1
|
Focused B cell response to recurring gluten motif with implications for epitope spreading in celiac disease. Cell Rep 2022; 41:111541. [DOI: 10.1016/j.celrep.2022.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
|
2
|
Dahal-Koirala S, Balaban G, Neumann RS, Scheffer L, Lundin KEA, Greiff V, Sollid LM, Qiao SW, Sandve GK. TCRpower: quantifying the detection power of T-cell receptor sequencing with a novel computational pipeline calibrated by spike-in sequences. Brief Bioinform 2022; 23:bbab566. [PMID: 35062022 PMCID: PMC8921636 DOI: 10.1093/bib/bbab566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023] Open
Abstract
T-cell receptor (TCR) sequencing has enabled the development of innovative diagnostic tests for cancers, autoimmune diseases and other applications. However, the rarity of many T-cell clonotypes presents a detection challenge, which may lead to misdiagnosis if diagnostically relevant TCRs remain undetected. To address this issue, we developed TCRpower, a novel computational pipeline for quantifying the statistical detection power of TCR sequencing methods. TCRpower calculates the probability of detecting a TCR sequence as a function of several key parameters: in-vivo TCR frequency, T-cell sample count, read sequencing depth and read cutoff. To calibrate TCRpower, we selected unique TCRs of 45 T-cell clones (TCCs) as spike-in TCRs. We sequenced the spike-in TCRs from TCCs, together with TCRs from peripheral blood, using a 5' RACE protocol. The 45 spike-in TCRs covered a wide range of sample frequencies, ranging from 5 per 100 to 1 per 1 million. The resulting spike-in TCR read counts and ground truth frequencies allowed us to calibrate TCRpower. In our TCR sequencing data, we observed a consistent linear relationship between sample and sequencing read frequencies. We were also able to reliably detect spike-in TCRs with frequencies as low as one per million. By implementing an optimized read cutoff, we eliminated most of the falsely detected sequences in our data (TCR α-chain 99.0% and TCR β-chain 92.4%), thereby improving diagnostic specificity. TCRpower is publicly available and can be used to optimize future TCR sequencing experiments, and thereby enable reliable detection of disease-relevant TCRs for diagnostic applications.
Collapse
Affiliation(s)
- Shiva Dahal-Koirala
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, 0372, Norway
| | - Gabriel Balaban
- Biomedical Informatics, Department of Informatics, University of Oslo, 0373, Oslo, Norway
- Department of Computational Physiology, Simula Research Laboratory, 1364, Fornebu, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0373, Oslo, Norway
| | - Ralf Stefan Neumann
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
| | - Lonneke Scheffer
- Biomedical Informatics, Department of Informatics, University of Oslo, 0373, Oslo, Norway
| | - Knut Erik Aslaksen Lundin
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
- Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, 0372, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, 0372, Norway
| | - Ludvig Magne Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, 0372, Norway
| | - Shuo-Wang Qiao
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, 0372, Norway
| | - Geir Kjetil Sandve
- Biomedical Informatics, Department of Informatics, University of Oslo, 0373, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0373, Oslo, Norway
| |
Collapse
|
3
|
Dauphars DJ, Mihai A, Wang L, Zhuang Y, Krangel MS. Trav15-dv6 family Tcrd rearrangements diversify the Tcra repertoire. J Exp Med 2022; 219:212913. [PMID: 34910107 PMCID: PMC8679779 DOI: 10.1084/jem.20211581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
The Tcra repertoire is generated by multiple rounds of Vα-Jα rearrangement. However, Tcrd recombination precedes Tcra recombination within the complex Tcra-Tcrd locus. Here, by ablating Tcrd recombination, we report that Tcrd rearrangement broadens primary Vα use to diversify the Tcra repertoire in mice. We reveal that use of Trav15-dv6 family V gene segments in Tcrd recombination imparts diversity in the Tcra repertoire by instigating use of central and distal Vα segments. Moreover, disruption of the regions containing these genes and their cis-regulatory elements identifies the Trav15-dv6 family as being responsible for driving central and distal Vα recombinations beyond their roles as substrates for Tcrd recombination. Our study demonstrates an indispensable role for Tcrd recombination in general, and the Trav15-dv6 family in particular, in the generation of a combinatorially diverse Tcra repertoire.
Collapse
Affiliation(s)
| | - Ariana Mihai
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC
| |
Collapse
|
4
|
Koning D, Quakkelaar ED, Schellens IMM, Spierings E, van Baarle D. Protective HLA Alleles Recruit Biased and Largely Similar Antigen-Specific T Cell Repertoires across Different Outcomes in HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:3-15. [PMID: 34880106 DOI: 10.4049/jimmunol.2001145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
CD8+ T cells play an important role in the control of untreated HIV infection. Several studies have suggested a decisive role of TCRs involved in anti-HIV immunity. HLA-B*27 and B*57 are often associated with a delayed HIV disease progression, but the exact correlates that provide superior immunity against HIV are not known. To investigate if the T cell repertoire underlies the protective effect in disease outcome in HLA-B*27 and B*57+ individuals, we analyzed Ag-specific TCR profiles from progressors (n = 13) and slow progressors (n = 11) expressing either B*27 or B*57. Our data showed no differences in TCR diversity between progressors and slow progressors. Both alleles recruit biased T cell repertoires (i.e., TCR populations skewed toward specific TRBV families or CDR3 regions). This bias was unrelated to disease progression and was remarkably profound for HLA-B*57, in which TRBV family usage and CDR3 sequences were shared to some extent even between epitopes. Conclusively, these data suggest that the T cell repertoires recruited by protective HLA alleles are highly similar between progressors and slow progressors in terms of TCR diversity, TCR usage, and cross-reactivity.
Collapse
Affiliation(s)
- Dan Koning
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Esther D Quakkelaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Ingrid M M Schellens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Debbie van Baarle
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and .,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
5
|
Moysi E, Darko S, Gea-Mallorquí E, Petrovas C, Almeida JR, Wolinsky D, Peng Y, Jaye A, Stewart-Jones G, Douek DC, Koup RA, Dong T, Rowland-Jones S. Clonotypic architecture of a Gag-specific CD8+ T-cell response in chronic human HIV-2 infection. Eur J Immunol 2021; 51:2485-2500. [PMID: 34369597 DOI: 10.1002/eji.202048931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022]
Abstract
The dynamics of T-cell receptor (TCR) selection in chronic HIV-1 infection, and its association with clinical outcome, is well documented for an array of MHC-peptide complexes and disease stages. However, the factors that may contribute to the selection and expansion of CD8+ T-cells in chronic HIV-2 infection, especially at clonal level remain unclear. To address this question, we undertook a detailed molecular characterization of the clonotypic architecture of an HLA-B*3501 restricted Gag -specific CD8+ T-cell response in donors chronically infected with HIV-2 using a combination of flow cytometry, tetramer-specific CD8+ TCR clonotyping and in vitro assays. We show that the response to the NY9 epitope is hierarchical and narrow in terms of T-cell receptor alpha (TCRA) and beta (TCRB) gene usage yet clonotypically diverse. Furthermore, clonotypic dominance in shared origin cytotoxic T lymphocyte (CTL) clones was associated with a greater magnitude of cytokine production and antigen sensitivity at limiting antigen dilution as well as enhanced cross-reactivity for known HIV-2 variants. Hence, our data suggest that effector mobilization and expansion in human chronic HIV-2 infection may be linked to the qualitative features of specific CD8+ T-cell clonotypes, which could have implications for viral control and disease outcome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Vaccine Research Centre, Bethesda, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Centre, Bethesda, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jorge R Almeida
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - David Wolinsky
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, United Kingdom
| | - Assan Jaye
- MRC Laboratories, The Gambia, PO Box 273, West Africa
| | - Guillaume Stewart-Jones
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, Headington, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
6
|
Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P, Metsger M, Ramsden JD, Gilbert SC, Lambe T, Price DA, Campion SL, Chudakov DM, Borrow P, McMichael AJ. CD4 + T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4 + Cells. Cell Rep 2021; 30:137-152.e5. [PMID: 31914381 PMCID: PMC7029615 DOI: 10.1016/j.celrep.2019.12.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
T follicular helper (Tfh) cells are fundamental for B cell selection and antibody maturation in germinal centers. Circulating Tfh (cTfh) cells constitute a minor proportion of the CD4+ T cells in peripheral blood, but their clonotypic relationship to Tfh populations resident in lymph nodes and the extent to which they differ from non-Tfh CD4+ cells have been unclear. Using donor-matched blood and tonsil samples, we investigate T cell receptor (TCR) sharing between tonsillar Tfh cells and peripheral Tfh and non-Tfh cell populations. TCR transcript sequencing reveals considerable clonal overlap between peripheral and tonsillar Tfh cell subsets as well as a clear distinction between Tfh and non-Tfh cells. Furthermore, influenza-specific cTfh cell clones derived from blood can be found in the repertoire of tonsillar Tfh cells. Therefore, human blood samples can be used to gain insight into the specificity of Tfh responses occurring in lymphoid tissues, provided that cTfh subsets are studied.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Alexey N Davydov
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, Milano 20139, Italy
| | - Maria Metsger
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | | | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Suzanne L Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 601 77, Czech Republic; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow 117997, Russia
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
7
|
Edwards SC, Sutton CE, Ladell K, Grant EJ, McLaren JE, Roche F, Dash P, Apiwattanakul N, Awad W, Miners KL, Lalor SJ, Ribot JC, Baik S, Moran B, McGinley A, Pivorunas V, Dowding L, Macoritto M, Paez-Cortez J, Slavin A, Anderson G, Silva-Santos B, Hokamp K, Price DA, Thomas PG, McLoughlin RM, Mills KHG. A population of proinflammatory T cells coexpresses αβ and γδ T cell receptors in mice and humans. J Exp Med 2020; 217:133848. [PMID: 32106283 PMCID: PMC7201916 DOI: 10.1084/jem.20190834] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/29/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
T cells are classically recognized as distinct subsets that express αβ or γδ TCRs. We identify a novel population of T cells that coexpress αβ and γδ TCRs in mice and humans. These hybrid αβ-γδ T cells arose in the murine fetal thymus by day 16 of ontogeny, underwent αβ TCR-mediated positive selection into CD4+ or CD8+ thymocytes, and constituted up to 10% of TCRδ+ cells in lymphoid organs. They expressed high levels of IL-1R1 and IL-23R and secreted IFN-γ, IL-17, and GM-CSF in response to canonically restricted peptide antigens or stimulation with IL-1β and IL-23. Hybrid αβ-γδ T cells were transcriptomically distinct from conventional γδ T cells and displayed a hyperinflammatory phenotype enriched for chemokine receptors and homing molecules that facilitate migration to sites of inflammation. These proinflammatory T cells promoted bacterial clearance after infection with Staphylococcus aureus and, by licensing encephalitogenic Th17 cells, played a key role in the development of autoimmune disease in the central nervous system.
