1
|
Yang H, Synnatschke K, Yoon J, Mirhosseini H, Hermes IM, Li X, Neumann C, Morag A, Turchanin A, Kühne TD, Parkin SSP, Yang S, Shaygan Nia A, Feng X. Solution-Processable Electronic-Grade 2D WTe 2 Enabled by Synergistic Dual Ammonium Intercalation. ACS NANO 2025; 19:14309-14317. [PMID: 40170574 PMCID: PMC12004911 DOI: 10.1021/acsnano.5c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Tungsten ditelluride (WTe2) exhibits thickness-dependent properties, including magnetoresistance, ferroelectricity, and superconductivity, positioning it as an ideal candidate for nanoelectronics and spintronics. Therefore, the scalable synthesis of WTe2 with defined thicknesses down to the monolayer limit is crucial for unlocking these properties. Here, we introduce a universal electrolyte chemistry utilizing dual-ammonium compounds to exfoliate WTe2, enabling precise control over the intercalation stages and flake thicknesses. This approach achieves an 86% exfoliation yield, producing high-quality flakes averaging 2.83 nm in thickness, in which approximately 10% are monolayers. A solution-processed, single-flake device (10 nm thick) exhibits a magnetoresistance (MR) of 50% at 2 K and 9 T, and piezo-response force microscopy (PFM) indicates ferroelectricity in WTe2 flakes. Additionally, large-area WTe2 thin films (15 × 15 mm2), fabricated using Langmuir-Schaefer deposition, exhibit metallic behavior with a high conductivity of 2.9 × 104 S/m. Overall, the hybrid electrolyte approach facilitates the scalable synthesis of high-quality, solution-processable, two-dimensional (2D) WTe2 flakes with excellent properties. This versatility of the developed method has been further exemplified through the exfoliation of other transition metal dichalcogenides (e.g., MoS2 and MoSe2), expanding the potential for the extensive application of exfoliated 2D materials in printable and flexible nanoelectronics.
Collapse
Affiliation(s)
- Hyejung Yang
- Center
for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Kevin Synnatschke
- Center
for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Jiho Yoon
- Max
Planck Institute for Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Hossein Mirhosseini
- Center
for Advanced Systems Understanding (CASUS), 02826 Görlitz, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Ilka M. Hermes
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Xiaodong Li
- Center
for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Max
Planck Institute for Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Christof Neumann
- Institute
of Physical Chemistry and Center for Energy and Environmental Chemistry
Jena (CEEC Jena), Friedrich Schiller University
Jena, Lessingstrasse 10, 07743 Jena, Germany
| | - Ahiud Morag
- Center
for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Max
Planck Institute for Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry and Center for Energy and Environmental Chemistry
Jena (CEEC Jena), Friedrich Schiller University
Jena, Lessingstrasse 10, 07743 Jena, Germany
| | - Thomas D. Kühne
- Center
for Advanced Systems Understanding (CASUS), 02826 Görlitz, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- Institute
of Artificial Intelligence, Chair of Computational System Sciences, Technische Universität Dresden, 01187 Dresden, Germany
| | - Stuart S. P. Parkin
- Max
Planck Institute for Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Sheng Yang
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, 200240 Shanghai, China
| | - Ali Shaygan Nia
- Center
for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Max
Planck Institute for Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Xinliang Feng
- Center
for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Max
Planck Institute for Microstructure Physics, D-06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Li G, Gao Y, Xie D, Zhu L, Shi D, Zeng S, Zhan W, Chen J, Shang H. High-Throughput Computation of ab initio Raman Spectra for Two-Dimensional Materials. Sci Data 2025; 12:373. [PMID: 40038321 DOI: 10.1038/s41597-025-04593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Raman spectra play an important role in characterizing two-dimensional materials, as they provide a direct link between the atomic structure and the spectral features. In this work, we present an automatic computational workflow for Raman spectra using all-electron density functional perturbation theory. Utilizing this workflow, we have successfully completed the Raman spectra calculation for 3504 different two-dimensional materials, with the resultant data saved in a data repository.
Collapse
Affiliation(s)
- Geng Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
- China Rare Earth Group Research Institute, Shenzhen, Guangdong, 518000, China
| | - Yingxiang Gao
- National Supercomputer Center in Tianjin, Tianjin, 300457, China
| | - Daiyou Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Leilei Zhu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dongjie Shi
- National Supercomputer Center in Tianjin, Tianjin, 300457, China
| | - Shuming Zeng
- College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Wei Zhan
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
- China Rare Earth Group Research Institute, Shenzhen, Guangdong, 518000, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, China
| | - Honghui Shang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
3
|
Chen E, Zhu Q, Duan Y, Tang J, Zhan R, Huang J, Wan X, Chen K, Deng S. Janus Electronic Devices with Ultrathin High-κ Gate Dielectric Directly Integrated on 1T'-MoTe 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68211-68220. [PMID: 39601063 DOI: 10.1021/acsami.4c15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Integrating high-quality dielectrics with two-dimensional (2D) transition metal chalcogenides (TMDCs) is crucial for high-performance electronics. However, the lack of dangling bonds on 2D material surfaces complicates direct dielectric deposition. We propose using atomic layer deposition (ALD) to integrate ultrathin high-κ dielectric directly on 1T'-MoTe2 surfaces, facilitating the creation of high-performance back-gated field-effect transistors (FETs). Exploiting 1T'-MoTe2's natural oxidation in ambient conditions, we directly deposit dense and uniform HfO2 dielectric films below 5 nm, achieving an equivalent oxide thickness (EOT) of 0.97 nm. The resulting back-gate transistors, with a monolayer MoSSe on HfO2/1T'-MoTe2, show a current on/off ratio over 105 and operate at low voltages (<1 V), indicating high gating efficiency and a charge carrier mobility of 2.93 cm2V-1s-1. Additionally, we demonstrate a 6 × 5 bottom-gated array of MoSSe transistors using all-1T'-MoTe2 electrodes, achieving an 86.7% sample yield. Our approach also enables the creation of various integrated logic circuits such as inverters, NAND, and NOR gates. This research offers a feasible method for integrating high-κ dielectric films using industrially compatible ALD processes, providing excellent thickness control, uniformity, and scalability for 2D electronic devices.
Collapse
Affiliation(s)
- Enzi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaoyu Duan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Junhao Tang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingwen Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Wan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Kun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Khot AC, Nirmal KA, Dongale TD, Kim TG. GeTe/MoTe 2 Van der Waals Heterostructures: Enabling Ultralow Voltage Memristors for Nonvolatile Memory and Neuromorphic Computing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400791. [PMID: 38874088 DOI: 10.1002/smll.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Advanced electronic semiconducting Van der Waals heterostructures (HSs) are promising candidates for exploring next-generation nanoelectronics owing to their exceptional electronic properties, which present the possibility of extending their functionalities to diverse potential applications. In this study, GeTe/MoTe2 HS are explored for nonvolatile memory and neuromorphic-computing applications. Sputter-deposited Ag/GeTe/MoTe2/Pt HS cross-point devices are fabricated, and they demonstrate memristor behavior at ultralow switching voltages (VSET: 0.15 V and VRESET: -0.14 V) with very low energy consumption (≈30 nJ), high memory window, long retention time (104 s), and excellent endurance (105 cycles). Resistive switching is achieved by adjusting the interface between the Ag top electrode and the heterojunction switching layer. Cross-sectional transmission electron microscope images and conductive atomic force microscopy analysis confirm the presence of a conducting filament in the heterojunction switching layer. Further, emulating various synaptic functions of a biological synapse reveals that GeTe/MoTe2 HS can be utilized for energy-efficient neuromorphic-computing applications. A multilayer perceptron is implemented using the synaptic weights of the Ag/GeTe/MoTe2/Pt HS device, revealing high pattern accuracy (81.3%). These results indicate that HS devices can be considered a potential solution for high-density memory and artificial intelligence applications.
Collapse
Affiliation(s)
- Atul C Khot
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kiran A Nirmal
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416 004, India
| | - Tae Geun Kim
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
5
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
6
|
Lu Z, Hou S, Lin R, Shi J, Wu Q, Lin L, Shi J, Yang Y, Lambert C, Hong W. Conductance Quantization in 2D Semi-Metallic Transition Metal Dichalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311491. [PMID: 38682729 DOI: 10.1002/smll.202311491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/09/2024] [Indexed: 05/01/2024]
Abstract
Conductance quantization of 2D materials is significant for understanding the charge transport at the atomic scale, which provides a platform to manipulate the quantum states, showing promising applications for nanoelectronics and memristors. However, the conventional methods for investigating conductance quantization are only applicable to materials consisting of one element, such as metal and graphene. The experimental observation of conductance quantization in transition metal dichalcogenides (TMDCs) with complex compositions and structures remains a challenge. To address this issue, an approach is proposed to characterize the charge transport across a single atom in TMDCs by integrating in situ synthesized 1T'-WTe2 electrodes with scanning tunneling microscope break junction (STM-BJ) technique. The quantized conductance of 1T'-WTe2 is measured for the first time, and the quantum states can be modulated by stretching speed and solvent. Combined with theoretical calculations, the evolution of quantized and corresponding configurations during the break junction process is demonstrated. This work provides a facile and reliable avenue to characterize and modulate conductance quantization of 2D materials, intensively expanding the research scope of quantum effects in diverse materials.
