1
|
Kerwin B, Lee JH, Utama MIB, Pham TT, Pereyra A, Sangwan VK, Dravid VP, Facchetti A, Hersam MC, Marks TJ. Morphotaxial Halogenation of Solution-Processed Two-Dimensional Indium Selenide. NANO LETTERS 2025; 25:4734-4742. [PMID: 40091587 PMCID: PMC11951151 DOI: 10.1021/acs.nanolett.4c05922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
Morphotaxy, a process by which a 2D material is chemically modified while retaining its original physical dimensions, is an emerging strategy for synthesizing unconventional materials at the atomically thin limit. Morphotaxy is typically implemented by vapor-phase reactions on mechanically exfoliated or vapor-deposited 2D van der Waals (vdW) materials. Here we report a method for converting solution-processed films of 2D InSe into InI2 and InBr2 using dilute I2 and Br2 solutions, respectively. The converted materials retain the physical dimensions of the original 2D flakes, providing access to non-vdW indium halides in ultrathin form. Liquid-phase exfoliation directly enables this morphotaxial reaction by producing nanosheets with high surface areas and introducing residual polyvinylpyrrolidone that stabilizes the flake morphology and slows the reactivity of I2 and Br2. Overall, this work presents a versatile strategy for achieving atomically thin metal halides and offers mechanistic insights relevant to the morphotaxial halogenation of other solution-processed 2D materials.
Collapse
Affiliation(s)
- Brendan
P. Kerwin
- Department
of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jung Hun Lee
- Department
of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| | - M. Iqbal Bakti Utama
- Department
of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
| | - Thang T. Pham
- Department
of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| | - Alessandro Pereyra
- Department
of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| | - Vinod K. Sangwan
- Department
of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| | - Vinayak P. Dravid
- Department
of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department
of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark C. Hersam
- Department
of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department
of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Tobin J. Marks
- Department
of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department
of Materials Science and Engineering and the Materials Research Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Liu M, Cui T, Feng J, Wu Y, Bi J, Aierken A, Liu X, Wang GG, Liu Z. Low-Temperature Growth of Centimeter-Sized 2D PdSe 2 by Self-Limiting Liquid-Phase Edge Epitaxy. J Am Chem Soc 2025; 147:9122-9133. [PMID: 39801053 DOI: 10.1021/jacs.4c11531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Two-dimensional (2D) PdSe2 atomic crystals hold great potential for optoelectronic applications due to their bipolar electrical characteristics, tunable bandgap, high electron mobility, and exceptional air stability. Nevertheless, the scalable synthesis of large-area, high-quality 2D PdSe2 crystals using chemical vapor deposition (CVD) remains a significant challenge. Here, we present a self-limiting liquid-phase edge-epitaxy (SLE) low-temperature growth method to achieve high-quality, centimeter-sized PdSe2 films with single-crystal domain areas exceeding 30 μm. The SLE growth mechanism, clarified by theoretical calculations and time-of-flight secondary ion mass spectrometry (ToF-SIMS), reveals that hydrogen ions on the precursor surface inhibit vertical growth while promoting lateral growth. The as-grown PdSe2 few-layer exhibits a surface roughness of 1.20 nm and an average conductivity of 1.67 × 10-6 S/m, demonstrating their smoothness and uniformity. Temperature-dependent electrical measurements and transfer characteristic curves confirm the orthorhombic PdSe2's bipolar semiconductor behavior. The photodetector based on few-layer PdSe2 films exhibit excellent optoelectronic performance in the 405-1650 nm wavelength range, achieving a responsivity of 6262.37 A W-1, a detectivity of ∼1012 Jones under 1064 nm illumination, and a fast response time of 37.1 μs, making them highly suitable for broadband photodetection applications. This work provides valuable insights into the scalable synthesis of PdSe2 few-layers and establishes a foundation for the development of PdSe2-based integrated functional devices.
Collapse
Affiliation(s)
- Mingqiang Liu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Tianhao Cui
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Junwei Feng
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinshun Bi
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Abuduwayiti Aierken
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Xuefei Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Gui-Gen Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
3
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Xu Y, Zhou J, Tian D, Fu Z, Huang Y, Feng W. Photoelectrochemical-Type Photodetectors Based on Ball Milling InSe for Underwater Optoelectronic Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:3. [PMID: 39791763 PMCID: PMC11723190 DOI: 10.3390/nano15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
In this paper, InSe nanosheets were synthesized by a ball milling method, and photoelectrochemical-type photodetectors (PEC PDs) based on the ball milling InSe (M-InSe) were fabricated using simulated seawater as the electrolyte. M-InSe nanosheets show good absorption in the visible region of 450-600 nm. The M-InSe PEC PDs display a good self-powered photoresponse under 525 nm irradiation, including a high responsivity of 0.8 mA/W, fast response time of 28/300 ms, and good stability. Furthermore, the InSe PEC PDs successfully demonstrated prototype application in wireless underwater optical communication and optical imaging. These results demonstrate that M-InSe holds good application prospects in underwater optoelectronic devices.
Collapse
Affiliation(s)
- Yi Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (J.Z.); (D.T.)
| | - Junxin Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (J.Z.); (D.T.)
| | - Dongyue Tian
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (J.Z.); (D.T.)
| | - Zhendong Fu
- Tianjin Jinhang Technical Physics Institute, Tianjin 300308, China;
| | - Yuewu Huang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (J.Z.); (D.T.)
| |
Collapse
|
5
|
Sangwan VK, Chica DG, Chu TC, Cheng M, Quintero MA, Hao S, Mead CE, Choi H, Zu R, Sheoran J, He J, Liu Y, Qian E, Laing CC, Kang MA, Gopalan V, Wolverton C, Dravid VP, Lauhon LJ, Hersam MC, Kanatzidis MG. Bulk photovoltaic effect and high mobility in the polar 2D semiconductor SnP 2Se 6. SCIENCE ADVANCES 2024; 10:eado8272. [PMID: 39083609 PMCID: PMC11290483 DOI: 10.1126/sciadv.ado8272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The growth of layered 2D compounds is a key ingredient in finding new phenomena in quantum materials, optoelectronics, and energy conversion. Here, we report SnP2Se6, a van der Waals chiral (R3 space group) semiconductor with an indirect bandgap of 1.36 to 1.41 electron volts. Exfoliated SnP2Se6 flakes are integrated into high-performance field-effect transistors with electron mobilities >100 cm2/Vs and on/off ratios >106 at room temperature. Upon excitation at a wavelength of 515.6 nanometer, SnP2Se6 phototransistors show high gain (>4 × 104) at low intensity (≈10-6 W/cm2) and fast photoresponse (< 5 microsecond) with concurrent gain of ≈52.9 at high intensity (≈56.6 mW/cm2) at a gate voltage of 60 V across 300-nm-thick SiO2 dielectric layer. The combination of high carrier mobility and the non-centrosymmetric crystal structure results in a strong intrinsic bulk photovoltaic effect; under local excitation at normal incidence at 532 nm, short circuit currents exceed 8 mA/cm2 at 20.6 W/cm2.
Collapse
Affiliation(s)
- Vinod K. Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Daniel G. Chica
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ting-Ching Chu
- Applied Physics Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Matthew Cheng
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Shiqiang Hao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Christopher E. Mead
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hyeonseon Choi
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rui Zu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jyoti Sheoran
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jingyang He
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yukun Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Eric Qian
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Craig C. Laing
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lincoln J. Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
6
|
Kerwin B, Liu SE, Sadhukhan T, Dasgupta A, Jones LO, López-Arteaga R, Zeng TT, Facchetti A, Schatz GC, Hersam MC, Marks TJ. Trifluoromethylation of 2D Transition Metal Dichalcogenides: A Mild Functionalization and Tunable p-Type Doping Method. Angew Chem Int Ed Engl 2024; 63:e202403494. [PMID: 38551580 DOI: 10.1002/anie.202403494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 04/24/2024]
Abstract
Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2 and MoS2 under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p-type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides.