Collapse
Affiliation(s)
- Sarah C Edwards
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caroline E Sutton
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Emma J Grant
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Fiona Roche
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Nopporn Apiwattanakul
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN.,Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Stephen J Lalor
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Song Baik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Barry Moran
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aoife McGinley
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Zhao H, Li Z, Zhu Y, Bian S, Zhang Y, Qin L, Naik AK, He J, Zhang Z, Krangel MS, Hao B. A role of the CTCF binding site at enhancer Eα in the dynamic chromatin organization of the Tcra-Tcrd locus. Nucleic Acids Res 2020; 48:9621-9636. [PMID: 32853367 PMCID: PMC7515734 DOI: 10.1093/nar/gkaa711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
The regulation of T cell receptor Tcra gene rearrangement has been extensively studied. The enhancer Eα plays an essential role in Tcra rearrangement by establishing a recombination centre in the Jα array and a chromatin hub for interactions between Vα and Jα genes. But the mechanism of the Eα and its downstream CTCF binding site (here named EACBE) in dynamic chromatin regulation is unknown. The Hi-C data showed that the EACBE is located at the sub-TAD boundary which separates the Tcra–Tcrd locus and the downstream region including the Dad1 gene. The EACBE is required for long-distance regulation of the Eα on the proximal Vα genes, and its deletion impaired the Tcra rearrangement. We also noticed that the EACBE and Eα regulate the genes in the downstream sub-TAD via asymmetric chromatin extrusion. This study provides a new insight into the role of CTCF binding sites at TAD boundaries in gene regulation.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongchang Zhu
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shasha Bian
- Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Litao Qin
- Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jiangtu He
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| |
Collapse
|
9
|
Narayanan GA, McLaren JE, Meermeier EW, Ladell K, Swarbrick GM, Price DA, Tran JG, Worley AH, Vogt T, Wong EB, Lewinsohn DM. The MAIT TCRβ chain contributes to discrimination of microbial ligand. Immunol Cell Biol 2020; 98:770-781. [PMID: 32568415 PMCID: PMC7541710 DOI: 10.1111/imcb.12370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/03/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are key players in the immune response against microbial infection. The MAIT T-cell receptor (TCR) recognizes a diverse array of microbial ligands, and recent reports have highlighted the variability in the MAIT TCR that could further contribute to discrimination of ligand. The MAIT TCR complementarity determining region (CDR)3β sequence displays a high level of diversity across individuals, and clonotype usage appears to be dependent on antigenic exposure. To address the relationship between the MAIT TCR and microbial ligand, we utilized a previously defined panel of MAIT cell clones that demonstrated variability in responses against different microbial infections. Sequencing of these clones revealed four pairs, each with shared (identical) CDR3α and different CDR3β sequences. These pairs demonstrated varied responses against microbially infected dendritic cells as well as against 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil, a ligand abundant in Salmonella enterica serovar Typhimurium, suggesting that the CDR3β contributes to differences in ligand discrimination. Taken together, these results highlight a key role for the MAIT CDR3β region in distinguishing between MR1-bound antigens and ligands.
Collapse
Affiliation(s)
- Gitanjali A. Narayanan
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Erin W. Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Gwendolyn M. Swarbrick
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care Center, Portland, OR 97239, USA
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | | | | | - Todd Vogt
- VA Portland Health Care Center, Portland, OR 97239, USA
| | - Emily B. Wong
- Africa Health Research Institute, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care Center, Portland, OR 97239, USA
| |
Collapse
|
10
|
Starke CE, Vinton CL, Ladell K, McLaren JE, Ortiz AM, Mudd JC, Flynn JK, Lai SH, Wu F, Hirsch VM, Darko S, Douek DC, Price DA, Brenchley JM. SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues. J Clin Invest 2020; 130:789-798. [PMID: 31661461 DOI: 10.1172/jci129161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell-mediated efficacy against SIV.
Collapse
Affiliation(s)
- Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Stephen H Lai
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Fan Wu
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Vanessa M Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Cook L, Munier CML, Seddiki N, Hardy MY, Anderson RP, Zaunders J, Tye-Din JA, Kelleher AD, van Bockel D. Circulating gluten-specific, but not CMV-specific, CD39 + regulatory T cells have an oligoclonal TCR repertoire. Clin Transl Immunology 2020; 9:e1096. [PMID: 31956412 PMCID: PMC6955237 DOI: 10.1002/cti2.1096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023] Open
Abstract
Objectives Understanding the T cell receptor (TCR) repertoire of regulatory CD4+ T‐cell (Treg) populations is important for strategies aiming to re‐establish tolerance in autoimmune diseases. We studied circulating deamidated gluten‐epitope‐specific CD39+ Tregs in patients with coeliac disease following an oral gluten challenge, and we used cytomegalovirus (CMV)‐specific CD39+ Tregs from healthy controls as a comparator population. Methods We used the OX40 assay to isolate antigen‐specific Tregs by induced surface co‐expression of CD25, OX40 and CD39. RACE PCR amplification and Sanger sequencing of the TCR β chain were used to analyse repertoire diversity. Results We found that, following oral gluten challenge, circulating gluten‐specific CD39+ Tregs had an oligoclonal TCR repertoire that contained public clonotypes. Conversely, the TCR repertoire of CMV‐epitope‐specific CD39+ Tregs from healthy controls was polyclonal. Discussion These data indicate that a biased TCR repertoire is not inherent to CD39+ Tregs, and, in this case, is apparently driven by the HLA‐DQ2.5‐restricted deamidated gluten peptide in coeliac disease patients. Conclusion This is the first assessment of the TCR repertoire within circulating human Tregs specific for foreign antigen. These data enhance our understanding of antigen‐specific CD4+ responses in the settings of chronic inflammation and infection and may help guide immunomonitoring strategies for CD4+ T cell‐based therapies, particularly for coeliac disease.
Collapse
Affiliation(s)
- Laura Cook
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia.,St Vincent's Centre for Applied Medical Research St Vincent's Hospital Sydney NSW Australia.,Present address: Department of Medicine and BC Children's Hospital Research Institute University of British Columbia Vancouver Canada
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia
| | - Nabila Seddiki
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia.,St Vincent's Centre for Applied Medical Research St Vincent's Hospital Sydney NSW Australia.,Present address: INSERM U955 and Université Paris-Est Créteil (UPEC)/Vaccine Research Institute Créteil France
| | - Melinda Y Hardy
- Immunology Division Walter and Eliza Hall Institute Parkville VIC Australia.,Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - Robert P Anderson
- Immunology Division Walter and Eliza Hall Institute Parkville VIC Australia.,Department of Medical Biology The University of Melbourne Parkville VIC Australia.,ImmusanT, Inc. Cambridge MA USA
| | - John Zaunders
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia.,St Vincent's Centre for Applied Medical Research St Vincent's Hospital Sydney NSW Australia
| | - Jason A Tye-Din
- Immunology Division Walter and Eliza Hall Institute Parkville VIC Australia.,Department of Medical Biology The University of Melbourne Parkville VIC Australia.,Department of Gastroenterology The Royal Melbourne Hospital Parkville VIC Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia.,St Vincent's Centre for Applied Medical Research St Vincent's Hospital Sydney NSW Australia
| | - David van Bockel
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia
| |
Collapse
|
12
|
Thomas S, Mohammed F, Reijmers RM, Woolston A, Stauss T, Kennedy A, Stirling D, Holler A, Green L, Jones D, Matthews KK, Price DA, Chain BM, Heemskerk MHM, Morris EC, Willcox BE, Stauss HJ. Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function. Nat Commun 2019; 10:4451. [PMID: 31575864 PMCID: PMC6773850 DOI: 10.1038/s41467-019-12441-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
TCR-gene-transfer is an efficient strategy to produce therapeutic T cells of defined antigen specificity. However, there are substantial variations in the cell surface expression levels of human TCRs, which can impair the function of engineered T cells. Here we demonstrate that substitutions of 3 amino acid residues in the framework of the TCR variable domains consistently increase the expression of human TCRs on the surface of engineered T cells.The modified TCRs mediate enhanced T cell proliferation, cytokine production and cytotoxicity, while reducing the peptide concentration required for triggering effector function up to 3000-fold. Adoptive transfer experiments in mice show that modified TCRs control tumor growth more efficiently than wild-type TCRs. Our data indicate that simple variable domain modifications at a distance from the antigen-binding loops lead to increased TCR expression and improved effector function. This finding provides a generic platform to optimize the efficacy of TCR gene therapy in humans.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cell Engineering
- Cell Line, Tumor
- Cell Proliferation
- Cytokines/metabolism
- Gene Expression
- Genes, T-Cell Receptor/genetics
- Genes, T-Cell Receptor/immunology
- Genetic Therapy
- Humans
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Models, Molecular
- Protein Domains
- Protein Engineering
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sharyn Thomas
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rogier M Reijmers
- Department of Hematology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Annemarie Woolston
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Theresa Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - David Stirling
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Angelika Holler
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Louisa Green
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - David Jones
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Katherine K Matthews
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF10 3AT, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF10 3AT, UK
| | - Benjamin M Chain
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Emma C Morris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hans J Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK.
| |
Collapse
|
13
|
Takamura S, Kato S, Motozono C, Shimaoka T, Ueha S, Matsuo K, Miyauchi K, Masumoto T, Katsushima A, Nakayama T, Tomura M, Matsushima K, Kubo M, Miyazawa M. Interstitial-resident memory CD8 + T cells sustain frontline epithelial memory in the lung. J Exp Med 2019; 216:2736-2747. [PMID: 31558614 PMCID: PMC6888985 DOI: 10.1084/jem.20190557] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Accepted: 09/04/2019] [Indexed: 01/03/2023] Open
Abstract
Populations of CD8+ lung-resident memory T (TRM) cells persist in the interstitium and epithelium (airways) following recovery from respiratory virus infections. While it is clear that CD8+ TRM cells in the airways are dynamically maintained via the continuous recruitment of new cells, there is a vigorous debate about whether tissue-circulating effector memory T (TEM) cells are the source of these newly recruited cells. Here we definitively demonstrate that CD8+ TRM cells in the lung airways are not derived from TEM cells in the circulation, but are seeded continuously by TRM cells from the lung interstitium. This process is driven by CXCR6 that is expressed uniquely on TRM cells but not TEM cells. We further demonstrate that the lung interstitium CD8+ TRM cell population is also maintained independently of TEM cells via a homeostatic proliferation mechanism. Taken together, these data show that lung memory CD8+ TRM cells in the lung interstitium and airways are compartmentally separated from TEM cells and clarify the mechanisms underlying their maintenance.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Shigeki Kato
- Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chihiro Motozono
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Shimaoka
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy. Osaka, Japan
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Kanagawa, Japan
| | - Tomoko Masumoto
- Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Asami Katsushima
- Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy. Osaka, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Otani University, Osaka, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Kanagawa, Japan.,Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan.,Anti-Aging Center, Kindai University, Osaka, Japan
| |
Collapse
|
14
|
Soon CF, Zhang S, Suneetha PV, Antunes DA, Manns MP, Raha S, Schultze-Florey C, Prinz I, Wedemeyer H, Sällberg Chen M, Cornberg M. Hepatitis E Virus (HEV)-Specific T Cell Receptor Cross-Recognition: Implications for Immunotherapy. Front Immunol 2019; 10:2076. [PMID: 31552033 PMCID: PMC6738269 DOI: 10.3389/fimmu.2019.02076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
T cell immunotherapy is a concept developed for the treatment of cancer and infectious diseases, based on cytotoxic T lymphocytes to target tumor- or pathogen-specific antigens. Antigen-specificity of the T cell receptors (TCRs) is an important selection criterion in the developmental design of immunotherapy. However, off-target specificity is a possible autoimmunity concern if the engineered antigen-specific T cells are cross-reacting to self-peptides in-vivo. In our recent work, we identified several hepatitis E virus (HEV)-specific TCRs as potential candidates to be developed into T cell therapy to treat chronic hepatitis E. One of the identified TCRs, targeting a HLA-A2-restricted epitope at the RNA-dependent RNA polymerase (HEV-1527: LLWNTVWNM), possessed a unique multiple glycine motif in the TCR-β CDR3, which might be a factor inducing cross-reactivity. The aim of our study was to explore if this TCR could cross-recognize self-peptides to underlay autoimmunity. Indeed, we found that this HEV-1527-specific TCR could also cross-recognize an apoptosis-related epitope, Nonmuscle Myosin Heavy Chain 9 (MYH9-478: QLFNHTMFI). While this TCR had dual specificities to both viral epitope and a self-antigen by double Dextramer binding, it was selectively functional against HEV-1527 but not activated against MYH9-478. The consecutive glycine motif in β chain may be the reason promoting TCR binding promiscuity to recognize a secondary target, thereby facilitating cross-recognition. In conclusion, candidate TCRs for immunotherapy development should be screened for autoimmune potential, especially when the TCRs exhibit unique sequence pattern.