Collapse
Affiliation(s)
- Zhixing Lu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Rongjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Luchun Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Tian C, Sui Y, Xiao R, Feng Y, Liu J, Wang H, Zhao S, Wang S, Li P, Yu G. Doping Ability Modulated by Interlayer Coupling in AA' and AB Stacked Bilayer V-WS 2 Grown with Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309777. [PMID: 38319032 DOI: 10.1002/smll.202309777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Doping in transition metal dichalcogenide (TMD) has received extensive attention for its prospect in the application of photoelectric devices. Currently researchers focus on the doping ability and doping distribution in monolayer TMD and have obtained a series of achievements. Bilayer TMD has more excellent properties compared with monolayer TMD. Moreover, bilayer TMD with different stacking structures presents varying performance due to the difference in interlayer coupling. Herein, this work focuses on doping ability of dopants in different bilayer stacking structures that has not been studied yet. Results of this work show that the doping ability of V atoms in bilayer AA' and AB stacked WS2 is different, and the doping concentration of V atoms in AB stacked WS2 is higher than in AA' stacked WS2. Moreover, dopants from top and bottom layer can be distinguished by scanning transmission electron microscopy (STEM) image. Density functional theory (DFT) calculation further confirms the doping rule. This study reveals the mechanism of the different doping ability caused by stacking structures in bilayer TMD and lays a foundation for further preparation of controllable-doping bilayer TMD materials.
Collapse
Affiliation(s)
- Chuang Tian
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Sui
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runhan Xiao
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Feng
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Liu
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haomin Wang
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sunwen Zhao
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pai Li
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Yu
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Zhang X, Dai J, Jin Z, Tao X, Zhong Y, Zheng Z, Hu X, Zhou L. Ion adsorption promotes Frank-van der Merwe growth of 2D transition metal tellurides. iScience 2024; 27:109378. [PMID: 38523797 PMCID: PMC10959663 DOI: 10.1016/j.isci.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Reliable synthesis methods for high-quality, large-sized, and uniform two-dimensional (2D) transition-metal dichalcogenides (TMDs) are crucial for their device applications. However, versatile approaches to growing high-quality, large-sized, and uniform 2D transition-metal tellurides are rare. Here, we demonstrate an ion adsorption strategy that facilitates the Frank-van der Merwe growth of 2D transition-metal tellurides. By employing this method, we grow MoTe2 and WTe2 with enhanced lateral size, reduced thickness, and improved uniformity. Comprehensive characterizations confirm the high quality of as-grown MoTe2. Moreover, various characterizations verify the adsorption of K+ and Cl- ions on the top surface of MoTe2. X-ray photoelectron spectroscopy (XPS) analysis reveals that the MoTe2 is stoichiometric without K+ and Cl- ions and exhibits no discernable oxidation after washing. This top surface control strategy provides a new controlling knob to optimize the growth of 2D transition-metal tellurides and holds the potential for generalized to other 2D materials.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiuxiang Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhitong Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwei Tao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunlei Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zemin Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianyu Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Zhai W, Li Z, Wang Y, Zhai L, Yao Y, Li S, Wang L, Yang H, Chi B, Liang J, Shi Z, Ge Y, Lai Z, Yun Q, Zhang A, Wu Z, He Q, Chen B, Huang Z, Zhang H. Phase Engineering of Nanomaterials: Transition Metal Dichalcogenides. Chem Rev 2024; 124:4479-4539. [PMID: 38552165 DOI: 10.1021/acs.chemrev.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Crystal phase, a critical structural characteristic beyond the morphology, size, dimension, facet, etc., determines the physicochemical properties of nanomaterials. As a group of layered nanomaterials with polymorphs, transition metal dichalcogenides (TMDs) have attracted intensive research attention due to their phase-dependent properties. Therefore, great efforts have been devoted to the phase engineering of TMDs to synthesize TMDs with controlled phases, especially unconventional/metastable phases, for various applications in electronics, optoelectronics, catalysis, biomedicine, energy storage and conversion, and ferroelectrics. Considering the significant progress in the synthesis and applications of TMDs, we believe that a comprehensive review on the phase engineering of TMDs is critical to promote their fundamental studies and practical applications. This Review aims to provide a comprehensive introduction and discussion on the crystal structures, synthetic strategies, and phase-dependent properties and applications of TMDs. Finally, our perspectives on the challenges and opportunities in phase engineering of TMDs will also be discussed.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Lixin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Banlan Chi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhiying Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Li S, Ouyang D, Zhang N, Zhang Y, Murthy A, Li Y, Liu S, Zhai T. Substrate Engineering for Chemical Vapor Deposition Growth of Large-Scale 2D Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211855. [PMID: 37095721 DOI: 10.1002/adma.202211855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The large-scale production of 2D transition metal dichalcogenides (TMDs) is essential to realize their industrial applications. Chemical vapor deposition (CVD) has been considered as a promising method for the controlled growth of high-quality and large-scale 2D TMDs. During a CVD process, the substrate plays a crucial role in anchoring the source materials, promoting the nucleation and stimulating the epitaxial growth. It thus significantly affects the thickness, microstructure, and crystal quality of the products, which are particularly important for obtaining 2D TMDs with expected morphology and size. Here, an insightful review is provided by focusing on the recent development associated with the substrate engineering strategies for CVD preparation of large-scale 2D TMDs. First, the interaction between 2D TMDs and substrates, a key factor for the growth of high-quality materials, is systematically discussed by combining the latest theoretical calculations. Based on this, the effect of various substrate engineering approaches on the growth of large-area 2D TMDs is summarized in detail. Finally, the opportunities and challenges of substrate engineering for the future development of 2D TMDs are discussed. This review might provide deep insight into the controllable growth of high-quality 2D TMDs toward their industrial-scale practical applications.
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Akshay Murthy
- Superconducting Quantum Materials and Systems Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, 60510, USA
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
12
|
Hart JL, Bhatt L, Zhu Y, Han MG, Bianco E, Li S, Hynek DJ, Schneeloch JA, Tao Y, Louca D, Guo P, Zhu Y, Jornada F, Reed EJ, Kourkoutis LF, Cha JJ. Emergent layer stacking arrangements in c-axis confined MoTe 2. Nat Commun 2023; 14:4803. [PMID: 37558697 PMCID: PMC10412583 DOI: 10.1038/s41467-023-40528-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The layer stacking order in 2D materials strongly affects functional properties and holds promise for next-generation electronic devices. In bulk, octahedral MoTe2 possesses two stacking arrangements, the ferroelectric Weyl semimetal Td phase and the higher-order topological insulator 1T' phase. However, in thin flakes of MoTe2, it is unclear if the layer stacking follows the Td, 1T', or an alternative stacking sequence. Here, we use atomic-resolution scanning transmission electron microscopy to directly visualize the MoTe2 layer stacking. In thin flakes, we observe highly disordered stacking, with nanoscale 1T' and Td domains, as well as alternative stacking arrangements not found in the bulk. We attribute these findings to intrinsic confinement effects on the MoTe2 stacking-dependent free energy. Our results are important for the understanding of exotic physics displayed in MoTe2 flakes. More broadly, this work suggests c-axis confinement as a method to influence layer stacking in other 2D materials.
Collapse
Affiliation(s)
- James L Hart
- Department of Materials Science and Engineering, Cornell University, Ithaca, USA
| | - Lopa Bhatt
- School of Applied and Engineering Physics, Cornell University, Ithaca, USA
| | - Yanbing Zhu
- Department of Applied Physics, Stanford University, Stanford, USA
| | - Myung-Geun Han
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, USA
| | - Elisabeth Bianco
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, USA
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, USA
- Energy Sciences Institute, Yale University, West Haven, USA
| | - David J Hynek
- Energy Sciences Institute, Yale University, West Haven, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, USA
| | | | - Yu Tao
- Department of Physics, University of Virginia, Charlottesville, USA
| | - Despina Louca
- Department of Physics, University of Virginia, Charlottesville, USA
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, USA
- Energy Sciences Institute, Yale University, West Haven, USA
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, USA
| | - Felipe Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, USA
| | - Evan J Reed
- Department of Materials Science and Engineering, Stanford University, Stanford, USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, USA
| | - Judy J Cha
- Department of Materials Science and Engineering, Cornell University, Ithaca, USA.
- Cornell Center for Materials Research, Cornell University, Ithaca, USA.
| |
Collapse
|
13
|
Evans PE, Wang Y, Sushko PV, Dohnálek Z. Understanding palladium-tellurium cluster formation on WTe 2: From a kinetically hindered distribution to thermodynamically controlled monodispersity. PNAS NEXUS 2023; 2:pgad212. [PMID: 37416870 PMCID: PMC10321376 DOI: 10.1093/pnasnexus/pgad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
A fundamental understanding of the transition metal dichalcogenide (TMDC)-metal interface is critical for their utilization in a broad range of applications. We investigate how the deposition of palladium (Pd), as a model metal, on WTe2(001), leads to the assembly of Pd into clusters and nanoparticles. Using X-ray photoemission spectroscopy, scanning tunneling microscopy imaging, and ab initio simulations, we find that Pd nucleation is driven by the interaction with and the availability of mobile excess tellurium (Te) leading to the formation of Pd-Te clusters at room temperature. Surprisingly, the nucleation of Pd-Te clusters is not affected by intrinsic surface defects, even at elevated temperatures. Upon annealing, the Pd-Te nanoclusters adopt an identical nanostructure and are stable up to ∼523 K. Density functional theory calculations provide a foundation for our understanding of the mobility of Pd and Te atoms, preferential nucleation of Pd-Te clusters, and the origin of their annealing-induced monodispersity. These results highlight the role the excess chalcogenide atoms may play in the metal deposition process. More broadly, the discoveries of synthetic pathways yielding thermally robust monodispersed nanostructures on TMDCs are critical to the manufacturing of novel quantum and microelectronics devices and catalytically active nano-alloy centers.
