1
|
Amini K, Wittig C, Saoncella S, Tammisola O, Lundell F, Bagheri S. Optical coherence tomography in soft matter. SOFT MATTER 2025; 21:3425-3442. [PMID: 40290091 PMCID: PMC12035809 DOI: 10.1039/d4sm01537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Optical coherence tomography (OCT) has become an indispensable tool for investigating mesoscopic features in soft matter and fluid mechanics. Its ability to provide high-resolution, non-invasive measurements in both spatial and temporal domains bridges critical gaps in experimental instrumentation, enabling the study of complex, confined, and dynamic systems. This review serves as both an introduction to OCT and a practical guide for researchers seeking to adopt this technology. A set of tutorials, complemented by Python scripts, is provided for both intensity- and Doppler-based techniques. The versatility of OCT is illustrated through case studies, including time-resolved velocimetry, particle-based velocity measurements, slip velocity characterization, detection of shear-induced structures, and analysis of fluid-fluid and fluid-structure interactions. Drawing on our experiences, we also present a set of practical guidelines for avoiding common pitfalls.
Collapse
Affiliation(s)
- Kasra Amini
- FLOW, Dept. of Engineering Mechanics, KTH, Stockholm SE-100 44, Sweden.
| | - Cornelius Wittig
- FLOW, Dept. of Engineering Mechanics, KTH, Stockholm SE-100 44, Sweden.
| | - Sofia Saoncella
- FLOW, Dept. of Engineering Mechanics, KTH, Stockholm SE-100 44, Sweden.
| | - Outi Tammisola
- FLOW and SeRC (Swedish e-Science Research Centre), Dept. of Engineering Mechanics, KTH, Stockholm SE-100 44, Sweden
| | - Fredrik Lundell
- FLOW, Dept. of Engineering Mechanics, KTH, Stockholm SE-100 44, Sweden.
| | - Shervin Bagheri
- FLOW, Dept. of Engineering Mechanics, KTH, Stockholm SE-100 44, Sweden.
| |
Collapse
|
2
|
Wittig C, Wagner M, Vallon R, Crouzier T, van der Wijngaart W, Horn H, Bagheri S. The role of fluid friction in streamer formation and biofilm growth. NPJ Biofilms Microbiomes 2025; 11:17. [PMID: 39814763 PMCID: PMC11735801 DOI: 10.1038/s41522-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025] Open
Abstract
Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τw = 0.068 Pa to τw = 0.67 Pa). By monitoring the three-dimensional distribution of biofilm over seven days, we found that the biofilms consist of smaller microcolonies, shaped like leaning pillars, many of which feature a streamer in the form of a thin filament that originates near the tip of the pillar. While the shape, size, and distribution of these microcolonies depend on the imposed shear stress, the same structural features appear consistently for all shear stress values. The formation of streamers occurs after the development of a base structure, suggesting that the latter induces a secondary flow that triggers streamer formation. Moreover, we observed that the biofilm volume grows approximately linearly over seven days for all shear stress values, with a growth rate inversely proportional to the wall shear stress. We develop a scaling model, providing insight into the mechanisms by which friction limits biofilm growth.
Collapse
Affiliation(s)
- Cornelius Wittig
- FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.
| | - Michael Wagner
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Romain Vallon
- FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden
| | - Thomas Crouzier
- Department of Health Technology, DTU, Kongens Lyngby, Denmark
| | | | - Harald Horn
- Engler-Bunte-Institut, Karlsruhe Institute of Technology, Water Chemistry and Water Technology, Karlsruhe, Germany
| | - Shervin Bagheri
- FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden
| |
Collapse
|
3
|
Huisman KT, Fortunato L, Vrouwenvelder JS, Blankert B. Automated image processing algorithm for 3D OCT images of fouling in spacer-filled membrane filtration channels. MethodsX 2024; 13:102871. [PMID: 39157813 PMCID: PMC11327942 DOI: 10.1016/j.mex.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
OCT imaging is an important technique to study fouling in spacer-filled channels of reverse osmosis systems for seawater desalination. However, OCT imaging of membrane filtration channels with feed spacers is challenging because the spacer material can be (partly) transparent, making it difficult to detect and possibly mistaken for fouling, and the longer optical pathway through the spacer material distorts the image below the spacer. This study presents an automated 3D OCT image processing method in MATLAB for visualization and quantification of biofouling in spacer-filled channels. First, a spacer template of arbitrary size and rotation was generated from a CT scan of the feed spacer. Second, background noise and file size were reduced by representing the OCT image with a list of discrete reflectors. Finally, the spacer template was overlayed with the feed spacer in the 3D OCT image, enabling automated visualization of the feed spacer and correction of the distortions. Moreover, the method allows the selection of datasets with the same location relative to the position of the spacer, enabling systematic comparison between datasets and quantitative analysis.•A spacer template of arbitrary size and rotation was generated from a CT scan.•The background noise was removed, and the file size was reduced by representing the OCT dataset with a list of discrete reflectors.•The spacer template was overlayed with the feed spacer in the 3D OCT image.
Collapse
Affiliation(s)
- Kees Theo Huisman
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luca Fortunato
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- MANN+HUMMEL Water & Fluid Solutions S.p.A., Italy
| | - Johannes S. Vrouwenvelder
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bastiaan Blankert
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Moulia V, Heran M, Lesage G, Hamelin J, Pinta J, Gazon A, Penlae M, Bru-Adan V, Wéry N, Ait-Mouheb N. Biofilm growth dynamics in a micro-irrigation with reclaimed wastewater in the field scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122976. [PMID: 39442395 DOI: 10.1016/j.jenvman.2024.122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The dripper clogging due to the development of biofilm can reduce the benefits of micro-irrigation technology implementation using reclaimed wastewater. The narrow cross-section and labyrinth geometry of the dripper channel enhance the fouling mechanisms. The aim of this study was to evaluate the water distribution and biofouling of drip irrigation systems at the field scale during irrigation with treated wastewater. Six 100 m lines of commercial pipes with two pressure-compensating dripper types (flow rate, Q, of 0.65 L h-1 and 1.5 L h-1, respectively) were monitored for four months. Different zones along the pipes were selected to evaluate the influence of hydrodynamical conditions (Reynolds number = 5400 to 0) on biofouling. Destructive methods involving the biofilm extraction by mechanical means, showed little biofilm development without significant differences in dry and organic matter content in function of the sampling location along the pipe or dripper flow rate (Q0.65 and Q1.5). These results were confirmed by non-destructive methods, such as optical coherence tomography, that nevertheless showed that biofouling concerned 15-20% of the total dripper labyrinth volume. Total organic carbon monitoring and its composition (by three-dimensional excitation and emission matrix fluorescence microscopy) showed that the biofilm did not significantly influence the organic matter nature. Our results indicated that the biological activity and biofilm development in irrigation systems were more affected by the environmental conditions, particularly water temperature, rather than flow conditions. This confirmed that treated wastewater with low organic content can be used in micro-irrigation systems without significant loss of efficiency, even in conditions requiring intensive irrigation, such as the Mediterranean climate.
Collapse
Affiliation(s)
- Vincent Moulia
- INRAE, UMR G-EAU, University of Montpellier, Montpellier, France; IEM, University of Montpellier, Montpellier, France; INRAE, Univ Montpellier, LBE, 102 Avenue des Étangs, 11100, Narbonne, France
| | - Marc Heran
- IEM, University of Montpellier, Montpellier, France
| | | | - Jérôme Hamelin
- INRAE, Univ Montpellier, LBE, 102 Avenue des Étangs, 11100, Narbonne, France
| | - Jérôme Pinta
- INRAE, UMR G-EAU, University of Montpellier, Montpellier, France
| | - Aurélie Gazon
- INRAE, UMR G-EAU, University of Montpellier, Montpellier, France
| | | | - Valérie Bru-Adan
- INRAE, Univ Montpellier, LBE, 102 Avenue des Étangs, 11100, Narbonne, France
| | - Nathalie Wéry
- INRAE, Univ Montpellier, LBE, 102 Avenue des Étangs, 11100, Narbonne, France
| | | |
Collapse
|
5
|
Chen H, Xia A, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100480. [PMID: 39309319 PMCID: PMC11416670 DOI: 10.1016/j.ese.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.