Collapse
Affiliation(s)
- Chai Fen Soon
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Shihong Zhang
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| | | | | | - Michael Peter Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Solaiman Raha
- Hannover Medical School, Institute of Immunology, Hanover, Germany
| | - Christian Schultze-Florey
- Hannover Medical School, Institute of Immunology, Hanover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hanover, Germany
| | - Immo Prinz
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany.,Hannover Medical School, Institute of Immunology, Hanover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,German Center for Infection Research, Partner Site Hannover-Braunschweig, Hanover, Germany.,Department of Gastroenterology and Hepatology, University Clinic Essen, Essen, Germany
| | - Margaret Sällberg Chen
- Department of Dental Medicine and Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany.,German Center for Infection Research, Partner Site Hannover-Braunschweig, Hanover, Germany.,Centre for Individualised Infection Medicine, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
15
|
Bartolomé-Casado R, Landsverk OJB, Chauhan SK, Richter L, Phung D, Greiff V, Risnes LF, Yao Y, Neumann RS, Yaqub S, Øyen O, Horneland R, Aandahl EM, Paulsen V, Sollid LM, Qiao SW, Baekkevold ES, Jahnsen FL. Resident memory CD8 T cells persist for years in human small intestine. J Exp Med 2019; 216:2412-2426. [PMID: 31337737 PMCID: PMC6781004 DOI: 10.1084/jem.20190414] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Bartolomé-Casado et al. demonstrate that human gut contains large numbers of resident memory CD8 T cells that survive for years. Intestinal CD8 Trm cells have a clonally expanded immune repertoire that is stable over time and exhibit enhanced protective capabilities. Resident memory CD8 T (Trm) cells have been shown to provide effective protective responses in the small intestine (SI) in mice. A better understanding of the generation and persistence of SI CD8 Trm cells in humans may have implications for intestinal immune-mediated diseases and vaccine development. Analyzing normal and transplanted human SI, we demonstrated that the majority of SI CD8 T cells were bona fide CD8 Trm cells that survived for >1 yr in the graft. Intraepithelial and lamina propria CD8 Trm cells showed a high clonal overlap and a repertoire dominated by expanded clones, conserved both spatially in the intestine and over time. Functionally, lamina propria CD8 Trm cells were potent cytokine producers, exhibiting a polyfunctional (IFN-γ+ IL-2+ TNF-α+) profile, and efficiently expressed cytotoxic mediators after stimulation. These results suggest that SI CD8 Trm cells could be relevant targets for future oral vaccines and therapeutic strategies for gut disorders.
Collapse
Affiliation(s)
| | - Ole J B Landsverk
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sudhir Kumar Chauhan
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lisa Richter
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Core Facility Flow Cytometry, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Danh Phung
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Louise F Risnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ying Yao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ralf S Neumann
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Sheraz Yaqub
- Department of Gastrointestinal Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ole Øyen
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Einar Martin Aandahl
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Vemund Paulsen
- Department of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Espen S Baekkevold
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Meckiff BJ, Ladell K, McLaren JE, Ryan GB, Leese AM, James EA, Price DA, Long HM. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:1276-1287. [PMID: 31308093 PMCID: PMC6697742 DOI: 10.4049/jimmunol.1900377] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
Primary EBV infection drives highly cytotoxic virus-specific CD4+ T cell responses. EBV-specific memory CD4+ T cells are polyfunctional but lack cytotoxic activity. Acute EBV-specific CD4-CTLs differ transcriptionally from classical memory CD4-CTLs.
CD4+ T cells are essential for immune protection against viruses, yet their multiple roles remain ill-defined at the single-cell level in humans. Using HLA class II tetramers, we studied the functional properties and clonotypic architecture of EBV-specific CD4+ T cells in patients with infectious mononucleosis, a symptomatic manifestation of primary EBV infection, and in long-term healthy carriers of EBV. We found that primary infection elicited oligoclonal expansions of TH1-like EBV-specific CD4+ T cells armed with cytotoxic proteins that responded immediately ex vivo to challenge with EBV-infected B cells. Importantly, these acutely generated cytotoxic CD4+ T cells were highly activated and transcriptionally distinct from classically described cytotoxic CD4+ memory T cells that accumulate during other persistent viral infections, including CMV and HIV. In contrast, EBV-specific memory CD4+ T cells displayed increased cytokine polyfunctionality but lacked cytotoxic activity. These findings suggested an important effector role for acutely generated cytotoxic CD4+ T cells that could potentially be harnessed to improve the efficacy of vaccines against EBV.
Collapse
Affiliation(s)
- Benjamin J Meckiff
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - Gordon B Ryan
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alison M Leese
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eddie A James
- Tetramer Core Laboratory, Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
17
|
Wong EB, Gold MC, Meermeier EW, Xulu BZ, Khuzwayo S, Sullivan ZA, Mahyari E, Rogers Z, Kløverpris H, Sharma PK, Worley AH, Lalloo U, Baijnath P, Ambaram A, Naidoo L, Suleman M, Madansein R, McLaren JE, Ladell K, Miners KL, Price DA, Behar SM, Nielsen M, Kasprowicz VO, Leslie A, Bishai WR, Ndung’u T, Lewinsohn DM. TRAV1-2 + CD8 + T-cells including oligoconal expansions of MAIT cells are enriched in the airways in human tuberculosis. Commun Biol 2019; 2:203. [PMID: 31231693 PMCID: PMC6549148 DOI: 10.1038/s42003-019-0442-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells typically express a TRAV1-2+ semi-invariant TCRα that enables recognition of bacterial, mycobacterial, and fungal riboflavin metabolites presented by MR1. MAIT cells are associated with immune control of bacterial and mycobacterial infections in murine models. Here, we report that a population of pro-inflammatory TRAV1-2+ CD8+ T cells are present in the airways and lungs of healthy individuals and are enriched in bronchoalveolar fluid of patients with active pulmonary tuberculosis (TB). High-throughput T cell receptor analysis reveals oligoclonal expansions of canonical and donor-unique TRAV1-2+ MAIT-consistent TCRα sequences within this population. Some of these cells demonstrate MR1-restricted mycobacterial reactivity and phenotypes suggestive of MAIT cell identity. These findings demonstrate enrichment of TRAV1-2+ CD8+ T cells with MAIT or MAIT-like features in the airways during active TB and suggest a role for these cells in the human pulmonary immune response to Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Emily B. Wong
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
- Division of Infection and Immunity, University College London, London, UK
| | - Marielle C. Gold
- Department of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, OR USA
- VA Portland Health Care System, Portland, OR USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR USA
| | - Erin W. Meermeier
- Department of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, OR USA
| | - Bongiwe Z. Xulu
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Sharon Khuzwayo
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | | | - Eisa Mahyari
- Division of Bioinformatics and Computational Biology (BCB), Department of Medical Informatics and Clinical Epidemiology (DMICE), Oregon Health & Science University, Portland, OR USA
| | - Zoe Rogers
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Hénrik Kløverpris
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- Division of Infection and Immunity, University College London, London, UK
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Umesh Lalloo
- Durban University of Technology, Durban, South Africa
| | - Prinita Baijnath
- Durban University of Technology, Durban, South Africa
- Department of Pulmonology, Inkosi Albert Luthuli Hospital, Durban, South Africa
| | - Anish Ambaram
- Department of Pulmonology, Inkosi Albert Luthuli Hospital, Durban, South Africa
| | - Leon Naidoo
- Department of Pulmonology, Inkosi Albert Luthuli Hospital, Durban, South Africa
| | - Moosa Suleman
- Department of Pulmonology, Inkosi Albert Luthuli Hospital, Durban, South Africa
- Department of Pulmonology & Critical Care, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - James E. McLaren
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, Wales UK
| | - Kristin Ladell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, Wales UK
| | - Kelly L. Miners
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, Wales UK
| | - David A. Price
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, Wales UK
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA USA
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Victoria O. Kasprowicz
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA USA
| | - Alasdair Leslie
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - William R. Bishai
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Thumbi Ndung’u
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA USA
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - David M. Lewinsohn
- Department of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, OR USA
- VA Portland Health Care System, Portland, OR USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
18
|
Liu J, Hill BJ, Darko S, Song K, Quigley MF, Asher TE, Morita Y, Greenaway HY, Venturi V, Douek DC, Davenport MP, Price DA, Roederer M. The peripheral differentiation of human natural killer T cells. Immunol Cell Biol 2019; 97:586-596. [PMID: 30875134 PMCID: PMC6767057 DOI: 10.1111/imcb.12248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/07/2017] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
The peripheral maturation of human CD1d‐restricted natural killer T (NKT) cells has not been well described. In this study, we identified four major subsets of NKT cells in adults, distinguished by the expression of CD4, CD8 and CCR5. Phenotypic analysis suggested a hierarchical pattern of differentiation, whereby immature CD4+CD8−CCR5− cells progressed to an intermediate CD4+CD8−CCR5+ stage, which remained less differentiated than the CD4−CD8− and CD4−CD8+ subsets, both of which expressed CCR5. This interpretation was supported by functional data, including clonogenic potential and cytokine secretion profiles, as well as T‐cell receptor (TCR) excision circle analysis. Moreover, conventional and high‐throughput sequencing of the corresponding TCR repertoires demonstrated significant clonotypic overlap within individuals, especially between the more differentiated CD4−CD8− and CD4−CD8+ subsets. Collectively, these results mapped a linear differentiation pathway across the post‐thymic landscape of human CD1d‐restricted NKT cells.