Collapse
Affiliation(s)
- Prescott E Evans
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yang Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | |
Collapse
|
14
|
Kim M, Son M, Seo DB, Kim J, Jang M, Kim DI, Lee S, Yim S, Song W, Myung S, Yoo JW, Lee SS, An KS. Dual Catalytic and Self-Assembled Growth of Two-Dimensional Transition Metal Dichalcogenides Through Simultaneous Predeposition Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206350. [PMID: 36866498 DOI: 10.1002/smll.202206350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
The recent introduction of alkali metal halide catalysts for chemical vapor deposition (CVD) of transition metal dichalcogenides (TMDs) has enabled remarkable two-dimensional (2D) growth. However, the process development and growth mechanism require further exploration to enhance the effects of salts and understand the principles. Herein, simultaneous predeposition of a metal source (MoO3 ) and salt (NaCl) by thermal evaporation is adopted. As a result, remarkable growth behaviors such as promoted 2D growth, easy patterning, and potential diversity of target materials can be achieved. Step-by-step spectroscopy combined with morphological analyses reveals a reaction path for MoS2 growth in which NaCl reacts separately with S and MoO3 to form Na2 SO4 and Na2 Mo2 O7 intermediates, respectively. These intermediates provide a favorable environment for 2D growth, including an enhanced source supply and liquid medium. Consequently, large grains of monolayer MoS2 are formed by self-assembly, indicating the merging of small equilateral triangular grains on the liquid intermediates. This study is expected to serve as an ideal reference for understanding the principles of salt catalysis and evolution of CVD in the preparation of 2D TMDs.
Collapse
Affiliation(s)
- Minsu Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Minkyun Son
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Dong-Bum Seo
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jin Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Moonjeong Jang
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Dong In Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Seunghun Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Soonmin Yim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Wooseok Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sung Myung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jung-Woo Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Sun Sook Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Ki-Seok An
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| |
Collapse
|
15
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
16
|
Khan U, Nairan A, Khan K, Li S, Liu B, Gao J. Salt-Assisted Low-Temperature Growth of 2D Bi 2 O 2 Se with Controlled Thickness for Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206648. [PMID: 36538737 DOI: 10.1002/smll.202206648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Bi2 O2 Se is the most promising 2D material due to its semiconducting feature and high mobility, making it propitious channel material for high-performance electronics that demands highly crystalline Bi2 O2 Se at low-growth temperature. Here, a low-temperature salt-assisted chemical vapor deposition approach for growing single-domain Bi2 O2 Se on a millimeter scale with thicknesses of multilayer to monolayer is presented. Because of the advantage of thickness-dependent growth, systematical scrutiny of layer-dependent Raman spectroscopy of Bi2 O2 Se from monolayer to bulk is investigated, revealing a redshift of the A1g mode at 162.4 cm-1 . Moreover, the long-term environmental stability of ≈2.4 nm thick Bi2 O2 Se is confirmed after exposing the sample for 1.5 years to air. The backgated field effect transistor (FET) based on a few-layered Bi2 O2 Se flake represents decent carrier mobility (≈287 cm2 V-1 s-1 ) and an ON/OFF ratio of up to 107 . This report indicates a technique to grow large-domain thickness controlled Bi2 O2 Se single crystals for electronics.
Collapse
Affiliation(s)
- Usman Khan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Adeela Nairan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Sean Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
17
|
Yang W, Mu Y, Chen X, Jin N, Song J, Chen J, Dong L, Liu C, Xuan W, Zhou C, Cong C, Shang J, He S, Wang G, Li J. CVD growth of large-area monolayer WS 2 film on sapphire through tuning substrate environment and its application for high-sensitive strain sensor. NANOSCALE RESEARCH LETTERS 2023; 18:13. [PMID: 36795193 DOI: 10.1186/s11671-023-03782-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/28/2023] [Indexed: 05/24/2023]
Abstract
Large-area, continuous monolayer WS2 exhibits great potential for future micro-nanodevice applications due to its special electrical properties and mechanical flexibility. In this work, the front opening quartz boat is used to increase the amount of sulfur (S) vapor under the sapphire substrate, which is critical for achieving large-area films during the chemical vapor deposition processes. COMSOL simulations reveal that the front opening quartz boat will significantly introduce gas distribute under the sapphire substrate. Moreover, the gas velocity and height of substrate away from the tube bottom will also affect the substrate temperature. By carefully optimizing the gas velocity, temperature, and height of substrate away from the tube bottom, a large-scale continues monolayered WS2 film was achieved. Field-effect transistor based on the as-grown monolayer WS2 showed a mobility of 3.76 cm2V-1 s-1 and ON/OFF ratio of 106. In addition, a flexible WS2/PEN strain sensor with a gauge factor of 306 was fabricated, showing great potential for applications in wearable biosensors, health monitoring, and human-computer interaction.
Collapse
Affiliation(s)
- Weihuang Yang
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Yuanbin Mu
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiangshuo Chen
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Ningjing Jin
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiahao Song
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiajun Chen
- State Key Laboratory of ASIC and System, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Linxi Dong
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Chaoran Liu
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weipeng Xuan
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Changjie Zhou
- Department of Physics, School of Science, Jimei University, Xiamen, 361021, China.
| | - Chunxiao Cong
- State Key Laboratory of ASIC and System, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
- High Tech Center for New Materials, Novel Devices and Cutting Edge Manufacturing, Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China.
| | - Jingzhi Shang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 1 Dongxiang Road, Chang'an District, Xi'an, 710129, China
| | - Silin He
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 1 Dongxiang Road, Chang'an District, Xi'an, 710129, China
| | - Gaofeng Wang
- Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jing Li
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen, 361005, China
| |
Collapse
|
18
|
Xu T, Li A, Wang S, Tan Y, Cheng X. Phase-Controllable Chemical Vapor Deposition Synthesis of Atomically Thin MoTe 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4133. [PMID: 36500756 PMCID: PMC9737202 DOI: 10.3390/nano12234133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) molybdenum telluride (MoTe2) is attracting increasing attention for its potential applications in electronic, optoelectronic, photonic and catalytic fields, owing to the unique band structures of both stable 2H phase and 1T′ phase. However, the direct growth of high-quality atomically thin MoTe2 with the controllable proportion of 2H and 1T′ phase seems hard due to easy phase transformation since the potential barrier between the two phases is extremely small. Herein, we report a strategy of the phase-controllable chemical vapor deposition (CVD) synthesis for few-layer (<3 layer) MoTe2. Besides, a new understanding of the phase-controllable growth mechanism is presented based on a combination of experimental results and DFT calculations. The lattice distortion caused by Te vacancies or structural strain might make 1T′-MoTe2 more stable. The conditions for 2H to 1T′ phase conversion are determined to be the following: Te monovacancies exceeding 4% or Te divacancies exceeding 8%, or lattice strain beyond 6%. In contrast, sufficient Te supply and appropriate tellurization velocity are essential to obtaining the prevailing 2H-MoTe2. Our work provides a novel perspective on the preparation of 2D transition metal chalcogenides (TMDs) with the controllable proportion of 2H and 1T′ phase and paves the way to their subsequent potential application of these hybrid phases.
Collapse
Affiliation(s)
- Tao Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Aolin Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410073, China
| | - Shanshan Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
| | - Yinlong Tan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Xiang’ai Cheng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
19
|
Ma T, Chen H, Yananose K, Zhou X, Wang L, Li R, Zhu Z, Wu Z, Xu QH, Yu J, Qiu CW, Stroppa A, Loh KP. Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect. Nat Commun 2022; 13:5465. [PMID: 36115861 PMCID: PMC9482631 DOI: 10.1038/s41467-022-33201-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
The reduced symmetry in strong spin-orbit coupling materials such as transition metal ditellurides (TMDTs) gives rise to non-trivial topology, unique spin texture, and large charge-to-spin conversion efficiencies. Bilayer TMDTs are non-centrosymmetric and have unique topological properties compared to monolayer or trilayer, but a controllable way to prepare bilayer MoTe2 crystal has not been achieved to date. Herein, we achieve the layer-by-layer growth of large-area bilayer and trilayer 1T′ MoTe2 single crystals and centimetre-scale films by a two-stage chemical vapor deposition process. The as-grown bilayer MoTe2 shows out-of-plane ferroelectric polarization, whereas the monolayer and trilayer crystals are non-polar. In addition, we observed large in-plane nonlinear Hall (NLH) effect for the bilayer and trilayer Td phase MoTe2 under time reversal-symmetric conditions, while these vanish for thicker layers. For a fixed input current, bilayer Td MoTe2 produces the largest second harmonic output voltage among the thicker crystals tested. Our work therefore highlights the importance of thickness-dependent Berry curvature effects in TMDTs that are underscored by the ability to grow thickness-precise layers. 2D transition metal ditellurides exhibit nontrivial topological phases, but the controlled bottom-up synthesis of these materials is still challenging. Here, the authors report the layer-by-layer growth of large-area bilayer and trilayer 1T’ MoTe2 films, showing thickness-dependent ferroelectricity and nonlinear Hall effect.