Collapse
Affiliation(s)
- Brendan Kerwin
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Stephanie E Liu
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| | - Tumpa Sadhukhan
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anushka Dasgupta
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| | - Leighton O Jones
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Rafael López-Arteaga
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| | - Thomas T Zeng
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - George C Schatz
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Mark C Hersam
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| |
Collapse
|
7
|
Sengupta S, Ambade SB, O'Keefe TL, Tawakalna F, Hedlund Orbeck JK, Hamers RJ, Feng ZV, Haynes CL, Rosenzweig Z. Colloidal stabilization of hydrophobic InSe 2D nanosheets in a model environmental aqueous solution and their impact on Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE. NANO 2024; 11:627-636. [PMID: 38881831 PMCID: PMC11178355 DOI: 10.1039/d3en00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Semiconductor InSe 2D nanomaterials have emerged as potential photoresponsive materials for broadly distributed photodetectors and wearable electronics technologies due to their high photoresponsivity and thermal stability. This paper addresses an environmental concern about the fate of InSe 2D nanosheets when disposed and released into the environment after use. Semiconducting materials are potentially reactive and often form environmentally damaging species, for example reactive oxygen and nitrogen species, when degraded. InSe nanosheets are prepared using a semi bottom-up approach which involves a reaction between indium and selenium precursors at elevated temperature in an oxygen-free environment to prevent oxidation. InSe nanosheets are formed as a stable intermediate with micrometer-sized lateral dimensions and a few monolayer thickness. The InSe 2D nanosheets are obtained when the reaction is stopped after 30 minutes by cooling. Keeping the reaction at elevated temperature for a longer period, for example 60 minutes leads to the formation of InSe 3D nanoparticles of about 5 nm in diameter, a thermodynamically more stable form of InSe. The paper focuses on the colloidal stabilization of InSe nanosheets in an aqueous solution that contains epigallocatechin gallate (EGCG), a natural organic matter (NOM) simulant. We show that EGCG coats the surface of the hydrophobic, water-insoluble InSe nanosheets via physisorption. The formed EGCG-coated InSe nanosheets are colloidally stable in aqueous solution. While unmodified semiconducting InSe nanosheets could produce reactive oxygen species (ROS) when illuminated, our study shows low levels of ROS generation by EGCG-coated InSe nanosheets under ambient light, which might be attributed to ROS quenching by EGCG. Growth-based viability (GBV) assays show that the colloidally stable EGCG-coated InSe nanosheets adversely impact the bacterial growth of Shewanella oneidensis MR-1, an environmentally relevant Gram-negative bacterium in aqueous media. The impact on bacterial growth is driven by the EGCG coating of the nanosheets. In addition, live/dead assays show insignificant membrane damage of the Shewanella oneidensis MR-1 cells by InSe nanosheets, suggesting a weak association of EGCG-coated nanosheets with the cells. It is likely that the adverse impact of EGCG-coated nanosheets on bacterial growth is the result of increasing local concentration of EGCG either when adsorbed on the nanosheets when the nanosheets interact with the cells, or when desorbed from the EGCG-coated nanosheets to interact with the bacterial cells.
Collapse
Affiliation(s)
- Shreyasi Sengupta
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Swapnil B Ambade
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Tana L O'Keefe
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Falak Tawakalna
- Chemistry Department, Augsburg University, Minneapolis, Minnesota 55454, USA
| | | | - Robert J Hamers
- Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Z Vivian Feng
- Chemistry Department, Augsburg University, Minneapolis, Minnesota 55454, USA
- Council on Science and Technology, Princeton University, Princeton, NJ 08544, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Zeev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
8
|
Liao L, Kovalska E, Regner J, Song Q, Sofer Z. Two-Dimensional Van Der Waals Thin Film and Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303638. [PMID: 37731156 DOI: 10.1002/smll.202303638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
In the rapidly evolving field of thin-film electronics, the emergence of large-area flexible and wearable devices has been a significant milestone. Although organic semiconductor thin films, which can be manufactured through solution processing, have been identified, their utility is often undermined by their poor stability and low carrier mobility under ambient conditions. However, inorganic nanomaterials can be solution-processed and demonstrate outstanding intrinsic properties and structural stability. In particular, a series of two-dimensional (2D) nanosheet/nanoparticle materials have been shown to form stable colloids in their respective solvents. However, the integration of these 2D nanomaterials into continuous large-area thin with precise control of layer thickness and lattice orientation still remains a significant challenge. This review paper undertakes a detailed analysis of van der Waals thin films, derived from 2D materials, in the advancement of thin-film electronics and optoelectronic devices. The superior intrinsic properties and structural stability of inorganic nanomaterials are highlighted, which can be solution-processed and underscor the importance of solution-based processing, establishing it as a cornerstone strategy for scalable electronic and optoelectronic applications. A comprehensive exploration of the challenges and opportunities associated with the utilization of 2D materials for the next generation of thin-film electronics and optoelectronic devices is presented.
Collapse
Affiliation(s)
- Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Evgeniya Kovalska
- Faculty of Environment, Science and Economy, Department of Engineering, Exeter, EX4 4QF, UK
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Qunliang Song
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|
9
|
Liu S, Carey T, Munuera J, Synnatschke K, Kaur H, Coleman E, Doolan L, Coleman JN. Solution-Processed Heterojunction Photodiodes Based on WSe 2 Nanosheet Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304735. [PMID: 37735147 DOI: 10.1002/smll.202304735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Solution-processed photodetectors incorporating liquid-phase-exfoliated transition metal dichalcogenide nanosheets are widely reported. However, previous studies mainly focus on the fabrication of photoconductors, rather than photodiodes which tend to be based on heterojunctions and are harder to fabricate. Especially, there are rare reports on introducing commonly used transport layers into heterojunctions based on nanosheet networks. In this study, a reliable solution-processing method is reported to fabricate heterojunction diodes with tungsten selenide (WSe2 ) nanosheets as the optical absorbing material and PEDOT: PSS and ZnO as injection/transport-layer materials. By varying the transport layer combinations, the obtained heterojunctions show rectification ratios of up to ≈104 at ±1 V in the dark, without relying on heavily doped silicon substrates. Upon illumination, the heterojunction can be operated in both photoconductor and photodiode modes and displays self-powered behaviors at zero bias.
Collapse
Affiliation(s)
- Shixin Liu
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Tian Carey
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Jose Munuera
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
- Department of Physics, Faculty of Sciences, University of Oviedo, C/Leopoldo Calvo Sotelo, 18 Oviedo, Asturias, 33007, Spain
| | - Kevin Synnatschke
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Harneet Kaur
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Emmet Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Luke Doolan
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| |
Collapse
|
10
|
Zhu Z, Kim JS, Moody MJ, Lauhon LJ. Edge and Interface Resistances Create Distinct Trade-Offs When Optimizing the Microstructure of Printed van der Waals Thin-Film Transistors. ACS NANO 2023; 17:575-586. [PMID: 36573755 DOI: 10.1021/acsnano.2c09527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inks based on two-dimensional (2D) materials could be used to tune the properties of printed electronics while maintaining compatibility with scalable manufacturing processes. However, a very wide range of performances have been reported in printed thin-film transistors in which the 2D channel material exhibits considerable variation in microstructure. The lack of quantitative physics-based relationships between film microstructure and transistor performance limits the codesign of exfoliation, sorting, and printing processes to inefficient empirical approaches. To rationally guide the development of 2D inks and related processing, we report a gate-dependent resistor network model that establishes distinct microstructure-performance relationships created by near-edge and intersheet resistances in printed van der Waals thin-film transistors. The model is calibrated by analyzing electrical output characteristics of model transistors consisting of overlapping 2D nanosheets with varied thicknesses that are mechanically exfoliated and transferred. Kelvin probe force microscopy analysis on the model transistors leads to the discovery that the nanosheet edges, not the intersheet resistance, limit transport due to their impact on charge carrier depletion and scattering. Our model suggests that when transport in a 2D material network is limited by the near-edge resistance, the optimum nanosheet thickness is dictated by a trade-off between charged impurity screening and gate screening, and the film mobilities are more sensitive to variations in printed nanosheet density. Removal of edge states can enable the realization of higher mobilities with thinner nanosheets due to reduced junction resistances and reduced gate screening. Our analysis of the influence of nanosheet edges on the effective film mobility not only examines the prospects of extant exfoliation methods to achieve the optimum microstructure but also provides important perspectives on processes that are essential to maximizing printed film performance.