Collapse
Affiliation(s)
- Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Huchao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
6
|
Kim U, Lee SY, Oh SW. A review of mechanism analysis methods in multi-species biofilm of foodborne pathogens. Food Sci Biotechnol 2023; 32:1665-1677. [PMID: 37780597 PMCID: PMC10533759 DOI: 10.1007/s10068-023-01317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are an aggregation of microorganisms that have high resistance to antimicrobial agents. In the food industry, it has been widely studied that foodborne pathogens on both food surfaces and food-contact surfaces can form biofilms thereby threatening the safety of the food. In the natural environment, multi-species biofilms formed by more than two different microorganisms are abundant. In addition, the resistance of multi-species biofilms to antimicrobial agents is higher than that of mono-species biofilms. Therefore, studies to elucidate the mechanisms of multi-species biofilms formed by foodborne pathogens are still required in the food industry. In this review paper, we summarized the novel analytical methods studied to evaluate the mechanisms of multi-species biofilms formed by foodborne pathogens by dividing them into four categories: spatial distribution, bacterial interaction, extracellular polymeric substance production and quorum sensing analytical methods.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| |
Collapse
|
7
|
Lyndby NH, Murthy S, Bessette S, Jakobsen SL, Meibom A, Kühl M. Non-invasive investigation of the morphology and optical properties of the upside-down jellyfish Cassiopea with optical coherence tomography. Proc Biol Sci 2023; 290:20230127. [PMID: 37752841 PMCID: PMC10523073 DOI: 10.1098/rspb.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The jellyfish Cassiopea largely cover their carbon demand via photosynthates produced by microalgal endosymbionts, but how holobiont morphology and tissue optical properties affect the light microclimate and symbiont photosynthesis in Cassiopea remain unexplored. Here, we use optical coherence tomography (OCT) to study the morphology of Cassiopea medusae at high spatial resolution. We include detailed 3D reconstructions of external micromorphology, and show the spatial distribution of endosymbionts and white granules in the bell tissue. Furthermore, we use OCT data to extract inherent optical properties from light-scattering white granules in Cassiopea, and show that granules enhance local light-availability for symbionts in close proximity. Individual granules had a scattering coefficient of µs = 200-300 cm-1, and scattering anisotropy factor of g = 0.7, while large tissue-regions filled with white granules had a lower µs = 40-100 cm-1, and g = 0.8-0.9. We combined OCT information with isotopic labelling experiments to investigate the effect of enhanced light-availability in whitish tissue regions. Endosymbionts located in whitish tissue exhibited significantly higher carbon fixation compared to symbionts in anastomosing tissue (i.e. tissue without light-scattering white granules). Our findings support previous suggestions that white granules in Cassiopea play an important role in the host modulation of the light-microenvironment.
Collapse
Affiliation(s)
- Niclas Heidelberg Lyndby
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Swathi Murthy
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Sandrine Bessette
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratoire MAPIEM, Université de Toulon, 4323 Toulon, France
| | - Sofie Lindegaard Jakobsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Science, University of Lausanne, 1015 Lausanne, Switzerland
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| |
Collapse
|
8
|
Verma S, Kuila A, Jacob S. Role of Biofilms in Waste Water Treatment. Appl Biochem Biotechnol 2023; 195:5618-5642. [PMID: 36094648 DOI: 10.1007/s12010-022-04163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
Abstract
Biofilm cells have a different physiology than planktonic cells, which has been the focus of most research. Biofilms are complex biostructures that form on any surface that comes into contact with water on a regular basis. They are dynamic, structurally complex systems having characteristics of multicellular animals and multiple ecosystems. The three themes covered in this review are biofilm ecology, biofilm reactor technology and design, and biofilm modeling. Membrane-supported biofilm reactors, moving bed biofilm reactors, granular sludge, and integrated fixed-film activated sludge processes are all examples of biofilm reactors used for water treatment. Biofilm control and/or beneficial application in membrane processes are improving. Biofilm models have become critical tools for biofilm foundational research as well as biofilm reactor architecture and design. At the same time, the differences between biofilm modeling and biofilm reactor modeling methods are acknowledged.
Collapse
Affiliation(s)
- Samakshi Verma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist., Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
9
|
Okebiorun M, Oberbeck C, Waite C, Clark S, Miller D, Barney Smith EH, Cornell KA, Browning J. Selective Optical Imaging for Detection of Bacterial Biofilms in Tissues. J Imaging 2023; 9:160. [PMID: 37623692 PMCID: PMC10455256 DOI: 10.3390/jimaging9080160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
SIGNIFICANCE The development of an imaging technique to accurately identify biofilm regions on tissues and in wounds is crucial for the implementation of precise surface-based treatments, leading to better patient outcomes and reduced chances of infection. AIM The goal of this study was to develop an imaging technique that relies on selective trypan blue (TB) staining of dead cells, necrotic tissues, and bacterial biofilms, to identify biofilm regions on tissues and wounds. APPROACH The study explored combinations of ambient multi-colored LED lights to obtain maximum differentiation between stained biofilm regions and the underlying chicken tissue or glass substrate during image acquisition. The TB imaging results were then visually and statistically compared to fluorescence images using a shape similarity measure. RESULTS The comparisons between the proposed TB staining method and the fluorescence standard used to detect biofilms on tissues and glass substrates showed up to 97 percent similarity, suggesting that the TB staining method is a promising technique for identifying biofilm regions. CONCLUSIONS The TB staining method demonstrates significant potential as an effective imaging technique for the identification of fluorescing and non-fluorescing biofilms on tissues and in wounds. This approach could lead to improved precision in surface-based treatments and better patient outcomes.
Collapse
Affiliation(s)
- Michael Okebiorun
- Biomedical Engineering Program, Boise State University, Boise, ID 83725, USA;
| | - Cody Oberbeck
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA or (E.H.B.S.)
| | - Cameron Waite
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725, USA
| | - Samuel Clark
- Department of Mathematics, Boise State University, Boise, ID 83725, USA
| | - Dalton Miller
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA (K.A.C.)
| | - Elisa H. Barney Smith
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA or (E.H.B.S.)
- Autonomous Systems and Software Program, Luleå Tekniska Universitet, 97187 Luleå, Sweden
| | - Kenneth A. Cornell
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA (K.A.C.)
| | - Jim Browning
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA or (E.H.B.S.)
| |
Collapse
|
10
|
Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus 2023; 13:20220062. [PMID: 36789239 PMCID: PMC9912014 DOI: 10.1098/rsfs.2022.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Spatial organization is the norm rather than the exception in the microbial world. While the study of microbial physiology has been dominated by studies in well-mixed cultures, there is now increasing interest in understanding the role of spatial organization in microbial physiology, coexistence and evolution. Where studied, spatial organization has been shown to influence all three of these aspects. In this mini review and perspective article, we emphasize that the dynamics within spatially organized microbial systems (SOMS) are governed by feedbacks between local physico-chemical conditions, cell physiology and movement, and evolution. These feedbacks can give rise to emergent dynamics, which need to be studied through a combination of spatio-temporal measurements and mathematical models. We highlight the initial formation of SOMS and their emergent dynamics as two open areas of investigation for future studies. These studies will benefit from the development of model systems that can mimic natural ones in terms of species composition and spatial structure.
Collapse
Affiliation(s)
- Kelsey Cremin
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Huang H, Zeng S, Luo C, Long T. Separate effect of turbulent pulsation on internal mass transfer in porous biofilms. ENVIRONMENTAL RESEARCH 2023; 217:114972. [PMID: 36455631 DOI: 10.1016/j.envres.2022.114972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Turbulence is considered to be the result of coupled time-averaged and pulsating velocities, making it difficult to distinguish the respective effects, and the quantitative effect of turbulent pulsation alone on mass transfer within biofilms has not been discussed in the literature. In this study, we constructed a special oscillating grid biofilm reactor combining Particle Image Velocimetry (PIV) measurements and Computational Fluid Dynamics (CFD) simulations to achieve nearly isotropic turbulence in a designed ambient without time-averaged velocity and shear stress. Subsequently, velocity and contaminant concentration distributions were obtained by solving a mass transfer model with a k-ε turbulence model, combined with measurements of biofilm structure parameters. The results showed that the increase in turbulent pulsation intensity led to a significant stratification of the percolation velocity gradient in biofilms, which enhanced convective mass transfer. The changes of biofilm density and porosity under turbulent pulsation were more strongly correlated with convective mass transfer. When the turbulent intensity (q) increased to 2.50 cm s-1, the removal rate reached the highest value of 96.93%, accelerating the migration of contaminant concentration and the diffusive mass transfer effect was obvious. In addition, the trend of biofilm thickness under turbulent pulsation was consistent with the change of contaminant concentration distribution, and the correlation between them was greater. In summary, at q of 2.50 cm s-1, there was a positive effect on both convection and diffusion mechanisms in biofilms, and the contaminant removal rate and biofilm thickness reached the maximum, which was the recommended turbulent pulsation conditions.