Collapse
Affiliation(s)
- Jie Liu
- Laboratory of Infectious Diseases and Vaccines, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China.,ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kaimei Song
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Máire F Quigley
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Tedi E Asher
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yohei Morita
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Hui Y Greenaway
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - David A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
The Human CD4 + T Cell Response against Mumps Virus Targets a Broadly Recognized Nucleoprotein Epitope. J Virol 2019; 93:JVI.01883-18. [PMID: 30626672 PMCID: PMC6401470 DOI: 10.1128/jvi.01883-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/15/2018] [Indexed: 11/22/2022] Open
Abstract
Recent outbreaks of mumps among vaccinated young adults have been reported worldwide. Humoral responses against mumps virus (MuV) are well characterized, although no correlate of protection has been elucidated, stressing the need to better understand cellular MuV-specific immunity. In this study, we identified the first MuV T cell epitope, which is derived from the viral nucleoprotein (MuV-N) and was recognized by a cytotoxic/Th1 CD4+ T cell clone that was isolated from a mumps case. Moreover, the epitope was predicted to bind a broad variety of common HLA-DRB1 alleles, which was confirmed by the epitope-specific cytotoxic/Th1 CD4+ T cell responses observed in multiple mumps cases with various HLA-DRB1 genotypes. The identified epitope is completely conserved among various mumps strains. These findings qualify this promiscuous MuV T cell epitope as a useful tool for further in-depth exploration of MuV-specific T cell immunity after natural mumps virus infection or induced by vaccination. Mumps outbreaks among vaccinated young adults stress the need for a better understanding of mumps virus (MuV)-induced immunity. Antibody responses to MuV are well characterized, but studies on T cell responses are limited. We recently isolated a MuV-specific CD4+ T cell clone by stimulating peripheral blood mononuclear cells (PBMCs) from a mumps case with the viral nucleoprotein (MuV-N). In this study, we further explored the identity and relevance of the epitope recognized by the CD4+ T cell clone and ex vivo by T cells in a cohort of mumps cases. Using a two-dimensional matrix peptide pool of 15-mer peptides covering the complete MuV-N, we identified the epitope recognized by the T cell clone as MuV-N110–124 GTYRLIPNARANLTA, present in a well-conserved region of the viral protein. Upon peptide-specific stimulation, the T cell clone expressed the activation marker CD137 and produced gamma interferon, tumor necrosis factor, and interleukin-10 in a HLA-DR4-restricted manner. Moreover, the CD4+ T cells exerted a cytotoxic phenotype and specifically killed cells presenting MuV-N110–124. Furthermore, the identified peptide is widely applicable to the general population since it is predicted to bind various common HLA-DR molecules, and epitope-specific CD4+ T cells displaying cytotoxic/Th1-type properties were found in all tested mumps cases expressing different HLA-DR alleles. This first broadly recognized human MuV-specific CD4+ T cell epitope could provide a useful tool to detect and evaluate virus-specific T cell responses upon MuV infection or following vaccination. IMPORTANCE Recent outbreaks of mumps among vaccinated young adults have been reported worldwide. Humoral responses against mumps virus (MuV) are well characterized, although no correlate of protection has been elucidated, stressing the need to better understand cellular MuV-specific immunity. In this study, we identified the first MuV T cell epitope, which is derived from the viral nucleoprotein (MuV-N) and was recognized by a cytotoxic/Th1 CD4+ T cell clone that was isolated from a mumps case. Moreover, the epitope was predicted to bind a broad variety of common HLA-DRB1 alleles, which was confirmed by the epitope-specific cytotoxic/Th1 CD4+ T cell responses observed in multiple mumps cases with various HLA-DRB1 genotypes. The identified epitope is completely conserved among various mumps strains. These findings qualify this promiscuous MuV T cell epitope as a useful tool for further in-depth exploration of MuV-specific T cell immunity after natural mumps virus infection or induced by vaccination.
Collapse
|
20
|
Li N, van Unen V, Abdelaal T, Guo N, Kasatskaya SA, Ladell K, McLaren JE, Egorov ES, Izraelson M, Chuva de Sousa Lopes SM, Höllt T, Britanova OV, Eggermont J, de Miranda NFCC, Chudakov DM, Price DA, Lelieveldt BPF, Koning F. Memory CD4 + T cells are generated in the human fetal intestine. Nat Immunol 2019; 20:301-312. [PMID: 30664737 PMCID: PMC6420108 DOI: 10.1038/s41590-018-0294-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
The fetus is thought to be protected from exposure to foreign antigens, yet CD45RO+ T cells reside in the fetal intestine. Here we combined functional assays with mass cytometry, single-cell RNA sequencing and high-throughput T cell antigen receptor (TCR) sequencing to characterize the CD4+ T cell compartment in the human fetal intestine. We identified 22 CD4+ T cell clusters, including naive-like, regulatory-like and memory-like subpopulations, which were confirmed and further characterized at the transcriptional level. Memory-like CD4+ T cells had high expression of Ki-67, indicative of cell division, and CD5, a surrogate marker of TCR avidity, and produced the cytokines IFN-γ and IL-2. Pathway analysis revealed a differentiation trajectory associated with cellular activation and proinflammatory effector functions, and TCR repertoire analysis indicated clonal expansions, distinct repertoire characteristics and interconnections between subpopulations of memory-like CD4+ T cells. Imaging mass cytometry indicated that memory-like CD4+ T cells colocalized with antigen-presenting cells. Collectively, these results provide evidence for the generation of memory-like CD4+ T cells in the human fetal intestine that is consistent with exposure to foreign antigens.
Collapse
Affiliation(s)
- Na Li
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tamim Abdelaal
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pattern Recognition and Bioinformatics Group, Delft University of Technology, Delft, the Netherlands
| | - Nannan Guo
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Thomas Höllt
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands
- Computer Graphics and Visualization Group, Delft University of Technology, Delft, the Netherlands
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Jeroen Eggermont
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
- MiLaboratory LLC, Skolkovo Innovation Centre, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Boudewijn P F Lelieveldt
- Department of Pattern Recognition and Bioinformatics Group, Delft University of Technology, Delft, the Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell 2019; 176:967-981.e19. [PMID: 30739797 DOI: 10.1016/j.cell.2018.12.039] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/05/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Tissue-resident lymphocytes play a key role in immune surveillance, but it remains unclear how these inherently stable cell populations respond to chronic inflammation. In the setting of celiac disease (CeD), where exposure to dietary antigen can be controlled, gluten-induced inflammation triggered a profound depletion of naturally occurring Vγ4+/Vδ1+ intraepithelial lymphocytes (IELs) with innate cytolytic properties and specificity for the butyrophilin-like (BTNL) molecules BTNL3/BTNL8. Creation of a new niche with reduced expression of BTNL8 and loss of Vγ4+/Vδ1+ IELs was accompanied by the expansion of gluten-sensitive, interferon-γ-producing Vδ1+ IELs bearing T cell receptors (TCRs) with a shared non-germline-encoded motif that failed to recognize BTNL3/BTNL8. Exclusion of dietary gluten restored BTNL8 expression but was insufficient to reconstitute the physiological Vγ4+/Vδ1+ subset among TCRγδ+ IELs. Collectively, these data show that chronic inflammation permanently reconfigures the tissue-resident TCRγδ+ IEL compartment in CeD. VIDEO ABSTRACT.
Collapse
|
22
|
Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, Kuranda K, Nigi L, Eugster A, Østerbye T, Maugein A, McLaren JE, Ladell K, Larger E, Beressi JP, Lissina A, Appay V, Davidson HW, Buus S, Price DA, Kuhn M, Bonifacio E, Battaglia M, Caillat-Zucman S, Dotta F, Scharfmann R, Kyewski B, Mallone R. Islet-reactive CD8 + T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol 2018; 3:3/20/eaao4013. [PMID: 29429978 DOI: 10.1126/sciimmunol.aao4013] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/04/2017] [Indexed: 12/23/2022]
Abstract
The human leukocyte antigen-A2 (HLA-A2)-restricted zinc transporter 8186-194 (ZnT8186-194) and other islet epitopes elicit interferon-γ secretion by CD8+ T cells preferentially in type 1 diabetes (T1D) patients compared with controls. We show that clonal ZnT8186-194-reactive CD8+ T cells express private T cell receptors and display equivalent functional properties in T1D and healthy individuals. Ex vivo analyses further revealed that CD8+ T cells reactive to ZnT8186-194 and other islet epitopes circulate at similar frequencies and exhibit a predominantly naïve phenotype in age-matched T1D and healthy donors. Higher frequencies of ZnT8186-194-reactive CD8+ T cells with a more antigen-experienced phenotype were detected in children versus adults, irrespective of disease status. Moreover, some ZnT8186-194-reactive CD8+ T cell clonotypes were found to cross-recognize a Bacteroides stercoris mimotope. Whereas ZnT8 was poorly expressed in thymic medullary epithelial cells, variable thymic expression levels of islet antigens did not modulate the peripheral frequency of their cognate CD8+ T cells. In contrast, ZnT8186-194-reactive cells were enriched in the pancreata of T1D patients versus nondiabetic and type 2 diabetic individuals. Thus, islet-reactive CD8+ T cells circulate in most individuals but home to the pancreas preferentially in T1D patients. We conclude that the activation of this common islet-reactive T cell repertoire and progression to T1D likely require defective peripheral immunoregulation and/or a proinflammatory islet microenvironment.
Collapse
Affiliation(s)
- Slobodan Culina
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Ana Ines Lalanne
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Georgia Afonso
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Karen Cerosaletti
- Benaroya Research Institute, Translational Research Program, Seattle, WA 98101, USA
| | - Sheena Pinto
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Klaudia Kuranda
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Anne Eugster
- CRTD-DFG Research Center for Regenerative Therapies Dresden, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Thomas Østerbye
- Department of International Health, Immunology and Microbiology, Panum Institute, Copenhagen, Denmark
| | - Alicia Maugein
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Etienne Larger
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, Paris, France
| | - Jean-Paul Beressi
- Centre Hospitalier de Versailles André Mignot, Service de Diabétologie, Le Chesnay, France
| | - Anna Lissina
- Pierre et Marie Curie Paris 6 University, Sorbonne Paris Cité, Département Hospitalo-Universitaire FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM, U1135, CIMI-Paris, Paris, France
| | - Victor Appay
- Pierre et Marie Curie Paris 6 University, Sorbonne Paris Cité, Département Hospitalo-Universitaire FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM, U1135, CIMI-Paris, Paris, France
| | - Howard W Davidson
- Barbara Davis Center for Diabetes and Integrated Department of Immunology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Søren Buus
- Department of International Health, Immunology and Microbiology, Panum Institute, Copenhagen, Denmark
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias Kuhn
- Institut für Medizinische Informatik und Biometrie, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Ezio Bonifacio
- CRTD-DFG Research Center for Regenerative Therapies Dresden, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sophie Caillat-Zucman
- Assistance Publique Hôpitaux de Paris, Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Raphael Scharfmann
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberto Mallone
- INSERM, U1016, Cochin Institute, Paris, France. .,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, Paris, France
| | | |
Collapse
|
23
|
TCRβ-expressing macrophages induced by a pathogenic murine malaria correlate with parasite burden and enhanced phagocytic activity. PLoS One 2018; 13:e0201043. [PMID: 30044851 PMCID: PMC6059462 DOI: 10.1371/journal.pone.0201043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Macrophages express a wide array of invariant receptors that facilitate host defense and mediate pathogenesis during pathogen invasion. We report on a novel population of CD11bhighCD14+F4/80+ macrophages that express TCRβ. This population expands dramatically during a Plasmodium berghei ANKA infection and sequesters in the brain during experimental cerebral malaria. Importantly, measurement of TCRβ transcript and protein levels in macrophages in wildtype versus nude and Rag1 knockout mice establishes that the observed expression is not a consequence of passive receptor expression due to phagocytosis or trogocytosis of peripheral T cells or nonspecific antibody staining to an Fc receptor or cross reactive epitope. We also demonstrate that TCRβ on brain sequestered macrophages undergoes productive gene rearrangements and shows preferential Vβ usage. Remarkably, there is a significant correlation in the proportion of macrophages that express TCRβ and peripheral parasitemia. In addition, presence of TCRβ on the macrophage also correlates with a significant increase (1.9 fold) in the phagocytosis of parasitized erythrocytes. By transcriptional profiling, we identify a novel set of genes and pathways that associate with TCRβ expression by the macrophage. Expansion of TCRβ-expressing macrophages points towards a convergence of the innate and adaptive immune responses where both arms of the immune system cooperate to modulate the host response to malaria and possibly other infections.