Collapse
|
20
|
Gan Z, Najafidehaghani E, Han SH, Shradha S, Abtahi F, Neumann C, Picker J, Vogl T, Hübner U, Eilenberger F, George A, Turchanin A. Patterned Growth of Transition Metal Dichalcogenide Monolayers and Multilayers for Electronic and Optoelectronic Device Applications. SMALL METHODS 2022; 6:e2200300. [PMID: 35957515 DOI: 10.1002/smtd.202200300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
A simple, large area, and cost-effective soft lithographic method is presented for the patterned growth of high-quality 2D transition metal dichalcogenides (TMDs). Initially, a liquid precursor (Na2 MoO4 in an aqueous solution) is patterned on the growth substrate using the micromolding in capillaries technique. Subsequently, a chemical vapor deposition step is employed to convert the precursor patterns to monolayer, few layers, or bulk TMDs, depending on the precursor concentration. The grown patterns are characterized using optical microscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and photoluminescence spectroscopy to reveal their morphological, chemical, and optical characteristics. Additionally, electronic and optoelectronic devices are realized using the patterned TMDs and tested for their applicability in field effect transistors and photodetectors. The photodetectors made of MoS2 line patterns show a very high responsivity of 7674 A W-1 and external quantum efficiency of 1.49 × 106 %. Furthermore, the multiple grain boundaries present in patterned TMDs enable the fabrication of memtransistor devices. The patterning technique presented here may be applied to many other TMDs and related heterostructures, potentially advancing the fabrication of TMDs-based device arrays.
Collapse
Affiliation(s)
- Ziyang Gan
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
| | - Emad Najafidehaghani
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
| | - Seung Heon Han
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
| | - Sai Shradha
- Institute of Applied Physics, Friedrich Schiller University Jena, Albert-Einstein-Str 15, 07745, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str 6, 07745, Jena, Germany
| | - Fatemeh Abtahi
- Institute of Applied Physics, Friedrich Schiller University Jena, Albert-Einstein-Str 15, 07745, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str 6, 07745, Jena, Germany
| | - Christof Neumann
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
| | - Julian Picker
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
| | - Tobias Vogl
- Institute of Applied Physics, Friedrich Schiller University Jena, Albert-Einstein-Str 15, 07745, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str 6, 07745, Jena, Germany
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Falk Eilenberger
- Institute of Applied Physics, Friedrich Schiller University Jena, Albert-Einstein-Str 15, 07745, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str 6, 07745, Jena, Germany
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str 6, 07745, Jena, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str 6, 07745, Jena, Germany
| |
Collapse
|
21
|
Okada M, Pu J, Lin YC, Endo T, Okada N, Chang WH, Lu AKA, Nakanishi T, Shimizu T, Kubo T, Miyata Y, Suenaga K, Takenobu T, Yamada T, Irisawa T. Large-Scale 1T'-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition. ACS NANO 2022; 16:13069-13081. [PMID: 35849128 DOI: 10.1021/acsnano.2c05699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T'-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T'-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its use in important applications, such as devices with topological states for quantum computing, low-resistance contact for semiconducting TMDs, energy storage devices, and as hydrogen evolution catalysts. However, due to the high energy difference and phase change barrier between 1T' and the more stable 2H-phase, there are few methods that can be used to obtain monolayer 1T'-phase TMDs. Here, we report on the chemical vapor deposition (CVD) growth of 1T'-phase WS2 atomic layers from gaseous precursors, i.e., H2S and WF6, with alkali metal assistance. The gaseous nature of the precursors, reducing properties of H2S, and presence of Na+, which acts as a countercation, provided an optimal environment for the growth of 1T'-phase WS2, resulting in the formation of high-quality submillimeter-sized crystals. The crystal structure was characterized by atomic-resolution scanning transmission electron microscopy, and the zigzag chain structure of W atoms, which is characteristic of the 1T' structure, was clearly observed. Furthermore, the grown 1T'-phase WS2 showed superconductivity with the transition temperature in the 2.8-3.4 K range and large upper critical field anisotropy. Thus, alkali metal assisted gas-source CVD growth is useful for realizing large-scale, high-quality, phase-engineered TMD atomic layers via a bottom-up synthesis.
Collapse
Affiliation(s)
- Mitsuhiro Okada
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Jiang Pu
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Yung-Chang Lin
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Naoya Okada
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Wen-Hsin Chang
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Anh Khoa Augustin Lu
- Mathematics for Advanced Materials Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 980-8577, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Takeshi Nakanishi
- Mathematics for Advanced Materials Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 980-8577, Japan
| | - Tetsuo Shimizu
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Toshitaka Kubo
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Kazu Suenaga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
| | - Taishi Takenobu
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Takatoshi Yamada
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Toshifumi Irisawa
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| |
Collapse
|
22
|
Jiang D, Wang X, Chen R, Sun J, Kang H, Ji D, Liu Y, Wei D. Self-Expanding Molten Salt-Driven Growth of Patterned Transition-Metal Dichalcogenide Crystals. J Am Chem Soc 2022; 144:8746-8755. [PMID: 35508181 DOI: 10.1021/jacs.2c02518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition-metal dichalcogenides (TMDs) have been considered potential materials for the next generation of semiconductors. Realizing controllable growth of TMD crystals is a prerequisite for their future applications, which remains challenging. Here, we reveal a new mechanism of self-expanding molten salt-driven growth for a salt-assisted method and achieve the patterned growth of TMD single-crystal arrays with a size of hundreds of micrometers. Time-of-flight secondary ion mass spectroscopy and other spectroscopy characterizations identify the component of the molten salt solution. Microscopic characterizations reveal the existence of salt solution as an interlayer between a TMD monolayer and the silicon substrate as well as particles along the crystal edge. The edged salt solution serves as a self-expanding liquid substrate, which confines the reactive sites to the localized liquid surface, thus avoiding random nucleation. The surface reaction also assures monolayer crystal formation due to self-limiting growth. Besides, the liquid substrate affords sources and spreads itself continuously owing to the nonwetting effect on TMD crystals, thereby facilitating the continuous extension of the TMD monolayer. This work provides novel insights into the controllable synthesis of TMD monolayers and paves the way for the fabrication of TMD-based integrated functional devices.
Collapse
Affiliation(s)
- Dingding Jiang
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Renzhong Chen
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiang Sun
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hua Kang
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Daizong Ji
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Zhu L, Yang T, Zhong Y, Jin Z, Zhang X, Hu C, Wang Z, Wu Z, Zhang Z, Shi Z, Kong J, Zhang X, Zhou L. Scalable and Versatile Transfer of Sensitive Two-dimensional Materials. NANO LETTERS 2022; 22:2342-2349. [PMID: 35285650 DOI: 10.1021/acs.nanolett.1c04805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Damage-free transfer of large-area two-dimensional (2D) materials is indispensable to unleash their full potentials in a wide range of electronic, photonic, and biochemical applications. However, the all-surface nature of 2D materials renders many of them vulnerable to surrounding environments, especially etchants and water involved during wet transfer process. Up to now, a scalable and damage-free transfer method for sensitive 2D materials is still lacking. Here, we report a general damage-free transfer method for sensitive 2D materials. The as-transferred 2D materials exhibit well-preserved structural integrity and unaltered physical properties. We further develop a facile TEM sample preparation technique that allows direct recycling of materials on TEM grids with high fidelity. This recycling technique provides an unprecedented opportunity to precisely relate structural characterization with physical/chemical/electrical probing for the same samples. This method can be readily generalized to diverse nanomaterials for large-area damage-free transfer and enables in-depth investigation of structure-property relationship.
