1
|
Dasika PS, Zhang Y, Sullivan TN, Tavares S, Meyers MA, Zavattieri PD. Mechanistic insights into hydration-driven shape memory response in keratinous avian feather structures. Acta Biomater 2025; 195:144-156. [PMID: 39923951 DOI: 10.1016/j.actbio.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Keratinous materials found in the feather shafts of flying birds possess impressive mechanical attributes, combining excellent strength-to-weight balance, toughness, and more. In this study, we investigate the shape memory effect in bird feather shafts, examining its underlying design principles as templates for bioinspired shape memory composites. Through analytical and computational analysis, we aim to uncover the underlying rules and design guidelines based on stimulus-induced softening (pertaining to strength and/or stiffness) and swelling (pertaining to expansion in volume). More specifically, we study a one-dimensional case to examine the synergistic relationship between the matrix and fibers inside the feather structure. We propose three distinct micro-mechanical modeling approaches to evaluate the contribution of each hydration-induced effect-softening, swelling, and the combined action of both. In all models, the matrix is considered to be an elastic-perfectly plastic material that is sensitive to hydration, while the fibers are treated as purely elastic and unaffected by hydration. The findings of the study provide informative insights into the nuanced nature of swelling within the material, highlighting that its desirability is dependent on specific conditions and circumstances. Furthermore, we find that the softening component plays a large pivotal role in driving the process of shape recovery. Using the proposed analytical framework and design principles, we develop a conceptual feather shaft-like composite, followed by demonstrating its tunability in degree of shape recovery and its versatility in selecting constituent base material components. This research offers valuable core framework for exploring and designing advanced bioinspired shape memory materials while eliminating the need for traditionally active shape memory components, holding promising potential for actuation, deployment, and morphing purposes. STATEMENT OF SIGNIFICANCE: This study investigates the shape-memory effect in bird feather shafts, offering bioinspired strategies for designing advanced shape-memory composites. Unlike conventional materials, which often rely on external stimuli or active components, our research focuses on hydration-driven mechanisms-specifically, matrix softening and swelling. Through micro-mechanical modeling, we demonstrate that softening is the key driver of shape recovery, while swelling plays a secondary role under specific conditions. These insights provide new, passive design principles for creating tunable shape-memory composites without the need for traditional active components. The findings have broad implications for applications in actuation, morphing, and reconfigurable systems, where material adaptability is crucial.
Collapse
Affiliation(s)
- Phani Saketh Dasika
- Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yunlan Zhang
- Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Tarah N Sullivan
- Departments of Nanoengineering and Mechanical and Aerospace Engineering, Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Sheron Tavares
- Departments of Nanoengineering and Mechanical and Aerospace Engineering, Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc A Meyers
- Departments of Nanoengineering and Mechanical and Aerospace Engineering, Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Pablo D Zavattieri
- Lyles School of Civil and Construction Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
He C, Bai Q, Huang J, Xue Z, Wu M, Lv Y. Construction of magnetic response nanocellulose particles to realize smart antibacterial of Pickering emulsion. Int J Biol Macromol 2025; 294:139408. [PMID: 39753168 DOI: 10.1016/j.ijbiomac.2024.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, Fe3O4 was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl3 and FeCl2 was 1.5:1, the prepared particles CNC/Fe1.5 exhibited the maximum saturation magnetization intensity of 54.98 emu/g and good emulsion stability, which was used to emulsify oregano essential oil (OEO) to fabricate smart antibacterial Pickering emulsion with magnetically responsive ability. The emulsion with the oil-water ratio of 3:7 and the particle concentration of 0.3 wt% showed the excellent stability and sensitive responsiveness of magnetic. The OEO released rapidly within 0-8 h followed by the slow release when the emulsion was stimulated by 0.2 T, 0.4 T and 0.6 T magnetic field. The antibacterial rate of the emulsion was close to 100 % against both E. coli and L. monocytogenes at magnetic field with 0.4 T and 0.6 T in 12 h, achieving the smart antimicrobial. The prepared smart antibacterial Pickering emulsion would provide a novel material and have the potential in food packaging.
Collapse
Affiliation(s)
- Chongfeng He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qishu Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jingshao Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhou Xue
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Yanna Lv
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Yucknovsky A, Amdursky N. Photoacids and Photobases: Applications in Functional Dynamic Systems. Angew Chem Int Ed Engl 2025; 64:e202422963. [PMID: 39888194 PMCID: PMC11848990 DOI: 10.1002/anie.202422963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 02/01/2025]
Abstract
Brønsted photoacids and photobases are a unique class of molecules that undergo a major change in their pKa values between their ground and excited states, resulting in donating or accepting a proton, respectively, but only after light excitation. This property of photoacids/photobases makes them an attractive tool for light-gating various dynamic processes. Here, we review the use of this property to manipulate functional dynamic systems with light. We discuss how a proton transfer event that can happen upon light excitation from a photoacid to a chemical moiety of a certain system or, vice versa, from the system to a photobase, can result in a shift in the equilibrium of the system, resulting in some dynamicity. We detail various systems, including self-assembly processes of nanostructures, self-propulsion of droplets, catalysis for hydrogen evolution or CO2 capturing, nanotechnological devices based on enzymatic processes, and changes in proton-conducting ionophores and materials. We detail the basic guidelines for using Brønsted photoacids and photobases in a desired system and conclude with the current technological gaps in further using these molecules.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TA
| | - Nadav Amdursky
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa3200003Israel
- ChemistrySchool of Mathematical and Physical SciencesUniversity of SheffieldSheffieldS3 7HFUnited Kingdom
| |
Collapse
|
4
|
Seo W, Haines CS, Kim H, Park CL, Kim SH, Park S, Kim DG, Choi J, Baughman RH, Ware TH, Lee H, Kim H. Azobenzene-Functionalized Semicrystalline Liquid Crystal Elastomer Springs for Underwater Soft Robotic Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406493. [PMID: 39428897 DOI: 10.1002/smll.202406493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Indexed: 10/22/2024]
Abstract
As actuated devices become smaller and more complex, there is a need for smart materials and structures that directly function as complete mechanical units without an external power supply. The strategy uses light-powered, twisted, and coiled azobenzene-functionalized semicrystalline liquid crystal elastomer (AC-LCE) springs. This twisting and coiling, which has previously been used for only thermally, electrochemically, or absorption-powered muscles, maximizes uniaxial and radial actuation. The specially designed photochemical muscles can undergo about 60% tensile stroke and provide 15 kJ m-3 of work capacity in response to light, thus providing about three times and two times higher performance, respectively, than previous azobenzene actuators. Since this actuation is photochemical, driven by ultraviolet (UV) light and reversed by visible light, isothermal actuation can occur in a range of environmental conditions, including underwater. In addition, photoisomerization of the AC-LCEs enables unique latch-like actuation, eliminating the need for continuous energy application to maintain the stroke. Also, as the light-powered muscles processed to be either homochiral or heterochiral, the direction of actuation can be reversed. The presented approach highlights the novel capabilities of photochemical actuator materials that can be manipulated in untethered, isothermal, and wet environmental conditions, thus suggesting various potential applications, including underwater soft robotics.
Collapse
Affiliation(s)
- Wonbin Seo
- School of Mechanical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Carter S Haines
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hongdeok Kim
- Department of Mechanical Design Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chae-Lin Park
- HYU-KITECH Joint Department, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Shi Hyeong Kim
- HYU-KITECH Joint Department, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| | - Joonmyung Choi
- Department of Mechanical Design Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ray H Baughman
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Taylor H Ware
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Habeom Lee
- School of Mechanical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
5
|
Wi Y, Kang DG, Ko H, Oh M, Jang J, Rim M, Lee KM, Godman NP, McConney ME, Jeong KU. Zwitterion Interlocked Diarylethene Molecules Order, Unconnected Diarylethene Molecules Disorder. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410466. [PMID: 39690865 DOI: 10.1002/smll.202410466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 12/19/2024]
Abstract
A diarylethene-based zwitterionic molecule (DZM) is newly synthesized for the development of smart films exhibiting reversible color change and switchable ionic conductivity in response to external light stimuli. This dual molecular building block is constructed through zwitterionic interlocking and strong phase separation between the dendron-shaped aliphatic tails and the diarylethene head. Uniaxial shear coating and molecular self-assembly result in anisotropically oriented nanostructures, which are further solidified through photopolymerization. In the absence of zwitterionic interlocking, DZM fails to form ordered structures and remains disordered. The anisotropically oriented nanostructures of DZM exhibit polarization-dependent photochromic properties despite the inherent low anisotropy of a single diarylethene chromophore. Structural analysis reveals that the zwitterion-interlocked molecular building block self-assemble into nanocolumns that align uniaxially during the shear coating process. Alternating ultraviolet and visible light reversibly switches the ionic conductivity of the DZM thin film and a change in color is observed due to the photoisomerization of the diarylethene chromophore. Utilizing the polarization-dependent photochromic properties, light-sensitive smart thin films are demonstrated with potential applications in anti-counterfeiting labels and sensors.
