1
|
Li L, Liu X, Sun H, Ma H, Cheng YY, Li X, Jia Z, Zhao J, Song K. Numerical Simulation and Comparison of Flow Field in Different Dynamic Co-Culture Conditions. Biotechnol J 2025; 20:e70039. [PMID: 40371974 DOI: 10.1002/biot.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/11/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Bioreactor technology facilitates the gradual automation of cell expansion and the development of biofunctional synthetic alternatives. However, it is difficult to fully understand the flow field and force field environments formed in it by experimental means. Computational fluid dynamics (CFD) offers a robust framework for analyzing and understanding the impacts of fluid flow, material diffusion, and fluid shear stress (FSS) on in vitro cell and tissue regeneration dynamics. In this study, the FLUENT software is used to simulate and calculate the flow field environment of the rotary cell culture system (RCCS) and spinner flask (SF), including dynamic pressure, shear stress, and velocity distribution. Particles of two diameters for three-dimensional cell culture were randomly arranged in different radial/axial positions, and the FSS on the particles in RCCS and SF at different rotational speeds was also analyzed. It is expected to visualize the flow field distribution of the bioreactor and local hydrodynamic changes near the particles, and provide positive assistance for the dynamic culture/co-culture of different cells-microcarriers complex. The distribution of FSS on randomly arranged L and S particles was analyzed in detail to evaluate and screen the suitable operating conditions of these two bioreactors. Visually understanding the flow field distribution and local hydrodynamic changes within the bioreactor is expected to provide positive assistance for dynamic culture. The particles may periodically contact the fresh oxygenated medium during rotation with the fluid. Two fluid circulations in SF were generated in the upper/lower area of the blade, and a relatively static fluid circulation area was formed at the bottom with low velocity and pressure in the center, which was not conducive to material exchange. Rotary bioreactors may be more suitable than spinner flasks as a dynamic culture tool for some types of cells or other constructs.
Collapse
Affiliation(s)
- Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, China
| | - Xinyue Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, China
| | - Huamao Sun
- Mathematics Teaching and Research Group, The High School Attached to Dalian University of Technology, Dalian, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Xiangqin Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, China
| | - Zhilin Jia
- Department of Hematology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaquan Zhao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| |
Collapse
|
2
|
Holland I. Extrusion bioprinting: meeting the promise of human tissue biofabrication? PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:023001. [PMID: 39904058 PMCID: PMC11894458 DOI: 10.1088/2516-1091/adb254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Extrusion is the most popular bioprinting platform. Predictions of human tissue and whole-organ printing have been made for the technology. However, after decades of development, extruded constructs lack the essential microscale resolution and heterogeneity observed in most human tissues. Extrusion bioprinting has had little clinical impact with the majority of research directed away from the tissues most needed by patients. The distance between promise and reality is a result of technology hype and inherent design flaws that limit the shape, scale and survival of extruded features. By more widely adopting resolution innovations and softening its ambitions the biofabrication field could define a future for extrusion bioprinting that more closely aligns with its capabilities.
Collapse
Affiliation(s)
- Ian Holland
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Deanery of Biomedical Science, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Smith L, Quelch-Cliffe R, Liu F, Aguilar AH, Przyborski S. Evaluating Strategies to Assess the Differentiation Potential of Human Pluripotent Stem Cells: A Review, Analysis and Call for Innovation. Stem Cell Rev Rep 2025; 21:107-125. [PMID: 39340737 PMCID: PMC11762643 DOI: 10.1007/s12015-024-10793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Pluripotent stem cells have the ability to differentiate into all cells and tissues within the human body, and as a result they are attractive resources for use in basic research, drug discovery and regenerative medicine. In order to successfully achieve this application, starting cell sources ideally require in-depth characterisation to confirm their pluripotent status and their ability to differentiate into tissues representative of the three developmental germ layers. Many different methods to assess potency are employed, each having its own distinct advantages and limitations. Some aspects of this characterisation process are not always well standardised, particularly techniques used to assess pluripotency as a function. In this article, we consider the methods used to establish cellular pluripotency and subsequently analyse characterisation data for over 1590 human pluripotent cell lines from publicly available repositories in the UK and USA. In particular, we focus on the teratoma xenograft assay, its use and protocols, demonstrating the level of variation and the frequency with which it is used. Finally, we reflect on the implications of the findings, and suggest in vitro alternatives using modern innovative technology as a way forward.
Collapse
Affiliation(s)
- Lucy Smith
- Department of Biosciences, Durham University, Durham, England
| | | | - Felicity Liu
- Department of Biosciences, Durham University, Durham, England
| | | | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, England.
- Reprocell Europe Ltd, NETPark, Sedgefield, England.
| |
Collapse
|
4
|
Gwon K, Dharmesh E, Nguyen KM, Schornack AMR, de Hoyos-Vega JM, Ceylan H, Stybayeva G, Peterson QP, Revzin A. Designing magnetic microcapsules for cultivation and differentiation of stem cell spheroids. MICROSYSTEMS & NANOENGINEERING 2024; 10:127. [PMID: 39261472 PMCID: PMC11390961 DOI: 10.1038/s41378-024-00747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
Human pluripotent stem cells (hPSCs) represent an excellent cell source for regenerative medicine and tissue engineering applications. However, there remains a need for robust and scalable differentiation of stem cells into functional adult tissues. In this paper, we sought to address this challenge by developing magnetic microcapsules carrying hPSC spheroids. A co-axial flow-focusing microfluidic device was employed to encapsulate stem cells in core-shell microcapsules that also contained iron oxide magnetic nanoparticles (MNPs). These microcapsules exhibited excellent response to an external magnetic field and could be held at a specific location. As a demonstration of utility, magnetic microcapsules were used for differentiating hPSC spheroids as suspension cultures in a stirred bioreactor. Compared to standard suspension cultures, magnetic microcapsules allowed for more efficient media change and produced improved differentiation outcomes. In the future, magnetic microcapsules may enable better and more scalable differentiation of hPSCs into adult cell types and may offer benefits for cell transplantation.
Collapse
Affiliation(s)
- Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Ether Dharmesh
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Kianna M Nguyen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Jose M de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hakan Ceylan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Shi G, Zhang P, Zhang X, Li J, Zheng X, Yan J, Zhang N, Yang H. The spatiotemporal heterogeneity of the biophysical microenvironment during hematopoietic stem cell development: from embryo to adult. Stem Cell Res Ther 2023; 14:251. [PMID: 37705072 PMCID: PMC10500792 DOI: 10.1186/s13287-023-03464-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Hematopoietic stem cells (HSCs) with the ability to self-renew and differentiate are responsible for maintaining the supply of all types of blood cells. The complex and delicate microenvironment surrounding HSCs is called the HSC niche and can provide physical, chemical, and biological stimuli to regulate the survival, maintenance, proliferation, and differentiation of HSCs. Currently, the exploration of the biophysical regulation of HSCs remains in its infancy. There is evidence that HSCs are susceptible to biophysical stimuli, suggesting that the construction of engineered niche biophysical microenvironments is a promising way to regulate the fate of HSCs in vitro and ultimately contribute to clinical applications. In this review, we introduced the spatiotemporal heterogeneous biophysical microenvironment during HSC development, homeostasis, and malignancy. Furthermore, we illustrated how these biophysical cues contribute to HSC behaviors, as well as the possible mechanotransduction mechanisms from the extracellular microenvironment into cells. Comprehending the important functions of these biophysical regulatory factors will provide novel approaches to resolve clinical problems.
Collapse
Affiliation(s)
- Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Xi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jing Li
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China.