Collapse
Affiliation(s)
- Haozhe Huang
- College of Environment and Ecology, Chongqing University, 400045, Chongqing, PR China
| | - Shi Zeng
- College of Environment and Ecology, Chongqing University, 400045, Chongqing, PR China
| | - Chao Luo
- College of Environment and Ecology, Chongqing University, 400045, Chongqing, PR China
| | - Tianyu Long
- College of Environment and Ecology, Chongqing University, 400045, Chongqing, PR China.
| |
Collapse
|
12
|
Farooq AJ, Chamberlain M, Poonja A, Mumford KG, Wallace S, Weber KP. Peaks, pores, and dragon eggs: Uncovering and quantifying the heterogeneity of treatment wetland biofilm matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158857. [PMID: 36126711 DOI: 10.1016/j.scitotenv.2022.158857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Biofilms serve to house diverse microbial communities, which are responsible for the majority of wastewater constituent degradation and transformation in treatment wetlands (TWs). TW biofilm has been generally conceptualized as a relatively uniform film covering available surfaces. However, no studies attaining direct visual 3D representations of biofilm morphology have been conducted. This study focuses on imaging the morphology of detached, gravel-associated, and rhizospheric (Phalaris arundinacea) biofilms from subsurface TW mesocosms. Images obtained through both traditional light microscopy, environmental scanning electron microscopy (E-SEM) and Wet-SEM revealed that TW biofilms are structurally heterogeneous ranging from corrugated films to clusters of aggregates. Features such as water channels and pores were observed suggesting that pollutant transport inside biofilms is complex, and that the interfacial surface area between water and biofilm is much larger than previously understood. Biofilm thickness generally ranged between 170 and 240 μm, with internal biofilm porosities estimated as 34 ± 10 %, reaching a maximum of 50 %. Internal biofilm matrix pore diameters ranged from 1 to 205.2 μm, with a distribution that favored pores and channels smaller than 10 μm, and a mean equivalent spherical diameter of 8.6 μm. Based on the large variation in pore and channel sizes it is expected that a variety of flow regimes and therefore pollutant dynamics are likely to occur inside TW biofilm matrices. Based on the visual evidence and analysis, a new conceptual model was created to reflect the microscale TW biofilm dynamics and morphology. This new conceptual model will serve to inform future biokinetic modelling, microscale hydrology, microbial community assessment, and pollutant treatment studies.
Collapse
Affiliation(s)
- Anbareen J Farooq
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Mhari Chamberlain
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Arman Poonja
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Kevin G Mumford
- Department of Civil Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Scott Wallace
- Naturally Wallace Consulting LLC, Pilot Mountain, NC 27041, USA
| | - Kela P Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
13
|
Improved quantitative evaluation of the fouling potential in spacer-filled membrane filtration channels through a biofouling index based on the relative pressure drop. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Endotracheal tube biofilm in critically ill patients during the COVID-19 pandemic : description of an underestimated microbiological compartment. Sci Rep 2022; 12:22389. [PMID: 36575298 PMCID: PMC9794690 DOI: 10.1038/s41598-022-26560-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Biofilm (BF) growth is believed to play a major role in the development of ventilator-associated pneumonia (VAP) in the intensive care unit. Despite concerted efforts to understand the potential implication of endotracheal tube (ETT)-BF dispersal, clinically relevant data are lacking to better characterize the impact of its mesostructure and microbiological singularity on the occurrence of VAP. We conducted a multicenter, retrospective observational study during the third wave of the COVID-19 pandemic, between March and May 2021. In total, 64 ETTs collected from 61 patients were included in the present BIOPAVIR study. Confocal microscopy acquisitions revealed two main morphological aspects of ETT-deposited BF: (1) a thin, continuous ribbon-shaped aspect, less likely monobacterial and predominantly associated with Enterobacter spp., Streptococcus pneumoniae or Viridans streptococci, and (2) a thicker, discontinuous, mushroom-shaped appearance, more likely characterized by the association of bacterial and fungal species in respiratory samples. The microbiological characterization of ETT-deposited BF found higher acquired resistance in more than 80% of analyzed BF phenotypes, compared to other colonization sites from the patient's environment. These findings reveal BF as a singular microbiological compartment, and are of added clinical value, with a view to future ETT-deposited BF-based antimicrobial stewardship in critically ill patients. Trial registration NCT04926493. Retrospectively registered 15 June 2021.
Collapse
|
15
|
Synthetic periphyton as a model system to understand species dynamics in complex microbial freshwater communities. NPJ Biofilms Microbiomes 2022; 8:61. [PMID: 35869094 PMCID: PMC9307524 DOI: 10.1038/s41522-022-00322-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPhototrophic biofilms, also known as periphyton, are microbial freshwater communities that drive crucial ecological processes in streams and lakes. Gaining a deep mechanistic understanding of the biological processes occurring in natural periphyton remains challenging due to the high complexity and variability of such communities. To address this challenge, we rationally developed a workflow to construct a synthetic community by co-culturing 26 phototrophic species (i.e., diatoms, green algae, and cyanobacteria) that were inoculated in a successional sequence to create a periphytic biofilm on glass slides. We show that this community is diverse, stable, and highly reproducible in terms of microbial composition, function, and 3D spatial structure of the biofilm. We also demonstrate the ability to monitor microbial dynamics at the single species level during periphyton development and how their abundances are impacted by stressors such as increased temperature and a herbicide, singly and in combination. Overall, such a synthetic periphyton, grown under controlled conditions, can be used as a model system for theory testing through targeted manipulation.
Collapse
|
16
|
Sutariya B, Sargaonkar A, Raval H. Methods of visualizing hydrodynamics and fouling in membrane filtration systems: recent trends. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2089585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aabha Sargaonkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Cleaner Technology and Modelling Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Häuser L, Erben J, Pillot G, Kerzenmacher S, Dreher W, Küstermann E. In vivo characterization of electroactive biofilms inside porous electrodes with MR Imaging. RSC Adv 2022; 12:17784-17793. [PMID: 35765339 PMCID: PMC9199086 DOI: 10.1039/d2ra01162j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Identifying the limiting processes of electroactive biofilms is key to improve the performance of bioelectrochemical systems (BES). For modelling and developing BES, spatial information of transport phenomena and biofilm distribution are required and can be determined by Magnetic Resonance Imaging (MRI) in vivo, in situ and in operando even inside opaque porous electrodes. A custom bioelectrochemical cell was designed that allows MRI measurements with a spatial resolution of 50 μm inside a 500 μm thick porous carbon electrode. The MRI data showed that only a fraction of the electrode pore space is colonized by the Shewanella oneidensis MR-1 biofilm. The maximum biofilm density was observed inside the porous electrode close to the electrode-medium interface. Inside the biofilm, mass transport by diffusion is lowered down to 45% compared to the bulk growth medium. The presented data and the methods can be used for detailed models of bioelectrochemical systems and for the design of improved electrode structures. The use of magnetic resonance imaging can contribute to a better understanding of limiting processes occurring in electroactive biofilms especially inside opaque porous electrodes.![]()
Collapse
Affiliation(s)
- Luca Häuser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | | | - Guillaume Pillot
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Wolfgang Dreher
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| | - Ekkehard Küstermann
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| |
Collapse
|
18
|
Pratofiorito G, Horn H, Saravia F. Differentiating fouling on the membrane and on the spacer in low-pressure reverse-osmosis under high organic load using optical coherence tomography. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Narciso DAC, Pereira A, Dias NO, Melo LF, Martins FG. Characterization of biofilm structure and properties via processing of 2D optical coherence tomography images in BISCAP. Bioinformatics 2022; 38:1708-1715. [PMID: 34986264 DOI: 10.1093/bioinformatics/btac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Processing of Optical Coherence Tomography (OCT) biofilm images is currently restricted to a set of custom-made MATLAB scripts. None of the tools currently available for biofilm image processing (including those developed for Confocal Laser Scanning Microscopy-CLSM) enable a fully automatic processing of 2D OCT images. RESULTS A novel software tool entitled Biofilm Imaging and Structure Classification Automatic Processor (BISCAP) is presented. It was developed specifically for the automatic processing of 2D OCT biofilm images. The proposed approach makes use of some of the key principles used in CLSM image processing, and introduces a novel thresholding algorithm and substratum detection strategy. Two complementary pixel continuity checks are executed, enabling very detailed pixel characterizations. BISCAP delivers common structural biofilm parameters and a set of processed images for biofilm analysis. A novel biofilm 'compaction parameter' is suggested. The proposed strategy was tested on a set of 300 images with highly satisfactory results obtained. BISCAP is a Python-based standalone application, not requiring any programming knowledge or property licenses, and where all operations are managed via an intuitive Graphical User Interface. The automatic nature of this image processing strategy decreases biasing problems associated to human-perception and allows a reliable comparison of outputs. AVAILABILITY AND IMPLEMENTATION BISCAP and a collection of biofilm images obtained from OCT scans can be found at: https://github.com/diogonarciso/BISCAP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Diogo A C Narciso