Collapse
Affiliation(s)
- Zhehao Zhu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Joon-Seok Kim
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Michael J Moody
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
11
|
Aitzhanov M, Guseinov N, Nemkayeva R, Sagidolda Y, Tolepov Z, Prikhodko O, Mukhametkarimov Y. Growth and Liquid-Phase Exfoliation of GaSe 1-xS x Crystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7080. [PMID: 36295149 PMCID: PMC9605154 DOI: 10.3390/ma15207080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, interest in the liquid-phase exfoliation (LPE) of layered crystals has been growing due to the efficiency and scalability of the method, as well as the wide range of practical applications of the obtained dispersions based on two-dimensional flakes. In this paper, we present a comparative study of as-grown and liquid-phase exfoliated GaSe1-xSx flakes. Bulk GaSe1-xSx crystals with x ~ 0, 0.25, 0.5, 0.75, 1 were synthesized by melting stoichiometric amounts of gallium, selenium, and sulfur particles in evacuated ampoules. X-ray diffraction analysis showed that the crystal structure does not change considerably after LPE, while the analysis of the Raman spectra revealed that, after liquid-phase processing in IPA, an additional peak associated with amorphous selenium is observed in selenium-rich GaSeS compounds. Nevertheless, the direct and indirect transition energies determined from the Kubelka-Munk function for LPE crystals correlate with the band gap of the as-grown bulk GaSeS crystals. This finding is also confirmed by comparison with the data on the positions of the photoluminescence peak.
Collapse
|
12
|
Abstract
Layered van der Waals (vdW) materials have attracted significant attention due to their materials properties that can enhance diverse applications including next-generation computing, biomedical devices, and energy conversion and storage technologies. This class of materials is typically studied in the two-dimensional (2D) limit by growing them directly on bulk substrates or exfoliating them from parent layered crystals to obtain single or few layers that preserve the original bonding. However, these vdW materials can also function as a platform for obtaining additional phases of matter at the nanoscale. Here, we introduce and review a synthesis paradigm, morphotaxy, where low-dimensional materials are realized by using the shape of an initial nanoscale precursor to template growth or chemical conversion. Using morphotaxy, diverse non-vdW materials such as HfO2 or InF3 can be synthesized in ultrathin form by changing the composition but preserving the shape of the original 2D layered material. Morphotaxy can also enable diverse atomically precise heterojunctions and other exotic structures such as Janus materials. Using this morphotaxial approach, the family of low-dimensional materials can be substantially expanded, thus creating vast possibilities for future fundamental studies and applied technologies.
Collapse
Affiliation(s)
- David Lam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitry Lebedev
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Kim J, Song O, Cho YS, Jung M, Rhee D, Kang J. Revisiting Solution-Based Processing of van der Waals Layered Materials for Electronics. ACS MATERIALS AU 2022; 2:382-393. [PMID: 36855703 PMCID: PMC9928402 DOI: 10.1021/acsmaterialsau.2c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following the significant discovery of van der Waals (vdW) layered materials with diverse electronic properties over more than a decade ago, the scalable production of high-quality vdW layered materials has become a critical goal to enable the transformation of fundamental studies into practical applications in electronics. To this end, solution-based processing has been proposed as a promising technique to yield vdW layered materials in large quantities. Moreover, the resulting dispersions are compatible with cost-effective device fabrication processes such as inkjet printing and roll-to-roll manufacturing. Despite these advantages, earlier works on solution-based processing methods (i.e., direct liquid-phase exfoliation or alkali-metal intercalation) have several challenges in achieving high-performance electronic devices, such as structural polydispersity in thickness and lateral size or undesired phase transformation. These challenges hinder the utilization of the solution-processed materials in the limited fields of electronics such as electrodes and conductors. In the meantime, the groundbreaking discovery of another solution-based approach, molecular intercalation-based electrochemical exfoliation, has shown significant potential for the use of vdW layered materials in scalable electronics owing to the nearly ideal structure of the exfoliated samples. The resulting materials are highly monodispersed, atomically thin, and reasonably large, enabling the preparation of electronically active thin-film networks via successful vdW interface formation. The formation of vdW interfaces is highly important for efficient plane-to-plane charge transport and mechanical stability under various deformations, which are essential to high-performance, flexible electronics. In this Perspective, we survey the latest developments in solution-based processing of vdW layered materials and their electronic applications while also describing the field's future outlook in the context of its current challenges.
Collapse
Affiliation(s)
- Jihyun Kim
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Okin Song
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Yun Seong Cho
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Myeongjin Jung
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Dongjoon Rhee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
| | - Joohoon Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea,KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic of Korea,
| |
Collapse
|
14
|
Kim J, Rhee D, Song O, Kim M, Kwon YH, Lim DU, Kim IS, Mazánek V, Valdman L, Sofer Z, Cho JH, Kang J. All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106110. [PMID: 34933395 DOI: 10.1002/adma.202106110] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
2D van der Waals (vdW) materials have been considered as potential building blocks for use in fundamental elements of electronic and optoelectronic devices, such as electrodes, channels, and dielectrics, because of their diverse and remarkable electrical properties. Furthermore, two or more building blocks of different electronic types can be stacked vertically to generate vdW heterostructures with desired electrical behaviors. However, such fundamental approaches cannot directly be applied practically because of issues such as precise alignment/positioning and large-quantity material production. Here, these limitations are overcome and wafer-scale vdW heterostructures are demonstrated by exploiting the lateral and vertical assembly of solution-processed 2D vdW materials. The high exfoliation yield of the molecular intercalation-assisted approach enables the production of micrometer-sized nanosheets in large quantities and its lateral assembly in a wafer-scale via vdW interactions. Subsequently, the laterally assembled vdW thin-films are vertically assembled to demonstrate various electronic device applications, such as transistors and photodetectors. Furthermore, multidimensional vdW heterostructures are demonstrated by integrating 1D carbon nanotubes as a p-type semiconductor to fabricate p-n diodes and complementary logic gates. Finally, electronic devices are fabricated via inkjet printing as a lithography-free manner based on the stable nanomaterial dispersions.
Collapse
Affiliation(s)
- Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dongjoon Rhee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Okin Song
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Miju Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yong Hyun Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong Un Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 166 28, Czech Republic
| | - Lukas Valdman
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 166 28, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 166 28, Czech Republic
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
15
|
Yu Q, Guo K, Dai Y, Deng H, Wang T, Wu H, Xu Y, Shi X, Wu J, Zhang K, Zhou P. Black phosphorus for near-infrared ultrafast lasers in the spatial/temporal domain. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:503001. [PMID: 34544055 DOI: 10.1088/1361-648x/ac2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials have attracted extensive interests due to their wide range of electronic and optical properties. After continuous and extensive research, black phosphorus (BP), a novel member of 2D layered semiconductor material, benefit for the unique in-plane anisotropic structure, controllable direct bandgap characteristic, and high charge carrier mobility, has attracted tremendous attention and successfully applied in ultrafast pulse generation. This article, which focuses on near-infrared ultrafast laser demonstration of BP, present discussion of preparation methods for high quality BP nanosheet, various BP based ultrafast lasers in the spatial/temporal domain, and the future research needs.