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Mohseni S, Khoshfetrat AB, Rahbarghazi R, Khodabakhshaghdam S, Kaleybar LS. Influence of shear force on ex vivo expansion of hematopoietic model cells in a stirred tank bioreactor. J Biol Eng 2023; 17:38. [PMID: 37277832 DOI: 10.1186/s13036-023-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023] Open
Abstract
To evaluate shear stress influence on ex vivo expansion of hematopoietic cell lineages for clinical application, in this study, human pro-monocytic cell (namely U937 cell line) was selected as a hematopoietic stem cell (HSC) model and cultured in suspension mode at two different agitation rates (50, 100 rpm) in the stirred bioreactor. At the agitation rate of 50 rpm, the cells achieved higher expansion folds (27.4 fold) with minimal morphological changes as well as apoptotic cell death, while at 100 rpm the expansion fold decreased after 5-day of culture in suspension culture in comparison with static culture and reached 24.5 fold at the end of the culture. The results of glucose consumption and lactate production were also in agreement with the data of fold expansion and indicated the preference of culture in the stirred bioreactor when agitated at 50 rpm. This study indicated the stirred bioreactor system with an agitation rate of 50 rpm and surface aeration may be used as a potential dynamic culture system for clinical applications of hematopoietic cell lineage. The current experiments shed data related to the effect of shear stress on human U937 cells, as a hematopoietic cell model, to set a protocol for expansion of HSCs for biomedical applications.
Collapse
Affiliation(s)
- Sofia Mohseni
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leila Shafiei Kaleybar
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| |
Collapse
|
7
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
8
|
Szmelter AH, Venturini G, Abbed RJ, Acheampong MO, Eddington DT. Emulating clinical pressure waveforms in cell culture using an Arduino-controlled millifluidic 3D-printed platform for 96-well plates. LAB ON A CHIP 2023; 23:793-802. [PMID: 36727452 PMCID: PMC9979247 DOI: 10.1039/d2lc00970f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High blood pressure is the primary risk factor for heart disease, the leading cause of death globally. Despite this, current methods to replicate physiological pressures in vitro remain limited in sophistication and throughput. Single-chamber exposure systems allow for only one pressure condition to be studied at a time and the application of dynamic pressure waveforms is currently limited to simple sine, triangular, or square waves. Here, we introduce a high-throughput hydrostatic pressure exposure system for 96-well plates. The platform can deliver a fully-customizable pressure waveform to each column of the plate, for a total of 12 simultaneous conditions. Using clinical waveform data, we are able to replicate real patients' blood pressures as well as other medically-relevant pressures within the body and have assembled a small patient-derived waveform library of some key physiological locations. As a proof of concept, human umbilical vein endothelial cells (HUVECs) survived and proliferated for 3 days under a wide range of static and dynamic physiologic pressures ranging from 10 mm Hg to 400 mm Hg. Interestingly, pathologic and supraphysiologic pressure exposures did not inhibit cell proliferation. By integrating with, rather than replacing, ubiquitous lab cultureware it is our hope that this device will facilitate the incorporation of hydrostatic pressure into standard cell culture practice.
Collapse
Affiliation(s)
- Adam H Szmelter
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| | - Giulia Venturini
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| | - Rana J Abbed
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| | - Manny O Acheampong
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| | - David T Eddington
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| |
Collapse
|
9
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
10
|
Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res 2022; 10:65. [PMID: 36411278 PMCID: PMC9678891 DOI: 10.1038/s41413-022-00234-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, our scientific interest in spaceflight has grown exponentially and resulted in a thriving area of research, with hundreds of astronauts spending months of their time in space. A recent shift toward pursuing territories farther afield, aiming at near-Earth asteroids, the Moon, and Mars combined with the anticipated availability of commercial flights to space in the near future, warrants continued understanding of the human physiological processes and response mechanisms when in this extreme environment. Acute skeletal loss, more severe than any bone loss seen on Earth, has significant implications for deep space exploration, and it remains elusive as to why there is such a magnitude of difference between bone loss on Earth and loss in microgravity. The removal of gravity eliminates a critical primary mechano-stimulus, and when combined with exposure to both galactic and solar cosmic radiation, healthy human tissue function can be negatively affected. An additional effect found in microgravity, and one with limited insight, involves changes in dynamic fluid flow. Fluids provide the most fundamental way to transport chemical and biochemical elements within our bodies and apply an essential mechano-stimulus to cells. Furthermore, the cell cytoplasm is not a simple liquid, and fluid transport phenomena together with viscoelastic deformation of the cytoskeleton play key roles in cell function. In microgravity, flow behavior changes drastically, and the impact on cells within the porous system of bone and the influence of an expanding level of adiposity are not well understood. This review explores the role of interstitial fluid motion and solute transport in porous bone under two different conditions: normogravity and microgravity.
Collapse
|
11
|
Limraksasin P, Nattasit P, Manokawinchoke J, Tiskratok W, Vinaikosol N, Okawa H, Limjeerajarus CN, Limjeerajarus N, Pavasant P, Osathanon T, Egusa H. Application of shear stress for enhanced osteogenic differentiation of mouse induced pluripotent stem cells. Sci Rep 2022; 12:19021. [PMID: 36347883 PMCID: PMC9643422 DOI: 10.1038/s41598-022-21479-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
The self-organizing potential of induced pluripotent stem cells (iPSCs) represents a promising tool for bone tissue engineering. Shear stress promotes the osteogenic differentiation of mesenchymal stem cells, leading us to hypothesize that specific shear stress could enhance the osteogenic differentiation of iPSCs. For osteogenesis, embryoid bodies were formed for two days and then maintained in medium supplemented with retinoic acid for three days, followed by adherent culture in osteogenic induction medium for one day. The cells were then subjected to shear loading (0.15, 0.5, or 1.5 Pa) for two days. Among different magnitudes tested, 0.5 Pa induced the highest levels of osteogenic gene expression and greatest mineral deposition, corresponding to upregulated connexin 43 (Cx43) and phosphorylated Erk1/2 expression. Erk1/2 inhibition during shear loading resulted in decreased osteogenic gene expression and the suppression of mineral deposition. These results suggest that shear stress (0.5 Pa) enhances the osteogenic differentiation of iPSCs, partly through Cx43 and Erk1/2 signaling. Our findings shed light on the application of shear-stress technology to improve iPSC-based tissue-engineered bone for regenerative bone therapy.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,grid.7922.e0000 0001 0244 7875Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330 Thailand
| | - Praphawi Nattasit
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Jeeranan Manokawinchoke
- grid.7922.e0000 0001 0244 7875Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Watcharaphol Tiskratok
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Naruephorn Vinaikosol
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Hiroko Okawa
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Chalida Nakalekha Limjeerajarus
- grid.7922.e0000 0001 0244 7875Center of Excellence for Regenerative Dentistry and Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Nuttapol Limjeerajarus
- grid.7922.e0000 0001 0244 7875Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand ,grid.512238.f0000 0004 0625 2348Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand
| | - Prasit Pavasant
- grid.7922.e0000 0001 0244 7875Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330 Thailand
| | - Thanaphum Osathanon
- grid.7922.e0000 0001 0244 7875Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330 Thailand
| | - Hiroshi Egusa
- grid.69566.3a0000 0001 2248 6943Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,grid.69566.3a0000 0001 2248 6943Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai-city, 980-8575 Japan
| |
Collapse
|
12
|
Gallego‐Murillo JS, Iacono G, van der Wielen LAM, van den Akker E, von Lindern M, Wahl SA. Expansion and differentiation of ex vivo cultured erythroblasts in scalable stirred bioreactors. Biotechnol Bioeng 2022; 119:3096-3116. [PMID: 35879812 PMCID: PMC9804173 DOI: 10.1002/bit.28193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
Transfusion of donor-derived red blood cells (RBCs) is the most common form of cell therapy. Production of transfusion-ready cultured RBCs (cRBCs) is a promising replacement for the current, fully donor-dependent therapy. A single transfusion unit, however, contains 2 × 1012 RBC, which requires large scale production. Here, we report on the scale-up of cRBC production from static cultures of erythroblasts to 3 L stirred tank bioreactors, and identify the effect of operating conditions on the efficiency of the process. Oxygen requirement of proliferating erythroblasts (0.55-2.01 pg/cell/h) required sparging of air to maintain the dissolved oxygen concentration at the tested setpoint (2.88 mg O2 /L). Erythroblasts could be cultured at dissolved oxygen concentrations as low as 0.7 O2 mg/ml without negative impact on proliferation, viability or differentiation dynamics. Stirring speeds of up to 600 rpm supported erythroblast proliferation, while 1800 rpm led to a transient halt in growth and accelerated differentiation followed by a recovery after 5 days of culture. Erythroblasts differentiated in bioreactors, with final enucleation levels and hemoglobin content similar to parallel cultures under static conditions.