Collapse
Affiliation(s)
- Youngjae Wi
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong-Gue Kang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mintaek Oh
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Junhwa Jang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kyung Min Lee
- US Air Force Research Laboratory, Wright-Patterson Air Force Base Dayton, Dayton, OH, 45433, USA
| | - Nicholas P Godman
- US Air Force Research Laboratory, Wright-Patterson Air Force Base Dayton, Dayton, OH, 45433, USA
| | - Michael E McConney
- US Air Force Research Laboratory, Wright-Patterson Air Force Base Dayton, Dayton, OH, 45433, USA
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
6
|
Asselin P, Harvey PD. Thoughts on the Rational Design of MOF-Guest Interactions for Future Intelligent Materials. SMALL METHODS 2024; 8:e2400584. [PMID: 39428953 DOI: 10.1002/smtd.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Indexed: 10/22/2024]
Abstract
The MOF-guest relationship is broken down in elementary phases, descriptors, and parameters. These descriptors and parameters allow precise descriptions of processes, whether they occur at the point when the guest enters the MOF, during the stay, or at the point of exiting. Description of these three phases is possible according to the location of the guest inside the MOF, the activity between MOF and guest, whether stimuli can be used, and whether a selective action can be exercised. The vocabulary provided herein can be useful to better formulate requirements when designing host-guest interactions in, and building new classes of, intelligent materials.
Collapse
Affiliation(s)
- Paul Asselin
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
7
|
Yi Q, Liu L, Xie G. Recent Advances of Stimuli-Responsive Liquid-Liquid Interfaces Stabilized by Nanoparticles. ACS NANO 2024; 18:32364-32385. [PMID: 39545824 DOI: 10.1021/acsnano.4c11387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Liquid-liquid interfaces offer highly controlled, flexible, and adaptable platforms for precise molecular assemblies, enabling the construction of sophisticated functional materials. Interfacial assemblies of specific nanoparticles (NPs) and ligands can alter their physicochemical states under external stimuli, leading to macroscopic dynamic transformations at the interface. This Review summarizes and analyzes the recent advances of the assembly and disassembly behaviors of various stimuli-responsive nanoparticle surfactants (NPSs) at liquid-liquid interfaces, focusing on their responsive behaviors when exposed to external stimuli and the interaction forces between interfacial molecules. Additionally, we outline recent advancements in applications such as reconfigurable all-liquid devices, all-liquid 3D printing, and chemical reaction platforms. Finally, we discuss current challenges and future prospects for the development of applications in this rapidly evolving field.
Collapse
Affiliation(s)
- Qinpiao Yi
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liang Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ganhua Xie
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Yin X, He S, Fu X, Xiong X, Song Y, Zhao Q. Shape-Regulated Motion and Energy Conversion of Polyelectrolyte Membrane Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407560. [PMID: 39139020 DOI: 10.1002/adma.202407560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Smart actuators hold great potential in soft robotics and sensors, but their movement at the fluid interface is less understood and controlled, hindering their performances and applications in complicated fluids. Here an ethanol-containing polyelectrolyte actuator is prepared that demonstrates excellent actuating performance via the Marangoni effect. These actuators exhibit enduring (17 min), repeatable (50 cycles), and autonomous motion on the water surface. More importantly, the motion of actuators are dependent on their shapes. Polygonal actuators with more edges exhibit round motion attached to walls of containers, while the actuators with few edges move randomly. On the basis of this property, the circular actuators can pass through pipe bends with S-shaped complex geometry. These unique advantages lend the actuators to successful applications in wireless sensing (standard 0-5 V level signals) for locating obstructions inside invisible pipes and continuous energy harvesting (7700 nC per cycle) for micro mechanical energy.
Collapse
Affiliation(s)
- Xianze Yin
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Shuyan He
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xinming Fu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiaoshuang Xiong
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yiheng Song
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Qiang Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
Graham AJ, Partipilo G, Dundas CM, Miniel Mahfoud IE, Halwachs KN, Holwerda AJ, Simmons TR, FitzSimons TM, Coleman SM, Rinehart R, Chiu D, Tyndall AE, Sajbel KC, Rosales AM, Keitz BK. Transcriptional regulation of living materials via extracellular electron transfer. Nat Chem Biol 2024; 20:1329-1340. [PMID: 38783133 DOI: 10.1038/s41589-024-01628-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Engineered living materials combine the advantages of biological and synthetic systems by leveraging genetic and metabolic programming to control material-wide properties. Here, we demonstrate that extracellular electron transfer (EET), a microbial respiration process, can serve as a tunable bridge between live cell metabolism and synthetic material properties. In this system, EET flux from Shewanella oneidensis to a copper catalyst controls hydrogel cross-linking via two distinct chemistries to form living synthetic polymer networks. We first demonstrate that synthetic biology-inspired design rules derived from fluorescence parameterization can be applied toward EET-based regulation of polymer network mechanics. We then program transcriptional Boolean logic gates to govern EET gene expression, which enables design of computational polymer networks that mechanically respond to combinations of molecular inputs. Finally, we control fibroblast morphology using EET as a bridge for programmed material properties. Our results demonstrate how rational genetic circuit design can emulate physiological behavior in engineered living materials.
Collapse
Affiliation(s)
- Austin J Graham
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christopher M Dundas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Ismar E Miniel Mahfoud
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA
| | - Kathleen N Halwachs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Alexis J Holwerda
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA
| | - Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Thomas M FitzSimons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rebecca Rinehart
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Darian Chiu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Avery E Tyndall
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth C Sajbel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Yu W, Zhao W, Zhu X, Li M, Yi X, Liu X. Laser-Printed All-Carbon Responsive Material and Soft Robot. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401920. [PMID: 39011802 DOI: 10.1002/adma.202401920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Responsive materials and actuators are the basis for the development of various leading-edge technologies but have so far mostly been designed based on polymers, incurring key limitations related to sensitivity and environmental tolerance. This work reports a new responsive material, laser-printed carbon film (LPCF), produced via direct laser transformation of a liquid organic precursor and consists of graphitic and amorphous carbons. The high activity of amorphous carbon combined with the dual-gradient structure enables the LPCF to have a actuation speed of 9400° s-1 in response to the stimulus of organic vapor. LPCF exhibits a conductivity of 950 S m-1 and excellent resistance to various extreme environmental conditions, which are unachievable for polymer-based materials. Additionally, an LPCF-based all-carbon soft robot that can mimic the complex continuous backward somersaulting motions without manual intervention is constructed. The locomotion velocity of the robot reaches a value of 1.19 BL s-1, which is almost one to two orders of magnitude faster than that of reported soft robots. This work not only offers a new paradigm for highly responsive materials but also provides a great design and engineering example for the next generation of biomimetic robots with life-like performance.
Collapse
Affiliation(s)
- Wenjie Yu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinbei Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyue Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaosu Yi
- Yangtze River Delta Carbon Fiber and Composite Technology Innovation Center, Changzhou, 213000, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
12
|
Rahimnejad M, Jahangiri S, Zirak Hassan Kiadeh S, Rezvaninejad S, Ahmadi Z, Ahmadi S, Safarkhani M, Rabiee N. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit Rev Biotechnol 2024; 44:860-891. [PMID: 37442771 DOI: 10.1080/07388551.2023.2213398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023]
Abstract
3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montréal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, Canada
| | | | | | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- School of Engineering, Macquarie University, Sydney, Australia
| |
Collapse
|
13
|
Lin H, Song X, Wu X, Cao Y, Liu Z, Zhang R, Yao Q, Xie J. Fluorescent Enhancement of [AgS 4] Microplates by Mechanical Force Induced Crystallinity Breaking. J Phys Chem Lett 2024; 15:7118-7124. [PMID: 38959028 DOI: 10.1021/acs.jpclett.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mechanofluorochromic materials are a type of "smart" material because of their adjustable fluorescent properties under external mechanical force, making them significant members of the materials family. However, as the fluorescent characteristics of these materials highly depend on their microstructures, the still insufficiently in-depth research linking molecular structures to light emission motivates researchers to explore the fluorescent properties of these materials under external stimuli. In this work, based on synthetic [AgS4] microplates, we explore a fascinating mechanical-induced photoluminescent enhancement phenomenon. By applying mechanical force to solid-state [AgS4] to damage the surface morphology, a significant enhancement in photoluminescence is observed. Moreover, the emitted intensity increases with the extent of damage, which can be attributed to alterations in crystallinity. This work provides valuable insights into the relationship among photoluminescence, crystallinity, and mechanical force, offering new strategies for designing luminescent devices.