Collapse
Affiliation(s)
- Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Kun Guo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Yongping Dai
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Tao Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Hanshuo Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Yijun Xu
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Xinyao Shi
- Institute of Quantum Sensing of Wuxi, Wuxi, People's Republic of China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Kai Zhang
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| |
Collapse
|
16
|
Hanus R, Rangnekar SV, Mollah S, Hussain K, Hines N, Heller E, Hersam MC, Khan A, Graham S. Thermoreflectance Imaging of (Ultra)wide Band-Gap Devices with MoS 2 Enhancement Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42195-42204. [PMID: 34449192 DOI: 10.1021/acsami.1c11528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Measuring the maximum operating temperature within the channel of ultrawide band-gap transistors is critically important since the temperature dependence of the device reliability sets operational limits such as maximum operational power. Thermoreflectance imaging (TTI) is an optimal choice to measure the junction temperature due to its submicrometer spatial resolution and submicrosecond temporal resolution. Since TTI is an imaging technique, data acquisition is orders of magnitude faster than point measurement techniques such as Raman thermometry. Unfortunately, commercially available LED light sources used in thermoreflectance systems are limited to energies less than ∼3.9 eV, which is below the band gap of many ultrawide band-gap semiconductors (>4.0 eV). Therefore, the semiconductors are transparent to the probing light sources, prohibiting the application of TTI. To address this thermal imaging challenge, we utilize an MoS2 coating as a thermoreflectance enhancement coating that allows for the measurement of the surface temperature of (ultra)wide band-gap materials. The coating consists of a network of MoS2 nanoflakes with the c axis aligned normal to the surface and is easily removable via sonication. The method is validated using electrical and thermal characterization of GaN and AlGaN devices. We demonstrate that this coating does not measurably influence the electrical performance or the measured operating temperature. A maximum temperature rise of 49 K at 0.59 W was measured within the channel of the AlGaN device, which is over double the maximum temperature rise obtained by measuring the thermoreflectance of the gate metal. The importance of accurately measuring the peak operational temperature is discussed in the context of accelerated stress testing.
Collapse
Affiliation(s)
- Riley Hanus
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Sonal V Rangnekar
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shahab Mollah
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Kamal Hussain
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Nicholas Hines
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Eric Heller
- Air Force Research Laboratory Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Asif Khan
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Samuel Graham
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| |
Collapse
|
17
|
Hu H, Wang H, Sun Y, Li J, Wei J, Xie D, Zhu H. Out-of-plane and in-plane ferroelectricity of atom-thick two-dimensional InSe. NANOTECHNOLOGY 2021; 32:385202. [PMID: 34116515 DOI: 10.1088/1361-6528/ac0ac5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) ferroelectric materials are promising substitutes of three-dimensional perovskite based ferroelectric ceramic materials. Yet most studies have been focused on the construction of non-centrosymmetric 2D van der Waals materials and only a few are constructed experimentally. Herein, we experimentally demonstrate the co-existence of voltage-tunable out-of-plane (OOP) and in-plane (IP) ferroelectricity in few-layer InSe prepared by a solution-processable method and fabricate ferroelectric semiconductor channel transistors. The reversible polarization can initiate instant switch of resistance with high ON/OFF ratios and a comparable subthreshold swing of 160 mV/dec under gate modulation. The origins of such unique OOP and IP ferroelectricity of the centrosymmetric structure are theoretically analyzed.
Collapse
Affiliation(s)
- Haowen Hu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Huaipeng Wang
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yilin Sun
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, Beijing 100084, People's Republic of China
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jiawei Li
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jinliang Wei
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dan Xie
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
18
|
Zappia M, Bianca G, Bellani S, Curreli N, Sofer Z, Serri M, Najafi L, Piccinni M, Oropesa-Nuñez R, Marvan P, Pellegrini V, Kriegel I, Prato M, Cupolillo A, Bonaccorso F. Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:11857-11866. [PMID: 34276861 PMCID: PMC8279705 DOI: 10.1021/acs.jpcc.1c03597] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) transition-metal monochalcogenides have been recently predicted to be potential photo(electro)catalysts for water splitting and photoelectrochemical (PEC) reactions. Differently from the most established InSe, GaSe, GeSe, and many other monochalcogenides, bulk GaS has a large band gap of ∼2.5 eV, which increases up to more than 3.0 eV with decreasing its thickness due to quantum confinement effects. Therefore, 2D GaS fills the void between 2D small-band-gap semiconductors and insulators, resulting of interest for the realization of van der Waals type-I heterojunctions in photocatalysis, as well as the development of UV light-emitting diodes, quantum wells, and other optoelectronic devices. Based on theoretical calculations of the electronic structure of GaS as a function of layer number reported in the literature, we experimentally demonstrate, for the first time, the PEC properties of liquid-phase exfoliated GaS nanoflakes. Our results indicate that solution-processed 2D GaS-based PEC-type photodetectors outperform the corresponding solid-state photodetectors. In fact, the 2D morphology of the GaS flakes intrinsically minimizes the distance between the photogenerated charges and the surface area at which the redox reactions occur, limiting electron-hole recombination losses. The latter are instead deleterious for standard solid-state configurations. Consequently, PEC-type 2D GaS photodetectors display a relevant UV-selective photoresponse. In particular, they attain responsivities of 1.8 mA W-1 in 1 M H2SO4 [at 0.8 V vs reversible hydrogen electrode (RHE)], 4.6 mA W-1 in 1 M Na2SO4 (at 0.9 V vs RHE), and 6.8 mA W-1 in 1 M KOH (at 1.1. V vs RHE) under 275 nm illumination wavelength with an intensity of 1.3 mW cm-2. Beyond the photodetector application, 2D GaS-based PEC-type devices may find application in tandem solar PEC cells in combination with other visible-sensitive low-band-gap materials, including transition-metal monochalcogenides recently established for PEC solar energy conversion applications.
Collapse
Affiliation(s)
- Marilena
I. Zappia
- BeDimensional
Spa., via Lungotorrente
Secca 3D, 16163 Genova, Italy
- Department
of Physics, University of Calabria, Via P. Bucci cubo 31/C, 87036 Rende, CS, Italy
| | - Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Sebastiano Bellani
- BeDimensional
Spa., via Lungotorrente
Secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Nicola Curreli
- Functional
Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michele Serri
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Leyla Najafi
- BeDimensional
Spa., via Lungotorrente
Secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marco Piccinni
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Reinier Oropesa-Nuñez
- BeDimensional
Spa., via Lungotorrente
Secca 3D, 16163 Genova, Italy
- Department
of Material Science and Engineering, Uppsala
University, Box 534, 75121 Uppsala, Sweden
| | - Petr Marvan
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- BeDimensional
Spa., via Lungotorrente
Secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Ilka Kriegel
- Functional
Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Anna Cupolillo
- Department
of Physics, University of Calabria, Via P. Bucci cubo 31/C, 87036 Rende, CS, Italy
| | - Francesco Bonaccorso
- BeDimensional
Spa., via Lungotorrente
Secca 3D, 16163 Genova, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| |
Collapse
|
19
|
Alzakia FI, Tan SC. Liquid-Exfoliated 2D Materials for Optoelectronic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003864. [PMID: 34105282 PMCID: PMC8188210 DOI: 10.1002/advs.202003864] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Indexed: 05/14/2023]
Abstract
Two-dimensional (2D) materials have attracted tremendous research attention in recent days due to their extraordinary and unique properties upon exfoliation from the bulk form, which are useful for many applications such as electronics, optoelectronics, catalysis, etc. Liquid exfoliation method of 2D materials offers a facile and low-cost route to produce large quantities of mono- and few-layer 2D nanosheets in a commercially viable way. Optoelectronic devices such as photodetectors fabricated from percolating networks of liquid-exfoliated 2D materials offer advantages compared to conventional devices, including low cost, less complicated process, and higher flexibility, making them more suitable for the next generation wearable devices. This review summarizes the recent progress on metal-semiconductor-metal (MSM) photodetectors fabricated from percolating network of 2D nanosheets obtained from liquid exfoliation methods. In addition, hybrids and mixtures with other photosensitive materials, such as quantum dots, nanowires, nanorods, etc. are also discussed. First, the various methods of liquid exfoliation of 2D materials, size selection methods, and photodetection mechanisms that are responsible for light detection in networks of 2D nanosheets are briefly reviewed. At the end, some potential strategies to further improve the performance the devices are proposed.