Collapse
Affiliation(s)
- Joan Sebastián Gallego‐Murillo
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands,Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Present address:
MeatableAlexander Fleminglaan 1,2613AX,DelftThe Netherlands
| | - Giulia Iacono
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Bernal Institute, Faculty of Science and EngineeringUniversity of LimerickLimerickRepublic of Ireland
| | - Emile van den Akker
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Present address:
Lehrstuhl Für BioverfahrenstechnikFriedrich‐Alexander Universität Erlangen‐NürnbergPaul‐Gordan‐Str. 3,91052,ErlangenGermany
| |
Collapse
|
13
|
Robinson M, Bedford E, Witherspoon L, Willerth SM, Flannigan R. Using clinically derived human tissue to 3-dimensionally bioprint personalized testicular tubules for in vitro culturing: first report. F&S SCIENCE 2022; 3:130-139. [PMID: 35560010 DOI: 10.1016/j.xfss.2022.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study the feasibility and spermatogenic potential of 3-dimensional (3D) bioprinting personalized human testicular cells derived from a patient with nonobstructive azoospermia (NOA). DESIGN A human testicular biopsy from a single donor with NOA was dissociated into single cells, expanded in vitro, and 3D bioprinted into tubular structures akin to the seminiferous tubule using AGC-10 bioink and an RX1 bioprinter with a CENTRA coaxial microfluidic printhead from Aspect Biosystems. Three-dimensional organoid cultures were used as a nonbioprinted in vitro control. SETTING Academic medical center. PATIENT(S) A 31-year-old man with NOA with testis biopsy demonstrating Sertoli cell-only syndrome. INTERVENTION(S) Three-dimensional bioprinting and in vitro culturing of patient-derived testis cells. MAIN OUTCOME MEASURE(S) Cellular viability after printing was determined, along with the expression of phenotypic and spermatogenic functional genetic markers after 12 days of in vitro culture. RESULT(S) Testicular cultures were expandable in vitro and generated sufficiently large numbers for 3D bioprinting at 35 million cells per mL of bioink. Viability 24 hours after printing was determined to be 93.4% ± 2.4%. Immunofluorescence staining for the phenotype markers SRY-Box transcription factor 9, insulin-like 3, actin alpha 2 smooth muscle, and synaptonemal complex protein 3 after 12 days was positive, confirming the presence of Sertoli, Leydig, peritubular myoid, and meiotic germ cells. Reverse transcription qualitative polymerase chain reaction analysis showed that after 12 days in spermatogenic media, the bioprints substantially up-regulated spermatogenic gene expression on par with nonbioprinted controls and showed a particularly significant improvement in genes involved in spermatogonial stem cell maintenance: inhibitor of deoxyribonucleic acid binding 4 by 365-fold; fibroblast growth factor 3 by 94,152-fold; stem cell growth factor receptor KIT by twofold; stimulated by retinoic acid 8 by 125-fold; deleted in azoospermia-like by 114-fold; synaptonemal complex protein 3 by sevenfold; zona pellucida binding protein by twofold; transition protein 1 by 2,908-fold; and protamine 2 by 11-fold. CONCLUSION(S) This study demonstrates for the first time the feasibility of 3D bioprinting adult human testicular cells. We show that the bioprinting process is compatible with high testicular cell viability and without loss of the main somatic phenotypes within the testis tissue. We demonstrate an increase in germ cell markers in the 3D bioprinted tubules after 12 days of in vitro culture. This platform may carry future potential for disease modeling and regenerative opportunities in a personalized medicine framework.
Collapse
Affiliation(s)
- Meghan Robinson
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Erin Bedford
- Aspect Biosystems, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
14
|
Ma C, Xiong Y, Han P, Zhang X, Cao Y, Wang B, Zhao H, Duan E, Zhang JV, Lei X. Simulated Microgravity Potentiates Hematopoietic Differentiation of Human Pluripotent Stem Cells and Supports Formation of 3D Hematopoietic Cluster. Front Cell Dev Biol 2022; 9:797060. [PMID: 35083220 PMCID: PMC8784808 DOI: 10.3389/fcell.2021.797060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Microgravity has been shown to induces many changes in proliferation, differentiation and growth behavior of stem cells. Little is known about the effect of microgravity on hematopoietic differentiation of pluripotent stem cells (PSCs). In this study, we used the random position machine (RPM) to investigate whether simulated microgravity (SMG) allows the induction of hematopoietic stem/progenitor cell (HSPC) derived from human embryonic stem cells (hESCs) in vitro. The results showed that SMG facilitates hESCs differentiate to HSPC with more efficient induction of CD34+CD31+ hemogenic endothelium progenitors (HEPs) on day 4 and CD34+CD43+ HSPC on day 7, and these cells shows an increased generation of functional hematopoietic cells in colony-forming unit assay when compared with normal gravity (NG) conditions. Additionally, we found that SMG significantly increased the total number of cells on day 4 and day 7 which formed more 3D cell clusters. Transcriptome analysis of cells identified thousands of differentially expressed genes (DEGs) between NG and SMG. DEGs down-regulated were enriched in the axonogenesis, positive regulation of cell adhesion, cell adhesion molecule and axon guidance, while SMG resulted in the up-regulation of genes were functionally associated with DNA replication, cell cycle, PI3K-Akt signaling pathway and tumorigenesis. Interestingly, some key gene terms were enriched in SMG, like hypoxia and ECM receptor interaction. Moreover, HSPC obtained from SMG culture conditions had a robust ability of proliferation in vitro. The proliferated cells also had the ability to form erythroid, granulocyte and monocyte/macrophage colonies, and can be induced to generate macrophages and megakaryocytes. In summary, our data has shown a potent impact of microgravity on hematopoietic differentiation of hPSCs for the first time and reveals an underlying mechanism for the effect of SMG on hematopoiesis development.
Collapse
Affiliation(s)
- Chiyuan Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei Han
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Xueying Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baobei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
15
|
Manokawinchoke J, Limraksasin P, Okawa H, Pavasant P, Egusa H, Osathanon T. Intermittent compressive force induces cell cycling and reduces apoptosis in embryoid bodies of mouse induced pluripotent stem cells. Int J Oral Sci 2022; 14:1. [PMID: 34980892 PMCID: PMC8724316 DOI: 10.1038/s41368-021-00151-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
In vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional (3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However, information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes, membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together, these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.,Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.,Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Prasit Pavasant
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Torizal FG, Lau QY, Ibuki M, Kawai Y, Horikawa M, Minami M, Michiue T, Horiguchi I, Nishikawa M, Sakai Y. A miniature dialysis-culture device allows high-density human-induced pluripotent stem cells expansion from growth factor accumulation. Commun Biol 2021; 4:1316. [PMID: 34799690 PMCID: PMC8604949 DOI: 10.1038/s42003-021-02848-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional aggregate-suspension culture is a potential biomanufacturing method to produce a large number of human induced pluripotent stem cells (hiPSCs); however, the use of expensive growth factors and method-induced mechanical stress potentially result in inefficient production costs and difficulties in preserving pluripotency, respectively. Here, we developed a simple, miniaturized, dual-compartment dialysis-culture device based on a conventional membrane-culture insert with deep well plates. The device improved cell expansion up to approximately ~3.2 to 4×107 cells/mL. The high-density expansion was supported by reduction of excessive shear stress and agglomeration mediated by the addition of the functional polymer FP003. The results revealed accumulation of several growth factors, including fibroblast growth factor 2 and insulin, along with endogenous Nodal, which acts as a substitute for depleted transforming growth factor-β1 in maintaining pluripotency. Because we used the same growth-factor formulation per volume in the upper culture compartment, the cost reduced in inverse proportional manner with the cell density. We showed that growth-factor-accumulation dynamics in a low-shear-stress environment successfully improved hiPSC proliferation, pluripotency, and differentiation potential. This miniaturised dialysis-culture system demonstrated the feasibility of cost-effective mass production of hiPSCs in high-density culture.