Collapse
|
24
|
Dunn‐Walters D, Townsend C, Sinclair E, Stewart A. Immunoglobulin gene analysis as a tool for investigating human immune responses. Immunol Rev 2018; 284:132-147. [PMID: 29944755 PMCID: PMC6033188 DOI: 10.1111/imr.12659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human immunoglobulin repertoire is a hugely diverse set of sequences that are formed by processes of gene rearrangement, heavy and light chain gene assortment, class switching and somatic hypermutation. Early B cell development produces diverse IgM and IgD B cell receptors on the B cell surface, resulting in a repertoire that can bind many foreign antigens but which has had self-reactive B cells removed. Later antigen-dependent development processes adjust the antigen affinity of the receptor by somatic hypermutation. The effector mechanism of the antibody is also adjusted, by switching the class of the antibody from IgM to one of seven other classes depending on the required function. There are many instances in human biology where positive and negative selection forces can act to shape the immunoglobulin repertoire and therefore repertoire analysis can provide useful information on infection control, vaccination efficacy, autoimmune diseases, and cancer. It can also be used to identify antigen-specific sequences that may be of use in therapeutics. The juxtaposition of lymphocyte development and numerical evaluation of immune repertoires has resulted in the growth of a new sub-speciality in immunology where immunologists and computer scientists/physicists collaborate to assess immune repertoires and develop models of immune action.
Collapse
Affiliation(s)
| | | | - Emma Sinclair
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Alex Stewart
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
25
|
TCRβ Combinatorial Immunoreceptor Expression by Neutrophils Correlates with Parasite Burden and Enhanced Phagocytosis during a Plasmodium berghei ANKA Malaria Infection. Infect Immun 2018; 86:IAI.00899-17. [PMID: 29685989 DOI: 10.1128/iai.00899-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/16/2018] [Indexed: 01/15/2023] Open
Abstract
Recent studies have demonstrated that a subpopulation of neutrophils express the TCRαβ combinatorial immunoreceptor in humans and mice. Here, we report that a Plasmodium berghei ANKA murine malaria infection induces expansion of TCRβ expressing CD11b+ Ly6G+ neutrophils in the spleen during the early phase of infection. Measurement of TCRβ transcript and protein levels of neutrophils in wild-type versus nude and Rag1 knockout mice establishes that the observed expression is not a consequence of nonspecific antibody staining or passive receptor expression due to phagocytosis or trogocytosis of peripheral T cells. Remarkably, on day 3 postinfection, we observed a highly significant correlation between the proportion of neutrophils that express TCRβ and peripheral blood parasite burden. In addition, TCRβ+ neutrophils phagocytose parasitized erythrocytes with 4-fold greater efficiency than TCRβ- neutrophils. Together these results signify that TCR expression by the neutrophil plays an important role in the regulation of parasite burden by enhancing the phagocytic capacity of the neutrophil.
Collapse
|
26
|
DeWitt WS, Yu KKQ, Wilburn DB, Sherwood A, Vignali M, Day CL, Scriba TJ, Robins HS, Swanson WJ, Emerson RO, Bradley PH, Seshadri C. A Diverse Lipid Antigen-Specific TCR Repertoire Is Clonally Expanded during Active Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2018; 201:888-896. [PMID: 29914888 DOI: 10.4049/jimmunol.1800186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023]
Abstract
Human T cells that recognize lipid Ags presented by highly conserved CD1 proteins often express semi-invariant TCRs, but the true diversity of lipid Ag-specific TCRs remains unknown. We use CD1b tetramers and high-throughput immunosequencing to analyze thousands of TCRs from ex vivo-sorted or in vitro-expanded T cells specific for the mycobacterial lipid Ag, glucose monomycolate. Our results reveal a surprisingly diverse repertoire resulting from editing of germline-encoded gene rearrangements analogous to MHC-restricted TCRs. We used a distance-based metric (TCRDist) to show how this diverse TCR repertoire builds upon previously reported conserved motifs by including subject-specific TCRs. In a South African cohort, we show that TCRDist can identify clonal expansion of diverse glucose monomycolate-specific TCRs and accurately distinguish patients with active tuberculosis from control subjects. These data suggest that similar mechanisms govern the selection and expansion of peptide and lipid Ag-specific T cells despite the nonpolymorphic nature of CD1.
Collapse
Affiliation(s)
- William S DeWitt
- Adaptive Biotechnologies, Seattle, WA 98102.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Krystle K Q Yu
- Department of Medicine, University of Washington, Seattle, WA 98195
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | | | | | - Cheryl L Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322.,Emory Vaccine Center, Atlanta, GA 30329
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Harlan S Robins
- Adaptive Biotechnologies, Seattle, WA 98102.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | | | - Philip H Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and.,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA 98195;
| |
Collapse
|
27
|
Risnes LF, Christophersen A, Dahal-Koirala S, Neumann RS, Sandve GK, Sarna VK, Lundin KE, Qiao SW, Sollid LM. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest 2018; 128:2642-2650. [PMID: 29757191 DOI: 10.1172/jci98819] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/22/2018] [Indexed: 11/17/2022] Open
Abstract
Little is known about the repertoire dynamics and persistence of pathogenic T cells in HLA-associated disorders. In celiac disease, a disorder with a strong association with certain HLA-DQ allotypes, presumed pathogenic T cells can be visualized and isolated with HLA-DQ:gluten tetramers, thereby enabling further characterization. Single and bulk populations of HLA-DQ:gluten tetramer-sorted CD4+ T cells were analyzed by high-throughput DNA sequencing of rearranged TCR-α and -β genes. Blood and gut biopsy samples from 21 celiac disease patients, taken at various stages of disease and in intervals of weeks to decades apart, were examined. Persistence of the same clonotypes was seen in both compartments over decades, with up to 53% overlap between samples obtained 16 to 28 years apart. Further, we observed that the recall response following oral gluten challenge was dominated by preexisting CD4+ T cell clonotypes. Public features were frequent among gluten-specific T cells, as 10% of TCR-α, TCR-β, or paired TCR-αβ amino acid sequences of total 1813 TCRs generated from 17 patients were observed in 2 or more patients. In established celiac disease, the T cell clonotypes that recognize gluten are persistent for decades, making up fixed repertoires that prevalently exhibit public features. These T cells represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Louise F Risnes
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
| | | | - Shiva Dahal-Koirala
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
| | - Ralf S Neumann
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Geir K Sandve
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and.,Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Vikas K Sarna
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Knut Ea Lundin
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and.,Department of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Shuo-Wang Qiao
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| |
Collapse
|
28
|
Miles JJ, Tan MP, Dolton G, Edwards ES, Galloway SA, Laugel B, Clement M, Makinde J, Ladell K, Matthews KK, Watkins TS, Tungatt K, Wong Y, Lee HS, Clark RJ, Pentier JM, Attaf M, Lissina A, Ager A, Gallimore A, Rizkallah PJ, Gras S, Rossjohn J, Burrows SR, Cole DK, Price DA, Sewell AK. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry. J Clin Invest 2018; 128:1569-1580. [PMID: 29528337 PMCID: PMC5873848 DOI: 10.1172/jci91512] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/18/2018] [Indexed: 01/11/2023] Open
Abstract
Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic "mimics" using subunits that do not exist in the natural world. We developed a platform based on D-amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus-specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery.
Collapse
Affiliation(s)
- John J. Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Griffith University, Brisbane, Queensland, Australia
| | - Mai Ping Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Emily S.J. Edwards
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sarah A.E. Galloway
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bruno Laugel
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Julia Makinde
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Thomas S. Watkins
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katie Tungatt
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Yide Wong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Han Siean Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard J. Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Johanne M. Pentier
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anya Lissina
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ann Ager
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Awen Gallimore
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Pierre J. Rizkallah
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Scott R. Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David K. Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Carico ZM, Roy Choudhury K, Zhang B, Zhuang Y, Krangel MS. Tcrd Rearrangement Redirects a Processive Tcra Recombination Program to Expand the Tcra Repertoire. Cell Rep 2018; 19:2157-2173. [PMID: 28591585 DOI: 10.1016/j.celrep.2017.05.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/21/2017] [Accepted: 05/13/2017] [Indexed: 01/01/2023] Open
Abstract
Adaptive immunity depends on diverse T cell receptor repertoires generated by variable, diversity, and joining (V[D]J) recombination. Here, we define the principles by which combinatorial diversity is generated in the murine Tcra repertoire. Tcra and Tcrd gene segments share the Tcra-Tcrd locus, with interspersed Vα and Vδ segments undergoing Vδ-Dδ-Jδ rearrangement in CD4-CD8- thymocytes and then multiple rounds of Vα-Jα rearrangement in CD4+CD8+ thymocytes. We document stepwise, highly coordinated proximal-to-distal progressions of Vα and Jα use on individual Tcra alleles, limiting combinatorial diversity. This behavior is supported by an extended chromatin conformation in CD4+CD8+ thymocytes, with only nearby Vα and Jα segments contacting each other. Tcrd rearrangements can use distal Vδ segments due to a contracted Tcra-Tcrd conformation in CD4-CD8- thymocytes. These rearrangements expand the Tcra repertoire by truncating the Vα array to permit otherwise disfavored Vα-Jα combinations. Therefore, recombination events at two developmental stages with distinct chromatin conformations synergize to promote Tcra repertoire diversity.
Collapse
Affiliation(s)
- Zachary M Carico
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kingshuk Roy Choudhury
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
30
|
McCully ML, Ladell K, Andrews R, Jones RE, Miners KL, Roger L, Baird DM, Cameron MJ, Jessop ZM, Whitaker IS, Davies EL, Price DA, Moser B. CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1639-1650. [PMID: 29427415 PMCID: PMC5818732 DOI: 10.4049/jimmunol.1701377] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023]
Abstract
Human skin harbors two major T cell compartments of equal size that are distinguished by expression of the chemokine receptor CCR8. In vitro studies have demonstrated that CCR8 expression is regulated by TCR engagement and the skin tissue microenvironment. To extend these observations, we examined the relationship between CCR8+ and CCR8- skin T cells in vivo. Phenotypic, functional, and transcriptomic analyses revealed that CCR8+ skin T cells bear all the hallmarks of resident memory T cells, including homeostatic proliferation in response to IL-7 and IL-15, surface expression of tissue localization (CD103) and retention (CD69) markers, low levels of inhibitory receptors (programmed cell death protein 1, Tim-3, LAG-3), and a lack of senescence markers (CD57, killer cell lectin-like receptor subfamily G member 1). In contrast, CCR8- skin T cells are heterogeneous and comprise variable numbers of exhausted (programmed cell death protein 1+), senescent (CD57+, killer cell lectin-like receptor subfamily G member 1+), and effector (T-bethi, Eomeshi) T cells. Importantly, conventional and high-throughput sequencing of expressed TCR β-chain (TRB) gene rearrangements showed that these CCR8-defined populations are clonotypically distinct, suggesting unique ontogenies in response to separate antigenic challenges and/or stimulatory conditions. Moreover, CCR8+ and CCR8- skin T cells were phenotypically stable in vitro and displayed similar levels of telomere erosion, further supporting the likelihood of a nonlinear differentiation pathway. On the basis of these results, we propose that long-lived memory T cells in human skin can be defined by the expression of CCR8.