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Nuno O Dias
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Luis F Melo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - F G Martins
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
20
|
Desmond P, Huisman KT, Sanawar H, Farhat NM, Traber J, Fridjonsson EO, Johns ML, Flemming HC, Picioreanu C, Vrouwenvelder JS. Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure. WATER RESEARCH 2022; 210:118031. [PMID: 34998071 DOI: 10.1016/j.watres.2021.118031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The application of membrane technology for water treatment and reuse is hampered by the development of a microbial biofilm. Biofilm growth in micro-and ultrafiltration (MF/UF) membrane modules, on both the membrane surface and feed spacer, can form a secondary membrane and exert resistance to permeation and crossflow, increasing energy demand and decreasing permeate quantity and quality. In recent years, exhaustive efforts were made to understand the chemical, structural and hydraulic characteristics of membrane biofilms. In this review, we critically assess which specific structural features of membrane biofilms exert resistance to forced water passage in MF/UF membranes systems applied to water and wastewater treatment, and how biofilm physical structure can be engineered by process operation to impose less hydraulic resistance ("below-the-pain threshold"). Counter-intuitively, biofilms with greater thickness do not always cause a higher hydraulic resistance than thinner biofilms. Dense biofilms, however, had consistently higher hydraulic resistances compared to less dense biofilms. The mechanism by which density exerts hydraulic resistance is reported in the literature to be dependant on the biofilms' internal packing structure and EPS chemical composition (e.g., porosity, polymer concentration). Current reports of internal porosity in membrane biofilms are not supported by adequate experimental evidence or by a reliable methodology, limiting a unified understanding of biofilm internal structure. Identifying the dependency of hydraulic resistance on biofilm density invites efforts to control the hydraulic resistance of membrane biofilms by engineering internal biofilm structure. Regulation of biofilm internal structure is possible by alteration of key determinants such as feed water nutrient composition/concentration, hydraulic shear stress and resistance and can engineer biofilm structural development to decrease density and therein hydraulic resistance. Future efforts should seek to determine the extent to which the concept of "biofilm engineering" can be extended to other biofilm parameters such as mechanical stability and the implication for biofilm control/removal in engineered water systems (e.g., pipelines and/or, cooling towers) susceptible to biofouling.
Collapse
Affiliation(s)
- Peter Desmond
- Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D52074 Aachen, Germany.
| | - Kees Theo Huisman
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Huma Sanawar
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Nadia M Farhat
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jacqueline Traber
- Department of Process Engineering, Swiss Federal Institute for Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Einar O Fridjonsson
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Michael L Johns
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, 637551, Singapore; Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany; IWW Water Centre, Moritzstrasse 26, 45476, Muelheim, Germany
| | - Cristian Picioreanu
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| |
Collapse
|
21
|
Li M, Matouš K, Nerenberg R. Data-driven modeling of heterogeneous viscoelastic biofilms. Biotechnol Bioeng 2022; 119:1301-1313. [PMID: 35129209 DOI: 10.1002/bit.28056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/06/2022]
Abstract
Biofilms are typically heterogeneous in morphology, structure, and composition, resulting in non-uniform mechanical properties. The distribution of mechanical properties, in turn, determines the biofilm behavior, such as deformation and detachment. Most biofilm models neglect biofilm heterogeneity, especially at the microscale. In this study, an image-based modeling approach was developed to transform two-dimensional optical coherence tomography (OCT) biofilm images to a pixel-scale non-Newtonian viscosity map of the biofilm. The map was calibrated using the bulk viscosity data from rheometer tests, based on assumed maximum and minimum viscosities and a relationship between OCT image intensity signals and non-Newtonian viscosity. While not quantitatively measuring biofilm viscosity for each pixel, it allows a rational spatial allocation of viscosities within the biofilm: areas with lower cell density, e.g., voids, are assigned lower viscosities, and areas with high cell densities are assigned higher viscosities. The spatial distribution of non-Newtonian viscosity was applied in an established Oldroyd-B constitutive model and implemented using the phase-field continuum approach for the deformation and stress analysis. The heterogeneous model was able to predict deformations more accurately than a homogenous one. Stress distribution in the heterogeneous biofilm displayed better characteristics than that in the homogeneous one, because it is highly dependent on the viscosity distribution. This work, using a pixel-scale, image-based approach to map the mechanical heterogeneity of biofilms for computational deformation and stress analysis, provides a novel modeling approach that allows the consideration of biofilm structural and mechanical heterogeneity. Future research should better characterize the relationship between OCT signal and viscosity, and consider other constitutive models for biofilm mechanical behavior. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengfei Li
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA
| | - Karel Matouš
- University of Notre Dame, Department of Aerospace and Mechanical Engineering, Notre Dame, IN, 46556, USA
| | - Robert Nerenberg
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
22
|
Low-Field Nuclear Magnetic Resonance Characteristics of Biofilm Development Process. Microorganisms 2021; 9:microorganisms9122466. [PMID: 34946068 PMCID: PMC8707105 DOI: 10.3390/microorganisms9122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
To in situ and noninvasively monitor the biofilm development process by low-field nuclear magnetic resonance (NMR), experiments should be made to determine the mechanisms responsible for the T2 signals of biofilm growth. In this paper, biofilms were cultivated in both fluid media and saturated porous media. T2 relaxation for each sample was measured to investigate the contribution of the related processes to T2 relaxation signals. In addition, OD values of bacterial cell suspensions were measured to provide the relative number of bacterial cells. We also obtained SEM photos of the biofilms after vacuum freeze-drying the pure sand and the sand with biofilm formation to confirm the space within the biofilm matrix and identify the existence of biofilm formation. The T2 relaxation distribution is strongly dependent on the density of the bacterial cells suspended in the fluid and the stage of biofilm development. The peak time and the peak percentage can be used as indicators of the biofilm growth states.
Collapse
|
23
|
Insights into the Development of Phototrophic Biofilms in a Bioreactor by a Combination of X-ray Microtomography and Optical Coherence Tomography. Microorganisms 2021; 9:microorganisms9081743. [PMID: 34442822 PMCID: PMC8398007 DOI: 10.3390/microorganisms9081743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
As productive biofilms are increasingly gaining interest in research, the quantitative monitoring of biofilm formation on- or offline for the process remains a challenge. Optical coherence tomography (OCT) is a fast and often used method for scanning biofilms, but it has difficulty scanning through more dense optical materials. X-ray microtomography (μCT) can measure biofilms in most geometries but is very time-consuming. By combining both methods for the first time, the weaknesses of both methods could be compensated. The phototrophic cyanobacterium Tolypothrix distorta was cultured in a moving bed photobioreactor inside a biocarrier with a semi-enclosed geometry. An automated workflow was developed to process µCT scans of the biocarriers. This allowed quantification of biomass volume and biofilm-coverage on the biocarrier, both globally and spatially resolved. At the beginning of the cultivation, a growth limitation was detected in the outer region of the carrier, presumably due to shear stress. In the later phase, light limitations could be found inside the biocarrier. µCT data and biofilm thicknesses measured by OCT displayed good correlation. The latter could therefore be used to rapidly measure the biofilm formation in a process. The methods presented here can help gain a deeper understanding of biofilms inside a process and detect any limitations.