Collapse
Affiliation(s)
- Fuad Indra Alzakia
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering drive 1Singapore117574Singapore
| | - Swee Ching Tan
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering drive 1Singapore117574Singapore
| |
Collapse
|
20
|
Kim J, Kim S, Cho YS, Choi M, Jung SH, Cho JH, Whang D, Kang J. Solution-Processed MoS 2 Film with Functional Interfaces via Precursor-Assisted Chemical Welding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12221-12229. [PMID: 33657809 DOI: 10.1021/acsami.1c00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molybdenum disulfide (MoS2) presents fascinating properties for next-generation applications in diverse fields. However, fully exploiting the best properties of MoS2 in largescale practical applications still remains a challenge due to lack of proper processing methods. Solution-based processing can be a promising route for scalable production of MoS2 nanosheets, but the resulting assembled film possesses an enormous number of interfaces that significantly compromise the intrinsic electrical properties. Herein, we demonstrate the solution processing of MoS2 and subsequent precursor-assisted chemical welding to form defective MoS2-x at the nanosheet interfaces. The formation of defective MoS2-x significantly reduces the electrical contact resistances, and thus the chemically welded MoS2 film exhibits more than 2 orders of magnitude improved electrical conductivity. Furthermore, the chemical welding provides MoS2-x interface induced additional defect originated functionalities for diverse applications such as broadband photodetection over the near-infrared range and improved electrocatalytic activity for hydrogen evolution reactions. Overall, this precursor-assisted chemical welding strategy can be a facile route to produce high-quality MoS2 films with low-quality defective MoS2-x at the interfaces having multifunctionalities in electronics, optoelectronics, and electrocatalysis.
Collapse
Affiliation(s)
- Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 16419, Republic of Korea
| | - Yun Seong Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minseok Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Su-Ho Jung
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 16419, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dongmok Whang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 16419, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
21
|
Hao Q, Liu J, Wang G, Chen J, Gan H, Zhu J, Ke Y, Chai Y, Lin J, Zhang W. Surface-Modified Ultrathin InSe Nanosheets with Enhanced Stability and Photoluminescence for High-Performance Optoelectronics. ACS NANO 2020; 14:11373-11382. [PMID: 32809802 DOI: 10.1021/acsnano.0c03556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Indium selenide (InSe) has become a research hotspot because of its favorable carrier mobility and thickness-tunable band gap, showing great application potential in high-performance optoelectronic devices. The trend of miniaturization in optoelectronics has forced the feature sizes of the electronic components to shrink accordingly. Therefore, atomically thin InSe crystals may play an important role in future optoelectronics. Given the instability and ultralow photoluminescent (PL) emission of mechanically exfoliated ultrathin InSe, synthesis of highly stable mono- and few-layer InSe nanosheets with high PL efficiency has become crucial. Herein, ultrathin InSe nanosheets were prepared via thermal annealing of electrochemically intercalated products from bulk InSe. The size and yield of the as-prepared nanosheets were up to ∼160 μm and ∼70%, respectively, and ∼80% of the nanosheets were less than five layer. Impressively, the as-prepared nanosheets showed greatly enhanced stability and PL emission because of surface modification by carbon species. Efficient photoresponsivity of 2 A/W was achieved in the as-prepared nanosheet-based devices. These nanosheets were further assembled into large-area thin films with photoresponsivity of 16 A/W and an average Hall mobility of about 5 cm2 V-1 s-1. Finally, one-dimensional (1D) InSe nanoscrolls with a length up to 90 μm were constructed by solvent-assisted self-assembly of the exfoliated nanosheets.
Collapse
Affiliation(s)
- Qiaoyan Hao
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China
| | - Jidong Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiewei Chen
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Haibo Gan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China
| | - Jiaqi Zhu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China
| | - Yuxuan Ke
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China
| | - Yang Chai
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Kistanov AA, Korznikova EA, Huttula M, Cao W. The interaction of two-dimensional α- and β-phosphorus carbide with environmental molecules: a DFT study. Phys Chem Chem Phys 2020; 22:11307-11313. [PMID: 32400830 DOI: 10.1039/d0cp01607a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently fabricated two-dimensional phosphorus carbide (PC) has been proposed for application in different nanodevices such as nanoantennas and field-effect transistors. However, the effect of ambient molecules on the properties of PC and, hence, the productivity of PC-based devices is still unknown. Herein a first-principles investigation is performed to study the most structurally stable α- and β-PC allotropes upon their interaction with environmental molecules, including NH3, NO, NO2, H2O, and O2. It is predicted that NH3, H2O, and O2 are physisorbed on α- and β-PC while NO and NO2 may easily form a covalent bond with the PC. Importantly, NO and NO2 possess low adsorption energies on PC which compared to these on graphene and phosphorene. Moreover, both molecules are strong acceptors to PC with a giant charge transfer of ∼1 e per molecule. For all the considered molecules PC is found to be more sensitive compared to graphene and phosphorene. The present work provides useful insight into the effects of environmental molecules on the structure and electronic properties of α- and β-PC, which may be important for their manufacturing, storage, and application in gas sensors and electronic devices.
Collapse
Affiliation(s)
- Andrey A Kistanov
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland.
| | | | | | | |
Collapse
|
23
|
Pan Q, Su M, Zhang Z, Chen B, Huang Z, Hu X, Cai Z, Song Y. Omnidirectional Photodetectors Based on Spatial Resonance Asymmetric Facade via a 3D Self-Standing Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907280. [PMID: 32108392 DOI: 10.1002/adma.201907280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Integration of photovoltaic materials directly into 3D light-matter resonance architectures can extend their functionality beyond traditional optoelectronics. Semiconductor structures at subwavelength scale naturally possess optical resonances, which provides the possibility to manipulate light-matter interactions. In this work, a structure and function integrated printing method to remodel 2D film to 3D self-standing facade between predesigned gold electrodes, realizing the advancement of structure and function from 2D to 3D, is demonstrated. Due to the enlarged cross section in the 3D asymmetric rectangular structure, the facade photodetectors possess sensitive light-matter interaction. The single 3D facade photodetectors can measure the incident angle of light in 3D space with a 10° angular resolution. The resonance interaction of the incident light at different illumination angles and the 3D subwavelength photosensitive facade is analyzed by the simulated light flow in the facade. The 3D facade structure enhances the manipulation of the light-matter interaction and extends metasurface nanophotonics to a wider range of materials. The monitoring of dynamic variation is achieved in a single facade photodetector. Together with the flexibility of structure and function integrated printing strategy, three and four branched photodetectors extend the angle detection to omnidirectional ranges, which will be significant for the development of 3D angle-sensing devices.
Collapse
Affiliation(s)
- Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Remodeling Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Remodeling Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Remodeling Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhandong Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Xiaotian Hu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Remodeling Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheren Cai
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Remodeling Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Remodeling Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Li S, Zhong C, Henning A, Sangwan VK, Zhou Q, Liu X, Rahn MS, Wells SA, Park HY, Luxa J, Sofer Z, Facchetti A, Darancet P, Marks TJ, Lauhon LJ, Weiss EA, Hersam MC. Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures. ACS NANO 2020; 14:3509-3518. [PMID: 32078300 DOI: 10.1021/acsnano.9b09661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Layered indium selenide (InSe) is an emerging two-dimensional semiconductor that has shown significant promise for high-performance transistors and photodetectors. The range of optoelectronic applications for InSe can potentially be broadened by forming mixed-dimensional van der Waals heterostructures with zero-dimensional molecular systems that are widely employed in organic electronics and photovoltaics. Here, we report the spatially resolved investigation of photoinduced charge separation between InSe and two molecules (C70 and C8-BTBT) using scanning tunneling microscopy combined with laser illumination. We experimentally and computationally show that InSe forms type-II and type-I heterojunctions with C70 and C8-BTBT, respectively, due to an interplay of charge transfer and dielectric screening at the interface. Laser-excited scanning tunneling spectroscopy reveals a ∼0.25 eV decrease in the energy of the lowest unoccupied molecular orbital of C70 with optical illumination. Furthermore, photoluminescence spectroscopy and Kelvin probe force microscopy indicate that electron transfer from InSe to C70 in the type-II heterojunction induces a photovoltage that quantitatively matches the observed downshift in the tunneling spectra. In contrast, no significant changes are observed upon optical illumination in the type-I heterojunction formed between InSe and C8-BTBT. Density functional theory calculations further show that, despite the weak coupling between the molecular species and InSe, the band alignment of these mixed-dimensional heterostructures strongly differs from the one suggested by the ionization potential and electronic affinities of the isolated components. Self-energy-corrected density functional theory indicates that these effects are the result of the combination of charge redistribution at the interface and heterogeneous dielectric screening of the electron-electron interactions in the heterostructure. In addition to providing specific insight for mixed-dimensional InSe-organic van der Waals heterostructures, this work establishes a general experimental methodology for studying localized charge transfer at the molecular scale that is applicable to other photoactive nanoscale systems.