Collapse
Affiliation(s)
- Lijing Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Teng Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yunlei Zhong
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhitong Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingxing Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Hu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziqiang Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhenghan Wu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xu Zhang
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Su B, Huang Y, Hou YH, Li J, Yang R, Ma Y, Yang Y, Zhang G, Zhou X, Luo J, Chen Z. Persistence of Monoclinic Crystal Structure in 3D Second-Order Topological Insulator Candidate 1T'-MoTe 2 Thin Flake Without Structural Phase Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101532. [PMID: 34923770 PMCID: PMC8844473 DOI: 10.1002/advs.202101532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/29/2021] [Indexed: 05/29/2023]
Abstract
A van der Waals material, MoTe2 with a monoclinic 1T' crystal structure is a candidate for 3D second-order topological insulators (SOTIs) hosting gapless hinge states and insulating surface states. However, due to the temperature-induced structural phase transition, the monoclinic 1T' structure of MoTe2 is transformed into the orthorhombic Td structure as the temperature is lowered, which hinders the experimental verification and electronic applications of the predicted SOTI state at low temperatures. Here, systematic Raman spectroscopy studies of the exfoliated MoTe2 thin flakes with variable thicknesses at different temperatures, are presented. As a spectroscopic signature of the orthorhombic Td structure of MoTe2 , the out-of-plane vibration mode D at ≈ 125 cm-1 is always visible below a certain temperature in the multilayer flakes thicker than ≈ 27.7 nm, but vanishes in the temperature range from 80 to 320 K when the flake thickness becomes lower than ≈ 19.5 nm. The absence of the out-of-plane vibration mode D in the Raman spectra here demonstrates not only the disappearance of the monoclinic-to-orthorhombic phase transition but also the persistence of the monoclinic 1T' structure in the MoTe2 thin flakes thinner than ≈ 19.5 nm at low temperatures down to 80 K, which may be caused by the high enough density of the holes introduced during the gold-enhanced exfoliation process and exposure to air. The MoTe2 thin flakes with the low-temperature monoclinic 1T' structure provide a material platform for realizing SOTI states in van der Waals materials at low temperatures, which paves the way for developing a new generation of electronic devices based on SOTIs.
Collapse
Affiliation(s)
- Bo Su
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Yuan Huang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
| | - Yan Hui Hou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Jiawei Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Rong Yang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
| | - Yongchang Ma
- School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Yang Yang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
- Collaborative Innovation Center of Quantum MatterBeijingChina
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
- Collaborative Innovation Center of Quantum MatterBeijingChina
| | - Jianlin Luo
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
- Collaborative Innovation Center of Quantum MatterBeijingChina
| | - Zhi‐Guo Chen
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
| |
Collapse
|
25
|
Zhou G, Gao H, Li J, He X, He Y, Li Y, Hao G. Water-assisted controllable growth of atomically thin WTe 2nanoflakes by chemical vapor deposition based on precursor design and substrate engineering strategies. NANOTECHNOLOGY 2022; 33:175602. [PMID: 35008075 DOI: 10.1088/1361-6528/ac49c4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
WTe2nanostructures have intrigued much attention due to their unique properties, such as large non-saturating magnetoresistance, quantum spin Hall effect and topological surface state. However, the controllable growth of large-area atomically thin WTe2nanostructures remains a significant challenge. In the present work, we demonstrate the controllable synthesis of 1T' atomically thin WTe2nanoflakes (NFs) by water-assisted ambient pressure chemical vapor deposition method based on precursor design and substrate engineering strategies. The introduction of water during the growth process can generate a new synthesized route by reacting with WO3to form intermediate volatile metal oxyhydroxide. Using WO3foil as the growth precursor can drastically enhance the uniformity of as-prepared large-area 1T' WTe2NFs compared to WO3powders. Moreover, highly oriented WTe2NFs with distinct orientations can be obtained by using a-plane and c-plane sapphire substrates, respectively. Corresponding precursor design and substrate engineering strategies are expected to be applicable to other low dimensional transition metal dichalcogenides, which are crucial for the design of novel electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Guoliang Zhou
- School of Physics and Optoelectronics and and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, People's Republic of China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Hui Gao
- School of Physics and Optoelectronics and and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, People's Republic of China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Jin Li
- School of Physics and Optoelectronics and and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaoyue He
- Materials Growth and Characterization Center, Songshan Lake Materials Laboratory, Dongguan 523808, People's Republic of China
| | - Yanbing He
- School of Physics and Optoelectronics and and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, People's Republic of China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yan Li
- School of Physics and Optoelectronics and and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, People's Republic of China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Guolin Hao
- School of Physics and Optoelectronics and and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, People's Republic of China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| |
Collapse
|
26
|
Zhou R, Wu J, Chen Y, Xie L. Polymorph Structures, Rich Physical Properties and Potential Applications of
Two‐Dimensional MoTe
2
,
WTe
2
and Its Alloys. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Juanxia Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K, Chen Z, Zeng X, Gu X, Xu J. Synthesis and Characterization of Metallic Janus MoSH Monolayer. ACS NANO 2021; 15:20319-20331. [PMID: 34870978 DOI: 10.1021/acsnano.1c08531] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Janus transition-metal dichalcogenides (TMDCs) are emerging as special 2D materials with different chalcogen atoms covalently bonded on each side of the unit cell, resulting in interesting properties. To date, several synthetic strategies have been developed to realize Janus TMDCs, which first involves stripping the top-layer S of MoS2 with H atoms. However, there has been little discussion on the intermediate Janus MoSH. It is critical to find the appropriate plasma treatment time to avoid sample damage. A thorough understanding of the formation and properties of MoSH is highly desirable. In this work, a controlled H2-plasma treatment has been developed to gradually synthesize a Janus MoSH monolayer, which was confirmed by the TOF-SIMS analysis as well as the subsequent fabrication of MoSSe. The electronic properties of MoSH, including the high intrinsic carrier concentration (∼2 × 1013 cm-2) and the Fermi level (∼ - 4.11 eV), have been systematically investigated by the combination of FET device study, KPFM, and DFT calculations. The results demonstrate a method for the creation of Janus MoSH and present the essential electronic parameters which have great significance for device applications. Furthermore, owing to the metallicity, 2D Janus MoSH might be a potential platform to observe the SPR behavior in the mid-infrared region.
Collapse
Affiliation(s)
- Xi Wan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - EnZi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Yao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Mingliang Gao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Miao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuai Wang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanyun Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Kun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Zefeng Chen
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Xiaoliang Zeng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region 999077, People's Republic of China
| |
Collapse
|
28
|
Tong X, Zhao Y, Zhuo Z, Yang Z, Wang S, Liu Y, Lu N, Li H, Zhai T. Dual‐Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xipeng Tong
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Yang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zhiwen Zhuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology Key Laboratory of Functional Molecular Solids Ministry of Education and Department of Physics Anhui Normal University Wuhu Anhui 241000 P. R. China
| | - Zhenhong Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Shuzhe Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Ning Lu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology Key Laboratory of Functional Molecular Solids Ministry of Education and Department of Physics Anhui Normal University Wuhu Anhui 241000 P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
29
|
Tong X, Zhao Y, Zhuo Z, Yang Z, Wang S, Liu Y, Lu N, Li H, Zhai T. Dual-Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021; 61:e202112953. [PMID: 34871473 DOI: 10.1002/anie.202112953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/10/2022]
Abstract
Insufficient active sites and weak vertical conduction are the intrinsic factors that restrict the electrocatalytic HER for transition-metal dichalcogenides. As a prototype, we proposed a model of spiral MoTe2 to optimize collectively the above issues. The conductive atomic force microscopy of an individual spiral reveals that the retentive vertical conduction irrespective of layer thickness benefits from the connected screw dislocation lines between interlayers. Theoretical calculations uncover that the regions near the edge step of the spiral structures more easily form Te vacancies and have lower ΔGH * as extra active sites. A single spiral MoTe2 -based on-chip microcell was fabricated to extract HER activity and achieved an ultrahigh current density of 3000 mA cm-2 at an overpotential of 0.4 V, which is about two orders of magnitude higher than the exfoliated counterpart. Profoundly, this unusual spiral model will initiate a new pathway for triggering other inert catalytic reactions.
Collapse
Affiliation(s)
- Xipeng Tong
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhiwen Zhuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Zhenhong Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Shuzhe Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ning Lu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
30
|
Limbu TB, Adhikari B, Song SK, Chitara B, Tang Y, Parsons GN, Yan F. Toward understanding the phase-selective growth mechanism of films and geometrically-shaped flakes of 2D MoTe 2. RSC Adv 2021; 11:38839-38848. [PMID: 35493247 PMCID: PMC9044229 DOI: 10.1039/d1ra07787b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Two-dimensional (2D) molybdenum ditelluride (MoTe2) is an interesting material for fundamental study and applications, due to its ability to exist in different polymorphs of 2H, 1T, and 1T′, their phase change behavior, and unique electronic properties. Although much progress has been made in the growth of high-quality flakes and films of 2H and 1T′-MoTe2 phases, phase-selective growth of all three phases remains a huge challenge, due to the lack of enough information on their growth mechanism. Herein, we present a novel approach to growing films and geometrical-shaped few-layer flakes of 2D 2H-, 1T-, and 1T′-MoTe2 by atmospheric-pressure chemical vapor deposition (APCVD) and present a thorough understanding of the phase-selective growth mechanism by employing the concept of thermodynamics and chemical kinetics involved in the growth processes. Our approach involves optimization of growth parameters and understanding using thermodynamical software, HSC Chemistry. A lattice strain-mediated mechanism has been proposed to explain the phase selective growth of 2D MoTe2, and different chemical kinetics-guided strategies have been developed to grow MoTe2 flakes and films. This study investigates the phase-controlled growth of flakes and films of 2D MoTe2 by atmospheric-pressure chemical vapor deposition and presents a thorough understanding on the growth mechanism.![]()
Collapse
Affiliation(s)
- Tej B Limbu
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA .,Department of Physical and Applied Sciences, University of Houston-Clear Lake Houston TX 77058 USA
| | - Bikram Adhikari
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| | - Seung Keun Song
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh North Carolina 27695 USA
| | - Basant Chitara
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University Durham NC 27707 USA
| | - Gregory N Parsons
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh North Carolina 27695 USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University Durham NC 27707 USA
| |
Collapse
|
31
|
Abstract
Salt-assisted chemical vapor deposition (SA-CVD), which uses halide salts (e.g., NaCl, KBr, etc.) and molten salts (e.g., Na2MoO4, Na2WO4, etc.) as precursors, is one of the most popular methods favored for the fabrication of two-dimensional (2D) materials such as atomically thin metal chalcogenides, graphene, and h-BN. In this review, the distinct functions of halogens (F, Cl, Br, I) and alkali metals (Li, Na, K) in SA-CVD are first clarified. Based on the current development in SA-CVD growth and its related reaction modes, the existing methods are categorized into the Salt 1.0 (halide salts-based) and Salt 2.0 (molten salts-based) techniques. The achievements, advantages, and limitations of each technique are discussed in detail. Finally, new perspectives are proposed for the application of SA-CVD in the synthesis of 2D transition metal dichalcogenides for advanced electronics.