Collapse
|
24
|
Zhou B, Hou P, Xiao Y, Song P, Xie E, Li Y. Visualizing, quantifying, and controlling local hydrodynamic effects on biofilm accumulation in complex flow paths. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125937. [PMID: 34492866 DOI: 10.1016/j.jhazmat.2021.125937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Complex flow paths (CFPs) are commonly applied in precision equipment to accurately supply controllable fluids with designed structures. However, the presence of biofilms in CFPs causes quite a few unwanted issues, such as bio-erosion, clogging, or even health risks. To date, visualizing and quantifying the interaction between biofilm distribution and local hydrodynamics remains difficult, and the mechanism during the process is unclear. In this paper, the remodeling simulation method (3D industrial computed tomography scanning-inverse modeling-numerical simulation) and 16S rRNA high-throughput sequencing were integrated. The results indicated that local hydrodynamic characteristics significantly affected biofilm thicknesses on CFP surfaces (relative differences of 41.3-71.2%), which inversely influenced the local turbulence intensity. The average biofilm thicknesses exhibited a significant quadratic correlation with the near-wall hydraulic shear forces (r > 0.72, p < 0.05), and the biofilm reached a maximum thickness at 0.36-0.45 Pa. On the other hand, the near-wall hydraulic shear forces not only affected microbial community characteristics of biofilms, but they also influenced the number of microorganisms involved, which determined the biofilm accumulation thereafter. The PHYLUM Firmicutes and Proteobacteria were the dominant bacteria during the process. The results obtained in this paper could provide practical conceptions for the targeted control of biofilms and put forward more efficient controlling methods in commonly applied CFP systems.
Collapse
Affiliation(s)
- Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Hou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
25
|
Fan X, Zhu SS, Zhang XX, Ren HQ, Huang H. Revisiting the Microscopic Processes of Biofilm Formation on Organic Carriers: A Study under Variational Shear Stresses. ACS APPLIED BIO MATERIALS 2021; 4:5529-5541. [DOI: 10.1021/acsabm.1c00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shan-Shan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
26
|
Assessment of the Impact of Temperature on Biofilm Composition with a Laboratory Heat Exchanger Module. Microorganisms 2021; 9:microorganisms9061185. [PMID: 34072656 PMCID: PMC8229324 DOI: 10.3390/microorganisms9061185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Temperature change over the length of heat exchangers might be an important factor affecting biofouling. This research aimed at assessing the impact of temperature on biofilm accumulation and composition with respect to bacterial community and extracellular polymeric substances. Two identical laboratory-scale plate heat exchanger modules were developed and tested. Tap water supplemented with nutrients was fed to the two modules to enhance biofilm formation. One “reference” module was kept at 20.0 ± 1.4 °C and one “heated” module was operated with a counter-flow hot water stream resulting in a bulk water gradient from 20 to 27 °C. Biofilms were grown during 40 days, sampled, and characterized using 16S rRNA gene amplicon sequencing, EPS extraction, FTIR, protein and polysaccharide quantifications. The experiments were performed in consecutive triplicate. Monitoring of heat transfer resistance in the heated module displayed a replicable biofilm growth profile. The module was shown suitable to study the impact of temperature on biofouling formation. Biofilm analyses revealed: (i) comparable amounts of biofilms and EPS yield in the reference and heated modules, (ii) a significantly different protein to polysaccharide ratio in the EPS of the reference (5.4 ± 1.0%) and heated modules (7.8 ± 2.1%), caused by a relatively lower extracellular sugar production at elevated temperatures, and (iii) a strong shift in bacterial community composition with increasing temperature. The outcomes of the study, therefore, suggest that heat induces a change in biofilm bacterial community members and EPS composition, which should be taken into consideration when investigating heat exchanger biofouling and cleaning strategies. Research potential and optimization of the heat exchanger modules are discussed.
Collapse
|
27
|
Depetris A, Peter H, Bordoloi AD, Bernard H, Niayifar A, Kühl M, de Anna P, Battin TJ. Morphogenesis and oxygen dynamics in phototrophic biofilms growing across a gradient of hydraulic conditions. iScience 2021; 24:102067. [PMID: 33598641 PMCID: PMC7868926 DOI: 10.1016/j.isci.2021.102067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 10/25/2022] Open
Abstract
Biofilms are surface-attached and matrix-enclosed microbial communities that dominate microbial life in numerous ecosystems. Using flumes and automated optical coherence tomography, we studied the morphogenesis of phototrophic biofilms along a gradient of hydraulic conditions. Compact and coalescent biofilms formed under elevated bed shear stress, whereas protruding clusters separated by troughs formed under reduced shear stress. This morphological differentiation did not linearly follow the hydraulic gradient, but a break point emerged around a shear stress of ~0.08 Pa. While community composition did not differ between high and low shear environments, our results suggest that the morphological differentiation was linked to biomass displacement and reciprocal interactions between the biofilm structure and hydraulics. Mapping oxygen concentrations within and around biofilm structures, we provide empirical evidence for biofilm-induced alterations of oxygen mass transfer. Our findings suggest that architectural plasticity, efficient mass transfer, and resistance to shear stress contribute to the success of phototrophic biofilms.
Collapse
Affiliation(s)
- Anna Depetris
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ankur Deep Bordoloi
- Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hippolyte Bernard
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amin Niayifar
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tom Jan Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Non-Invasive Measurement, Mathematical Simulation and In Situ Detection of Biofilm Evolution in Porous Media: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of biofilms and the related changes in porous media in the subsurface cannot be directly observed and evaluated. The primary reason that the mechanism of biofilm clogging in porous media cannot be clearly demonstrated is due to the opacity and structural complexity of three-dimensional pore space. Interest in exploring methods to overcome this limitation has been increasing. In the first part of this review, we introduce the underlying characteristics of biofilm in porous media. Then, we summarize two approaches, non-invasive measurement methods and mathematical simulation strategies, for studying fluid–biofilm–porous medium interaction with spatiotemporal resolution. We also discuss the advantages and limitations of these approaches. Lastly, we provide a perspective on opportunities for in situ monitoring at the field site.
Collapse
|
29
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
30
|
Gerbersdorf SU, Koca K, de Beer D, Chennu A, Noss C, Risse-Buhl U, Weitere M, Eiff O, Wagner M, Aberle J, Schweikert M, Terheiden K. Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges. WATER RESEARCH 2020; 185:116182. [PMID: 32763530 DOI: 10.1016/j.watres.2020.116182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Biofilm activities and their interactions with physical, chemical and biological processes are of great importance for a variety of ecosystem functions, impacting hydrogeomorphology, water quality and aquatic ecosystem health. Effective management of water bodies requires advancing our understanding of how flow influences biofilm-bound sediment and ecosystem processes and vice-versa. However, research on this triangle of flow-biofilm-sediment is still at its infancy. In this Review, we summarize the current state of the art and methodological approaches in the flow-biofilm-sediment research with an emphasis on biostabilization and fine sediment dynamics mainly in the benthic zone of lotic and lentic environments. Example studies of this three-way interaction across a range of spatial scales from cell (nm - µm) to patch scale (mm - dm) are highlighted in view of the urgent need for interdisciplinary approaches. As a contribution to the review, we combine a literature survey with results of a pilot experiment that was conducted in the framework of a joint workshop to explore the feasibility of asking interdisciplinary questions. Further, within this workshop various observation and measuring approaches were tested and the quality of the achieved results was evaluated individually and in combination. Accordingly, the paper concludes by highlighting the following research challenges to be considered within the forthcoming years in the triangle of flow-biofilm-sediment: i) Establish a collaborative work among hydraulic and sedimentation engineers as well as ecologists to study mutual goals with appropriate methods. Perform realistic experimental studies to test hypotheses on flow-biofilm-sediment interactions as well as structural and mechanical characteristics of the bed. ii) Consider spatially varying characteristics of flow at the sediment-water interface. Utilize combinations of microsensors and non-intrusive optical methods, such as particle image velocimetry and laser scanner to elucidate the mechanism behind biofilm growth as well as mass and momentum flux exchanges between biofilm and water. Use molecular approaches (DNA, pigments, staining, microscopy) for sophisticated community analyses. Link varying flow regimes to microbial communities (and processes) and fine sediment properties to explore the role of key microbial players and functions in enhancing sediment stability (biostabilization). iii) Link laboratory-scale observations to larger scales relevant for management of water bodies. Conduct field experiments to better understand the complex effects of variable flow and sediment regimes on biostabilization. Employ scalable and informative observation techniques (e.g., hyperspectral imaging, particle tracking) that can support predictions on the functional aspects, such as metabolic activity, bed stability, nutrient fluxes under variable regimes of flow-biofilm-sediment.