Collapse
Affiliation(s)
- Hongbin Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, Science drive 3, Singapore 117543, Singapore
| | - Yitao Cao
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs; Engineering Research Center of MTEES (Ministry of Education), and Key Lab of ETESPG (GHEI), School of Chemistry South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhenghan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
14
|
Chen G, Ma B, Chen Y, Chen Y, Zhang J, Liu H. Soft Robots with Plant-Inspired Gravitropism Based on Fluidic Liquid Metal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306129. [PMID: 38447146 PMCID: PMC11095172 DOI: 10.1002/advs.202306129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/24/2024] [Indexed: 03/08/2024]
Abstract
Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.
Collapse
Affiliation(s)
- Gangsheng Chen
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Biao Ma
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yi Chen
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yanjie Chen
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jin Zhang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Hong Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
15
|
Ye WQ, Zhang W, Xu ZR. Shape-memory microfluidic chips for fluid and droplet manipulation. BIOMICROFLUIDICS 2024; 18:021301. [PMID: 38566823 PMCID: PMC10987193 DOI: 10.1063/5.0188227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Fluid manipulation is an important foundation of microfluidic technology. Various methods and devices have been developed for fluid control, such as electrowetting-on-dielectric-based digital microfluidic platforms, microfluidic pumps, and pneumatic valves. These devices enable precise manipulation of small volumes of fluids. However, their complexity and high cost limit the commercialization and widespread adoption of microfluidic technology. Shape memory polymers as smart materials can adjust their shape in response to external stimuli. By integrating shape memory polymers into microfluidic chips, new possibilities for expanding the application areas of microfluidic technology emerge. These shape memory polymers can serve as actuators or regulators to drive or control fluid flow in microfluidic systems, offering innovative approaches for fluid manipulation. Due to their unique properties, shape memory polymers provide a new solution for the construction of intelligent and automated microfluidic systems. Shape memory microfluidic chips are expected to be one of the future directions in the development of microfluidic technology. This article offers a summary of recent research achievements in the field of shape memory microfluidic chips for fluid and droplet manipulation and provides insights into the future development direction of shape memory microfluidic devices.
Collapse
Affiliation(s)
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
16
|
Chen L, Low HR, Jiang Y, Zhang WY, Ao CK, Tan YJN, Lim KH, Soh S. Functional polymeric molecules for performing autonomous synthesis of particles with core-shell structures and customizable shapes. MATERIALS HORIZONS 2024; 11:1054-1064. [PMID: 38084052 DOI: 10.1039/d3mh01480k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Self-organization by the directed migration of components within a system is an important process in many applications, such as the unidirectional migration of motor proteins for transporting items to specific sites in a cell. This manuscript describes a class of functional polymeric molecules that have a set of instructions written by specific chemical moieties. These instructions allow the functional polymeric molecules to be used for autonomous synthesis of particles: particles with both functional core-shell structure and customizable shapes are fabricated for the first time. The functional polymeric molecules direct the large-scale migration of the liquid molecules to specific sites for forming the required customized structure of the particle, thus overcoming previous challenges of fabricating this class of particles. This first synthesis of this class of particles enables the development of novel applications: the concept of shape specificity for targeting sites. Both the basic structural properties (core-shell structure and customizable shape) are used in the specific applications of targeted drug delivery and imaging. The secure physical fit due to the complementary shapes enables the particles to remain locked in position for the targeting. Polymeric molecules are first shown to be highly capable of being encoded with instructions for autonomous synthesis of structured materials.
Collapse
Affiliation(s)
- Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Han Rou Low
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Yan Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Wan Yu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Chi Kit Ao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Yan Jie Neriah Tan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
17
|
Paul I, Valiyev I, Schmittel M. Chemically Fueled Logic AND Gate with Double Encoding in the Time Domain. J Am Chem Soc 2024; 146:2435-2444. [PMID: 38251983 DOI: 10.1021/jacs.3c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To increase information density and security in communication, Nature at times encodes signals in the time domain, for instance, Ca2+ ion signals. Double encoding in the time domain operates beyond this level of security because the data are encoded in two time-dependent output signals showing distinct periods, frequencies, and full duration half-maxima. To illustrate such a protocol, a three-component ensemble consisting of a double ion-selective luminophore with two distinct receptor sites, hexacyclen, and diaza-18-crown-6 ether is demonstrated to act as a logic AND gate with Ag+ and Ca2+ ions as inputs. The gate shows an unprecedented 2-fold time-encoded fluorescence output at 590 and 488 nm based on metal ion pulses with distinct periods when trichloroacetic acid is applied as chemical fuel.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| |
Collapse
|
18
|
Wu M, Xue Z, Wang C, Wang T, Zou D, Lu P, Song X. Smart antibacterial nanocellulose packaging film based on pH-stimulate responsive microcapsules synthesized by Pickering emulsion template. Carbohydr Polym 2024; 323:121409. [PMID: 37940292 DOI: 10.1016/j.carbpol.2023.121409] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Spoilage results in food waste and endangers consumer health, and the smart antibacterial packaging can effectively inhibit bacterial growth and reduce food spoilage. In this study, the smart antibacterial nanocellulose packaging films were developed by adding the pH-stimulated responsive microcapsules into cellulose nanofibril (CNF) film-forming. The microcapsules were synthesized by interfacial polymerization of Pickering emulsion. Carboxylated cellulose nanocrystals as solid particles stabilized the composited oil phase to prepare the oil-in-water Pickering emulsion. The emulsion with the particle concentration of 1.25 wt% and the oil phase mass fraction of 7.5 % processes excellent stability and uniform particle size, was chosen to synthesize microcapsules. The cinnamaldehyde in the film with the addition amount of microcapsules 0.6 g burst released in the first 1 h and then slowly, and the cumulative release at pH 2.0, 4.0, 5.5 and 7.2 was 28.43 μg/cm2, 18.84 μg/cm2, 16.52 μg/cm2 and 12.89 μg/cm2, respectively. The inhibitory rate of film against both E. coli and L. monocytogenes reached 99 % at pH 4.0. The shelf life of pork packed by the film prolonged to nearly 9 d at room temperature. The developed films have the potential to be used in food packaging.