Collapse
Affiliation(s)
- Shaowei Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Chengmei Zhong
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Alex Henning
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Qunfei Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Northwestern Argonne Institute for Science and Engineering, Evanston, Illinois 60208, United States
| | - Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew S Rahn
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Spencer A Wells
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Hong Youl Park
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Pierre Darancet
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Northwestern Argonne Institute for Science and Engineering, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Applied Physics Graduate Program, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
25
|
Shi H, Li M, Shaygan Nia A, Wang M, Park S, Zhang Z, Lohe MR, Yang S, Feng X. Ultrafast Electrochemical Synthesis of Defect-Free In 2 Se 3 Flakes for Large-Area Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907244. [PMID: 31944431 DOI: 10.1002/adma.201907244] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Because of its thickness-dependent direct bandgap and exceptional optoelectronic properties, indium(III) selenide (In2 Se3 ) has emerged as an important semiconductor for electronics and optoelectronics. However, the scalable synthesis of defect-free In2 Se3 flakes remains a significant barrier for its practical applications. Here, a facile electrochemical strategy is presented for the ultrafast delamination of bulk layered In2 Se3 crystals in nonaqueous media, resulting in high-yield (83%) production of defect-free In2 Se3 flakes with large lateral size (up to 26 µm). The intercalation of tetrahexylammonium (THA+ ) ions mainly creates stage-3 intercalated compounds in which every three layers of In2 Se3 are occupied by one layer of THA molecules. The subsequent exfoliation leads to a majority of trilayer In2 Se3 nanosheets. As a proof of concept, solution-processed, large-area (400 µm × 20 µm) thin-film photodetectors embedded with the exfoliated In2 Se3 flakes reveal ultrafast response time with a rise and decay of 41 and 39 ms, respectively, and efficient responsivity (1 mA W-1 ). Such performance surpasses most of the state-of-the-art thin-film photodetectors based on transition metal dichalcogenides.
Collapse
Affiliation(s)
- Huanhuan Shi
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Mengmeng Li
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ali Shaygan Nia
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - SangWook Park
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Zhen Zhang
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Martin R Lohe
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Sheng Yang
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
26
|
Abstract
Organic–inorganic hybrid perovskite is a leading successor for the next generation of (opto)electronics.
Collapse
Affiliation(s)
- Joohoon Kang
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University (SKKU)
- Suwon 16419
- Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 03722
- Republic of Korea
| |
Collapse
|
27
|
Gopalan S, Gaddemane G, Put MLVD, Fischetti AMV. Monte Carlo Study of Electronic Transport in Monolayer InSe. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4210. [PMID: 31847429 PMCID: PMC6947166 DOI: 10.3390/ma12244210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022]
Abstract
The absence of a band gap in graphene makes it of minor interest for field-effect transistors. Layered metal chalcogenides have shown great potential in device applications thanks to their wide bandgap and high carrier mobility. Interestingly, in the ever-growing library of two-dimensional (2D) materials, monolayer InSe appears as one of the new promising candidates, although still in the initial stage of theoretical studies. Here, we present a theoretical study of this material using density functional theory (DFT) to determine the electronic band structure as well as the phonon spectrum and electron-phonon matrix elements. The electron-phonon scattering rates are obtained using Fermi's Golden Rule and are used in a full-band Monte Carlo computer program to solve the Boltzmann transport equation (BTE) to evaluate the intrinsic low-field mobility and velocity-field characteristic. The electron-phonon matrix elements, accounting for both long- and short-range interactions, are considered to study the contributions of different scattering mechanisms. Since monolayer InSe is a polar piezoelectric material, scattering with optical phonons is dominated by the long-range interaction with longitudinal optical (LO) phonons while scattering with acoustic phonons is dominated by piezoelectric scattering with the longitudinal (LA) branch at room temperature (T = 300 K) due to a lack of a center of inversion symmetry in monolayer InSe. The low-field electron mobility, calculated considering all electron-phonon interactions, is found to be 110 cm2V-1s-1, whereas values of 188 cm2V-1s-1 and 365 cm2V-1s-1 are obtained considering the long-range and short-range interactions separately. Therefore, the calculated electron mobility of monolayer InSe seems to be competitive with other previously studied 2D materials and the piezoelectric properties of monolayer InSe make it a suitable material for a wide range of applications in next generation nanoelectronics.
Collapse
Affiliation(s)
- Sanjay Gopalan
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gautam Gaddemane
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Maarten L Van de Put
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - And Massimo V Fischetti
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
28
|
Rasche B, Yang M, Nikonow L, Cooper JFK, Murray CA, Day SJ, Kleiner K, Clarke SJ, Compton RG. In-situ Electrochemical X-ray Diffraction: A Rigorous Method to Navigate within Phase Diagrams Reveals β-Fe 1+x Se as Superconductor for All x. Angew Chem Int Ed Engl 2019; 58:15401-15406. [PMID: 31433102 DOI: 10.1002/anie.201907426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/09/2019] [Indexed: 11/11/2022]
Abstract
We report the precise postsynthetic control of the composition of β-Fe1+x Se by electrochemistry with simultaneous tracking of the associated structural changes via in situ synchrotron X-ray diffraction. We access the full phase width of 0.01<x<0.04 and identify the superconducting state below 8 K, which in contrast to earlier reports is independent of the composition. However, in a second set of in situ X-ray diffraction experiments, we demonstrate that β-Fe1+x Se forms a new phase in the presence of oxygen above a 100 °C which has the same anti-PbO type structure but is not superconducting down to 1.8 K. The latter process can be reversed electrochemically to reinstate the superconducting state. These observations exploit the exquisite control afforded by electrochemistry in contrast with classical approaches of chemical synthesis.
Collapse
Affiliation(s)
- Bertold Rasche
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Minjun Yang
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Lothar Nikonow
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Joshaniel F K Cooper
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | | | - Sarah J Day
- Diamond Light Source, Harwell Campus, Didcot, OX11 0QX, UK
| | - Karin Kleiner
- Diamond Light Source, Harwell Campus, Didcot, OX11 0QX, UK
| | - Simon J Clarke
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | | |
Collapse
|
29
|
Rasche B, Yang M, Nikonow L, Cooper JFK, Murray CA, Day SJ, Kleiner K, Clarke SJ, Compton RG. Elektrochemische In‐situ‐Röntgenbeugung: Eine präzise Methode zur Navigation in Phasendiagrammen enthüllt β‐Fe 1+xSe als Supraleiter für alle x. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bertold Rasche
- Department of Chemistry University of Oxford Oxford OX1 3QZ Großbritannien
| | - Minjun Yang
- Department of Chemistry University of Oxford Oxford OX1 3QZ Großbritannien
| | - Lothar Nikonow
- Department of Chemistry University of Oxford Oxford OX1 3QZ Großbritannien
| | - Joshaniel F. K. Cooper
- ISIS Neutron and Muon Source Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX Großbritannien
| | - Claire A. Murray
- Diamond Light Source Harwell Campus Didcot OX11 0QX Großbritannien
| | - Sarah J. Day
- Diamond Light Source Harwell Campus Didcot OX11 0QX Großbritannien
| | - Karin Kleiner
- Diamond Light Source Harwell Campus Didcot OX11 0QX Großbritannien
| | - Simon J. Clarke
- Department of Chemistry University of Oxford Oxford OX1 3QZ Großbritannien
| | - Richard G. Compton
- Department of Chemistry University of Oxford Oxford OX1 3QZ Großbritannien
| |
Collapse
|
30
|
Zhang B, Mikysek T, Cicmancova V, Slang S, Svoboda R, Kutalek P, Wagner T. 2D GeSe2 amorphous monolayer. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
In this paper, GeSe2 thin film and glass ingot were prepared in a layered structure. Subsequently, the 2D amorphous monolayers were achieved from layered thin film and layered glass ingot. The thicknesses of monolayers from thin film range from 1.5 nm to 5 nm. And the thickness of monolayer from glass ingot is 7 μm. The fast cooling of material results in the formation of self-assembled monolayers. In the case of thin film, layers are connected with “bridge”. After doping of Ag, the precipitation of nano particles exfoliates the adjacent monolayers which can be further dispersed by etching of Ag particles. In the case of glass ingot, the composition changes at 1 % between adjacent monolayers, according to EDX (energy-dispersive X-ray spectroscopy) spectra. And the glass 2D monolayer can be mechanically peeled off from the glass ingot.