Collapse
Affiliation(s)
- Shisheng Li
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
32
|
Xu M, Tang B, Lu Y, Zhu C, Lu Q, Zhu C, Zheng L, Zhang J, Han N, Fang W, Guo Y, Di J, Song P, He Y, Kang L, Zhang Z, Zhao W, Guan C, Wang X, Liu Z. Machine Learning Driven Synthesis of Few-Layered WTe 2 with Geometrical Control. J Am Chem Soc 2021; 143:18103-18113. [PMID: 34606266 DOI: 10.1021/jacs.1c06786] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic applications but also for the exploration of fundamental physical properties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for further study. Here, we report the implementation of supervised machine learning (ML) for the chemical vapor deposition (CVD) synthesis of high-quality quasi-1D few-layered WTe2 NRs. Feature importance analysis indicates that H2 gas flow rate has a profound influence on the formation of WTe2, and the source ratio governs the sample morphology. Notably, the growth mechanism of 1T' few-layered WTe2 NRs is further proposed, which provides new insights for the growth of intriguing 2D and 1D tellurides and may inspire the growth strategies for other 1D nanostructures. Our findings suggest the effectiveness and capability of ML in guiding the synthesis of 1D nanostructures, opening up new opportunities for intelligent materials development.
Collapse
Affiliation(s)
- Manzhang Xu
- School of Information Science and Technology, Northwest University, Xi'an 710127, P. R. China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuhao Lu
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qianbo Lu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jingyu Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Nannan Han
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Weidong Fang
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuxi Guo
- School of Information Science and Technology, Northwest University, Xi'an 710127, P. R. China
| | - Jun Di
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Pin Song
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lixing Kang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhiyong Zhang
- School of Information Science and Technology, Northwest University, Xi'an 710127, P. R. China
| | - Wu Zhao
- School of Information Science and Technology, Northwest University, Xi'an 710127, P. R. China
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore.,School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
33
|
Hernandez Ruiz K, Wang Z, Ciprian M, Zhu M, Tu R, Zhang L, Luo W, Fan Y, Jiang W. Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Karla Hernandez Ruiz
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Ziqian Wang
- Department of Materials Science and Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Matteo Ciprian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Institute of Functional Materials College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
34
|
Chen K, Deng S, Chen E, Wen S, Ouyang T, Wang X, Zhan R, Cai J, Wan X, Chen H. Optimization Strategies for High Photoluminescence Quantum Yield of Monolayer Chemical Vapor Deposition Transition Metal Dichalcogenides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44814-44823. [PMID: 34494826 DOI: 10.1021/acsami.1c14519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical vapor deposition (CVD) is a promising method to obtain monolayer transition metal dichalcogenides (TMDCs) with high quality and enough size to meet the requirements of practical photoelectric devices. However, the as-grown monolayers often exhibit a lower PL performance due to the stress between the as-grown TMDCs flakes and the substrate. Therefore, finding a facile method to effectively promote the photoluminescence quantum yield (PL QY) of CVD monolayer TMDCs with a clean surface is highly desirable for practical applications. In this work, based on the CVD monolayers MoS2 and MoSe2, the effect of various stress relaxation methods on the TMDCs PL enhancement is systemically studied. By comparing the different kinds of volatile solution treatment processes, as well as the traditional transfer process, it can be found that the volatile solution with a moderate volatilization rate such as ethanol or IPA is a preferred option to improve the PL performance of the CVD monolayer TMDCs, which also surpasses the traditional transfer method by avoiding wrinkles, defects, and contamination to the samples. PL QY of ethanol-treated CVD samples could increase by 6 times on average. Significantly, PL QY of CVD MoSe2 treated by ethanol can reach ∼16%, which is at the forefront of the previous reports of 2D MoSe2. Our study demonstrated an optimized method to enhance the PL QY of CVD monolayer TMDCs, which would facilitate TMDCs optoelectronics.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Shiyu Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Enzi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Shiya Wen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Tenghui Ouyang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Jixing Cai
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Wan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
35
|
Ma L, Zhu J, Li W, Huang R, Wang X, Guo J, Choi JH, Lou Y, Wang D, Zou G. Immobilized Precursor Particle Driven Growth of Centimeter-Sized MoTe 2 Monolayer. J Am Chem Soc 2021; 143:13314-13324. [PMID: 34375083 DOI: 10.1021/jacs.1c06250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molybdenum ditelluride (MoTe2) has attracted ever-growing attention in recent years due to its novel characteristics in spintronics and phase-engineering, and an efficient and convenient method to achieve large-area high-quality film is an essential step toward electronic applications. However, the growth of large-area monolayer MoTe2 is challenging. Here, for the first time, we achieve the growth of a centimeter-sized monoclinic MoTe2 monolayer and manifest the mechanism of immobilized precursor particle driven growth. Microscopic characterizations reveal an obvious trend of immobilized precursor particles being consumed by the monolayer and continuing to provide a source for the growth of the monolayer. Time-of-flight secondary ion mass spectrometry verifies the attachment of hydroxide ions on the surface of the MoTe2 monolayer, thereby realizing the inhibition of crystal growth along the [001] zone axis and the continuous growth of the MoTe2 monolayer. The first-principles DFT calculations prove the mechanism of immobilized precursor particles and the absorption of hydroxide ions on the MoTe2 monolayer. The as-grown MoTe2 monolayer exhibits a surface roughness of 0.19 nm and average conductivity of 1.5 × 10-5 S/m, which prove the smoothness and uniformity of the MoTe2 monolayer. Temperature-dependent electrical measurements together with the transfer characteristic curves further demonstrate the typical semimetallic properties of monoclinic MoTe2. Our research elaborates the microscopic process of immobilized precursor particles to grow large-area MoTe2 monolayer and provides a new thinking about the growth of many other two-dimensional materials.
Collapse
Affiliation(s)
- Liang Ma
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Juntong Zhu
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Wei Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Rong Huang
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 China
| | - Xiangyi Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Jun Guo
- Testing and Analysis Center, Soochow University, Suzhou 215123, China
| | - Jin-Ho Choi
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Yanhui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Dan Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| |
Collapse
|
36
|
Zhang D, Pan W, Zhou L, Yu S. Room-Temperature Benzene Sensing with Au-Doped ZnO Nanorods/Exfoliated WSe 2 Nanosheets and Density Functional Theory Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33392-33403. [PMID: 34228931 DOI: 10.1021/acsami.1c03884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A gold-doped zinc oxide (Au-ZnO)/exfoliated tungsten diselenide (exfoliated WSe2) nanocomposite-based gas sensor toward benzene with high sensing properties was demonstrated. Epoxy resin was used as the matrix of the Au-ZnO/exfoliated WSe2 nanocomposite sensor. The straw-shaped Au-ZnO was synthesized by the hydrothermal method, and WSe2 nanosheets (NSs) were prepared via hydrothermal and liquid-phase exfoliation methods. The properties of Au-ZnO/exfoliated WSe2 nanoheterostructures constructed by self-assembly technology have been confirmed via a series of characterization methods. The benzene-sensing performances of sensors were tested at 25 °C. Compared with Au-ZnO, WSe2, and their composites, the Au-ZnO/exfoliated WSe2 sensor has a significant performance improvement, including a higher response and linear fit degree, better selectivity and repeatability, and faster detection rate. The significantly enhanced sensing properties of the Au-ZnO/exfoliated WSe2 sensor can be ascribed to the doping of Au nanoparticles, the increase in the specific surface area and adsorption sites of NSs after exfoliation, and the cooperative interface combination of the ZnO/WSe2 heterojunction. Furthermore, the sensitivity mechanism of the composite sensor to benzene was explored by density functional theory simulations.