Collapse
Affiliation(s)
- Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Zhou Xue
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Caixia Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Dongcheng Zou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xueping Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| |
Collapse
|
19
|
Li S, Aizenberg M, Lerch MM, Aizenberg J. Programming Deformations of 3D Microstructures: Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:1008-1019. [PMID: 38148997 PMCID: PMC10749463 DOI: 10.1021/accountsmr.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/10/2023] [Indexed: 12/28/2023]
Abstract
Synthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery. At the nanoscale, chemistry has taken strides in enabling molecularly fueled movement. Yet in between, at the microscale, top-down fabrication becomes cumbersome and expensive, while bottom-up chemical self-assembly and amplified molecular motion does not reach the necessary sophistication. Hence, new approaches that converge top-down and bottom-up methods and enable motional complexity at the microscale are urgently needed. Synthetic anisotropic materials (e.g., liquid crystalline elastomers, LCEs) with encoded molecular anisotropy that are shaped into arbitrary geometries by top-down fabrication promise new opportunities to implement controlled actuation at the microscale. In such materials, motional complexity is directly linked to the built-in molecular anisotropy that can be "activated" by external stimuli. So far, encoding the desired patterns of molecular directionality has relied mostly on either mechanical or surface alignment techniques, which do not allow the decoupling of molecular and geometric features, severely restricting achievable material shapes and thus limiting attainable actuation patterns, unless complex multimaterial constructs are fabricated. Electromagnetic fields have recently emerged as possible alternatives to provide 3D control over local anisotropy, independent of the geometry of a given 3D object. The combination of magnetic alignment and soft lithography, in particular, provides a powerful platform for the rapid, practical, and facile production of microscale soft actuators with field-defined local anisotropy. Recent work has established the feasibility of this approach with low magnetic field strengths (in the lower mT range) and comparably simple setups used for the fabrication of the microactuators, in which magnetic fields can be engineered through arrangement of permanent magnets. This workflow gives access to microstructures with unusual spatial patterning of molecular alignment and has enabled a multitude of nontrivial deformation types that would not be possible to program by any other means at the micron scale. A range of "activating" stimuli can be used to put these structures in motion, and the type of the trigger plays a key role too: directional and dynamic stimuli (such as light) make it possible to activate the patterned anisotropic material locally and transiently, which enables one to achieve and further program motional complexity and communication in microactuators. In this Account, we will discuss recent advances in magnetic alignment of molecular anisotropy and its use in soft lithography and related fabrication approaches to create LCE microactuators. We will examine how design choices-from the molecular to the fabrication and the operational levels-control and define the achievable LCE deformations. We then address the role of stimuli in realizing the motional complexity and how one can engineer feedback within and communication between microactuator arrays fabricated by soft lithography. Overall, we outline emerging strategies that make possible a completely new approach to designing for desired sets of motions of active, microscale objects.
Collapse
Affiliation(s)
- Shucong Li
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Aizenberg
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael M. Lerch
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Joanna Aizenberg
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
20
|
Julin S, Best N, Anaya-Plaza E, Enlund E, Linko V, Kostiainen MA. Assembly and optically triggered disassembly of lipid-DNA origami fibers. Chem Commun (Camb) 2023; 59:14701-14704. [PMID: 37997149 DOI: 10.1039/d3cc04677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The co-assembly of lipids and other compounds has recently gained increasing interest. Here, we report the formation of stimuli-responsive lipid-DNA origami fibers through the electrostatic co-assembly of cationic lipids and 6-helix bundle (6HB) DNA origami. The photosensitive lipid degrades when exposed to UV-A light, which allows a photoinduced, controlled release of the 6HBs from the fibers. The presented complexation strategy may find uses in developing responsive nanomaterials e.g. for therapeutics.
Collapse
Affiliation(s)
- Sofia Julin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Nadine Best
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Fraunhofer Institute for Microengineering and Microsystems IMM, 55129 Mainz, Germany
| | - Eduardo Anaya-Plaza
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Eeva Enlund
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- LIBER Center of Excellence, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
21
|
Neumann M, di Marco G, Iudin D, Viola M, van Nostrum CF, van Ravensteijn BGP, Vermonden T. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023; 56:8377-8392. [PMID: 38024154 PMCID: PMC10653276 DOI: 10.1021/acs.macromol.3c00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Indexed: 12/01/2023]
Abstract
In the past decade, stimuli-responsive hydrogels are increasingly studied as biomaterials for tissue engineering and regenerative medicine purposes. Smart hydrogels can not only replicate the physicochemical properties of the extracellular matrix but also mimic dynamic processes that are crucial for the regulation of cell behavior. Dynamic changes can be influenced by the hydrogel itself (isotropic vs anisotropic) or guided by applying localized triggers. The resulting swelling-shrinking, shape-morphing, as well as patterns have been shown to influence cell function in a spatiotemporally controlled manner. Furthermore, the use of stimuli-responsive hydrogels as bioinks in 4D bioprinting is very promising as they allow the biofabrication of complex microstructures. This perspective discusses recent cutting-edge advances as well as current challenges in the field of smart biomaterials for tissue engineering. Additionally, emerging trends and potential future directions are addressed.
Collapse
Affiliation(s)
- Myriam Neumann
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Greta di Marco
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Dmitrii Iudin
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Martina Viola
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Bas G. P. van Ravensteijn
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| |
Collapse
|
22
|
Gibalova A, Kortekaas L, Simke J, Ravoo BJ. Multi-responsive Electropolymer Surface Coatings Based on Azo Molecular Switches and Carbazoles: Light, pH, and Electrochemical Control of Z→E Isomerization in Thin Films. Chemistry 2023; 29:e202302215. [PMID: 37565655 DOI: 10.1002/chem.202302215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Light-responsive surfaces are attracting increasing interest, not least because their physicochemical properties can be selectively and temporally controlled by a non-invasive stimulus. Most existing immobilization strategies involve the chemical attachment of light-responsive moieties to the surface, although this approach often suffers from a low surface concentration of active species or a high inhomogeneity of applied coatings. Herein, electropolymerization of carbazoles as a facile and rapid approach for preparing light-responsive azo-based surface coatings is presented. The electrochemical oxidative polymerization of bis-carbazole containing azo-monomers yields stable films, in which the photochemical properties and specific pH sensitivity of azo molecular switches are retained. Moreover, the molecular design enables electrocatalytic control over Z→E azo double bond isomerization facilitated by the conductive polycarbazole backbone. Ultimately, the high degree of control over macromolecular properties yields conductive surface coatings responsive to a range of stimuli, showing great promise as a strategy for versatile application in organic electronics.
Collapse
Affiliation(s)
- Anna Gibalova
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Luuk Kortekaas
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
- Materials Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Julian Simke
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| |
Collapse
|
23
|
Liu T, Zhang C, Huo S, Zhou Y, Yi Y, Zhu G. Target-Controlled Redox Reaction and Ru(II) Release of a Smart Metal-Organic Framework Nanomaterial for Highly Sensitive Ratiometric Homogeneous Electroanalysis of Cadmium(II). Inorg Chem 2023; 62:17425-17432. [PMID: 37812810 DOI: 10.1021/acs.inorgchem.3c02760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
In this work, a highly sensitive ratiometric homogeneous electroanalysis (HEA) strategy of cadmium(II) (Cd2+) was proposed via a Cd2+-controlled redox reaction and Ru(bpy)32+ (Ru(II)) release from a smart metal-organic framework (MOF) nanomaterial. For achieving this purpose, Ru(II) was entrapped ingeniously into the pores of an MOF material (UiO-66-NH2) and subsequently gated by the double-strand hybrids of a Cd2+-aptamer (Apt) and its complementary sequences (CP) to form a novel smart nanomaterial (denoted as Ru@UiO-66-NH2); meanwhile, Fe(III) was selected as an additional probe present in electrolyte to facilitate the Ru(II) redox reaction: Fe(III) + Ru(II) → Fe(II) + Ru(III). Owing to the strong binding effect of the Cd2+ target to the specific Apt, the Apt-CP hybridization at Ru@UiO-66-NH2 would be destroyed in the presence of Cd2+, and the related Apt was further induced away from the smart nanomaterial, leading to the opening of the gate and release of Ru(II). Meanwhile, the released Ru(II) was quickly oxidized chemically by Fe(III) to Ru(III). On the basis of the generated Ru(III) and consumed Fe(III), the ratio of the reduction currents between Ru(III) and Fe(III) exhibits an enhancement and it is dependent on the level of Cd2+; thus, a novel HEA strategy of Cd2+ was then designed. Under the optimal conditions, the HEA sensor shows a wide linearity ranging from 10.0 pM to 500.0 nM, and the achieved detection limit of Cd2+ is 3.3 pM. The as-designed ratiometric HEA strategy not only offers a unique idea to realize a simple and sensitive assay for Cd2+ but also possesses significant potential as an effective tool to be introduced for other target analysis just via altering the specific Apt.