Collapse
Affiliation(s)
- Fuad Gandhi Torizal
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan. .,Department of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Qiao You Lau
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masato Ibuki
- grid.410860.b0000 0000 9776 0030Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Yoshikazu Kawai
- grid.410860.b0000 0000 9776 0030Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Masato Horikawa
- grid.420062.20000 0004 1763 4894Materials Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Masataka Minami
- grid.420062.20000 0004 1763 4894Materials Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Tatsuo Michiue
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikki Horiguchi
- grid.136593.b0000 0004 0373 3971Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Masaki Nishikawa
- grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Xue Y, Seiler MJ, Tang WC, Wang JY, Delgado J, McLelland BT, Nistor G, Keirstead HS, Browne AW. Retinal organoids on-a-chip: a micro-millifluidic bioreactor for long-term organoid maintenance. LAB ON A CHIP 2021; 21:3361-3377. [PMID: 34236056 PMCID: PMC8387452 DOI: 10.1039/d1lc00011j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Retinal degeneration is a leading cause of vision impairment and blindness worldwide and medical care for advanced disease does not exist. Stem cell-derived retinal organoids (RtOgs) became an emerging tool for tissue replacement therapy. However, existing RtOg production methods are highly heterogeneous. Controlled and predictable methodology and tools are needed to standardize RtOg production and maintenance. In this study, we designed a shear stress-free micro-millifluidic bioreactor for nearly labor-free retinal organoid maintenance. We used a stereolithography (SLA) 3D printer to fabricate a mold from which Polydimethylsiloxane (PDMS) was cast. We optimized the chip design using in silico simulations and in vitro evaluation to optimize mass transfer efficiency and concentration uniformity in each culture chamber. We successfully cultured RtOgs at three different differentiation stages (day 41, 88, and 128) on an optimized bioreactor chip for more than 1 month. We used different quantitative and qualitative techniques to fully characterize the RtOgs produced by static dish culture and bioreactor culture methods. By analyzing the results from phase contrast microscopy, single-cell RNA sequencing (scRNA seq), quantitative polymerase chain reaction (qPCR), immunohistology, and electron microscopy, we found that bioreactor-cultured RtOgs developed cell types and morphology comparable to static cultured ones and exhibited similar retinal genes expression levels. We also evaluated the metabolic activity of RtOgs in both groups using fluorescence lifetime imaging (FLIM), and found that the outer surface region of bioreactor cultured RtOgs had a comparable free/bound NADH ratio and overall lower long lifetime species (LLS) ratio than static cultured RtOgs during imaging. To summarize, we validated an automated micro-millifluidic device with significantly reduced shear stress to produce RtOgs of comparable quality to those maintained in conventional static culture.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
19
|
Huang Y, Qian JY, Cheng H, Li XM. Effects of shear stress on differentiation of stem cells into endothelial cells. World J Stem Cells 2021; 13:894-913. [PMID: 34367483 PMCID: PMC8316872 DOI: 10.4252/wjsc.v13.i7.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia-Yi Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Cheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao-Ming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
20
|
Silva TP, Sousa-Luís R, Fernandes TG, Bekman EP, Rodrigues CAV, Vaz SH, Moreira LM, Hashimura Y, Jung S, Lee B, Carmo-Fonseca M, Cabral JMS. Transcriptome profiling of human pluripotent stem cell-derived cerebellar organoids reveals faster commitment under dynamic conditions. Biotechnol Bioeng 2021; 118:2781-2803. [PMID: 33871054 DOI: 10.1002/bit.27797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
Abstract
Human-induced pluripotent stem cells (iPSCs) have great potential for disease modeling. However, generating iPSC-derived models to study brain diseases remains a challenge. In particular, the ability to recapitulate cerebellar development in vitro is still limited. We presented a reproducible and scalable production of cerebellar organoids by using the novel single-use Vertical-Wheel bioreactors, in which functional cerebellar neurons were obtained. Here, we evaluate the global gene expression profiles by RNA sequencing (RNA-seq) across cerebellar differentiation, demonstrating a faster cerebellar commitment in this novel dynamic differentiation protocol. Furthermore, transcriptomic profiles suggest a significant enrichment of extracellular matrix (ECM) in dynamic-derived cerebellar organoids, which can better mimic the neural microenvironment and support a consistent neuronal network. Thus, an efficient generation of organoids with cerebellar identity was achieved for the first time in a continuous process using a dynamic system without the need of organoids encapsulation in ECM-based hydrogels, allowing the possibility of large-scale production and application in high-throughput processes. The presence of factors that favors angiogenesis onset was also detected in dynamic conditions, which can enhance functional maturation of cerebellar organoids. We anticipate that large-scale production of cerebellar organoids may help developing models for drug screening, toxicological tests, and studying pathological pathways involved in cerebellar degeneration.
Collapse
Affiliation(s)
- Teresa P Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Sousa-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia P Bekman
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal, Portugal
| | - Leonilde M Moreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Brian Lee
- PBS Biotech, Camarillo, California, USA
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Kaleybar LS, Khoshfetrat AB, Rahbarghazi R, Nozad Charoudeh H. Performance evaluation of a novel conceptual bioprocess for clinically-required mass production of hematopoietic cells. Biotechnol Lett 2021; 43:959-966. [PMID: 33554302 DOI: 10.1007/s10529-020-03062-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The novel engineered bioprocess, which was designed and modeled to provide the clinically relevant cell numbers for different therapies in our previous work (Kaleybar et al. Food Bioprod Process 122:254-268, https://doi.org/10.1016/j.fbp.2020.04.012 , 2020), was evaluated by using U937 as hematopoietic model cells. RESULTS The culture system showed a 30-fold expansion of U937 cells in one-step during a 10-day culture period. The cell growth profile, the substrate and oxygen consumptions, and byproduct formations were all in agreement with the model predications during 7 days. The cell proliferation decrease after 7 days was attributed to optional oxygen limiting condition in the last days of culture. The bioreactor culture system revealed also a slight enhancement of lactate dehydrogenase (LDH) production as compared to the 2D conventional culture system, indicating the low impact of shear stress on cellular damage in the dynamic system. CONCLUSIONS The results demonstrated that the conceptual bioprocess for suspended stem cell production has a great potential in practice although additional experiments are required to improve the system.
Collapse
Affiliation(s)
- Leila Shafiei Kaleybar
- Chemical Engineering Faculty, Sahand University of Technology, 51335-1996, Tabriz, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, 51335-1996, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, 51335-1996, Tabriz, Iran. .,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, 51335-1996, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Response of Pluripotent Stem Cells to Environmental Stress and Its Application for Directed Differentiation. BIOLOGY 2021; 10:biology10020084. [PMID: 33498611 PMCID: PMC7912122 DOI: 10.3390/biology10020084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Environmental changes in oxygen concentration, temperature, and mechanical stimulation lead to the activation of specific transcriptional factors and induce the expression of each downstream gene. In general, these responses are protective machinery against such environmental stresses, while these transcriptional factors also regulate cell proliferation, differentiation, and organ development in mammals. In the case of pluripotent stem cells, similar response mechanisms normally work and sometimes stimulate the differentiation cues. Up to now, differentiation protocols utilizing such environmental stresses have been reported to obtain various types of somatic cells from pluripotent stem cells. Basically, environmental stresses as hypoxia (low oxygen), hyperoxia, (high oxygen) and mechanical stress from cell culture plates are relatively safer than chemicals and gene transfers, which affect the genome irreversibly. Therefore, protocols designed with such environments in mind could be useful for the technology development of cell therapy and regenerative medicine. In this manuscript, we summarize recent findings of environmental stress-induced differentiation protocols and discuss their mechanisms. Abstract Pluripotent stem cells have unique characteristics compared to somatic cells. In this review, we summarize the response to environmental stresses (hypoxic, oxidative, thermal, and mechanical stresses) in embryonic stem cells (ESCs) and their applications in the differentiation methods directed to specific lineages. Those stresses lead to activation of each specific transcription factor followed by the induction of downstream genes, and one of them regulates lineage specification. In short, hypoxic stress promotes the differentiation of ESCs to mesodermal lineages via HIF-1α activation. Concerning mechanical stress, high stiffness tends to promote mesodermal differentiation, while low stiffness promotes ectodermal differentiation via the modulation of YAP1. Furthermore, each step in the same lineage differentiation favors each appropriate stiffness of culture plate; for example, definitive endoderm favors high stiffness, while pancreatic progenitor favors low stiffness during pancreatic differentiation of human ESCs. Overall, treatments utilizing those stresses have no genotoxic or carcinogenic effects except oxidative stress; therefore, the differentiated cells are safe and could be useful for cell replacement therapy. In particular, the effect of mechanical stress on differentiation is becoming attractive for the field of regenerative medicine. Therefore, the development of a stress-mediated differentiation protocol is an important matter for the future.