Collapse
Affiliation(s)
- Michelle L McCully
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Rhiannon E Jones
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Laureline Roger
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Duncan M Baird
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Mark J Cameron
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106
| | - Zita M Jessop
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, United Kingdom; and
| | - Iain S Whitaker
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, United Kingdom; and
| | - Eleri L Davies
- Breast Centre, University Hospital of Llandough, Llandough CF64 2XX, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Bernhard Moser
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
31
|
Lissina A, McLaren JE, Ilander M, Andersson EI, Lewis CS, Clement M, Herman A, Ladell K, Llewellyn-Lacey S, Miners KL, Gostick E, Melenhorst JJ, Barrett AJ, Price DA, Mustjoki S, Wooldridge L. Divergent roles for antigenic drive in the aetiology of primary versus dasatinib-associated CD8 + TCR-Vβ + expansions. Sci Rep 2018; 8:2534. [PMID: 29416058 PMCID: PMC5803196 DOI: 10.1038/s41598-017-18062-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/19/2017] [Indexed: 01/05/2023] Open
Abstract
CD8+ T-cell expansions are the primary manifestation of T-cell large granular lymphocytic leukemia (T-LGLL), which is frequently accompanied by neutropenia and rheumatoid arthritis, and also occur as a secondary phenomenon in leukemia patients treated with dasatinib, notably in association with various drug-induced side-effects. However, the mechanisms that underlie the genesis and maintenance of expanded CD8+ T-cell receptor (TCR)-Vβ+ populations in these patient groups have yet to be fully defined. In this study, we performed a comprehensive phenotypic and clonotypic assessment of expanded (TCR-Vβ+) and residual (TCR-Vβ-) CD8+ T-cell populations in T-LGLL and dasatinib-treated chronic myelogenous leukemia (CML) patients. The dominant CD8+ TCR-Vβ+ expansions in T-LGLL patients were largely monoclonal and highly differentiated, whereas the dominant CD8+ TCR-Vβ+ expansions in dasatinib-treated CML patients were oligoclonal or polyclonal, and displayed a broad range of memory phenotypes. These contrasting features suggest divergent roles for antigenic drive in the immunopathogenesis of primary versus dasatinib-associated CD8+ TCR-Vβ+ expansions.
Collapse
Affiliation(s)
- Anna Lissina
- Faculty of Health Sciences, University of Bristol, Biomedical Sciences Building, Bristol, UK.
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Mette Ilander
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Emma I Andersson
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Catherine S Lewis
- Faculty of Health Sciences, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Mathew Clement
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Andrew Herman
- Faculty of Health Sciences, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Kelly L Miners
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - J Joseph Melenhorst
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - A John Barrett
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Biomedical Sciences Building, Bristol, UK
| |
Collapse
|
32
|
Van Braeckel-Budimir N, Gras S, Ladell K, Josephs TM, Pewe L, Urban SL, Miners KL, Farenc C, Price DA, Rossjohn J, Harty JT. A T Cell Receptor Locus Harbors a Malaria-Specific Immune Response Gene. Immunity 2017; 47:835-847.e4. [PMID: 29150238 DOI: 10.1016/j.immuni.2017.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/02/2017] [Accepted: 10/26/2017] [Indexed: 01/05/2023]
Abstract
Immune response (Ir) genes, originally proposed by Baruj Benacerraf to explain differential antigen-specific responses in animal models, have become synonymous with the major histocompatibility complex (MHC). We discovered a non-MHC-linked Ir gene in a T cell receptor (TCR) locus that was required for CD8+ T cell responses to the Plasmodium berghei GAP5040-48 epitope in mice expressing the MHC class I allele H-2Db. GAP5040-48-specific CD8+ T cell responses emerged from a very large pool of naive Vβ8.1+ precursors, which dictated susceptibility to cerebral malaria and conferred protection against recombinant Listeria monocytogenes infection. Structural analysis of a prototypical Vβ8.1+ TCR-H-2Db-GAP5040-48 ternary complex revealed that germline-encoded complementarity-determining region 1β residues present exclusively in the Vβ8.1 segment mediated essential interactions with the GAP5040-48 peptide. Collectively, these findings demonstrated that Vβ8.1 functioned as an Ir gene that was indispensable for immune reactivity against the malaria GAP5040-48 epitope.
Collapse
Affiliation(s)
| | - Stephanie Gras
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Tracy M Josephs
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lecia Pewe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Stina L Urban
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
33
|
Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8 + T cell response. Nat Immunol 2017; 18:1228-1237. [PMID: 28945243 DOI: 10.1038/ni.3850] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8+ T cell populations specific for variants of the nonstructural protein epitope NS3133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3133-DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2+ TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2+ TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.
Collapse
|
34
|
Verstichel G, Vermijlen D, Martens L, Goetgeluk G, Brouwer M, Thiault N, Van Caeneghem Y, De Munter S, Weening K, Bonte S, Leclercq G, Taghon T, Kerre T, Saeys Y, Van Dorpe J, Cheroutre H, Vandekerckhove B. The checkpoint for agonist selection precedes conventional selection in human thymus. Sci Immunol 2017; 2:2/8/eaah4232. [PMID: 28783686 DOI: 10.1126/sciimmunol.aah4232] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 11/02/2022]
Abstract
The thymus plays a central role in self-tolerance, partly by eliminating precursors with a T cell receptor (TCR) that binds strongly to self-antigens. However, the generation of self-agonist-selected lineages also relies on strong TCR signaling. How thymocytes discriminate between these opposite outcomes remains elusive. Here, we identified a human agonist-selected PD-1+ CD8αα+ subset of mature CD8αβ+ T cells that displays an effector phenotype associated with agonist selection. TCR stimulation of immature post-β-selection thymocyte blasts specifically gives rise to this innate subset and fixes early T cell receptor alpha variable (TRAV) and T cell receptor alpha joining (TRAJ) rearrangements in the TCR repertoire. These findings suggest that the checkpoint for agonist selection precedes conventional selection in the human thymus.
Collapse
Affiliation(s)
- Greet Verstichel
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - David Vermijlen
- Department of Biopharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, accès 2, 1050 Brussels, Belgium.,Institute for Medical Immunology, ULB, Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Liesbet Martens
- Data Mining and Modeling for Systems Immunology, Vlaams Instituut voor Biotechnologie Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium
| | - Glenn Goetgeluk
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - Margreet Brouwer
- Institute for Medical Immunology, ULB, Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Nicolas Thiault
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Yasmine Van Caeneghem
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - Stijn De Munter
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - Karin Weening
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sarah Bonte
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - Georges Leclercq
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - Tessa Kerre
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium
| | - Yvan Saeys
- Data Mining and Modeling for Systems Immunology, Vlaams Instituut voor Biotechnologie Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium.,Department of Internal Medicine, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Faculty of Medicine and Health Sciences, Department of Medical and Forensic Pathology, Ghent University, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bart Vandekerckhove
- Faculty of Medicine and Health Sciences, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, MRB2, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
35
|
Connelley TK, Li X, MacHugh N, Colau D, Graham SP, van der Bruggen P, Taracha EL, Gill A, Morrison WI. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes. Immunology 2016; 149:172-85. [PMID: 27317384 PMCID: PMC5011678 DOI: 10.1111/imm.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant.
Collapse
Affiliation(s)
- Timothy K. Connelley
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Xiaoying Li
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
- Present address: School of Life Sciences and TechnologyXinxiang Medical UniversityLaboratory Building Room 232XinxiangHenanCN 453003China
| | - Niall MacHugh
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Didier Colau
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Simon P. Graham
- The International Livestock Research InstituteNairobiKenya
- Present address: The Pirbright InstituteAsh RoadPirbrightGU24 0NFUK
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Evans L. Taracha
- The International Livestock Research InstituteNairobiKenya
- Present address: Institute of Primate ResearchPO Box 24481‐00502KarenKenya
| | - Andy Gill
- Division of NeurobiologyThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - William Ivan Morrison
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| |
Collapse
|
36
|
Ridley A, Hatano H, Wong-Baeza I, Shaw J, Matthews KK, Al-Mossawi H, Ladell K, Price DA, Bowness P, Kollnberger S. Activation-Induced Killer Cell Immunoglobulin-like Receptor 3DL2 Binding to HLA-B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis. Arthritis Rheumatol 2016; 68:901-14. [PMID: 26841353 PMCID: PMC4855641 DOI: 10.1002/art.39515] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/12/2015] [Indexed: 12/30/2022]
Abstract
Objective In thespondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA. Methods In total, 34 B27+patients with SpA, 28 age‐ and sex‐matched healthy controls (20 B27− and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template‐switch anchored reverse transcription–polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme‐linked immunosorbent assay. Results Cellular activation induced KIR‐3DL2 expression on both naive and effector CD4+ T cells. KIR‐3DL2 binding to B27+ cells promoted expression of KIR‐3DL2, the Th17‐specific transcription factor retinoic acid receptor–related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR‐3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen‐presenting cells, KIR‐3DL2+CD4+ T cells produced less interleukin‐2 (IL‐2) but more IL‐17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR‐3DL2 to B27 heavy chains. Conclusion KIR‐3DL2 binding to HLA–B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA–B27–KIR‐3DL2 interactions for the treatment of B27+ patients with SpA.
Collapse
Affiliation(s)
- Anna Ridley
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK
| | - Hiroko Hatano
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK
| | - Isabel Wong-Baeza
- Isabel Wong-Baeza, PhD: Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK, and National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Jacqueline Shaw
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK
| | | | - Hussein Al-Mossawi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK
| | | | - David A Price
- Cardiff University School of Medicine, Cardiff, UK, and National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Paul Bowness
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK
| | - Simon Kollnberger
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Oxford University, Oxford, UK, and Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
37
|
Pearson JA, Thayer TC, McLaren JE, Ladell K, De Leenheer E, Phillips A, Davies J, Kakabadse D, Miners K, Morgan P, Wen L, Price DA, Wong FS. Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+ T Cells. Diabetes 2016; 65:1679-89. [PMID: 26953160 PMCID: PMC5310213 DOI: 10.2337/db15-1498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/29/2016] [Indexed: 12/03/2022]
Abstract
NOD mice, a model strain for human type 1 diabetes, express proinsulin (PI) in the thymus. However, insulin-reactive T cells escape negative selection, and subsequent activation of the CD8(+) T-cell clonotype G9C8, which recognizes insulin B15-23 via an αβ T-cell receptor (TCR) incorporating TRAV8-1/TRAJ9 and TRBV19/TRBJ2-3 gene rearrangements, contributes to the development of diabetes. In this study, we used fixed TRAV8-1/TRAJ9 TCRα-chain transgenic mice to assess the impact of PI isoform expression on the insulin-reactive CD8(+) T-cell repertoire. The key findings were: 1) PI2 deficiency increases the frequency of insulin B15-23-reactive TRBV19(+)CD8(+) T cells and causes diabetes; 2) insulin B15-23-reactive TRBV19(+)CD8(+) T cells are more abundant in the pancreatic lymph nodes of mice lacking PI1 and/or PI2; 3) overexpression of PI2 decreases TRBV19 usage in the global CD8(+) T-cell compartment; 4) a biased repertoire of insulin-reactive CD8(+) T cells emerges in the periphery regardless of antigen exposure; and 5) low-avidity insulin-reactive CD8(+) T cells are less affected by antigen exposure in the thymus than in the periphery. These findings inform our understanding of the diabetogenic process and reveal new avenues for therapeutic exploitation in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Antibody Affinity
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Insulin/metabolism
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Proinsulin/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- James A Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Terri C Thayer
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - James E McLaren
- Cellular Immunology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Kristin Ladell
- Cellular Immunology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Evy De Leenheer
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Amy Phillips
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Joanne Davies
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Dimitri Kakabadse
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Kelly Miners
- Cellular Immunology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - Peter Morgan
- Cardiff Business School, Cardiff University, Wales, U.K
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT
| | - David A Price
- Cellular Immunology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K
| | - F Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Wales, U.K.