Collapse
Affiliation(s)
- Tingting Liu
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, P.R. China
| | - Conglin Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shuhao Huo
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yifan Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yinhui Yi
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, P.R. China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410019, P.R. China
- The Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, P.R. China
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
24
|
Gentili PL, Stano P. Tracing a new path in the field of AI and robotics: mimicking human intelligence through chemistry. Part II: systems chemistry. Front Robot AI 2023; 10:1266011. [PMID: 37915426 PMCID: PMC10616823 DOI: 10.3389/frobt.2023.1266011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Inspired by some traits of human intelligence, it is proposed that wetware approaches based on molecular, supramolecular, and systems chemistry can provide valuable models and tools for novel forms of robotics and AI, being constituted by soft matter and fluid states as the human nervous system and, more generally, life, is. Bottom-up mimicries of intelligence range from the molecular world to the multicellular level, i.e., from the Ångström (10 - 10 meters) to the micrometer scales (10 - 6 meters), and allows the development of unconventional chemical robotics. Whereas conventional robotics lets humans explore and colonise otherwise inaccessible environments, such as the deep oceanic abysses and other solar system planets, chemical robots will permit us to inspect and control the microscopic molecular and cellular worlds. This article suggests that systems made of properly chosen molecular compounds can implement all those modules that are the fundamental ingredients of every living being: sensory, processing, actuating, and metabolic networks. Autonomous chemical robotics will be within reach when such modules are compartmentalised and assembled. The design of a strongly intertwined web of chemical robots, with or without the involvement of living matter, will give rise to collective forms of intelligence that will probably reproduce, on a minimal scale, some sophisticated performances of the human intellect and will implement forms of "general AI." These remarkable achievements will require a productive interdisciplinary collaboration among chemists, biotechnologists, computer scientists, engineers, physicists, neuroscientists, cognitive scientists, and philosophers to be achieved. The principal purpose of this paper is to spark this revolutionary collaborative scientific endeavour.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DISTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
25
|
Liberka M, Zychowicz M, Hooper J, Nakabayashi K, Ohkoshi SI, Chorazy S. Synchronous Switching of Dielectric Constant and Photoluminescence in Cyanidonitridorhenate-Based Crystals. Angew Chem Int Ed Engl 2023; 62:e202308284. [PMID: 37615930 DOI: 10.1002/anie.202308284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Switching of multiple physical properties by external stimuli in dynamic materials enables applications in, e.g., smart sensors, biomedical tools, as well as data-storage devices. Among stimuli-responsive materials, inorganic-organic molecular hybrids exhibiting thermal order-disorder phase transitions were tested as promising molecular switches of electrical characteristics, including dielectric constant. We aimed at broadening the multifunctional potential of such hybrid materials towards the switching of not only electrical but also other physical properties, e.g., light emission. We report two ionic salts based on luminescent tetracyanidonitridorhenate(V) anions bearing two different diamine ligands, 1,2-diaminoethane (1) and 1,3-diaminopropane (2), both crystallizing with polar N-methyl-dabconium cations. They exhibit an order-disorder phase transition related to the heating-induced turning-on of the rotation of polar cations. This leads to a unique synchronous switching of the dielectric constant as well as metal-complex-centered photoluminescence, as demonstrated by changes in, e.g., emission lifetime. The roles of organic cations, non-trivial Re(V) complexes, and their interaction in achieving the coupled thermal switching of electrical and optical properties are discussed utilizing experimental and theoretical approaches.
Collapse
Affiliation(s)
- Michal Liberka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - James Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
26
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
27
|
Li Y, Li G, Yang X, Miao J, Nie Y, Yang S, Liu W, Cui Y, Sun G. One stimulus-induced two-step photophysical response with high contrast and tunable switching time for dynamic displaying. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122622. [PMID: 36947939 DOI: 10.1016/j.saa.2023.122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
One stimulus-induced two-step photophysical response, especially with tunable switching time, is a great challenge for organic chromophores. Herein, a polymorphic material 2,7-DCF could undergo in situ two sequential dual-channel responses upon dichloromethane fuming. Both the appearance color and the fluorescence change from red to yellow to deep red with high contrast. The first step corresponds to a fast amorphous-to-crystalline transformation, while the second is a slow solid-state cocrystallization process. Based on single crystal structures and theoretical calculations, such distinct color changes are mainly attributed to conformation twisting and the electron coupling with incorporated solvent molecule through C-H⋅⋅⋅O interaction. Importantly, the second slow photophysical response could be drastically sped up by seeding strategy, or be totally inhibited. Such characteristics pave a way for the potential applications in dynamic anti-counterfeiting and data encryption. Based on the two-step transformation, polymorph 2,7-DCF-a could achieve a successive four-level response to external stimuli. In contrast, polymorph 2,7-DCF-d exhibits a stepwise hypsochromic fluorescence shift over 100 nm. This study would significantly promote the development of stimuli-sensitive systems from "one stimulus, one-step response" to "one stimulus, two or multi-step response".
Collapse
Affiliation(s)
- Yexin Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China.
| | - Guoyan Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China
| | - Jinling Miao
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China
| | - Yong Nie
- Institute for Smart Materials & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China
| | - Shuaijun Yang
- Institute for Smart Materials & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China
| | - Wei Liu
- Institute for Smart Materials & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China
| | - Yu Cui
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China
| | - Guoxin Sun
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China.
| |
Collapse
|
28
|
Zbonikowski R, Iwan M, Paczesny J. Stimuli-Responsive Langmuir Films Composed of Nanoparticles Decorated with Poly( N-isopropyl acrylamide) (PNIPAM) at the Air/Water Interface. ACS OMEGA 2023; 8:23706-23719. [PMID: 37426285 PMCID: PMC10323952 DOI: 10.1021/acsomega.3c01862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
The nanotechnology shift from static toward stimuli-responsive systems is gaining momentum. We study adaptive and responsive Langmuir films at the air/water interface to facilitate the creation of two-dimensional (2D) complex systems. We verify the possibility of controlling the assembly of relatively large entities, i.e., nanoparticles with diameter around 90 nm, by inducing conformational changes within an about 5 nm poly(N-isopropyl acrylamide) (PNIPAM) capping layer. The system performs reversible switching between uniform and nonuniform states. The densely packed and uniform state is observed at a higher temperature, i.e., opposite to most phase transitions, where more ordered phases appear at lower temperatures. The induced nanoparticles' conformational changes result in different properties of the interfacial monolayer, including various types of aggregation. The analysis of surface pressure at different temperatures and upon temperature changes, surface potential measurements, surface rheology experiments, Brewster angle microscopy (BAM), and scanning electron microscopy (SEM) observations are accompanied by calculations to discuss the principles of the nanoparticles' self-assembly. Those findings provide guidelines for designing other adaptive 2D systems, such as programable membranes or optical interfacial devices.
Collapse
|
29
|
Wang Z, Zhang X, Wang Y, Fang Z, Jiang H, Yang Q, Zhu X, Liu M, Fan X, Kong J. Untethered Soft Microrobots with Adaptive Logic Gates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206662. [PMID: 36809583 PMCID: PMC10161047 DOI: 10.1002/advs.202206662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Indexed: 05/06/2023]
Abstract
Integrating adaptative logic computation directly into soft microrobots is imperative for the next generation of intelligent soft microrobots as well as for the smart materials to move beyond stimulus-response relationships and toward the intelligent behaviors seen in biological systems. Acquiring adaptivity is coveted for soft microrobots that can adapt to implement different works and respond to different environments either passively or actively through human intervention like biological systems. Here, a novel and simple strategy for constructing untethered soft microrobots based on stimuli-responsive hydrogels that can switch logic gates according to the surrounding stimuli of environment is introduced. Different basic logic gates and combinational logic gates are integrated into a microrobot via a straightforward method. Importantly, two kinds of soft microrobots with adaptive logic gates are designed and fabricated, which can smartly switch logic operation between AND gate and OR gate under different surrounding environmental stimuli. Furthermore, a same magnetic microrobot with adaptive logic gate is used to capture and release the specified objects through the change of the surrounding environmental stimuli based on AND or OR logic gate. This work contributes an innovative strategy to integrate computation into small-scale untethered soft robots with adaptive logic gates.
Collapse
Affiliation(s)
- Zichao Wang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xuan Zhang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yang Wang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Ziyi Fang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - He Jiang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Qinglin Yang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xuefeng Zhu
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Mingze Liu
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xiaodong Fan
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| |
Collapse
|
30
|
Liu T, Zhou R, Zhang C, Yi Y, Zhu G. Homogeneous voltammetric sensing strategy for lead ions based on aptamer gated methylthionine chloride@UiO-66-NH 2 framework as smart target-stimulated responsive nanomaterial. Chem Commun (Camb) 2023; 59:3771-3774. [PMID: 36912279 DOI: 10.1039/d3cc00940h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Herein an innovative electrochemical method is proposed for the determination of lead ions (Pb2+) based on a homogeneous voltammetric (HVC) sensing strategy using an aptamer gated methylthionine chloride@UiO-66-NH2 framework as a smart target-stimulated responsive material. The proposed HVC sensor exhibits excellent sensing performance: ultralow detection limit (0.166 pM) and wide linearity (5.0 pM-500.0 nM), simultaneously, it avoids electrodeposition processes and it is simple to modify the electrode compared to previous electrochemical methods for Pb2+ detection. Thus our method shows great potential in the highly efficient detection of Pb2+ and other heavy metal ions by simply altering the related specific aptamer.