Collapse
Affiliation(s)
- Sabine Ulrike Gerbersdorf
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Kaan Koca
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.
| | - Arjun Chennu
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; Leibniz Center for Tropical Marine Research, Fahrenheitstraße 6, 28359 Bremen, Germany.
| | - Christian Noss
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstraße 7, 76829 Landau, Germany; Federal Waterways Engineering and Research Institute, Hydraulic Engineering in Inland Areas, Kußmaulstraße 17, 76187 Karlsruhe, Germany.
| | - Ute Risse-Buhl
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Markus Weitere
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Olivier Eiff
- KIT Karlsruhe Institute of Technology, Institute for Hydromechanics, Otto-Ammann Platz 1, 76131 Karlsruhe, Germany.
| | - Michael Wagner
- KIT Karlsruhe Institute of Technology, Engler-Bunte-Institute, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Jochen Aberle
- Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Beethovenstraße 51a, 38106 Braunschweig, Germany.
| | - Michael Schweikert
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Kristina Terheiden
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| |
Collapse
|
31
|
Lequette K, Ait-Mouheb N, Wéry N. Hydrodynamic effect on biofouling of milli-labyrinth channel and bacterial communities in drip irrigation systems fed with reclaimed wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139778. [PMID: 32531594 DOI: 10.1016/j.scitotenv.2020.139778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The clogging of drippers due to the development of biofilms reduces the benefits and is an obstacle to the implementation of drip irrigation technology in a reclaimed water context. The narrow section and labyrinth geometry of the dripper channel results the development of a heterogeneous flow behaviours with the vortex zones which it enhance the fouling mechanisms. The objective of this study was to analyse the influence of the three dripper types, defined by their geometric and hydraulic parameters, fed with reclaimed wastewater, on the biofouling kinetics and the bacterial communities. Using optical coherence tomography, we demonstrated that the inlet of the drippers (mainly the first baffle) and vortex zones are the most sensitive area for biofouling. Drippers with the lowest Reynolds number and average cross-section velocity v (1 l·h-1) were the most sensible to biofouling, even if detachment events seemed more frequent in this dripper type. Therefore, dripper flow path with larger v should be consider to improve the anti-clogging performance. In addition, the dripper type and the geometry of the flow path influenced the structure of the bacterial communities from dripper biofilms. Relative abundancy of filamentous bacteria belonging to Chloroflexi phylum was higher in 1 l·h-1 drippers, which presented a higher level of biofouling. However, further research on the role of this phylum in dripper biofouling is required.
Collapse
Affiliation(s)
- Kévin Lequette
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France; INRAE, University of Montpellier, UMR G-Eau Avenue Jean-François Breton, 34000 Montpellier, France.
| | - Nassim Ait-Mouheb
- INRAE, University of Montpellier, UMR G-Eau Avenue Jean-François Breton, 34000 Montpellier, France
| | - Nathalie Wéry
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France
| |
Collapse
|
32
|
Rooney LM, Amos WB, Hoskisson PA, McConnell G. Intra-colony channels in E. coli function as a nutrient uptake system. THE ISME JOURNAL 2020; 14:2461-2473. [PMID: 32555430 PMCID: PMC7490401 DOI: 10.1038/s41396-020-0700-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
The ability of microorganisms to grow as aggregated assemblages has been known for many years, however their structure has remained largely unexplored across multiple spatial scales. The development of the Mesolens, an optical system which uniquely allows simultaneous imaging of individual bacteria over a 36 mm2 field of view, has enabled the study of mature Escherichia coli macro-colony biofilm architecture like never before. The Mesolens enabled the discovery of intra-colony channels on the order of 10 μm in diameter, that are integral to E. coli macro-colony biofilms and form as an emergent property of biofilm growth. These channels have a characteristic structure and re-form after total mechanical disaggregation of the colony. We demonstrate that the channels are able to transport particles and play a role in the acquisition of and distribution of nutrients through the biofilm. These channels potentially offer a new route for the delivery of dispersal agents for antimicrobial drugs to biofilms, ultimately lowering their impact on public health and industry.
Collapse
Affiliation(s)
- Liam M Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - William B Amos
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| |
Collapse
|
33
|
Ashrafi E, Allahyari E, Torresi E, Andersen HR. Effect of slow biodegradable substrate addition on biofilm structure and reactor performance in two MBBRs filled with different support media. ENVIRONMENTAL TECHNOLOGY 2020; 41:2750-2759. [PMID: 30734662 DOI: 10.1080/09593330.2019.1581261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
In this study, two moving-bed biofilm reactors (MBBR1 and MBBR2) filled with different size of carrier media (Kaldnes K1 and Kaldnes K1 micro, respectively) were subjected to soluble (sugar and sodium acetate (Ac)) substrate and mixture of soluble and particulate (particulate potato starch (PS)) substrate in a very high organic loading rate (12 kgCOD/m3·d) at different temperatures (26 and 15°C, in MBBR1 and MBBR2, respectively). The effects of carrier type and substrate on biofilm structure and reactor performance have been studied. Starch was removed by adsorption at the biofilm surface and hydrolyzed which caused substrate gradient in MBBR1, however, hydrolyzed uniformly within biofilm in MBBR2. The biofilm of MBBR1 was irregular due to filamentous structure growth due to the substrate gradient, while, it was regular in MBBR2 due to uniform distribution of substrate. The performance of both MBBRs in ammonium, COD and TN removal decreased significantly when the amount of small particles in the reactor increased owing to feeding by starch, which led to biomass density decline. The type of media affected the quantity and distribution of attached biomass, which in turn influenced the activity of specific microbial functional groups in the biofilm. The biofilm in MBBR2 was thicker and consequently nitrogen removal by denitrification was much higher. The lower temperature did not affect negatively the reactor performance in MBBR2.
Collapse
Affiliation(s)
- Elham Ashrafi
- Biochemical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran, Iran
- Water Lab, Sanitary Section, Department of Civil Engineering and Geoscience, Delft University of Technology, Delft, Netherlands
| | - Edris Allahyari
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Elena Torresi
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Trinh TA, Li W, Chew JW. Internal fouling during microfiltration with foulants of different surface charges. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Xiao Y, Sawicka B, Liu Y, Zhou B, Hou P, Li Y. Visualizing the macroscale spatial distributions of biofilms in complex flow channels using industrial computed tomography. BIOFOULING 2020; 36:115-125. [PMID: 32090601 DOI: 10.1080/08927014.2020.1728260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The presence of biofilms in enclosed pipelines can lead to numerous deleterious issues. To date, it has been difficult to use optical imaging techniques to monitor the macroscale spatial distributions of biofilms. To address this concern, a combination of industrial computed tomography (ICT) and a contrast agent was explored to noninvasively visualize biofilms in three types of drip irrigation emitters. The results showed that ICT successfully observed and quantified the macroscale spatial distributions of biofilms. The complex hydrodynamic characteristics in the emitter channels affected the local distributions of biofilms. Biofilms were mainly attached to the lateral and medial faces and biomass decreased along the flow directions. Based on the distributions of biofilms, some emitter structural design defects were further diagnosed. Applying ICT in combination with the contrast agent could potentially provide a visual and effective way to reveal the formation mechanisms of biofilms and to optimize flow channel structures to avoid biofilm accumulations.
Collapse
Affiliation(s)
- Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences, Lublin, Poland
| | - Yaoze Liu
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
| | - Peng Hou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
36
|
Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement. mBio 2020; 11:mBio.02813-19. [PMID: 31911489 PMCID: PMC6946800 DOI: 10.1128/mbio.02813-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of mechanisms promoting disruption though mechanical forces is essential in optimizing biofilm control strategies which rely on fluid shear. Our results provide insight into how biofilm disruption dynamics is governed by applied forces and fluid properties, revealing a mechanism for ripple formation and fluid-biofilm mixing. These findings have important implications for the rational design of new biofilm cleaning strategies with fluid jets, such as determining optimal parameters (e.g., jet velocity and position) to remove the biofilm from a certain zone (e.g., in dental hygiene or debridement of surgical site infections) or using antimicrobial agents which could increase the interfacial area available for exchange, as well as causing internal mixing within the biofilm matrix, thus disrupting the localized microenvironment which is associated with antimicrobial tolerance. The developed model also has potential application in predicting drag and pressure drop caused by biofilms on bioreactor, pipeline, and ship hull surfaces. Experimental data showed that high-speed microsprays can effectively disrupt biofilms on their support substratum, producing a variety of dynamic reactions such as elongation, displacement, ripple formation, and fluidization. However, the mechanics underlying the impact of high-speed turbulent flows on biofilm structure is complex under such extreme conditions, since direct measurements of viscosity at these high shear rates are not possible using dynamic testing instruments. Here, we used computational fluid dynamics simulations to assess the complex fluid interactions of ripple patterning produced by high-speed turbulent air jets impacting perpendicular to the surface of Streptococcus mutans biofilms, a dental pathogen causing caries, captured by high-speed imaging. The numerical model involved a two-phase flow of air over a non-Newtonian biofilm, whose viscosity as a function of shear rate was estimated using the Herschel-Bulkley model. The simulation suggested that inertial, shear, and interfacial tension forces governed biofilm disruption by the air jet. Additionally, the high shear rates generated by the jet impacts coupled with shear-thinning biofilm property resulted in rapid liquefaction (within milliseconds) of the biofilm, followed by surface instability and traveling waves from the impact site. Our findings suggest that rapid shear thinning under very high shear flows causes the biofilm to behave like a fluid and elasticity can be neglected. A parametric sensitivity study confirmed that both applied force intensity (i.e., high jet nozzle air velocity) and biofilm properties (i.e., low viscosity and low air-biofilm surface tension and thickness) intensify biofilm disruption by generating large interfacial instabilities.