Collapse
|
23
|
Motallebnejad P, Azarin SM. Chemically defined human vascular laminins for biologically relevant culture of hiPSC-derived brain microvascular endothelial cells. Fluids Barriers CNS 2020; 17:54. [PMID: 32912242 PMCID: PMC7488267 DOI: 10.1186/s12987-020-00215-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In recent years, differentiation of human induced pluripotent stem cells (hiPSCs) into brain-specific microvascular endothelial cells (iBMECs) has frequently been used to model the blood-brain barrier (BBB). However, there are limitations in the use of iBMECs for in vitro studies, such as transendothelial electrical resistance (TEER) instability, weak junctional expression of VE-cadherin, and lack of proper fluid shear stress response. In vivo, the basement membrane (BM) composition of the BBB evolves throughout development, and laminins become the dominant component of the mature vascular BM. However, laminin isoforms of the endothelial BM have not been used for culture of differentiated iBMECs. The main goal of this study is to investigate the effect of different laminin isoforms of the endothelial BM on iBMEC functionality and to determine whether better recapitulation of the physiological BM in vitro can address the aforementioned limitations of iBMECs. METHODS Using a previously reported method, hiPSCs were differentiated into iBMECs. The influence of main laminins of the endothelial BM, LN 411 and LN 511, on iBMEC functionality was studied and compared to a collagen IV and fibronectin mixture (CN IV-FN). Quantitative RT-PCR, immunocytochemistry, and TEER measurement were utilized to assess gene and protein expression and barrier properties of iBMECs on different extracellular matrices. Single-channel microfluidic devices were used to study the effect of shear stress on iBMECs. RESULTS LN 511, but not LN 411, improved iBMEC barrier properties and resulted in more sustained TEER stability. Immunocytochemistry showed improved junctional protein expression compared to iBMECs cultured on CN IV-FN. iBMECs cultured on LN 511 showed a reduction of stress fibers, indicating resting endothelial phenotype, whereas gene expression analysis revealed upregulation of multiple genes involved in endothelial activation in iBMECs on CN IV-FN. Finally, culturing iBMECs on LN 511 enhanced physiological responses to shear stress, including morphological changes and enhanced junctional protein association. CONCLUSION LN 511 improves the functionality and long-term barrier stability of iBMECs. Our findings suggest that incorporation of physiologically relevant LN 511 in iBMEC culture would be beneficial for disease modeling applications and BBB-on-a-chip platforms that accommodate fluid flow.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Zhang F, Wang J, Lü D, Zheng L, Shangguan B, Gao Y, Wu Y, Long M. Mechanomics analysis of hESCs under combined mechanical shear, stretch, and compression. Biomech Model Mechanobiol 2020; 20:205-222. [PMID: 32809130 DOI: 10.1007/s10237-020-01378-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESCs) can differentiate to three germ layers within biochemical and biomechanical niches. The complicated mechanical environments in vivo could have diverse effects on the fate decision and biological functions of hESCs. To globally screen mechanosensitive molecules, three typical types of mechanical stimuli, i.e., tensile stretch, shear flow, and mechanical compression, were applied in respective parameter sets of loading pattern, amplitude, frequency, and/or duration, and then, iTRAQ proteomics test was used for identifying and quantifying differentially expressed proteins in hESCs. Bioinformatics analysis identified 37, 41, and 23 proteins under stretch pattern, frequency, and duration, 13, 18, and 41 proteins under shear pattern, amplitude, and duration, and 4, 0, and 183 proteins under compression amplitude, frequency, and duration, respectively, where distinct parameters yielded the differentially weighted preferences under each stimulus. Ten mechanosensitive proteins were commonly shared between two of three mechanical stimuli, together with numerous proteins identified under single stimulus. More importantly, functional GSEA and WGCNA analyses elaborated the variations of the screened proteins with loading parameters. Common functions in protein synthesis and modification were identified among three stimuli, and specific functions were observed in skin development under stretch alone. In conclusion, mechanomics analysis is indispensable to map actual mechanosensitive proteins under physiologically mimicking mechanical environment, and sheds light on understanding the core hub proteins in mechanobiology.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Wang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zheng
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Shangguan
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxin Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Tu J, Liu X, Jia H, Reilly J, Yu S, Cai C, Liu F, Lv Y, Huang Y, Lu Z, Han S, Jiang T, Shu X, Wu X, Tang Z, Lu Q, Liu M. The chromatin remodeler Brg1 is required for formation and maintenance of hematopoietic stem cells. FASEB J 2020; 34:11997-12008. [PMID: 32738093 DOI: 10.1096/fj.201903168rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 11/11/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) have the ability to self-renew and differentiate into various blood cells, thus playing an important role in maintenance of lifelong hematopoiesis. Brahma-related gene 1 (BRG1), which acts as the ATP subunit of mammalian SWI-SNF-related chromatin remodeling complexes, is involved in human acute myeloid leukemia and highly expresses in short-term HSPCs. But its role and regulatory mechanism for HSPC development have not yet been well established. Here, we generated a brg1 knockout zebrafish model using TALEN technology. We found that in brg1-/- embryo, the primitive hematopoiesis remained well, while definitive hematopoiesis formation was significantly impaired. The number of hemogenic endothelial cells was decreased, further affecting definitive hematopoiesis with reduced myeloid and lymphoid cells. During embryogenesis, the nitric oxide (NO) microenvironment in brg1-/- embryo was seriously damaged and the reduction of HSPCs could be partially rescued by a NO donor. Chromatin immunoprecipitation (ChIP) assays showed that BRG1 could bind to the promoter of KLF2 and trigger its transcriptional activity of NO synthase. Our findings show that Brg1 promotes klf2a expression in hemogenic endothelium and highlight a novel mechanism for HSPC formation and maintenance.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chen Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhaojing Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shanshan Han
- Medical College, China Three Gorges University, Yichang, China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
26
|
Sato K, Maeda M, Kamata E, Ishii S, Yanagisawa K, Kitajima K, Hara T. Nitric Oxide and a Conditioned Medium Affect the Hematopoietic Development in a Microfluidic Mouse Embryonic Stem Cell/OP9 Co-Cultivation System. MICROMACHINES 2020; 11:mi11030305. [PMID: 32183374 PMCID: PMC7143789 DOI: 10.3390/mi11030305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/30/2022]
Abstract
A microfluidic co-culture system, consisting of mouse embryonic stem cells (mESCs)/OP9 cells, was evaluated as a platform for studying hematopoietic differentiation mechanisms in vitro. mESC differentiation into blood cells was achieved in a microchannel that had the minimum size necessary to culture cells. The number of generated blood cells increased or decreased based on the nitric oxide (NO) donor or inhibitor used. Conditioned medium from OP9 cell cultures also promoted an increase in the number of blood cells. The number of generated blood cells under normal medium flow conditions was lower than that observed under the static condition. However, when using a conditioned medium, the number of generated blood cells under flow conditions was the same as that observed under the static condition. We conclude that secreted molecules from OP9 cells have a large influence on the differentiation of mESCs into blood cells. This is the first report of a microfluidic mESC/OP9 co-culture system that can contribute to highly detailed hematopoietic research studies by mimicking the cellular environment.