Collapse
Affiliation(s)
- Bo Zhang
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology , University of Pardubice , Studentska 573, 532 10 Pardubice , Czech Republic
| | - Tomas Mikysek
- Department of Analytical Chemistry, Faculty of Chemical Technology , University of Pardubice , Studentska 573, 532 10 Pardubice , Czech Republic
| | - Veronika Cicmancova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology , University of Pardubice , Nam. Cs. Legii 565, 530 02 Pardubice , Czech Republic
| | - Stanislav Slang
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology , University of Pardubice , Nam. Cs. Legii 565, 530 02 Pardubice , Czech Republic
| | - Roman Svoboda
- Department of Physical Chemistry, Faculty of Chemical Technology , University of Pardubice , Studentska 573, 532 10 Pardubice , Czech Republic
| | - Petr Kutalek
- Joint Laboratory of Solid State Chemistry , University of Pardubice , Studentska 84, 532 10 Pardubice , Czech Republic
| | - Tomas Wagner
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology , University of Pardubice , Studentska 573, 532 10 Pardubice , Czech Republic
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology , University of Pardubice , Nam. Cs. Legii 565, 530 02 Pardubice , Czech Republic
| |
Collapse
|
31
|
Wang J, Liu B. Electronic and optoelectronic applications of solution-processed two-dimensional materials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:992-1009. [PMID: 31692852 PMCID: PMC6818124 DOI: 10.1080/14686996.2019.1669220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 05/27/2023]
Abstract
The isolation of graphene in 2004 has initiated much interest in two-dimensional (2D) materials. With decades of development, solution processing of 2D materials has becoming very promising due to its large-scale production capability, and it is therefore necessary to examine progress on solution-processed 2D materials and their applications. In this review, we highlight recent advances in the assembly of solution-processed 2D materials into thin films and the use of them for electronics and optoelectronics. We first present an overview about typical approaches to assemble solution-processed 2D materials into desired structures, including layer-by-layer assembly, Langmuir-Blodgett assembly, spin coating, electrophoretic deposition, inkjet printing, and vacuum filtration. Then, electronic and optoelectronic applications of such assembly films are presented, such as thin-film transistors, transparent conductive films, mechanical and chemical sensors, photodetectors and optoelectronic devices, as well as flexible and printed electronics. Finally, our perspectives on challenges and future opportunities in this important field are proposed.
Collapse
Affiliation(s)
- Jingyun Wang
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, P. R. China
| |
Collapse
|
32
|
Huang C, Sun Z, Cui H, Pan T, Geng S, Zhou W, Chu PK, Yu XF. InSe Nanosheets for Efficient NIR-II-Responsive Drug Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27521-27528. [PMID: 31180631 DOI: 10.1021/acsami.9b06170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Near-infrared-II (NIR-II) biowindow is appealing from the perspectives of larger maximum permissible exposure in comparison with the near-infrared-I biowindow, so the NIR-II-responsive drug-delivery nanoplatform is highly desirable. In this work, two-dimensional InSe nanosheets (InSe NSs) are modified with poly(ethylene glycol) and evaluated as an effective NIR-II-responsive cancer treatment nanoplatform. The InSe NSs synthesized by liquid exfoliation exhibit prominent NIR-II-responsive photothermal conversion efficiency (39.5%) and photothermal stability. Moreover, the InSe NSs have a doxorubicin (DOX) loading capacity as high as 93.6%, along with excellent NIR-II-responsive DOX release characteristic. The superior synergistic chemo/photothermal effects have also been demonstrated by the in vitro experiments in killing cancer cells. In combination with good biocompatibility, the InSe NSs have great potential in therapeutic applications.
Collapse
Affiliation(s)
- Chi Huang
- Institute of Chemical Biology and Nanomedicine, Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Zhengbo Sun
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Haodong Cui
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Ting Pan
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Shengyong Geng
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Wenhua Zhou
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong 999077 , China
| | - Xue-Feng Yu
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| |
Collapse
|
33
|
Sun J, Choi Y, Choi YJ, Kim S, Park JH, Lee S, Cho JH. 2D-Organic Hybrid Heterostructures for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803831. [PMID: 30786064 DOI: 10.1002/adma.201803831] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/10/2019] [Indexed: 05/08/2023]
Abstract
The unique properties of hybrid heterostructures have motivated the integration of two or more different types of nanomaterials into a single optoelectronic device structure. Despite the promising features of organic semiconductors, such as their acceptable optoelectronic properties, availability of low-cost processes for their fabrication, and flexibility, further optimization of both material properties and device performances remains to be achieved. With the emergence of atomically thin 2D materials, they have been integrated with conventional organic semiconductors to form multidimensional heterostructures that overcome the present limitations and provide further opportunities in the field of optoelectronics. Herein, a comprehensive review of emerging 2D-organic heterostructures-from their synthesis and fabrication to their state-of-the-art optoelectronic applications-is presented. Future challenges and opportunities associated with these heterostructures are highlighted.
Collapse
Affiliation(s)
- Jia Sun
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yongsuk Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Young Jin Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jin-Hong Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Sungjoo Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jeong Ho Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| |
Collapse
|
34
|
Zhang CJ, McKeon L, Kremer MP, Park SH, Ronan O, Seral-Ascaso A, Barwich S, Coileáin CÓ, McEvoy N, Nerl HC, Anasori B, Coleman JN, Gogotsi Y, Nicolosi V. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun 2019; 10:1795. [PMID: 30996224 PMCID: PMC6470171 DOI: 10.1038/s41467-019-09398-1] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 11/26/2022] Open
Abstract
Direct printing of functional inks is critical for applications in diverse areas including electrochemical energy storage, smart electronics and healthcare. However, the available printable ink formulations are far from ideal. Either surfactants/additives are typically involved or the ink concentration is low, which add complexity to the manufacturing and compromises the printing resolution. Here, we demonstrate two types of two-dimensional titanium carbide (Ti3C2Tx) MXene inks, aqueous and organic in the absence of any additive or binary-solvent systems, for extrusion printing and inkjet printing, respectively. We show examples of all-MXene-printed structures, such as micro-supercapacitors, conductive tracks and ohmic resistors on untreated plastic and paper substrates, with high printing resolution and spatial uniformity. The volumetric capacitance and energy density of the all-MXene-printed micro-supercapacitors are orders of magnitude greater than existing inkjet/extrusion-printed active materials. The versatile direct-ink-printing technique highlights the promise of additive-free MXene inks for scalable fabrication of easy-to-integrate components of printable electronics. Printing functional inks is attractive for applications in electrochemical energy storage and smart electronics, among others. Here the authors report highly concentrated, additive-free, aqueous and organic MXene-based inks that can be used for high-resolution extrusion and inkjet printing.