Collapse
Affiliation(s)
- Tingting Liu
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Ruiyong Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Conglin Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Yinhui Yi
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, P. R. China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, P. R. China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, P. R. China
| |
Collapse
|
31
|
Guo Y, An X, Qian X. Fast Response and Visual Transparency Switching Hydrochromic Film Based on the Rational Structure of Cellulose/Poloxamer Copolymers Design for Smart Window. Macromol Rapid Commun 2023; 44:e2200831. [PMID: 36583648 DOI: 10.1002/marc.202200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Indexed: 12/31/2022]
Abstract
The authors are motivated to develop a series of hydrochromic copolymers with fast response, reversibility, repeatability, and visual transparency transition. The hydrochromic block copolymers are based on the rational ratio of hydrophilic segments of poloxamer block and hydrophobic segments of ethyl cellulose according to the preparation method of polyurethane. By tuning the ratio of hydrophilic segments or adding hygroscopic salts, the hydrochromic polymer is endowed with the ability to visualize the transparency in response to the relative humidity. Especially, the response time of the polymer is extremely shortened, up to 1 s for the optimized sample. Within the moisture stimulation, the hygroscopic swelling increases the film thickness, leading to a reversible transparency switching from a highly transparent state (82%) to an opaque white state (20.5%).
Collapse
Affiliation(s)
- Yuqian Guo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Xianhui An
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Xueren Qian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| |
Collapse
|
32
|
McDonald MN, Zhu Q, Paxton WF, Peterson CK, Tree DR. Active control of equilibrium, near-equilibrium, and far-from-equilibrium colloidal systems. SOFT MATTER 2023; 19:1675-1694. [PMID: 36790855 DOI: 10.1039/d2sm01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of top-down active control over bottom-up colloidal assembly processes has the potential to produce materials, surfaces, and objects with applications in a wide range of fields spanning from computing to materials science to biomedical engineering. In this review, we summarize recent progress in the field using a taxonomy based on how active control is used to guide assembly. We find there are three distinct scenarios: (1) navigating kinetic pathways to reach a desirable equilibrium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested state, and (3) the creation of a desirable far-from-equilibrium state through continuous energy input. We review seminal works within this framework, provide a summary of important application areas, and present a brief introduction to the fundamental concepts of control theory that are necessary for the soft materials community to understand this literature. In addition, we outline current and potential future applications of actively-controlled colloidal systems, and we highlight important open questions and future directions.
Collapse
Affiliation(s)
- Mark N McDonald
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Qinyu Zhu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Walter F Paxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Cameron K Peterson
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
33
|
Xie S. Perspectives on development of biomedical polymer materials in artificial intelligence age. J Biomater Appl 2023; 37:1355-1375. [PMID: 36629787 DOI: 10.1177/08853282231151822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polymer materials are widely used in biomedicine, chemistry and material science, whose traditional preparations are mainly based on experience, intuition and conceptual insight, having been applied to the development of many new materials, but facing great challenges due to the vast design space for biomedical polymers. So far, the best way to solve these problems is to accelerate material design through artificial intelligence, especially machine learning. Herein, this paper will introduce several successful cases, and analyze the latest progress of machine learning in the field of biomedical polymers, then discuss the opportunities of this novel method. In particular, this paper summarizes the material database, open-source determination tools, molecular generation methods and machine learning models that have been used for biopolymer synthesis and property prediction. Overall, machine learning could be more effectively deployed on the material design of biomedical polymers, and it is expected to become an extensive driving force to meet the huge demand for customized designs.
Collapse
Affiliation(s)
- Shijin Xie
- 2281The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
35
|
Jin X, Li X, Liu X, Du L, Su L, Ma Y, Ren S. Simple lignin-based, light-driven shape memory polymers with excellent mechanical properties and wide range of glass transition temperatures. Int J Biol Macromol 2023; 228:528-536. [PMID: 36549626 DOI: 10.1016/j.ijbiomac.2022.12.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Lignin is the most abundant biomass source of aromatic hydrocarbons but, at present, is not effectively utilized. The development of simple and efficient methods for producing lignin-based polymers to replace petroleum-based products is an important strategy for promoting environmentally friendly and sustainable materials and controlling carbon emissions. In this work, lignin-based, light-driven shape memory polymers (ELIDs) with improved mechanical properties have been prepared from enzymatic hydrolysis lignin, itaconic acid and 1,12-dodecanediol, without any chemical modification of the lignin. The polymers contain large proportions of lignin (20-40 wt%, designated ELID20 to ELID40) and their mechanical properties are dependent on the lignin content. Maximum tensile strength (46.9 MPa) was achieved with ELID30, maximum elongation at break (93.7 %) was achieved with ELID20 and highest fracture energy (10.75 J cm-3) was achieved with ELID25. These excellent mechanical properties are accompanied by good thermal stability and a wide range of glass transition temperatures (21.2-157.3 °C), supporting a broad range of applications. The shape fixation rate (Rf) and shape recovery rate (Rr) were highest for ELID30 (98.7 % and 97.4 %, respectively). Under 1 sun simulated solar irradiation, ELID20 reached a temperature exceeding the glass transition temperature in 15 s and, under 3 sun simulated solar irradiation, ELID30 reached a temperature of 130 °C and shape recovered in 60 s. The excellent mechanical properties and good light-driven shape memory of ELIDs provide inspiration for the development and utilization of lignin-based polymers.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Xiaowen Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Xuan Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Liuping Du
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Ling Su
- Yantai Vocational College, Yantai City 264670, PR China
| | - Yanli Ma
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Shixue Ren
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
36
|
Qi Z, Yan Z, Tan G, Jia T, Geng Y, Shao H, Kundu SC, Lu S. Silk Fibroin Microneedles for Transdermal Drug Delivery: Where Do We Stand and How Far Can We Proceed? Pharmaceutics 2023; 15:pharmaceutics15020355. [PMID: 36839676 PMCID: PMC9964088 DOI: 10.3390/pharmaceutics15020355] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Microneedles are a patient-friendly technique for delivering drugs to the site of action in place of traditional oral and injectable administration. Silk fibroin represents an interesting polymeric biomaterial because of its mechanical properties, thermal stability, biocompatibility and possibility of control via genetic engineering. This review focuses on the critical research progress of silk fibroin microneedles since their inception, analyzes in detail the structure and properties of silk fibroin, the types of silk fibroin microneedles, drug delivery applications and clinical trials, and summarizes the future development trend in this field. It also proposes the future research direction of silk fibroin microneedles, including increasing drug loading doses and enriching drug loading types as well as exploring silk fibroin microneedles with stimulation-responsive drug release functions. The safety and effectiveness of silk fibroin microneedles should be further verified in clinical trials at different stages.