Collapse
Affiliation(s)
- Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Bunkyo, Tokyo 112-8681, Japan
- Correspondence:
| | - Momoko Maeda
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Bunkyo, Tokyo 112-8681, Japan
| | - Eriko Kamata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Bunkyo, Tokyo 112-8681, Japan
| | - Sayaka Ishii
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Bunkyo, Tokyo 112-8681, Japan
| | - Kanako Yanagisawa
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Bunkyo, Tokyo 112-8681, Japan
| | - Kenji Kitajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
- Graduate School of Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
27
|
Wang L, Wu S, Cao G, Fan Y, Dunne N, Li X. Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. J Mater Chem B 2019; 7:7439-7459. [PMID: 31539007 DOI: 10.1039/c9tb01539f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Biomechanics contains a wide variety of research fields related to biology and mechanics. Actually, to better study or develop a tissue-engineered system, it is now widely recognized that there is no complete nor meaningful study without considering biomechanical factors and the cell response or adaptation to biomechanics. In that respect, this review will focus on not only the influence of biomechanics in biomaterial degradation and co-cultured cells, based on current major frontier research findings, but also the challenges and prospects in biomechanical research. Particularly, through the elaboration of certain typical forces affecting biomaterial degradation and celluar functions, this paper tries to reveal the possible mechanisms, and thus provide ideas on how to design or optimize co-culture systems and apply external forces for proper cell and tissue engineering. Furthermore, while emphasizing the importance of the mechanical control of the cell phenotype and fate, it is expected that these achievements can pave the way to materials-based therapies for different pathological conditions, including diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
28
|
Kang HM, Lim JH, Noh KH, Park D, Cho HS, Susztak K, Jung CR. Effective reconstruction of functional organotypic kidney spheroid for in vitro nephrotoxicity studies. Sci Rep 2019; 9:17610. [PMID: 31772214 PMCID: PMC6879515 DOI: 10.1038/s41598-019-53855-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/01/2019] [Indexed: 01/05/2023] Open
Abstract
Stable and reproducible kidney cellular models could accelerate our understanding of diseases, help therapeutics development, and improve nephrotoxicity screenings. Generation of a reproducible in vitro kidney models has been challenging owing to the cellular heterogeneity and structural complexity of the kidney. We generated mixed immortalized cell lines that stably maintained their characteristic expression of renal epithelial progenitor markers for the different lineages of kidney cellular compartments via the BMP7 signaling pathway from a mouse and a human whole kidney. These cells were used to generate functional and matured kidney spheroids containing multiple renal lineages, such as the proximal tubule, loop of Henle, distal tubules, and podocytes, using extracellular matrix and physiological force, named spheroid-forming unit (SFU). They expressed all apical and basolateral transporters that are important for drug metabolism and displayed key functional aspects of the proximal tubule, including protein endocytosis and increased gamma-glutamyltransferase activity, and cyclic AMP responded to external cues, such as parathyroid hormone. Following exposure, cells fluxed and took up drugs via proximal tubule-specific apical or basolateral transporters, and displayed increased cell death and expression of renal injury marker. Here, we developed a new differentiation method to generate kidney spheroids that structurally recapitulate important features of the kidney effectively and reproducibly using mixed immortalized renal cells, and showed their application for renal toxicity studies.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Laboratory of Disease Modeling and Therapeutics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jung Hwa Lim
- Laboratory of Disease Modeling and Therapeutics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kyung Hee Noh
- Laboratory of Disease Modeling and Therapeutics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dongmin Park
- Laboratory of Disease Modeling and Therapeutics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Katalin Susztak
- Division of Nephrology, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Cho-Rok Jung
- Laboratory of Disease Modeling and Therapeutics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea. .,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
29
|
Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther 2019; 10:327. [PMID: 31744536 PMCID: PMC6862744 DOI: 10.1186/s13287-019-1422-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells are considered the fundamental underpinnings of tissue biology. The stem cell microenvironment provides factors and elements that play significant roles in controlling the cell fate direction. The bone marrow is an important environment for functional hematopoietic stem cells in adults. Remarkable progress has been achieved in the area of hematopoietic stem cell fate modulation based on the recognition of biochemical factors provided by bone marrow niches. In this review, we focus on emerging evidence that hematopoietic stem cell fate is altered in response to a variety of microenvironmental physical cues, such as geometric properties, matrix stiffness, and mechanical forces. Based on knowledge of these biophysical cues, recent developments in harnessing hematopoietic stem cell niches ex vivo are also discussed. A comprehensive understanding of cell microenvironments helps provide mechanistic insights into pathophysiological mechanisms and underlies biomaterial-based hematopoietic stem cell engineering.
Collapse
Affiliation(s)
- Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Chen Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Jing Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Jiyang Han
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
30
|
Shear Stress Promotes Arterial Endothelium-Oriented Differentiation of Mouse-Induced Pluripotent Stem Cells. Stem Cells Int 2019; 2019:1847098. [PMID: 31827524 PMCID: PMC6881757 DOI: 10.1155/2019/1847098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/05/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Establishment of a functional vascular network, which is required in tissue repair and regeneration, needs large-scale production of specific arterial or venous endothelial cells (ECs) from stem cells. Previous in vitro studies by us and others revealed that shear stress induces EC differentiation of bone marrow-derived mesenchymal stem cells and embryonic stem cells. In this study, we focused on the impact of different magnitudes of shear stress on the differentiation of mouse-induced pluripotent stem cells (iPSCs) towards arterial or venous ECs. When iPSCs were exposed to shear stress (5, 10, and 15 dyne/cm2) with 50 ng/mL vascular endothelial growth factor and 10 ng/mL fibroblast growth factor, the expression levels of the general EC markers and the arterial markers increased, and the stress amplitude of 10 dyne/cm2 could be regarded as a proper promoter, whereas the venous and lymphatic markers had little or no expression. Further, shear stress caused cells to align parallel to the direction of the flow, induced cells forming functional tubes, and increased the secretion of nitric oxide. In addition, Notch1 was significantly upregulated, and the Notch ligand Delta-like 4 was activated in response to shear stress, while inhibition of Notch signaling by DAPT remarkably abolished the shear stress-induced arterial epithelium differentiation. Taken together, our results indicate that exposure to appropriate shear stress facilitated the differentiation of mouse iPSCs towards arterial ECs via Notch signaling pathways, which have potential applications for both disease modeling and regenerative medicine.
Collapse
|
31
|
Phelan MA, Gianforcaro AL, Gerstenhaber JA, Lelkes PI. An Air Bubble-Isolating Rotating Wall Vessel Bioreactor for Improved Spheroid/Organoid Formation. Tissue Eng Part C Methods 2019; 25:479-488. [PMID: 31328683 PMCID: PMC6686703 DOI: 10.1089/ten.tec.2019.0088] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
IMPACT STATEMENT The rotating wall vessel (RWV) bioreactor is a powerful tool for the generation of sizeable, faster-growing organoids. However, the ideal, low-shear, modeled microgravity environment in the RWV is frequently disrupted by the formation of bubbles, a critical but understated failure mode. To address this, we have designed and fabricated a novel, modified RWV bioreactor capable of continuously removing bubbles while providing optimal fluid dynamics. We validated the capacity of this device with computational and empirical studies. We anticipate that our novel bioreactor will be more consistent and easier to use and may fill a unique and unmet niche in the burgeoning field of organoids.
Collapse
Affiliation(s)
- Michael A. Phelan
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Anthony L. Gianforcaro
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Jonathan A. Gerstenhaber
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Peter I. Lelkes
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Du J, Fan Y, Guo Z, Wang Y, Zheng X, Huang C, Liang B, Gao L, Cao Y, Chen Y, Zhang X, Li L, Xu L, Wu C, Weitz DA, Feng X. Compression Generated by a 3D Supracellular Actomyosin Cortex Promotes Embryonic Stem Cell Colony Growth and Expression of Nanog and Oct4. Cell Syst 2019; 9:214-220.e5. [DOI: 10.1016/j.cels.2019.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/19/2018] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
33
|
Natu R, Islam M, Keck D, Martinez-Duarte R. Automated "pick and transfer" of targeted cells using dielectrophoresis. LAB ON A CHIP 2019; 19:2512-2525. [PMID: 31259984 DOI: 10.1039/c9lc00409b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selective manipulation of single cells is an important step in sample preparation for biological analysis. A highly specific and automated device is desired for such an operation. An ideal device would be able to selectively pick several single cells in parallel from a heterogeneous population and transfer those to designated sites for further analysis without human intervention. The robotic manipulator developed here provides the basis for development of such a device. The device in this work is designed to selectively pick cells based on their inherent properties using dielectrophoresis (DEP) and automatically transfer and release those at a transfer site. Here we provide proof of concept of such a device and study the effect of different parameters on its operation. Successful experiments were conducted to separate Candida cells from a mixture with 10 μm latex particles and a viability assay was performed for separation of viable rat adipose stem cells (RASCs) from non-viable ones. The robotic DEP device was further used to pick and transfer single RASCs. This work also discusses the advantages and disadvantages of our current setup and illustrates the future steps required to improve the performance of this robotic DEP technology.