Collapse
Affiliation(s)
- Chuanfang John Zhang
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland. .,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Lorcan McKeon
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthias P Kremer
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,I-FORM Advanced Manufacturing Research Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Sang-Hoon Park
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Oskar Ronan
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Andrés Seral-Ascaso
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Sebastian Barwich
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Cormac Ó Coileáin
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niall McEvoy
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Hannah C Nerl
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Babak Anasori
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jonathan N Coleman
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA.
| | - Valeria Nicolosi
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland. .,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland. .,I-FORM Advanced Manufacturing Research Centre, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
35
|
Qin J, Wang X, Jiang Q, Cao M. Optimizing Dispersion, Exfoliation, Synthesis, and Device Fabrication of Inorganic Nanomaterials Using Hansen Solubility Parameters. Chemphyschem 2019; 20:1069-1097. [DOI: 10.1002/cphc.201900110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jinwen Qin
- Key Laboratory of Cluster Science, Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xin Wang
- Key Laboratory of Cluster Science, Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Qiwang Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
36
|
Zhong C, Sangwan VK, Kang J, Luxa J, Sofer Z, Hersam MC, Weiss EA. Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals. J Phys Chem Lett 2019; 10:493-499. [PMID: 30642181 DOI: 10.1021/acs.jpclett.8b03543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Layered indium selenide (InSe) is a van der Waals solid that has emerged as a promising material for high-performance ultrathin solar cells. The optoelectronic parameters that are critical to photoconversion efficiencies, such as hot carrier lifetime and surface recombination velocity, are however largely unexplored in InSe. Here, these key photophysical properties of layered InSe are measured with femtosecond transient reflection spectroscopy. The hot carrier cooling process is found to occur through phonon scattering. The surface recombination velocity and ambipolar diffusion coefficient are extracted from fits to the pump energy-dependent transient reflection kinetics using a free carrier diffusion model. The extracted surface recombination velocity is approximately an order of magnitude larger than that for methylammonium lead-iodide perovskites, suggesting that surface recombination is a principal source of photocarrier loss in InSe. The extracted ambipolar diffusion coefficient is consistent with previously reported values of InSe carrier mobility.
Collapse
Affiliation(s)
- Chengmei Zhong
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Joohoon Kang
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jan Luxa
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technicka 5 , 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technicka 5 , 166 28 Prague 6, Czech Republic
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Emily A Weiss
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
37
|
Two Dimensional β-InSe with Layer-Dependent Properties: Band Alignment, Work Function and Optical Properties. NANOMATERIALS 2019; 9:nano9010082. [PMID: 30634415 PMCID: PMC6358860 DOI: 10.3390/nano9010082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022]
Abstract
Density functional theory calculations of the layer (L)-dependent electronic band structure, work function and optical properties of β-InSe have been reported. Owing to the quantum size effects (QSEs) in β-InSe, the band structures exhibit direct-to-indirect transitions from bulk β-InSe to few-layer β-InSe. The work functions decrease monotonically from 5.22 eV (1 L) to 5.0 eV (6 L) and then remain constant at 4.99 eV for 7 L and 8 L and drop down to 4.77 eV (bulk β-InSe). For optical properties, the imaginary part of the dielectric function has a strong dependence on the thickness variation. Layer control in two-dimensional layered materials provides an effective strategy to modulate the layer-dependent properties which have potential applications in the next-generation high performance electronic and optoelectronic devices.
Collapse
|
38
|
Ariga K, Makita T, Ito M, Mori T, Watanabe S, Takeya J. Review of advanced sensor devices employing nanoarchitectonics concepts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2014-2030. [PMID: 31667049 PMCID: PMC6808193 DOI: 10.3762/bjnano.10.198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/06/2019] [Indexed: 05/09/2023]
Abstract
Many recent advances in sensor technology have been possible due to nanotechnological advancements together with contributions from other research fields. Such interdisciplinary collaborations fit well with the emerging concept of nanoarchitectonics, which is a novel conceptual methodology to engineer functional materials and systems from nanoscale units through the fusion of nanotechnology with other research fields, including organic chemistry, supramolecular chemistry, materials science and biology. In this review article, we discuss recent advancements in sensor devices and sensor materials that take advantage of advanced nanoarchitectonics concepts for improved performance. In the first part, recent progress on sensor systems are roughly classified according to the sensor targets, such as chemical substances, physical conditions, and biological phenomena. In the following sections, advancements in various nanoarchitectonic motifs, including nanoporous structures, ultrathin films, and interfacial effects for improved sensor function are discussed to realize the importance of nanoarchitectonic structures. Many of these examples show that advancements in sensor technology are no longer limited by progress in microfabrication and nanofabrication of device structures - opening a new avenue for highly engineered, high performing sensor systems through the application of nanoarchitectonics concepts.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Tatsuyuki Makita
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Masato Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Shun Watanabe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Jun Takeya
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
39
|
Wells SA, Henning A, Gish JT, Sangwan VK, Lauhon LJ, Hersam MC. Suppressing Ambient Degradation of Exfoliated InSe Nanosheet Devices via Seeded Atomic Layer Deposition Encapsulation. NANO LETTERS 2018; 18:7876-7882. [PMID: 30418785 DOI: 10.1021/acs.nanolett.8b03689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
With exceptional charge carrier mobilities and a direct bandgap at most thicknesses, indium selenide (InSe) is an emerging layered semiconductor that has generated significant interest for electronic and optoelectronic applications. However, exfoliated InSe nanosheets are susceptible to rapid degradation in ambient conditions, thus limiting their technological potential. In addition to morphological changes upon ambient exposure, the mobilities and current modulation on/off ratios of InSe transistors, as well as the responsivities of InSe photodetectors, decrease by over 3 orders of magnitude within 12 h of ambient exposure. In an effort to mitigate these deleterious effects, here we present an encapsulation scheme based on seeded atomic layer deposition that provides pinhole-free growth of alumina without compromising the intrinsic electronic properties of the underlying InSe. In particular, this encapsulation provides reproducible InSe field-effect transistor characteristics and InSe photodetector responsivities in excess of 107 A/W following ambient exposure for time periods on the order of months. Because atomic layer deposition is a highly scalable and manufacturable process, this work will accelerate ongoing efforts to integrate InSe nanosheets into electronic and optoelectronic technologies.
Collapse
Affiliation(s)
- Spencer A Wells
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Alex Henning
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - J Tyler Gish
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Electrical Engineering and Computer Science , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
40
|
Husko C, Kang J, Moille G, Wood JD, Han Z, Gosztola D, Ma X, Combrié S, De Rossi A, Hersam MC, Checoury X, Guest JR. Silicon-Phosphorene Nanocavity-Enhanced Optical Emission at Telecommunications Wavelengths. NANO LETTERS 2018; 18:6515-6520. [PMID: 30252485 DOI: 10.1021/acs.nanolett.8b03037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Generating and amplifying light in silicon (Si) continues to attract significant attention due to the possibility of integrating optical and electronic components in a single material platform. Unfortunately, silicon is an indirect band gap material and therefore an inefficient emitter of light. With the rise of integrated photonics, the search for silicon-based light sources has evolved from a scientific quest to a major technological bottleneck for scalable, CMOS-compatible, light sources. Recently, emerging two-dimensional materials have opened the prospect of tailoring material properties based on atomic layers. Few-layer phosphorene, which is isolated through exfoliation from black phosphorus (BP), is a great candidate to partner with silicon due to its layer-tunable direct band gap in the near-infrared where silicon is transparent. Here we demonstrate a hybrid silicon optical emitter composed of few-layer phosphorene nanomaterial flakes coupled to silicon photonic crystal resonators. We show single-mode emission in the telecommunications band of 1.55 μm ( Eg = 0.8 eV) under continuous wave optical excitation at room temperature. The solution-processed few-layer BP flakes enable tunable emission across a broad range of wavelengths and the simultaneous creation of multiple devices. Our work highlights the versatility of the Si-BP material platform for creating optically active devices in integrated silicon chips.
Collapse
Affiliation(s)
- Chad Husko
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Joohoon Kang
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Gregory Moille
- Centre de Nanosciences et de Nanotechnologies, CNRS , Université Paris-Sud , Université Paris-Saclay, Bât. 220, 91405 Orsay cedex , France
| | - Joshua D Wood
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Zheng Han
- Centre de Nanosciences et de Nanotechnologies, CNRS , Université Paris-Sud , Université Paris-Saclay, Bât. 220, 91405 Orsay cedex , France
| | - David Gosztola
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Xuedan Ma
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Sylvain Combrié
- Thales Research and Technology , 1 Av. A. Fresnel 128 , 91767 Palaiseau , France
| | - Alfredo De Rossi
- Thales Research and Technology , 1 Av. A. Fresnel 128 , 91767 Palaiseau , France
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Xavier Checoury
- Centre de Nanosciences et de Nanotechnologies, CNRS , Université Paris-Sud , Université Paris-Saclay, Bât. 220, 91405 Orsay cedex , France
| | - Jeffrey R Guest
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|