Collapse
Affiliation(s)
- Zhenzhen Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zheng Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guohongfang Tan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tianshuo Jia
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yiyu Geng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Huiyan Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs Research Institute on Biomaterials, Biodegrabilities, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, 4805-017 Barco, Portugal
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-67061152
| |
Collapse
|
37
|
Xu X, Yan B. Recent advances in room temperature phosphorescence materials: design strategies, internal mechanisms and intelligent optical applications. Phys Chem Chem Phys 2023; 25:1457-1475. [PMID: 36597905 DOI: 10.1039/d2cp05063c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Room temperature phosphorescence (RTP) materials comprising organic-inorganic hybrid, pure organic, and polymer RTP materials have been a research focus due to their tunable molecular structures, long emission lifetimes and extensive optical applications. Many design methods including halogen bonding interactions, heavy atom effect, metal-organic frameworks, polymerization, host-guest doping, and H-aggregation have been developed by RTP researchers. Narrowing the energy gap between the S1 and lowest Tn states, enhancing the intersystem crossing (ISC) rate, increasing the spin-orbit coupling (SOC) value and stabilizing triplet emission states are the core factors to promoting RTP performance. In this review, lots of cases of organic-inorganic hybrid, pure organic, and polymer RTP materials with advanced design strategies, excellent RTP properties and intelligent applications have been classified and sorted. Their molecule structural designability and stimulus responsiveness endow them with RTP adjustability, which makes them excellent phosphors for modern optical applications. This review provides a systematic case elaboration of typical RTP systems in recent years and identifies the future challenges to improving RTP performance and finding novel applications.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| |
Collapse
|
38
|
Egan M, Kuscu M, Barros MT, Booth M, Llopis-Lorente A, Magarini M, Martins DP, Schäfer M, Stano P. Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science. Life (Basel) 2023; 13:208. [PMID: 36676156 PMCID: PMC9861838 DOI: 10.3390/life13010208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Within many chemical and biological systems, both synthetic and natural, communication via chemical messengers is widely viewed as a key feature. Often known as molecular communication, such communication has been a concern in the fields of synthetic biologists, nanotechnologists, communications engineers, and philosophers of science. However, interactions between these fields are currently limited. Nevertheless, the fact that the same basic phenomenon is studied by all of these fields raises the question of whether there are unexploited interdisciplinary synergies. In this paper, we summarize the perspectives of each field on molecular communications, highlight potential synergies, discuss ongoing challenges to exploit these synergies, and present future perspectives for interdisciplinary efforts in this area.
Collapse
Affiliation(s)
- Malcolm Egan
- Univ Lyon, INSA Lyon, INRIA, CITI, 69621 Villeurbanne, France
| | - Murat Kuscu
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Michael Taynnan Barros
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Michael Booth
- Department of Chemistry, University College London (UCL), London WC1H 0AJ, UK
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Politècnica de València, Camino de Vera, 46022 València, Spain
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Daniel P. Martins
- Walton Institute for Information and Communication Systems Science, South East Technological University (SETU), X91 P20H Waterford, Ireland
| | - Maximilian Schäfer
- Institute for Digital Communications, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
39
|
Wychowaniec JK, Brougham DF. Emerging Magnetic Fabrication Technologies Provide Controllable Hierarchically-Structured Biomaterials and Stimulus Response for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202278. [PMID: 36228106 PMCID: PMC9731717 DOI: 10.1002/advs.202202278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Multifunctional nanocomposites which exhibit well-defined physical properties and encode spatiotemporally-controlled responses are emerging as components for advanced responsive systems. For biomedical applications magnetic nanocomposite materials have attracted significant attention due to their ability to respond to spatially and temporally varying magnetic fields. The current state-of-the-art in development and fabrication of magnetic hydrogels toward biomedical applications is described. There is accelerating progress in the field due to advances in manufacturing capabilities. Three categories can be identified: i) Magnetic hydrogelation, DC magnetic fields are used during solidification/gelation for aligning particles; ii) additive manufacturing of magnetic materials, 3D printing technologies are used to develop spatially-encoded magnetic properties, and more recently; iii) magnetic additive manufacturing, magnetic responses are applied during the printing process to develop increasingly complex structural arrangement that may recapitulate anisotropic tissue structure and function. The magnetic responsiveness of conventionally and additively manufactured magnetic hydrogels are described along with recent advances in soft magnetic robotics, and the categorization is related to final architecture and emergent properties. Future challenges and opportunities, including the anticipated role of combinatorial approaches in developing 4D-responsive functional materials for tackling long-standing problems in biomedicine including production of 3D-specified responsive cell scaffolds are discussed.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of ChemistryUniversity College DublinBelfieldDublin 4Ireland
- AO Research Institute DavosClavadelerstrasse 8Davos7270Switzerland
| | | |
Collapse
|
40
|
Zhang H, Zeng H, Eklund A, Guo H, Priimagi A, Ikkala O. Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. NATURE NANOTECHNOLOGY 2022; 17:1303-1310. [PMID: 36443600 PMCID: PMC9747616 DOI: 10.1038/s41565-022-01241-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/14/2022] [Indexed: 05/06/2023]
Abstract
Driving systems out of equilibrium under feedback control is characteristic for living systems, where homeostasis and dissipative signal transduction facilitate complex responses. This feature not only inspires dissipative dynamic functionalities in synthetic systems but also poses great challenges in designing novel pathways. Here we report feedback-controlled systems comprising two coupled hydrogels driven by constant light, where the system can be tuned to undergo stable homeostatic self-oscillations or damped steady states of temperature. We demonstrate that stable temperature oscillations can be utilized for dynamic colours and cargo transport, whereas damped steady states enable signal transduction pathways. Here mechanical triggers cause temperature changes that lead to responses such as bending motions inspired by the single-touch mechanoresponse in Mimosa pudica and the frequency-gated snapping motion inspired by the plant arithmetic in the Venus flytrap. The proposed concepts suggest generalizable feedback pathways for dissipative dynamic materials and interactive soft robotics.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Amanda Eklund
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo, Finland.
| |
Collapse
|
41
|
High Throughput Fabrication of Flexible Top-Driven Sensing Probe. Polymers (Basel) 2022; 14:polym14235124. [PMID: 36501518 PMCID: PMC9738077 DOI: 10.3390/polym14235124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
In this work, considering the current status of conservative and complicated traditional thrombosis treatment methods, a kind of flexible intelligent probe (FIP) with a top-driven sensing strategy is proposed to realize the expected function of thrombosis accurate localization in a liquid flow environment. After throughput fabrication, we find that the FIP has excellent electrical conductivity and mechanical properties. Notable, our FIP with the principle of piezo-resistive sensing has a quasi-linear sensitivity (approx. 0.325 L per minute) to flow sensing in the low flow velocity range (0-1 L per minute). Via the well-designed magnetically driven method, our FIP has a maximum deflection output force of 443.264 mN, a maximum deflection angle of 43°, and a maximum axial force of 54.176 mN. We demonstrate that the FIP is capable of completing the specified command actions relatively accurately and has a good response to real-time sensing feedback performance, which has broad application prospects in thrombus localization detection.
Collapse
|
42
|
Liu X, Tan H, Rigoni C, Hartikainen T, Asghar N, van Dijken S, Timonen JVI, Peng B, Ikkala O. Magnetic field-driven particle assembly and jamming for bistable memory and response plasticity. SCIENCE ADVANCES 2022; 8:eadc9394. [PMID: 36367936 PMCID: PMC9651856 DOI: 10.1126/sciadv.adc9394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Unlike classic synthetic stimulus-responsive and shape-memory materials, which remain limited to fixed responses, the responses of living systems dynamically adapt based on the repetition, intensity, and history of stimuli. Such plasticity is ubiquitous in biology, which is profoundly linked to memory and learning. Concepts thereof are searched for rudimentary forms of "intelligent materials." Here, we show plasticity of electroconductivity in soft ferromagnetic nickel colloidal supraparticles with spiny surfaces, assembling/disassembling to granular conducting micropillars between two electrodes driven by magnetic field B. Colloidal jamming leads to conduction hysteresis and bistable memory upon increasing and subsequently decreasing B. Abrupt B changes induce larger conduction changes than gradual B-changes. Periodic B pulsing drives to frequency-dependent facilitation or suppression of conductivity compared to exposing the same constant field. The concepts allow remotely controlled switching plasticity, illustrated by a rudimentary device. More generally, we foresee adaptive functional materials inspired by response plasticity and learning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Peng
- Corresponding author. (B.P.); (O.I.)
| | | |
Collapse
|
43
|
Wang W, Li PF, Xie R, Ju XJ, Liu Z, Chu LY. Designable Micro-/Nano-Structured Smart Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107877. [PMID: 34897843 DOI: 10.1002/adma.202107877] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Smart polymeric materials with dynamically tunable physico-chemical characteristics in response to changes of environmental stimuli, have received considerable attention in myriad fields. The diverse combination of their micro-/nano-structural and molecular designs creates promising and exciting opportunities for exploiting advanced smart polymeric materials. Engineering micro-/nano-structures into smart polymeric materials with elaborate molecular design enables intricate coordination between their structures and molecular-level response to cooperatively realize smart functions for practical applications. In this review, recent progresses of smart polymeric materials that combine micro-/nano-structures and molecular design to achieve designed advanced functions are highlighted. Smart hydrogels, gating membranes, gratings, milli-particles, micro-particles and microvalves are employed as typical examples to introduce their design and fabrication strategies. Meanwhile, the key roles of interplay between their micro-/nano-structures and responsive properties to realize the desired functions for their applications are emphasized. Finally, perspectives on the current challenges and opportunities of micro-/nano-structured smart polymeric materials for their future development are presented.