Collapse
|
37
|
Caizán-Juanarena L, Krug JR, Vergeldt FJ, Kleijn JM, Velders AH, Van As H, Ter Heijne A. 3D biofilm visualization and quantification on granular bioanodes with magnetic resonance imaging. WATER RESEARCH 2019; 167:115059. [PMID: 31562986 DOI: 10.1016/j.watres.2019.115059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The use of microbial fuel cells (MFCs) for wastewater treatment fits in a circular economy context, as they can produce electricity by the removal of organic matter in the wastewater. Activated carbon (AC) granules are an attractive electrode material for bioanodes in MFCs, as they are cheap and provide electroactive bacteria with a large surface area for attachment. The characterization of biofilm growth on AC granules, however, is challenging due to their high roughness and three-dimensional structure. In this research, we show that 3D magnetic resonance imaging (MRI) can be used to visualize biofilm distribution and determine its volume on irregular-shaped single AC granules in a non-destructive way, while being combined with electrochemical and biomass analyses. Ten AC granules with electroactive biofilm (i.e. granular bioanodes) were collected at different growth stages (3 to 21 days after microbial inoculation) from a multi-anode MFC and T1-weighted 3D-MRI experiments were performed for three-dimensional biofilm visualization. With time, a more homogeneous biofilm distribution and an increased biofilm thickness could be observed in the 3D-MRI images. Biofilm volumes varied from 0.4 μL (day 4) to 2 μL (day 21) and were linearly correlated (R2 = 0.9) to the total produced electric charge and total nitrogen content of the granular bioanodes, with values of 66.4 C μL-1 and 17 μg N μL-1, respectively. In future, in situ MRI measurements could be used to monitor biofilm growth and distribution on AC granules.
Collapse
Affiliation(s)
- Leire Caizán-Juanarena
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Julia R Krug
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands; Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; MAGNEtic resonance research FacilitY, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Frank J Vergeldt
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; MAGNEtic resonance research FacilitY, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - J Mieke Kleijn
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands; MAGNEtic resonance research FacilitY, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; MAGNEtic resonance research FacilitY, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
38
|
Cui YX, Biswal BK, van Loosdrecht MCM, Chen GH, Wu D. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. WATER RESEARCH 2019; 166:115038. [PMID: 31505308 DOI: 10.1016/j.watres.2019.115038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Sulfide-oxidizing autotrophic denitrification (SOAD) implemented in a moving-bed biofilm reactor (MBBR) is a promising alternative to conventional heterotrophic denitrification in mainstream biological nitrogen removal. The sulfide-oxidation intermediate - elemental sulfur - is crucial for the kinetic and microbial properties of the sulfur-oxidizing bacterial communities, but its role is yet to be studied in depth. Hence, to investigate the performance and microbial communities of the aforementioned new biosystem, we operated for a long term a laboratory-scale (700 d) SOAD MBBR to treat synthetic saline domestic sewage, with an increase of the surface loading rate from 8 to 50 mg N/(m2·h) achieved by shortening the hydraulic retention time from 12 h to 2 h. The specific reaction rates of the reactor were eventually increased up to 0.37 kg N/(m3·d) and 0.73 kg S/(m3·d) for nitrate reduction and sulfide oxidation with no significant sulfur elemental accumulation. Two sulfur-oxidizing bacterial (SOB) clades, Sox-independent SOB (SOBI) and Sox-dependent SOB (SOBII), were responsible for indirect two-step sulfur oxidation (S2-→S0→SO42-) and direct one-step sulfur oxidation (S2-→SO42-), respectively. The SOBII biomass-specific electron transfer capacity could be around 2.5 times greater than that of SOBI (38 mmol e-/(gSOBII·d) versus 15 mmol e-/(gSOBI·d)), possibly resulting in the selection of SOBII over SOBI under stress conditions (such as a shorter HRT). Further studies on the methods and mechanism of selecting of SOBII over SOBI in biofilm reactors are recommended. Overall, the findings shed light on the design and operation of MBBR-based SOAD processes for mainstream biological denitrification.
Collapse
Affiliation(s)
- Yan-Xiang Cui
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China
| | | | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
39
|
Kerdi S, Qamar A, Alpatova A, Ghaffour N. An in-situ technique for the direct structural characterization of biofouling in membrane filtration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Horvat M, Pannuri A, Romeo T, Dogsa I, Stopar D. Viscoelastic response of Escherichia coli biofilms to genetically altered expression of extracellular matrix components. SOFT MATTER 2019; 15:5042-5051. [PMID: 31179461 DOI: 10.1039/c9sm00297a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
How the viscoelastic properties of the extracellular matrix affect the various biological functions conferred by biofilms is an important question in microbiology. In this study, the viscoelastic response of Escherichia coli biofilms to the genetically altered expression of extracellular matrix components was studied. Biofilms of the wild type E. coli MG1655 and its mutant strains producing different amounts of extracellular matrix components (curli, colanic acid, and poly-β-1,6-N-acetyl-d-glucosamine) were used to examine the viscoelastic behavior of biofilms grown at the solid-atmosphere interface. The results suggest that the presence of curli proteins dominates biofilm mechanical behavior. The rheological data indicate that the cohesive energy of the biofilm was the highest in the wild type strain. The results demonstrate the importance of extracellular matrix composition for biofilm mechanical properties. We propose that by genetically altering the expression of extracellular matrix polymers, bacteria are able to modulate the mechanical properties of their local environment in accordance with bulk environmental conditions.
Collapse
Affiliation(s)
- Maruša Horvat
- University of Ljubljana, Biotechnical Faculty, Chair of Microbiology, Department of Food Science and Technology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
41
|
Jafari M, Derlon N, Desmond P, van Loosdrecht MCM, Morgenroth E, Picioreanu C. Biofilm compressibility in ultrafiltration: A relation between biofilm morphology, mechanics and hydraulic resistance. WATER RESEARCH 2019; 157:335-345. [PMID: 30965160 DOI: 10.1016/j.watres.2019.03.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Poroelastic fluid-structure interaction models were coupled to experimental data to determine the effects of biofilm spatial distribution of mechanical and hydraulic properties on the biofilm hydraulic resistance and compressibility in membrane filtration processes. Biofilms were cultivated on ultrafiltration membranes for 20 and 30 days under high (0.28 bar) and low (0.06 bar) transmembrane pressure (TMP), in dead-end filtration mode. Subsequently, biofilms were subjected to a compression/relaxation cycles by step-wise TMP changes. Structural deformation of biofilms during compression was observed in-situ using optical coherence tomography. Experimental results show that the observed increase in the biofilm hydraulic resistance during compression is not necessarily accompanied by a detectable biofilm thickness reduction. A dual-layer biofilm model with a dense base and porous top layer could explain these observed results. Because porosity controls indirectly the mechanical response of biofilms under compression, results could be described without assuming a gradient in mechanical properties within the biofilm. The biofilm surface roughness did not significantly influence the water flux in this study. However, the fraction of biofilm base layer directly exposed to bulk liquid could be a good indicator in the determination of water flux. The main implications of this study for the design and operation of low-pressure membrane systems (e.g., MF and UF with fouling layer being the main filtration resistance) lays in the selection of favorable operational TMP and biofilm morphology.