| |
Collapse
|
38
|
Zhao Y, Nguyen P, Ma J, Wu T, Jones LL, Pei D, Cheng C, Geiger TL. Preferential Use of Public TCR during Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:4905-14. [PMID: 27183575 DOI: 10.4049/jimmunol.1501029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 04/04/2016] [Indexed: 12/21/2022]
Abstract
How the TCR repertoire, in concert with risk-associated MHC, imposes susceptibility for autoimmune diseases is incompletely resolved. Due largely to recombinatorial biases, a small fraction of TCRα or β-chains are shared by most individuals, or public. If public TCR chains modulate a TCRαβ heterodimer's likelihood of productively engaging autoantigen, because they are pervasive and often high frequency, they could also broadly influence disease risk and progression. Prior data, using low-resolution techniques, have identified the heavy use of select public TCR in some autoimmune models. In this study, we assess public repertoire representation in mice with experimental autoimmune encephalomyelitis at high resolution. Saturation sequencing was used to identify >18 × 10(6) TCRβ sequences from the CNSs, periphery, and thymi of mice at different stages of autoimmune encephalomyelitis and healthy controls. Analyses indicated the prominent representation of a highly diverse public TCRβ repertoire in the disease response. Preferential formation of public TCR implicated in autoimmunity was identified in preselection thymocytes, and, consistently, public, disease-associated TCRβ were observed to be commonly oligoclonal. Increased TCR sharing and a focusing of the public TCR response was seen with disease progression. Critically, comparisons of peripheral and CNS repertoires and repertoires from preimmune and diseased mice demonstrated that public TCR were preferentially deployed relative to nonshared, or private, sequences. Our findings implicate public TCR in skewing repertoire response during autoimmunity and suggest that subsets of public TCR sequences may serve as disease-specific biomarkers or influence disease susceptibility or progression.
Collapse
Affiliation(s)
- Yunqian Zhao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Phuong Nguyen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Tianhua Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Lindsay L Jones
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| |
Collapse
|
39
|
TCR sequencing of single cells reactive to DQ2.5-glia-α2 and DQ2.5-glia-ω2 reveals clonal expansion and epitope-specific V-gene usage. Mucosal Immunol 2016; 9:587-96. [PMID: 26838051 DOI: 10.1038/mi.2015.147] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/29/2015] [Indexed: 02/04/2023]
Abstract
CD4+ T cells recognizing dietary gluten epitopes in the context of disease-associated human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 molecules are the key players in celiac disease pathogenesis. Here, we conducted a large-scale single-cell paired T-cell receptor (TCR) sequencing study to characterize the TCR repertoire for two homologous immunodominant gluten epitopes, DQ2.5-glia-α2 and DQ2.5-glia-ω2, in blood of celiac disease patients after oral gluten challenge. Despite sequence similarity of the epitopes, the TCR repertoires are unique but shared several overall features. We demonstrate that clonally expanded T cells dominate the T-cell responses to both epitopes. Moreover, we find V-gene bias of TRAV26, TRAV4, and TRBV7 in DQ2.5-glia-α2 reactive TCRs, while DQ2.5-glia-ω2 TCRs displayed significant bias toward TRAV4 and TRBV4. The knowledge that antigen-specific TCR repertoire in chronic inflammatory diseases tends to be dominated by a few expanded clones that use the same TCR V-gene segments across patients is important information for HLA-associated diseases where the antigen is unknown.
Collapse
|
40
|
Christophersen A, Risnes LF, Bergseng E, Lundin KEA, Sollid LM, Qiao SW. Healthy HLA-DQ2.5+ Subjects Lack Regulatory and Memory T Cells Specific for Immunodominant Gluten Epitopes of Celiac Disease. THE JOURNAL OF IMMUNOLOGY 2016; 196:2819-26. [DOI: 10.4049/jimmunol.1501152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022]
|
41
|
Ruggiero E, Nicolay JP, Fronza R, Arens A, Paruzynski A, Nowrouzi A, Ürenden G, Lulay C, Schneider S, Goerdt S, Glimm H, Krammer PH, Schmidt M, von Kalle C. High-resolution analysis of the human T-cell receptor repertoire. Nat Commun 2015; 6:8081. [PMID: 26324409 PMCID: PMC4569693 DOI: 10.1038/ncomms9081] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
Unbiased dissection of T-cell receptor (TCR) repertoire diversity at the nucleotide level could provide important insights into human immunity. Here we show that TCR ligation-anchored-magnetically captured PCR (TCR-LA-MC PCR) identifies TCR α- and β-chain diversity without sequence-associated or quantitative restrictions in healthy and diseased conditions. TCR-LA-MC PCR identifies convergent recombination events, classifies different stages of cutaneous T-cell lymphoma in vivo and demonstrates TCR reactivation after in vitro cytomegalovirus stimulation. TCR-LA-MC PCR allows ultra-deep data access to both physiological TCR diversity and mechanisms influencing clonality in all clinical settings with restricted or distorted TCR repertoires. Immune system diversity is generated by V(D)J recombination, leading to clonal T-cell lineages. Here the authors investigate the events leading to T-cell diversity through the use of a modified PCR technique combined with deep sequencing.
Collapse
Affiliation(s)
- Eliana Ruggiero
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jan P Nicolay
- Division of Immunogenetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Raffaele Fronza
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anne Arens
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anna Paruzynski
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ali Nowrouzi
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Gökçe Ürenden
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christina Lulay
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sven Schneider
- Institute for Clinical Chemistry, University Medical Center, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology, University Medical Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Hanno Glimm
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Frequency, Private Specificity, and Cross-Reactivity of Preexisting Hepatitis C Virus (HCV)-Specific CD8+ T Cells in HCV-Seronegative Individuals: Implications for Vaccine Responses. J Virol 2015; 89:8304-17. [PMID: 26041301 DOI: 10.1128/jvi.00539-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/22/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED T cell responses play a critical role in controlling or clearing viruses. Therefore, strategies to prevent or treat infections include boosting T cell responses. T cells specific for various pathogens have been reported in unexposed individuals and an influence of such cells on the response toward vaccines is conceivable. However, little is known about their frequency, repertoire, and impact on vaccination. We performed a detailed characterization of CD8(+) T cells specific to a hepatitis C virus (HCV) epitope (NS3-1073) in 121 HCV-seronegative individuals. We show that in vitro HCV NS3-1073-specific CD8(+) T cell responses were rather abundantly detectable in one-third of HCV-seronegative individuals irrespective of risk factors for HCV exposure. Ex vivo, these NS3-1073-specific CD8(+) T cells were found to be both naive and memory cells. Importantly, recognition of various peptides derived from unrelated viruses by NS3-1073-specific CD8(+) T cells showed a considerable degree of T cell cross-reactivity, suggesting that they might in part originate from previous heterologous infections. Finally, we further provide evidence that preexisting NS3-1073-specific CD8(+) T cells can impact the T cell response toward peptide vaccination. Healthy, vaccinated individuals who showed an in vitro response toward NS3-1073 already before vaccination displayed a more vigorous and earlier response toward the vaccine. IMPORTANCE Preventive and therapeutic vaccines are being developed for many viral infections and often aim on inducing T cell responses. Despite effective antiviral drugs against HCV, there is still a need for a preventive vaccine. However, the responses to vaccines can be highly variable among different individuals. Preexisting T cells in unexposed individuals could be one reason that helps to explain the variable T cell responses to vaccines. Based on our findings, we suggest that HCV CD8(+) T cells are abundant in HCV-seronegative individuals but that their repertoire is highly diverse due to the involvement of both naive precursors and cross-reactive memory cells of different specificities, which can influence the response to vaccines. The data may emphasize the need to personalize immune-based therapies based on the individual's T cell repertoire that is present before the immune intervention.
Collapse
|
43
|
Petersen J, van Bergen J, Loh KL, Kooy-Winkelaar Y, Beringer DX, Thompson A, Bakker SF, Mulder CJJ, Ladell K, McLaren JE, Price DA, Rossjohn J, Reid HH, Koning F. Determinants of gliadin-specific T cell selection in celiac disease. THE JOURNAL OF IMMUNOLOGY 2015; 194:6112-22. [PMID: 25948817 DOI: 10.4049/jimmunol.1500161] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/04/2015] [Indexed: 12/20/2022]
Abstract
In HLA-DQ8-associated celiac disease (CD), the pathogenic T cell response is directed toward an immunodominant α-gliadin-derived peptide (DQ8-glia-α1). However, our knowledge of TCR gene usage within the primary intestinal tissue of HLA-DQ8 (+) CD patients is limited. We identified two populations of HLA-DQ8-glia-α1 tetramer(+) CD4(+) T cells that were essentially undetectable in biopsy samples from patients on a gluten-free diet but expanded rapidly and specifically after antigenic stimulation. Distinguished by expression of TRBV9, both T cell populations displayed biased clonotypic repertoires and reacted similarly against HLA-DQ8-glia-α1. In particular, TRBV9 paired most often with TRAV26-2, whereas the majority of TRBV9(-) TCRs used TRBV6-1 with no clear TRAV gene preference. Strikingly, both tetramer(+)/TRBV9(+) and tetramer(+)/TRBV9(-) T cells possessed a non-germline-encoded arginine residue in their CDR3α and CDR3β loops, respectively. Comparison of the crystal structures of three TRBV9(+) TCRs and a TRBV9(-) TCR revealed that, as a result of distinct TCR docking modes, the HLA-DQ8-glia-α1 contacts mediated by the CDR3-encoded arginine were almost identical between TRBV9(+) and TRBV9(-) TCRs. In all cases, this interaction centered on two hydrogen bonds with a specific serine residue in the bound peptide. Replacement of serine with alanine at this position abrogated TRBV9(+) and TRBV9(-) clonal T cell proliferation in response to HLA-DQ8-glia-α1. Gluten-specific memory CD4(+) T cells with structurally and functionally conserved TCRs therefore predominate in the disease-affected tissue of patients with HLA-DQ8-mediated CD.