Collapse
Affiliation(s)
- Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenjing Pan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lanjuan Zhou
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Sujing Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
37
|
Wan X, Miao X, Yao J, Wang S, Shao F, Xiao S, Zhan R, Chen K, Zeng X, Gu X, Xu J. In Situ Ultrafast and Patterned Growth of Transition Metal Dichalcogenides from Inkjet-Printed Aqueous Precursors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100260. [PMID: 33734516 DOI: 10.1002/adma.202100260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Chemical vapor deposition (CVD) has been widely used to synthesize high-quality 2D transition-metal dichalcogenides (TMDCs) from different precursors. At present, quantitative control of the precursor with high precision and good repeatability is still challenging. Moreover, the process to synthesize TMDCs with designed patterns is complicated. Here, by using an industrial inkjet-printer, an in situ aqueous precursor with robust usage control at the picogram (10-12 g) level is achieved, and by precisely tuning the inkjet-printing parameters, followed by a rapid heating process, large-area patterned TMDC films with centimeter size and good thickness controllability, as well as heterostructures of the TMDCs, are achieved facilely, and high-quality single-domain monolayer TMDCs with millimeter-size can be easily synthesized within 30 s (corresponding to a growth rate up to 36.4 µm s-1 ). The resulting monolayer MoS2 and MoSe2 exhibits excellent electronic properties with carrier mobility up to 21 and 54 cm2 V-1 s-1 , respectively. The study paves a simple and robust way for the in situ ultrafast and patterned growth of high-quality TMDCs and heterostructures with promising industrialization prospects. Moreover, this ultrafast and green method can be easily used for synthesis of other 2D materials with slight modification.
Collapse
Affiliation(s)
- Xi Wan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xin Miao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jie Yao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shuai Wang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Feng Shao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaoliang Zeng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
38
|
Pace S, Martini L, Convertino D, Keum DH, Forti S, Pezzini S, Fabbri F, Mišeikis V, Coletti C. Synthesis of Large-Scale Monolayer 1T'-MoTe 2 and Its Stabilization via Scalable hBN Encapsulation. ACS NANO 2021; 15:4213-4225. [PMID: 33605730 PMCID: PMC8023802 DOI: 10.1021/acsnano.0c05936] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/02/2021] [Indexed: 06/02/2023]
Abstract
Out of the different structural phases of molybdenum ditelluride (MoTe2), the distorted octahedral 1T' possesses great interest for fundamental physics and is a promising candidate for the implementation of innovative devices such as topological transistors. Indeed, 1T'-MoTe2 is a semimetal with superconductivity, which has been predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. Large instability of monolayer 1T'-MoTe2 in environmental conditions, however, has made its investigation extremely challenging so far. In this work, we demonstrate homogeneous growth of large single-crystal (up to 500 μm) monolayer 1T'-MoTe2 via chemical vapor deposition (CVD) and its stabilization in air with a scalable encapsulation approach. The encapsulant is obtained by electrochemically delaminating CVD hexagonal boron nitride (hBN) from copper foil, and it is applied on the freshly grown 1T'-MoTe2 via a top-down dry lamination step. The structural and electrical properties of encapsulated 1T'-MoTe2 have been monitored over several months to assess the degree of degradation of the material. We find that when encapsulated with hBN, the lifetime of monolayer 1T'-MoTe2 successfully increases from a few minutes to more than a month. Furthermore, the encapsulated monolayer can be subjected to transfer, device processing, and heating and cooling cycles without degradation of its properties. The potential of this scalable heterostack is confirmed by the observation of signatures of low-temperature phase transition in monolayer 1T'-MoTe2 by both Raman spectroscopy and electrical measurements. The growth and encapsulation methods reported in this work can be employed for further fundamental studies of this enticing material as well as facilitate the technological development of monolayer 1T'-MoTe2.
Collapse
Affiliation(s)
- Simona Pace
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Leonardo Martini
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Domenica Convertino
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Dong Hoon Keum
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Stiven Forti
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Sergio Pezzini
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Filippo Fabbri
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Vaidotas Mišeikis
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Camilla Coletti
- Center
for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
39
|
Soares DM, Singh G. Superior electrochemical performance of layered WTe 2 as potassium-ion battery electrode. NANOTECHNOLOGY 2020; 31:455406. [PMID: 32746438 DOI: 10.1088/1361-6528/ababcc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potassium-ion batteries or KIBs are prominent candidates among research involving post lithium-ion batteries due to abundant availability, low-cost, and low standard reduction potential of potassium metal. Although some chemistry correlation with other monovalent alkali metal-ion batteries may exist, research on KIB chemistry is still in its infancy. A relevant research aspect of KIB is the development of a stable anode material that can efficiently cycle the large K+ ions in its crystal structure within the 0 to 3 V potential window range; providing reasonable charge capacity and high reversibility. To this end, transition metal dichalcogenides or TMDs are promising electrode materials because of their favorable electrochemical properties. In this work, we study electrochemical performance of tungsten ditelluride (WTe2) TMD as working electrode in a KIB half-cell. Results show that WTe2, a telluride-based TMD, has high first cycle specific charge capacity-with up to 3.3 K+ stored per WTe2 molecule (at least 4 times that of WS2 electrode)-stable capacity of 143 mAh g-1 at 10th cycle number-outperforming WS2 (66 mAh g-1) and graphite (95 mAh g-1)-good reversibility, reasonable cycling stability, and low charge transfer resistance.
Collapse
Affiliation(s)
- Davi Marcelo Soares
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, United States of America
| | | |
Collapse
|
40
|
Xie C, Yang P, Huan Y, Cui F, Zhang Y. Roles of salts in the chemical vapor deposition synthesis of two-dimensional transition metal chalcogenides. Dalton Trans 2020; 49:10319-10327. [PMID: 32648888 DOI: 10.1039/d0dt01561j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical vapor deposition (CVD) route has emerged as an effective method for the successful synthesis of two-dimensional (2D) materials with satisfactory crystal quality, especially for the synthesis of wafer-scale, uniform thickness or large domain size single-crystal transition metal chalcogenides (TMCs). To achieve this, the salt-assisted CVD strategy has been proved to be powerful to reduce the high melting point of the metal related precursor, decrease the nucleation density and increase the reaction rate on the solid template. However, the specific roles of alkali metals and halide components still remain unclear. Herein, the functions of salts in the growth of TMCs have been discussed by summarizing some recent achievements in salt-assisted synthesis results, wherein salts are mainly introduced as additives in metal precursors to achieve the wafer-scale uniform growth of monolayer and thickness-tunable multi-layered TMCs, and for serving as 3D templates (especially NaCl) to realize the scalable production of TMCs. Moreover, the existing challenges and viable future directions are also proposed for in-depth understanding of salt-assisted C4VD methods and for exploring more efficient CVD strategies.
Collapse
Affiliation(s)
- Chunyu Xie
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Pengfei Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Yahuan Huan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Fangfang Cui
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Yanfeng Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Wan X, Li H, Chen K, Xu J. Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0200-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Xiao Y, Zhou M, Liu J, Wei B, Yue S, Zhou Y, Yang K, Zhang T, Zeng M, Wang Z, Fu L. Synthesis of Meta Symmetric
1T
’‐
WTe
2
Using an
Edge‐Induced
Mechanism. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yao Xiao
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Mengyue Zhou
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Jinglu Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Bin Wei
- Department of Quantum Materials Science and TechnologyInternational Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga Braga 4715‐330 Portugal
| | - Shuanglin Yue
- Department of ElectronicsPeking University Beijing 100871 China
| | - Yuan Zhou
- School of Physics and TechnologyWuhan University Wuhan Hubei 430072 China
| | - Kena Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Tao Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Zhongchang Wang
- Department of Quantum Materials Science and TechnologyInternational Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga Braga 4715‐330 Portugal
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
43
|
Li X, Kahn E, Chen G, Sang X, Lei J, Passarello D, Oyedele AD, Zakhidov D, Chen KW, Chen YX, Hsieh SH, Fujisawa K, Unocic RR, Xiao K, Salleo A, Toney MF, Chen CH, Kaxiras E, Terrones M, Yakobson BI, Harutyunyan AR. Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. ACS NANO 2020; 14:6570-6581. [PMID: 32338865 DOI: 10.1021/acsnano.0c00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The role of additives in facilitating the growth of conventional semiconducting thin films is well-established. Apparently, their presence is also decisive in the growth of two-dimensional transition metal dichalcogenides (TMDs), yet their role remains ambiguous. In this work, we show that the use of sodium bromide enables synthesis of TMD monolayers via a surfactant-mediated growth mechanism, without introducing liquefaction of metal oxide precursors. We discovered that sodium ions provided by sodium bromide chemically passivate edges of growing molybdenum disulfide crystals, relaxing in-plane strains to suppress 3D islanding and promote monolayer growth. To exploit this growth model, molybdenum disulfide monolayers were directly grown into desired patterns using predeposited sodium bromide as a removable template. The surfactant-mediated growth not only extends the families of metal oxide precursors but also offers a way for lithography-free patterning of TMD monolayers on various surfaces to facilitate fabrication of atomically thin electronic devices.