Collapse
Affiliation(s)
- Rucha Natu
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, SC 29634, USA.
| | - Monsur Islam
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, SC 29634, USA. and Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1 76344, Eggenstein-Leopoldshafen, Germany
| | - Devin Keck
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, SC 29634, USA.
| | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, SC 29634, USA.
| |
Collapse
|
34
|
Rybtsov SA, Lagarkova MA. Development of Hematopoietic Stem Cells in the Early Mammalian Embryo. BIOCHEMISTRY (MOSCOW) 2019; 84:190-204. [PMID: 31221058 DOI: 10.1134/s0006297919030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cells (HSCs) were the first stem cells discovered in humans. A. A. Maximov proposed an idea of blood stem cells that was confirmed later by McCulloch and Till experimentally. HSCs were the first type of stem cells to be used in clinics and ever since are being continually used. Indeed, a single HSC transplanted intravenously is capable of giving rise to all types of blood cells. In recent decades, human and animal HSC origin, development, hierarchy, and gene signature have been extensively investigated. Due to the constant need for donor blood and HSCs suitable for therapeutic transplants, the experimental possibility of obtaining HSCs in vitro by directed differentiation of pluripotent stem cells (PSCs) has been considered in recent years. However, despite all efforts, it is not yet possible to reproduce in vitro the ontogenesis of HSCs and obtain cells capable of long-term maintenance of hematopoiesis. The study of hematopoiesis in embryonic development facilitates the establishment and improvement of protocols for deriving blood cells from PCSs and allows a better understanding of the pathogenesis of various types of proliferative blood diseases, anemia, and immunodeficiency. This review focuses on the development of hematopoiesis in mammalian ontogenesis.
Collapse
Affiliation(s)
- S A Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4U, United Kingdom.
| | - M A Lagarkova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, 119435, Russia.
| |
Collapse
|
35
|
Liu S, Tao R, Wang M, Tian J, Genin GM, Lu TJ, Xu F. Regulation of Cell Behavior by Hydrostatic Pressure. APPLIED MECHANICS REVIEWS 2019; 71:0408031-4080313. [PMID: 31700195 PMCID: PMC6808007 DOI: 10.1115/1.4043947] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/18/2019] [Indexed: 06/10/2023]
Abstract
Hydrostatic pressure (HP) regulates diverse cell behaviors including differentiation, migration, apoptosis, and proliferation. Abnormal HP is associated with pathologies including glaucoma and hypertensive fibrotic remodeling. In this review, recent advances in quantifying and predicting how cells respond to HP across several tissue systems are presented, including tissues of the brain, eye, vasculature and bladder, as well as articular cartilage. Finally, some promising directions on the study of cell behaviors regulated by HP are proposed.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics andControl of Mechanical Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Ru Tao
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Ming Wang
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Jin Tian
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
- State Key Laboratory for Strength andVibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information
Engineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Mechanical Engineering &
Materials Science,
National Science Foundation Science and
Technology Center for Engineering Mechanobiology,
Washington University,
St. Louis, MO 63130
| | - Tian Jian Lu
- State Key Laboratory of Mechanics andControl of Mechanical Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
- Department of Structural Engineering & Mechanics,
Nanjing Center for Multifunctional LightweightMaterials and Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 21006, China;
State Key Laboratory for Strength andVibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail:
| |
Collapse
|
36
|
Fan YL, Zhao HC, Li B, Zhao ZL, Feng XQ. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomater Sci Eng 2019; 5:3788-3801. [PMID: 33438419 DOI: 10.1021/acsbiomaterials.9b00126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development and differentiation of stem cells, mechanical forces associated with filamentous actin (F-actin) play a crucial role. The present review aims to reveal the relationship among the chemical components, microscopic structures, mechanical properties, and biological functions of F-actin. Particular attention is given to the functions of the cytoplasmic and nuclear microfilament cytoskeleton and their regulation mechanisms in the differentiation of stem cells. The distributions of different types of actin monomers in mammal cells and the functions of actin-binding proteins are summarized. We discuss how the fate of stem cells is regulated by intra/extracellular mechanical and chemical cues associated with microfilament-related proteins, intercellular adhesion molecules, etc. In addition, we also address the differentiation-induced variation in the stiffness of stem cells and the correlation between the fate and geometric shape change of stem cells. This review not only deepens our understanding of the biophysical mechanisms underlying the fates of stem cells under different culture conditions but also provides inspirations for the tissue engineering of stem cells.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Zou T, Jiang S, Dissanayaka WL, Heng BC, Xu J, Gong T, Huang X, Zhang C. Sema4D/PlexinB1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling. J Cell Biochem 2019; 120:13614-13624. [PMID: 30937968 DOI: 10.1002/jcb.28635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Inducing of dental pulp stem cells (DPSCs) into endothelial cells (ECs) to prevascularize pulp tissue constructs may offer a novel and viable approach for enhancing pulp regeneration. However, there are numerous challenges in current methods for the acquisition of sufficient translational ECs. It was known that Sema4D/PlexinB1 signaling exerts profound effects on enhancing vascular endothelial growth factor (VEGF) secretion and angiogenesis. Whether Sema4D/PlexinB1 could regulate endothelial differentiation of DPSCs is not yet investigated. In this study, when DPSCs were treated with Sema4D (2 μg/mL), ECs-specific (VEGFR1, VEGFR2, CD31, and vWF), and angiogenic genes and proteins were significantly upregulated. The induced ECs exhibited similar endothelial vessel formation ability to that of human umbilical vein endothelial cells (HUVECs). Furthermore, phosphorylation of AKT increased dramatically within 5 minutes (from 0.93 to 21.8), while p-ERK1/2 was moderately elevated (from 0.94 to 2.65). In summary, our results demonstrated that Sema4D/PlexinB1 signaling induces endothelial differentiation of DPSCs. The interactions of Sema4D, VEGF, ANGPTL4, ANG1, and HIF-1α may play a crucial role in mediating the differentiation process.
Collapse
Affiliation(s)
- Ting Zou
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Shan Jiang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | | | - Boon Chin Heng
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Jianguang Xu
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Gong
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Xiaojing Huang
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
38
|
Arora S, Lam AJY, Cheung C, Yim EKF, Toh YC. Determination of critical shear stress for maturation of human pluripotent stem cell-derived endothelial cells towards an arterial subtype. Biotechnol Bioeng 2019; 116:1164-1175. [PMID: 30597522 DOI: 10.1002/bit.26910] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/29/2018] [Accepted: 12/26/2018] [Indexed: 01/07/2023]
Abstract
Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) present an attractive alternative to primary EC sources for vascular grafting. However, there is a need to mature them towards either an arterial or venous subtype. A vital environmental factor involved in the arteriovenous specification of ECs during early embryonic development is fluid shear stress; therefore, there have been attempts to employ adult arterial shear stress conditions to mature hPSC-ECs. However, hPSC-ECs are naïve to fluid shear stress, and their shear responses are still not well understood. Here, we used a multiplex microfluidic platform to systematically investigate the dose-time shear responses on hPSC-EC morphology and arterial-venous phenotypes over a range of magnitudes coincidental with physiological levels of embryonic and adult vasculatures. The device comprised of six parallel cell culture chambers that were individually linked to flow-setting resistance channels, allowing us to simultaneously apply shear stress ranging from 0.4 to 15 dyne/cm 2 . We found that hPSC-ECs required up to 40 hr of shear exposure to elicit a stable phenotypic change. Cell alignment was visible at shear stress <1 dyne/cm 2 , which was independent of shear stress magnitude and duration of exposure. We discovered that the arterial markers NOTCH1 and EphrinB2 exhibited a dose-dependent increase in a similar manner beyond a threshold level of 3.8 dyne/cm 2 , whereas the venous markers COUP-TFII and EphB4 expression remained relatively constant across different magnitudes. These findings indicated that hPSC-ECs were sensitive to relatively low magnitudes of shear stress, and a critical level of ~4 dyne/cm 2 was sufficient to preferentially enhance their maturation into an arterial phenotype for future vascular tissue engineering applications.