Collapse
Affiliation(s)
- Morez Jafari
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Cristian Picioreanu
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| |
Collapse
|
42
|
Trinh TA, Han Q, Ma Y, Chew JW. Microfiltration of oil emulsions stabilized by different surfactants. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Fortunato L, Li M, Cheng T, Rehman ZU, Heidrich W, Leiknes T. Cake layer characterization in Activated Sludge Membrane Bioreactors: Real-time analysis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Bauer A, Wagner M, Saravia F, Bartl S, Hilgenfeldt V, Horn H. In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Aybar M, Perez-Calleja P, Li M, Pavissich JP, Nerenberg R. Predation creates unique void layer in membrane-aerated biofilms. WATER RESEARCH 2019; 149:232-242. [PMID: 30447528 DOI: 10.1016/j.watres.2018.10.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
The membrane-aerated biofilm reactor (MABR) is a novel wastewater treatment technology based on oxygen-supplying membranes. The counter diffusion of oxygen and electron donors in MABRs leads to unique behavior, and we hypothesized it also could impact predation. We used optical coherence tomography (OCT), microsensor analyses, and mathematical modeling to investigate predation in membrane-aerated biofilms (MABs). When protozoa were excluded from the inoculum, the MAB's OCT-observable void fraction was around 5%. When protozoa were included, the void fraction grew to nearly 50%, with large, continuous voids at the base of the biofilm. Real-time OCT imaging showed highly motile protozoa in the voids. MABs with protozoa and a high bulk COD (270 mg/L) only had 4% void fraction. DNA sequencing revealed a high relative abundance of amoeba in both high and low-COD MABs. Flagellates were only abundant in the low-COD MAB. Modeling also suggested a relationship between substrate concentrations, diffusion mode (co- or counter-diffusion), and biofilm void fraction. Results suggest that amoeba proliferate in the biofilm interior, especially in the aerobic zones. Voids form once COD limitation at the base of MABs allows predation rates to exceed microbial growth rates. Once formed, the voids provide a niche for motile protozoa, which expand the voids into a large, continuous gap. This increases the potential for biofilm sloughing, and may have detrimental effects on slow-growing, aerobic microorganisms such as nitrifying bacteria.
Collapse
Affiliation(s)
- M Aybar
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA; Department of Civil Engineering, University of Concepción, Ciudad Universitaria, Casilla 160-C, Concepción, Chile.
| | - P Perez-Calleja
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA.
| | - M Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA.
| | - J P Pavissich
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA; Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES-UC), Santiago, Chile.
| | - R Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
46
|
Pronk W, Ding A, Morgenroth E, Derlon N, Desmond P, Burkhardt M, Wu B, Fane AG. Gravity-driven membrane filtration for water and wastewater treatment: A review. WATER RESEARCH 2019; 149:553-565. [PMID: 30508756 DOI: 10.1016/j.watres.2018.11.062] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/01/2018] [Accepted: 11/21/2018] [Indexed: 05/21/2023]
Abstract
Gravity-driven membrane (GDM) filtration has been investigated for almost 10 years. The technology is characterized not only by relatively lower transmembrane pressures which can be achieved by gravity (extremely low energy consumption), but also by the phenomenon of flux stabilization: A biofilm is allowed to form on the membrane and a stabilization of flux occurs which is related to biological processes within the biofilm layer on the membrane. This enables stable operation during a year or longer without any cleaning or flushing. Initially, the technology was developed mainly for household drinking water treatment, but in the meantime, the research and application has expanded to the treatment of greywater, rainwater, and wastewater as well as the pretreatment of seawater for desalination. This review covers the field from the rather fundamental research on biofilm morphology and microbial community analysis to the impact of feedwater composition, process parameters and organic removal performance. Not only household applications, but also for community-scale treatment and full-scale applications are discussed. In addition, the application potential is highlighted in comparison to conventional ultrafiltration. Finally, an overall assessment is illustrated and the research and development needs are identified.
Collapse
Affiliation(s)
- Wouter Pronk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland; Livinguard AG, Bahnhofstrasse 12, 6300, Zug, Switzerland.
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland; Institute of Environmental Technology, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland; MMS AG Membrane Systems, Im Grossherweg 11, 8902, Urdorf, Switzerland
| | - Michael Burkhardt
- Institute of Environmental and Process Engineering, University of Applied Sciences Rapperswil, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Bing Wu
- Singapore Membrane Technology Center, Nanyang Environmental and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore; Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Anthony G Fane
- Singapore Membrane Technology Center, Nanyang Environmental and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore
| |
Collapse
|
47
|
Khan BK, Fortunato L, Leiknes T. Early biofouling detection using fluorescence-based extracellular enzyme activity. Enzyme Microb Technol 2019; 120:43-51. [DOI: 10.1016/j.enzmictec.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
|
48
|
Huang H, Peng C, Peng P, Lin Y, Zhang X, Ren H. Towards the biofilm characterization and regulation in biological wastewater treatment. Appl Microbiol Biotechnol 2018; 103:1115-1129. [DOI: 10.1007/s00253-018-9511-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
|
49
|
Picioreanu C, Blauert F, Horn H, Wagner M. Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. WATER RESEARCH 2018; 145:588-598. [PMID: 30199803 DOI: 10.1016/j.watres.2018.08.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 05/28/2023]
Abstract
The advantage of using non-invasive imaging such as optical coherence tomography (OCT) to asses material properties from deformed biofilm geometries can be compromised by the assumptions made on fluid forces acting on the biofilm. This study developed a method for the determination of elastic properties of biofilms by modelling the biofilm deformation recorded by OCT imaging with poroelastic fluid-structure interaction computations. Two-dimensional biofilm geometries were extracted from OCT scans of non-deformed and deformed structures as a result of hydrodynamic loading. The biofilm geometries were implemented in a model coupling fluid dynamics with elastic solid mechanics and Darcy flow in the biofilm. The simulation results were compared with real deformed geometries and a fitting procedure allowed estimation of the Young's modulus in given flow conditions. The present method considerably improves the estimation of elastic moduli of biofilms grown in mini-fluidic rectangular channels. This superior prediction is based on the relaxation of several simplifying assumptions made in past studies: shear stress is not anymore taken constant over the biofilm surface, total stress including also pressure is accounted for, any biofilm shape can be used in the determinations, and non-linear behavior of mechanical properties can be estimated. Biofilm elastic moduli between 70 and 700 Pa were obtained and biofilm hardening at large applied stress due to increasing flow velocity was quantified. The work performed here opens the way for in-situ determination of other mechanical properties (e.g., viscoelastic properties, relaxation times, plastic yields) and provides data for modelling biofilm deformation and detachment with eventual applications in biofilm control and removal strategies.
Collapse
Affiliation(s)
- Cristian Picioreanu
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands.
| | - Florian Blauert
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Harald Horn
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Wagner
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
50
|
Desmond P, Morgenroth E, Derlon N. Physical structure determines compression of membrane biofilms during Gravity Driven Membrane (GDM) ultrafiltration. WATER RESEARCH 2018; 143:539-549. [PMID: 30007257 DOI: 10.1016/j.watres.2018.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Increasing transmembrane pressure (TMP) can compress and increase the hydraulic resistance of membrane biofilms. The purpose of the present study is to evaluate how compression of membrane biofilms occurs and how structural rearrangement can affect hydraulic resistance. Biofilms with heterogeneous and homogeneous physical structures were grown in membrane fouling simulators (MFS) in dead-end mode for 20 days with either (i) a nutrient enriched condition with a nutrient ratio of 100:30:10 (C: N: P), (ii) a phosphorus limitation (C: N: P ratio: 100:30:0), or (iii) river water (C: N: P ratio: ca. 100:10:1). The structural and hydraulic response of membrane biofilms to (a) changes in transmembrane pressures (0.06-0.1-0.5-0.1-0.06 bar) and (b) changes in permeate flux (10-15-20-15-10 L/m2/h) were investigated. Optical coherence tomography (OCT) was used to monitor biofilm structural response, and OCT images were processed to quantify changes in the mean biofilm thickness and relative roughness. Nutrient enriched and river water biofilms had heterogeneous physical structures with greater surface roughness (Ra' > 0.2) than homogeneous P limiting biofilms (Ra' < 0.2). Compression of biofilms with rough heterogeneous structures (Ra' > 0.2) was irreversible, indicated by irreversible decrease in surface roughness, partial relaxation in mean biofilm thickness and irreversible increase in hydraulic resistance. Compression of homogeneous biofilm (Ra' < 0.2) was on the other hand reversible, indicated by full relaxation of the biofilms structure and restoration of initial hydraulic resistance. Hydraulic response (i.e., change in the specific biofilm resistance) did not correspond with the change in physical structure of heterogeneous biofilms. The presented study provides a fundamental understanding of how biofilm physical structure can affect the biofilm's response to a change in TMP, with practical relevance for the operation of GDM filtration systems.
Collapse
Affiliation(s)
- Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|