Collapse
Affiliation(s)
- Xufan Li
- Honda Research Institute USA Inc., San Jose, California 95134, United States
| | - Ethan Kahn
- Honda Research Institute USA Inc., San Jose, California 95134, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gugang Chen
- Honda Research Institute USA Inc., San Jose, California 95134, United States
| | - Xiahan Sang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jincheng Lei
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | - Donata Passarello
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Akinola D Oyedele
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dante Zakhidov
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kai-Wen Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Yu-Xun Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Shang-Hsien Hsieh
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Kazunori Fujisawa
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael F Toney
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Chia-Hao Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Efthimios Kaxiras
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Boris I Yakobson
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | | |
Collapse
|
44
|
Taghizadeh A, Leffers U, Pedersen TG, Thygesen KS. A library of ab initio Raman spectra for automated identification of 2D materials. Nat Commun 2020; 11:3011. [PMID: 32541789 PMCID: PMC7296020 DOI: 10.1038/s41467-020-16529-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Raman spectroscopy is frequently used to identify composition, structure and layer thickness of 2D materials. Here, we describe an efficient first-principles workflow for calculating resonant first-order Raman spectra of solids within third-order perturbation theory employing a localized atomic orbital basis set. The method is used to obtain the Raman spectra of 733 different monolayers selected from the Computational 2D Materials Database (C2DB). We benchmark the computational scheme against available experimental data for 15 known monolayers. Furthermore, we propose an automatic procedure for identifying a material based on an input experimental Raman spectrum and apply it to the cases of MoS2 (H-phase) and WTe2 (T[Formula: see text]-phase). The Raman spectra of all materials at different excitation frequencies and polarization configurations are freely available from the C2DB. Our comprehensive and easily accessible library of ab initio Raman spectra should be valuable for both theoreticians and experimentalists in the field of 2D materials.
Collapse
Affiliation(s)
- Alireza Taghizadeh
- Department of Materials and Production, Aalborg University, Aalborg, Øst, 9220, Denmark.
- Center for Nanostructured Graphene (CNG), Aalborg, Øst, 9220, Denmark.
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark (DTU), Lyngby, 2800 Kgs, Denmark.
| | - Ulrik Leffers
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark (DTU), Lyngby, 2800 Kgs, Denmark
| | - Thomas G Pedersen
- Department of Materials and Production, Aalborg University, Aalborg, Øst, 9220, Denmark
- Center for Nanostructured Graphene (CNG), Aalborg, Øst, 9220, Denmark
| | - Kristian S Thygesen
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark (DTU), Lyngby, 2800 Kgs, Denmark
- Center for Nanostructured Graphene (CNG), Technical University of Denmark (DTU), Lyngby, 2800 Kgs, Denmark
| |
Collapse
|
45
|
Wang X, Shang J, Zhu M, Zhou X, Hao R, Sun L, Xu H, Zheng J, Lei X, Li C, Kou L, Feng Q. Controlled growth of large-scale uniform 1T' MoTe 2 crystals with tunable thickness and their photodetector applications. NANOSCALE HORIZONS 2020; 5:954-959. [PMID: 32249872 DOI: 10.1039/d0nh00075b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The monoclinic-phase 1T' MoTe2 crystal exhibits inversion symmetry as an anisotropic semi-metal, dictating its interesting quantum transport phenomenon and other novel physical properties. However, large-scale controllable growth of uniform MoTe2 crystals still remains a great challenge, hindering its further fundamental research and applications for novel devices. Herein, we report a modified growth method for synthesizing few-layer 1T' MoTe2 crystals with large-scale uniformity with the assistance of molecular sieves. The theoretical simulations demonstrated that due to the temperature-dependent formation energies of different edges, the edge of (010) orientation shows a higher thermodynamic stability than that of (100) orientation, and results in the anisotropic growth behavior of 1T' MoTe2 crystals while the temperature changes. The photoresponse of tri-layer 1T' MoTe2-based devices shows a broad-spectrum response from 532 nm to 1550 nm. The photo-response time of 1T' MoTe2 crystals demonstrates that it supposes to be the synergistic mechanism of photo-conductive and photo-radiation effects. Our findings not only provide a method for the controllable growth of anisotropic two-dimensional materials at a wafer scale, but also explore a broad-spectrum photodetector with the MoTe2-based device.
Collapse
Affiliation(s)
- Xiaojian Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pan Y, Zheng F, Wang X, Qin H, Liu E, Sha J, Zhao N, Zhang P, Ma L. Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Xu L, Zhang P, Jiang H, Wang X, Chen F, Hu Z, Gong Y, Shang L, Zhang J, Jiang K, Chu J. Large-Scale Growth and Field-Effect Transistors Electrical Engineering of Atomic-Layer SnS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904116. [PMID: 31588680 DOI: 10.1002/smll.201904116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/28/2019] [Indexed: 06/10/2023]
Abstract
2D layers of metal dichalcogenides are of considerable interest for high-performance electronic devices for their unique electronic properties and atomically thin geometry. 2D SnS2 nanosheets with a bandgap of ≈2.6 eV have been attracting intensive attention as one potential candidate for modern electrocatalysis, electronic, and/or optoelectronic fields. However, the controllable growth of large-size and high-quality SnS2 atomic layers still remains a challenge. Herein, a salt-assisted chemical vapor deposition method is provided to synthesize atomic-layer SnS2 with a large crystal size up to 410 µm and good uniformity. Particularly, the as-fabricated SnS2 nanosheet-based field-effect transistors (FETs) show high mobility (2.58 cm2 V-1 s-1 ) and high on/off ratio (≈108 ), which is superior to other reported SnS2 -based FETs. Additionally, the effects of temperature on the electrical properties are systematically investigated. It is shown that the scattering mechanism transforms from charged impurities scattering to electron-phonon scattering with the temperature. Moreover, SnS2 can serve as an ideal material for energy storage and catalyst support. The high performance together with controllable growth of SnS2 endow it with great potential for future applications in electrocatalysis, electronics, and optoelectronics.
Collapse
Affiliation(s)
- Liping Xu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Peng Zhang
- School of Materials Science & Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Huaning Jiang
- School of Materials Science & Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xiang Wang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Fangfang Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China
- Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai, 200433, P. R. China
| | - Yongji Gong
- School of Materials Science & Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Jinzhong Zhang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Junhao Chu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China
- Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
48
|
Zhu M, Zhao Y, Feng Q, Lu H, Zhang S, Zhang N, Ma C, Li J, Zheng J, Zhang J, Xu H, Zhai T, Zhao J. Linear Dichroism and Nondestructive Crystalline Identification of Anisotropic Semimetal Few-Layer MoTe 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903159. [PMID: 31483559 DOI: 10.1002/smll.201903159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Semimetal 1T' MoTe2 crystals have attracted tremendous attention owing to their anisotropic optical properties, Weyl semimetal, phase transition, and so on. However, the complex refractive indices (n-ik) of the anisotropic semimetal 1T' MoTe2 still are not revealed yet, which is important to applications such as polarized wide spectrum detectors, polarized surface plasmonics, and nonlinear optics. Here, the linear dichroism of as-grown trilayer 1T' MoTe2 single crystals is investigated. Trilayer 1T' MoTe2 shows obvious anisotropic optical absorption due to the intraband transition of dz 2 orbits for Mo atoms and px orbits for Te atoms. The anisotropic complex refractive indices of few-layer 1T' MoTe2 are experimentally obtained for the first time by using the Pinier equation analysis. Based on the linear dichroism of 1T' MoTe2 , angle-resolved polarized optical microscopy is developed to visualize the grain boundary and identify the crystal orientation of 1T' MoTe2 crystals, which is also an excellent tool toward the investigation of the optical absorption properties in the visible range for anisotropic 2D transition metal chalcogenides. This work provides a universal and nondestructive method to identify the crystal orientation of anisotropic 2D materials, which opens up an opportunity to investigate the optical application of anisotropic semimetal 2D materials.
Collapse
Affiliation(s)
- Meijie Zhu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yan Zhao
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qingliang Feng
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hua Lu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shuqing Zhang
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Na Zhang
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Chaojia Ma
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiafeng Li
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianbang Zheng
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianlin Zhao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
49
|
Zhao S, Wang L, Fu L. Precise Vapor-Phase Synthesis of Two-Dimensional Atomic Single Crystals. iScience 2019; 20:527-545. [PMID: 31655063 PMCID: PMC6818371 DOI: 10.1016/j.isci.2019.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional atomic single crystals (2DASCs) have drawn immense attention because of their potential for fundamental research and new technologies. Novel properties of 2DASCs are closely related to their atomic structures, and effective modulation of the structures allows for exploring various practical applications. Precise vapor-phase synthesis of 2DASCs with tunable thickness, selectable phase, and controllable chemical composition can be realized to adjust their band structures and electronic properties. This review highlights the latest advances in the precise vapor-phase synthesis of 2DASCs. We thoroughly elaborate on strategies toward the accurate control of layer number, phase, chemical composition of layered 2DASCs, and thickness of non-layered 2DASCs. Finally, we suggest forward-looking solutions to the challenges and directions of future developments in this emerging field.
Collapse
Affiliation(s)
- Shasha Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
50
|
Huan Y, Shi J, Zou X, Gong Y, Xie C, Yang Z, Zhang Z, Gao Y, Shi Y, Li M, Yang P, Jiang S, Hong M, Gu L, Zhang Q, Yan X, Zhang Y. Scalable Production of Two-Dimensional Metallic Transition Metal Dichalcogenide Nanosheet Powders Using NaCl Templates toward Electrocatalytic Applications. J Am Chem Soc 2019; 141:18694-18703. [DOI: 10.1021/jacs.9b06044] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yahuan Huan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianping Shi
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaolong Zou
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Yue Gong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Xie
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhongjie Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhepeng Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yan Gao
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yuping Shi
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Minghua Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pengfei Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shaolong Jiang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Min Hong
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaoqin Yan
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanfeng Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|