Collapse
Affiliation(s)
- Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ping-Fan Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
44
|
Xiao R, Wei W, Li J, Xiao C, Yao H, Liu H. Constructing combinational and sequential logic devices through an intelligent electrocatalytic interface with immobilized MoS2 quantum dots and enzymes. Talanta 2022; 248:123615. [DOI: 10.1016/j.talanta.2022.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
45
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
46
|
Xiao Z, Sun P, Liu H, Zhao Q, Niu Y, Zhao D. Stimulus responsive microcapsules and their aromatic applications. J Control Release 2022; 351:198-214. [PMID: 36122896 DOI: 10.1016/j.jconrel.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Fragrances and essential oils are promising for a wide range of applications due to their pleasant odors and diverse effects. However, direct addition to consumer products has the disadvantages of short retention time and easy deterioration of odor. At the same time, releasing a large amount of odor in a short time may be an unpleasant experience, which severely limits the practical application of aromatic substances. Microencapsulation perfectly solves these problems. Stimuli-responsive microcapsules, which combine environmental stimulation with microencapsulation, can not only effectively prevent the rapid decomposition and evaporation of aroma components, but also realize the "on-off" intelligent release of aroma substances to environmental changes, which have great promise in the field of fragrances. In this review, the application of stimuli-responsive microcapsules in fragrances is highlighted. Firstly, various encapsulation materials used to prepare stimuli-responsive aromatic microcapsules are described, mainly including some natural polymers, synthetic polymers, and inorganic materials. Subsequently, there is a detailed description of the common release mechanisms of stimuli-responsive aromatic microcapsules are described in detail. Finally, the application and future research directions are given for stimuli-responsive aromatic microcapsules in new textiles, food, paper, and leather.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huiqin Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
47
|
Yucknovsky A, Rich BB, Gutkin S, Ramanthrikkovil Variyam A, Shabat D, Pokroy B, Amdursky N. Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets. J Phys Chem B 2022; 126:6331-6337. [PMID: 35959566 DOI: 10.1021/acs.jpcb.2c04020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamic control of pH-responsive systems is at the heart of many natural and artificial processes. Here, we use photoacids, molecules that dissociate only in their excited state and transfer their proton to nearby proton acceptors, for the dynamic control of processes. A problem arises when there is a need to protonate highly acidic acceptors. We solve this problem using super photoacids that have an excited-state pKa of -8, thus enabling them to protonate very weak proton acceptors. The process that we target is the light-triggered self-propulsion of droplets, initiated by an excited-state proton transfer (ESPT) from a super photoacid donor to a surfactant acceptor situated on the surface of the droplet with a pKa of ∼0. We first confirm using steady-state and time-resolved spectroscopy that a super photoacid can undergo ESPT to the acidic surfactant, whereas a "regular" photoacid cannot. Next, we show self-propulsion of the droplet upon irradiating the solvated super photoacid. We further confirm the protonation of the surfactant on the surface of the droplet using transient surface tension measurements. Our system is the first example of the application of super photoacids to control dynamic processes and opens new possibilities in the field of light-triggered dynamic systems.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Benjamin B Rich
- Department of Materials Science & Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Sara Gutkin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Boaz Pokroy
- Department of Materials Science & Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
48
|
Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Song W. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci 2022; 10:5369-5390. [PMID: 35861101 DOI: 10.1039/d2bm00719c] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porous organic polymers have received considerable attention in recent years because of their applicability as biomaterials. In particular, their hierarchical pore structures, variable morphologies, and tunable biological properties make them suitable as drug-delivery systems. In this review, the synthetic and post forming/control methods including templated methods, template-free methods, mechanical methods, electrospun methods, and 3D printing methods for controlling the hierarchical structures and morphologies of porous organic polymers are discussed, and the different methods affecting their specific surface areas, hierarchical structures, and unique morphologies are highlighted in detail. In addition, we discuss their applications in drug encapsulation and the development of stimuli (pH, heat, light, and dual-stimuli)-responsive materials, focusing on their use for targeted drug release and as therapeutic agents. Finally, we present an outlook concerning the research directions and applications of porous polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Anuraj Varyambath
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Yuanchen Ding
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Bailiang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Xinyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China. .,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
49
|
Castellvi Corrons X, Gummel J, Smets J, Berti D. Liquid-liquid phase separated microdomains of an amphiphilic graft copolymer in a surfactant-rich medium. J Colloid Interface Sci 2022; 615:807-820. [PMID: 35180629 DOI: 10.1016/j.jcis.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
The liquid-liquid phase separation (LLPS) of amphiphilic thermoresponsive copolymers can lead to the formation of micron-sized domains, known as simple coacervates. Due to their potential to confine active principles, these copolymer-rich droplets have gained interest as encapsulating agents. Understanding and controlling the conditions inducing this LLPS is therefore essential for applicative purposes and requires thorough fundamental studies on self-coacervation. In this work, we investigate the LLPS of a comb-like graft copolymer (PEG-g-PVAc) consisting of a poly(ethylene glycol) backbone (6 kDa) with ∼2-3 grafted poly(vinyl acetate) chains, and a PEG/PVAc weight ratio of 40/60. Specifically, we report the effect of various water-soluble additives on its phase separation behavior. Kosmotropes and non-ionic surfactants were found to decrease the phase separation temperature of the copolymer, while chaotropes and, above all, ionic surfactants increased it. We then focus on the phase behavior of PEG-g-PVAc in the presence of sodium citrate and a C14-15 E7 non-ionic surfactant (N45-7), defining the compositional range for the generation of LLPS microdomains at room temperature and monitoring their formation with fluorescence confocal microscopy. Finally, we determine the composition of the microdomains through confocal Raman microscopy, demonstrating the presence of PEG-g-PVAc, N45-7, and water. These results expand our knowledge on polymeric self-coacervation, clarifying the optimal conditions and composition needed to obtain LLPS microdomains with encapsulation potential at room temperature in surfactant-rich formulations.
Collapse
Affiliation(s)
- Xavier Castellvi Corrons
- Department of Chemistry "Ugo Schiff" University of Florence, CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Florence, Italy
| | - Jeremie Gummel
- Strategic Innovation and Technology, Procter & Gamble Brussels Innovation Center, Temselaan 100, 1853 Grimbergen, Belgium
| | - Johan Smets
- Strategic Innovation and Technology, Procter & Gamble Brussels Innovation Center, Temselaan 100, 1853 Grimbergen, Belgium
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" University of Florence, CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Florence, Italy
| |
Collapse
|
50
|
Su X, Pandey RK, Ma J, Lim WC, Ao CK, Liu C, Nakanishi H, Soh S. Self-assembly of graphene oxide flakes for smart and multifunctional coating with reversible formation of wrinkling patterns. SOFT MATTER 2022; 18:3546-3556. [PMID: 35445678 DOI: 10.1039/d1sm01834e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the main purposes of smart and multifunctional coatings is to have the versatility to be applied in a wide range of applications. However, the functions of smart materials are often highly limited. In particular, the stimuli-responsive lateral expansion of coatings based on 2D materials has not been reported before. This manuscript describes small two-dimensional graphene oxide (GO) flakes (e.g., thin sheets with a thickness of a few nanometers and much larger lateral dimensions) that act as elementary agents for the formation of smart and multifunctional coatings. The coating can be self-assembled from the GO flakes and disassembled flexibly when required. The coating is stimuli-responsive: upon localized contact with water, it expands and forms wrinkling patterns throughout its whole surface. Evaporating the water allows the wrinkles to disappear; hence, the process is reversible. This stimuli-responsiveness can be controlled to be reduced or completely switched off by temperature or pressure. These features are fundamentally due to the reversible intermolecular interactions among the flakes and favorable packing structure of the coating. The smart coating is shown to be useful for patterned fluidic systems of the desired shapes and the development of channels between fluidic reservoirs via the shortest path. Importantly, these results showed that a simple collection of uniquely 2D elementary agents with small nanoscale thickness can self-assemble into macroscopic materials that perform interactive and multifunctional operations.
Collapse
Affiliation(s)
- Xinran Su
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Rakesh K Pandey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan.
| | - Junhao Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Wei Chun Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Chi Kit Ao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Changhui Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan.
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|