Collapse
Affiliation(s)
- Jan Petersen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jeroen van Bergen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Khai Lee Loh
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Yvonne Kooy-Winkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Dennis X Beringer
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Allan Thompson
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Sjoerd F Bakker
- Department of Gastroenterology, Free University Medical Center, Amsterdam 1081 HZ, the Netherlands
| | - Chris J J Mulder
- Department of Gastroenterology, Free University Medical Center, Amsterdam 1081 HZ, the Netherlands
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; and Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - Hugh H Reid
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia;
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands;
| |
Collapse
|
44
|
Kløverpris HN, McGregor R, McLaren JE, Ladell K, Harndahl M, Stryhn A, Carlson JM, Koofhethile C, Gerritsen B, Keşmir C, Chen F, Riddell L, Luzzi G, Leslie A, Walker BD, Ndung'u T, Buus S, Price DA, Goulder PJ. CD8+ TCR Bias and Immunodominance in HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:5329-45. [PMID: 25911754 DOI: 10.4049/jimmunol.1400854] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Immunodominance describes a phenomenon whereby the immune system consistently targets only a fraction of the available Ag pool derived from a given pathogen. In the case of CD8(+) T cells, these constrained epitope-targeting patterns are linked to HLA class I expression and determine disease progression. Despite the biological importance of these predetermined response hierarchies, little is known about the factors that control immunodominance in vivo. In this study, we conducted an extensive analysis of CD8(+) T cell responses restricted by a single HLA class I molecule to evaluate the mechanisms that contribute to epitope-targeting frequency and antiviral efficacy in HIV-1 infection. A clear immunodominance hierarchy was observed across 20 epitopes restricted by HLA-B*42:01, which is highly prevalent in populations of African origin. Moreover, in line with previous studies, Gag-specific responses and targeting breadth were associated with lower viral load set-points. However, peptide-HLA-B*42:01 binding affinity and stability were not significantly linked with targeting frequencies. Instead, immunodominance correlated with epitope-specific usage of public TCRs, defined as amino acid residue-identical TRB sequences that occur in multiple individuals. Collectively, these results provide important insights into a potential link between shared TCR recruitment, immunodominance, and antiviral efficacy in a major human infection.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom; Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark; KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Reuben McGregor
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Mikkel Harndahl
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | - Anette Stryhn
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | | | - Catherine Koofhethile
- HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Bram Gerritsen
- Theoretical Biology Group, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Can Keşmir
- Theoretical Biology Group, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading RG1 5AN, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare National Health Service Trust, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, United Kingdom
| | - Graz Luzzi
- Department of Sexual Health, Wycombe Hospital, High Wycombe HP11 2TT, United Kingdom
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02129; Howard Hughes Medical Institute, Chevy Chase, MD 20815; and
| | - Thumbi Ndung'u
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa; Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
| | - Søren Buus
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Philip J Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
45
|
Neller MA, Ladell K, McLaren JE, Matthews KK, Gostick E, Pentier JM, Dolton G, Schauenburg AJA, Koning D, Fontaine Costa AICA, Watkins TS, Venturi V, Smith C, Khanna R, Miners K, Clement M, Wooldridge L, Cole DK, van Baarle D, Sewell AK, Burrows SR, Price DA, Miles JJ. Naive CD8⁺ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics. Immunol Cell Biol 2015; 93:625-33. [PMID: 25801351 PMCID: PMC4533101 DOI: 10.1038/icb.2015.17] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/04/2015] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
Basic parameters of the naive antigen (Ag)-specific T-cell repertoire in humans remain poorly defined. Systematic characterization of this ‘ground state' immunity in comparison with memory will allow a better understanding of clonal selection during immune challenge. Here, we used high-definition cell isolation from umbilical cord blood samples to establish the baseline frequency, phenotype and T-cell antigen receptor (TCR) repertoire of CD8+ T-cell precursor populations specific for a range of viral and self-derived Ags. Across the board, these precursor populations were phenotypically naive and occurred with hierarchical frequencies clustered by Ag specificity. The corresponding patterns of TCR architecture were highly ordered and displayed partial overlap with adult memory, indicating biased structuring of the T-cell repertoire during Ag-driven selection. Collectively, these results provide new insights into the complex nature and dynamics of the naive T-cell compartment.
Collapse
Affiliation(s)
- Michelle A Neller
- Human Immunity Laboratory, Cellular Immunology Laboratory and Tumour Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Katherine K Matthews
- Human Immunity Laboratory, Cellular Immunology Laboratory and Tumour Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Johanne M Pentier
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Garry Dolton
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Andrea J A Schauenburg
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Dan Koning
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Thomas S Watkins
- Human Immunity Laboratory, Cellular Immunology Laboratory and Tumour Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Vanessa Venturi
- Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Corey Smith
- Human Immunity Laboratory, Cellular Immunology Laboratory and Tumour Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Rajiv Khanna
- Human Immunity Laboratory, Cellular Immunology Laboratory and Tumour Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Kelly Miners
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Mathew Clement
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Linda Wooldridge
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrew K Sewell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Scott R Burrows
- 1] Human Immunity Laboratory, Cellular Immunology Laboratory and Tumour Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia [2] School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David A Price
- 1] Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK [2] Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J Miles
- 1] Human Immunity Laboratory, Cellular Immunology Laboratory and Tumour Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia [2] Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK [3] School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Skowera A, Ladell K, McLaren JE, Dolton G, Matthews KK, Gostick E, Kronenberg-Versteeg D, Eichmann M, Knight RR, Heck S, Powrie J, Bingley PJ, Dayan CM, Miles JJ, Sewell AK, Price DA, Peakman M. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes 2015; 64:916-925. [PMID: 25249579 PMCID: PMC4557541 DOI: 10.2337/db14-0332] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high-definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent-onset type 1 diabetes and healthy control subjects. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy control subjects, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Ania Skowera
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Kristin Ladell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James E. McLaren
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Garry Dolton
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Katherine K. Matthews
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Emma Gostick
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Martin Eichmann
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Robin R. Knight
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Susanne Heck
- National Institute for Health Research Biomedical Research Centre at Guy’s & St Thomas’ National Health Service Foundation Trust and King’s College London, London, UK
| | - Jake Powrie
- Department of Diabetes and Endocrinology, Guy’s & St Thomas’ National Health Service Foundation Trust, London, UK
| | | | - Colin M. Dayan
- Institute of Molecular & Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - John J. Miles
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew K. Sewell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A. Price
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Mark Peakman
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| |
Collapse
|
47
|
Coren LV, Jain S, Trivett MT, Ohlen C, Ott DE. Production of retroviral constructs for effective transfer and expression of T-cell receptor genes using Golden Gate cloning. Biotechniques 2015; 58:135-9. [PMID: 25757546 PMCID: PMC4827251 DOI: 10.2144/000114265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/21/2014] [Indexed: 11/23/2022] Open
Abstract
Here we present an improved strategy for producing T-cell receptor (TCR)-expressing retroviral vectors using a Golden Gate cloning strategy. This method takes advantage of the modular nature of TCR genes by directly amplifying TCR α and β variable regions from RNA or cDNA, then cloning and fusing them with their respective constant region genes resident in a retroviral TCR expression vector. Our one-step approach greatly streamlines the TCR vector production process in comparison to the traditional three-step procedure that typically involves cloning whole TCR genes, producing a TCR expression cassette, and constructing a retroviral construct. To date, we have generated TCR vectors that transferred seven functional human/rhesus macaque TCRs into primary T cells. The approach also holds promise for the assembly of other genes with defined variable regions, such as immunoglobulins.
Collapse
Affiliation(s)
- Lori V. Coren
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - David E. Ott
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| |
Collapse
|
48
|
Connelley TK, Degnan K, Longhi CW, Morrison WI. Genomic analysis offers insights into the evolution of the bovine TRA/TRD locus. BMC Genomics 2014; 15:994. [PMID: 25408163 PMCID: PMC4289303 DOI: 10.1186/1471-2164-15-994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/04/2014] [Indexed: 01/30/2023] Open
Abstract
Background The TRA/TRD locus contains the genes for V(D)J somatic rearrangement of TRA and TRD chains expressed by αβ and γδ T cells respectively. Previous studies have demonstrated that the bovine TRA/TRD locus contains an exceptionally large number of TRAV/TRDV genes. In this study we combine genomic and transcript analysis to provide insights into the evolutionary development of the bovine TRA/TRD locus and the remarkable TRAV/TRDV gene repertoire. Results Annotation of the UMD3.1 assembly identified 371 TRAV/TRDV genes (distributed in 42 subgroups), 3 TRDJ, 6 TRDD, 62 TRAJ and single TRAC and TRDC genes, most of which were located within a 3.5 Mb region of chromosome 10. Most of the TRAV/TRDV subgroups have multiple members and several have undergone dramatic expansion, most notably TRDV1 (60 genes). Wide variation in the proportion of pseudogenes within individual subgroups, suggest that differential ‘birth’ and ‘death’ rates have been used to form a functional bovine TRAV/TRDV repertoire which is phylogenetically distinct from that of humans and mice. The expansion of the bovine TRAV/TRDV gene repertoire has predominantly been achieved through a complex series of homology unit (regions of DNA containing multiple gene) replications. Frequent co-localisation within homology units of genes from subgroups with low and high pseudogene proportions suggest that replication of homology units driven by evolutionary selection for the former may have led to a ‘collateral’ expansion of the latter. Transcript analysis was used to define the TRAV/TRDV subgroups available for recombination of TRA and TRD chains and demonstrated preferential usage of different subgroups by the expressed TRA and TRD repertoires, indicating that TRA and TRD selection have had distinct impacts on the evolution of the TRAV/TRDV repertoire. Conclusion Both TRA and TRD selection have contributed to the evolution of the bovine TRAV/TRDV repertoire. However, our data suggest that due to homology unit duplication TRD selection for TRDV1 subgroup expansion may have substantially contributed to the genomic expansion of several TRAV subgroups. Such data demonstrate how integration of genomic and transcript data can provide a more nuanced appreciation of the evolutionary dynamics that have led to the dramatically expanded bovine TRAV/TRDV repertoire. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-994) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy K Connelley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK.
| | | | | | | |
Collapse
|
49
|
Cognate CD4 T-cell licensing of dendritic cells heralds anti-cytomegalovirus CD8 T-cell immunity after human allogeneic umbilical cord blood transplantation. J Virol 2014; 89:1058-69. [PMID: 25378489 DOI: 10.1128/jvi.01850-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Reactivation of human cytomegalovirus (CMV) is hazardous to patients undergoing allogeneic cord blood transplantation (CBT), lowering survival rates by approximately 25%. While antiviral treatment ameliorates viremia, complete viral control requires CD8+ T-cell-driven immunity. Mouse studies suggest that cognate antigen-specific CD4+ T-cell licensing of dendritic cells (DCs) is required to generate effective CD8+ T-cell responses. For humans, this was not fully understood. We here show that CD4+ T cells are essential for licensing of human DCs to generate effector and memory CD8+ T-cell immunity against CMV in CBT patients. First, we show in CBT recipients that clonal expansion of CMV-pp65-specific CD4+ T cells precedes the rise in CMV-pp65-specific CD8+ T cells. Second, the elicitation of CMV-pp65-specific CD8+ T cells from rare naive precursors in cord blood requires DC licensing by cognate CMV-pp65-specific CD4+ T cells. Finally, also CD8+ T-cell memory responses require CD4+ T-cell-mediated licensing of DCs in our system, by secretion of gamma interferon (IFN-γ) by pp65-specific CD4+ T cells. Together, these data show that human DCs require licensing by cognate antigen-specific CD4+ T cells to elicit effective CD8+ T-cell-mediated immunity and fight off viral reactivation in CBT patients. IMPORTANCE Survival rates after stem cell transplantation are lowered by 25% when patients undergo reactivation of cytomegalovirus (CMV) that they harbor. Immune protection against CMV is mostly executed by white blood cells called killer T cells. We here show that for generation of optimally protective killer T-cell responses that respond to CMV, the early elicitation of help from a second branch of CMV-directed T cells, called helper T cells, is required.
Collapse
|
50
|
Hill BJ, Darrah PA, Ende Z, Ambrozak DR, Quinn KM, Darko S, Gostick E, Wooldridge L, van den Berg HA, Venturi V, Larsen M, Davenport MP, Seder RA, Price DA, Douek DC. Epitope specificity delimits the functional capabilities of vaccine-induced CD8 T cell populations. THE JOURNAL OF IMMUNOLOGY 2014; 193:5626-36. [PMID: 25348625 DOI: 10.4049/jimmunol.1401017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2K(d) epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2D(d) epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2D(d) specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner.
Collapse
Affiliation(s)
- Brenna J Hill
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Zachary Ende
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kylie M Quinn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Linda Wooldridge
- Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Hugo A van den Berg
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington 2052, New South Wales, Australia
| | - Martin Larsen
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France; and Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, Université Pierre et Marie Curie (Université Paris 06), CR7, F-75013 Paris, France
| | - Miles P Davenport
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington 2052, New South Wales, Australia
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David A Price
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|