should uncover versatile mechanistic insights linking filling vortex patterns and attendant forces to variable expressions of gene regulation in RV/LV myocardium. In due course, it should reveal intrinsic homeostatic arrangements that support ventricular myocardial function and adaptability.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA,
| |
Collapse
|
448
|
Bioactive nanofibers enable the identification of thrombospondin 2 as a key player in enamel regeneration. Biomaterials 2015; 61:216-28. [PMID: 26004236 DOI: 10.1016/j.biomaterials.2015.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
Tissue regeneration and development involves highly synchronized signals both between cells and with the extracellular environment. Biomaterials can be tuned to mimic specific biological signals and control cell response(s). As a result, these materials can be used as tools to elucidate cell signaling pathways and candidate molecules involved with cellular processes. In this work, we explore enamel-forming cells, ameloblasts, which have a limited regenerative capacity. By exposing undifferentiated cells to a self-assembling matrix bearing RGDS epitopes, we elicited a regenerative signal at will that subsequently led to the identification of thrombospondin 2 (TSP2), an extracellular matrix protein that has not been previously recognized as a key player in enamel development and regeneration. Targeted disruption of the thrombospondin 2 gene (Thbs2) resulted in enamel formation with a disordered architecture that was highly susceptible to wear compared to their wild-type counterparts. To test the regenerative capacity, we injected the bioactive matrix into the enamel organ and discovered that the enamel organic epithelial cells in TSP-null mice failed to polarize on the surface of the artificial matrix, greatly reducing integrin β1 and Notch1 expression levels, which represent signaling pathways known to be associated with TSP2. These results suggest TSP2 plays an important role in regulating cell-matrix interactions during enamel formation. Exploiting the signaling pathways activated by biomaterials can provide insight into native signaling mechanisms crucial for tooth development and cell-based strategies for enamel regeneration.
Collapse
|
449
|
Herzog C, Marisiddaiah R, Haun RS, Kaushal GP. Basement membrane protein nidogen-1 is a target of meprin β in cisplatin nephrotoxicity. Toxicol Lett 2015; 236:110-6. [PMID: 25957482 DOI: 10.1016/j.toxlet.2015.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/18/2015] [Accepted: 05/05/2015] [Indexed: 01/08/2023]
Abstract
Meprins are oligomeric metalloproteinases that are abundantly expressed in the brush-border membranes of renal proximal tubules. During acute kidney injury (AKI) induced by cisplatin or ischemia-reperfusion, membrane-bound meprins are shed and their localization is altered from the apical membranes toward the basolateral surface of the proximal tubules. Meprins are capable of cleaving basement membrane proteins in vitro, however, it is not known whether meprins are able to degrade extracellular matrix proteins under pathophysiological conditions in vivo. The present study demonstrates that a basement membrane protein, nidogen-1, is cleaved and excreted in the urine of mice subjected to cisplatin-induced nephrotoxicity, a model of AKI. Cleaved nidogen-1 was not detected in the urine of untreated mice, but during the progression of cisplatin nephrotoxicity, the excretion of cleaved nidogen-1 increased in a time-dependent manner. The meprin inhibitor actinonin markedly prevented urinary excretion of the cleaved nidogen-1. In addition, meprin β-deficient mice, but not meprin α-deficient mice, subjected to cisplatin nephrotoxicity significantly suppressed excretion of cleaved nidogen-1, further suggesting that meprin β is involved in the cleavage of nidogen-1. These studies provide strong evidence for a pathophysiological link between meprin β and urinary excretion of cleaved nidogen-1 during cisplatin-induced AKI.
Collapse
Affiliation(s)
- Christian Herzog
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR 72205, USA
| | - Raju Marisiddaiah
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR 72205, USA
| | - Randy S Haun
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Little Rock, AR 72205, USA
| | - Gur P Kaushal
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR 72205, USA; University of Arkansas for Medical Sciences, Department of Biochemistry, Little Rock, AR 72205, USA.
| |
Collapse
|
450
|
Hartmann M, Parra LM, Ruschel A, Lindner C, Morrison H, Herrlich A, Herrlich P. Inside-out Regulation of Ectodomain Cleavage of Cluster-of-Differentiation-44 (CD44) and of Neuregulin-1 Requires Substrate Dimerization. J Biol Chem 2015; 290:17041-54. [PMID: 25925953 DOI: 10.1074/jbc.m114.610204] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 12/18/2022] Open
Abstract
Ectodomain shedding of transmembrane precursor proteins generates numerous life-essential molecules, such as epidermal growth factor receptor ligands. This cleavage not only releases the regulatory growth factor, but it is also the required first step for the subsequent processing by γ-secretase and the release of gene regulatory intracellular fragments. Signaling within the cell modifies the cytoplasmic tails of substrates, a step important in starting the specific and regulated cleavage of a large number of studied substrates. Ectodomain cleavage occurs, however, on the outside of the plasma membrane and is carried out by membrane-bound metalloproteases. How the intracellular domain modification communicates with the ectodomain of the substrate to allow for cleavage to occur is unknown. Here, we show that homodimerization of a cluster-of-differentiation-44 or of pro-neuregulin-1 monomers represents an essential pre-condition for their regulated ectodomain cleavage. Both substrates are associated with their respective metalloproteases under both basal or cleavage-stimulated conditions. These interactions only turn productive by specific intracellular signal-induced intracellular domain modifications of the substrates, which in turn regulate metalloprotease access to the substrates' ectodomain and cleavage. We propose that substrate intracellular domain modification induces a relative rotation or other positional change of the dimerization partners that allow metalloprotease cleavage in the extracellular space. Our findings fill an important gap in understanding substrate-specific inside-out signal transfer along cleaved transmembrane proteins and suggest that substrate dimerization (homo- or possibly heterodimerization) might represent a general principle in ectodomain shedding.
Collapse
Affiliation(s)
- Monika Hartmann
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| | - Liseth M Parra
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and the Harvard Institutes of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusett 02115
| | - Anne Ruschel
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| | - Christina Lindner
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| | - Helen Morrison
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| | - Andreas Herrlich
- the Harvard Institutes of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusett 02115
| | - Peter Herrlich
- From the Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745 Jena, Germany and
| |
Collapse
|