Collapse
Affiliation(s)
- Seep Arora
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Adele Jing Ying Lam
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Department of Bioengineering, Imperial College London, London, UK
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.,Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Duru LN, Quan Z, Qazi TJ, Qing H. Stem cells technology: a powerful tool behind new brain treatments. Drug Deliv Transl Res 2018; 8:1564-1591. [PMID: 29916013 DOI: 10.1007/s13346-018-0548-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Lucienne N Duru
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Talal Jamil Qazi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China. .,Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
40
|
Chen L, Huang T, Qiao Y, Jiang F, Lan J, Zhou Y, Yang C, Yan S, Luo K, Su L, Li J. Perspective into
the regulation of cell‐generated forces toward stem cell migration and differentiation. J Cell Biochem 2018; 120:8884-8890. [PMID: 30536423 DOI: 10.1002/jcb.28251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Liujing Chen
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Tu Huang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Yini Qiao
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Fulin Jiang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Jingxiang Lan
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Yimei Zhou
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Cai Yang
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Shanyu Yan
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Kaihui Luo
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Liping Su
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| | - Juan Li
- State Key Laboratory of Oral Diseases Department of Orthodontics, West China Hospital of Stomatology West China School of Stomatology, Sichuan University Chengdu Sichuan China
| |
Collapse
|
41
|
Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES, Ginhoux F, Knudsen TB. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res 2018; 109:1680-1710. [PMID: 29251840 DOI: 10.1002/bdr2.1180] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) serves as a gateway for passage of drugs, chemicals, nutrients, metabolites, and hormones between vascular and neural compartments in the brain. Here, we review BBB development with regard to the microphysiology of the neurovascular unit (NVU) and the impact of BBB disruption on brain development. Our focus is on modeling these complex systems. Extant in silico models are available as tools to predict the probability of drug/chemical passage across the BBB; in vitro platforms for high-throughput screening and high-content imaging provide novel data streams for profiling chemical-biological interactions; and engineered human cell-based microphysiological systems provide empirical models with which to investigate the dynamics of NVU function. Computational models are needed that bring together kinetic and dynamic aspects of NVU function across gestation and under various physiological and toxicological scenarios. This integration will inform adverse outcome pathways to reduce uncertainty in translating in vitro data and in silico models for use in risk assessments that aim to protect neurodevelopmental health.
Collapse
Affiliation(s)
- Katerine S Saili
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Todd J Zurlinden
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Andrew J Schwab
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Nancy C Baker
- Leidos, contractor to NCCT, Research Triangle Park, North Carolina 27711
| | - E Sidney Hunter
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Thomas B Knudsen
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| |
Collapse
|
42
|
Yi T, Huang S, Liu G, Li T, Kang Y, Luo Y, Wu J. Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS APPLIED BIO MATERIALS 2018; 1:193-209. [DOI: 10.1021/acsabm.8b00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tianqi Yi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxiong Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Tiancheng Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuxi Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Polymer Composites and Functional Materials of Ministry of Education, , Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
43
|
Actin and myosin II modulate differentiation of pluripotent stem cells. PLoS One 2018; 13:e0195588. [PMID: 29664925 PMCID: PMC5903644 DOI: 10.1371/journal.pone.0195588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/25/2018] [Indexed: 12/20/2022] Open
Abstract
Use of stem cell-based therapies in tissue engineering and regenerative medicine is hindered by efficient means of directed differentiation. For pluripotent stem cells, an initial critical differentiation event is specification to one of three germ lineages: endoderm, mesoderm, and ectoderm. Differentiation is known to be regulated by numerous extracellular and intracellular factors, but the role of the cytoskeleton during specification, or early differentiation, is still unknown. In these studies, we used agonists and antagonists to modulate actin polymerization and the actin-myosin molecular motor during spontaneous differentiation of embryonic stem cells in embryoid bodies. We found that inhibiting either actin polymerization or actin-myosin interactions led to a decrease in differentiation to the mesodermal lineage and an increase in differentiation to the endodermal lineage. Thus, targeting processes that regulate cytoskeletal tension may be effective in enhancing or inhibiting differentiation towards cells of the endodermal or mesodermal lineages, which include hepatocytes, islets, cardiomyocytes, endothelial cells, and osteocytes. Therefore, these fundamental findings demonstrate that modulation of the cytoskeleton may be useful in production for a range of cell-based therapies, including for liver, pancreatic, cardiac, vascular, and orthopedic applications.
Collapse
|
44
|
Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705388. [PMID: 29450919 DOI: 10.1002/adma.201705388] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/26/2017] [Indexed: 05/23/2023]
Abstract
Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed.
Collapse
Affiliation(s)
- Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jinping Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
45
|
Kumar A, Placone JK, Engler AJ. Understanding the extracellular forces that determine cell fate and maintenance. Development 2017; 144:4261-4270. [PMID: 29183939 DOI: 10.1242/dev.158469] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells interpret signals from their microenvironment while simultaneously modifying the niche through secreting factors and exerting mechanical forces. Many soluble stem cell cues have been determined over the past century, but in the past decade, our molecular understanding of mechanobiology has advanced to explain how passive and active forces induce similar signaling cascades that drive self-renewal, migration, differentiation or a combination of these outcomes. Improvements in stem cell culture methods, materials and biophysical tools that assess function have improved our understanding of these cascades. Here, we summarize these advances and offer perspective on ongoing challenges.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA .,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
46
|
Wan X, Ball S, Willenbrock F, Yeh S, Vlahov N, Koennig D, Green M, Brown G, Jeyaretna S, Li Z, Cui Z, Ye H, O'Neill E. Perfused Three-dimensional Organotypic Culture of Human Cancer Cells for Therapeutic Evaluation. Sci Rep 2017; 7:9408. [PMID: 28842598 PMCID: PMC5573358 DOI: 10.1038/s41598-017-09686-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Pharmaceutical research requires pre-clinical testing of new therapeutics using both in-vitro and in-vivo models. However, the species specificity of non-human in-vivo models and the inadequate recapitulation of physiological conditions in-vitro are intrinsic weaknesses. Here we show that perfusion is a vital factor for engineered human tissues to recapitulate key aspects of the tumour microenvironment. Organotypic culture and human tumour explants were allowed to grow long-term (14-35 days) and phenotypic features of perfused microtumours compared with those in the static culture. Differentiation status and therapeutic responses were significantly different under perfusion, indicating a distinct biological response of cultures grown under static conditions. Furthermore, heterogeneous co-culture of tumour and endothelial cells demonstrated selective cell-killing under therapeutic perfusion versus episodic delivery. We present a perfused 3D microtumour culture platform that sustains a more physiological tissue state and increased viability for long-term analyses. This system has the potential to tackle the disadvantages inherit of conventional pharmaceutical models and is suitable for precision medicine screening of tumour explants, particularly in hard-to-treat cancer types such as brain cancer which suffer from a lack of clinical samples.
Collapse
Affiliation(s)
- Xiao Wan
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Steven Ball
- Oxford Instruments Nanoscience, Tubney Woods, Abingdon, Oxford, OX13 5QX, UK
| | - Frances Willenbrock
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Shaoyang Yeh
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Nikola Vlahov
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Delia Koennig
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Marcus Green
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Graham Brown
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Sanjeeva Jeyaretna
- Department of Neurosurgery, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Zhaohui Li
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Eric O'Neill
- CRUK/MRC Oxford Institute of Radiation Biology, University of Oxford, ORCRB Research Building, Roosevelt Drive, Headington, OX3 7DQ, UK.
| |
Collapse
|
47
|
Chimenti I, Massai D, Morbiducci U, Beltrami AP, Pesce M, Messina E. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. J Cardiovasc Transl Res 2017; 10:150-166. [PMID: 28289983 DOI: 10.1007/s12265-017-9741-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Rome, Italy
| | - Diana Massai
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino", IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Pediatrics and Infant Neuropsychiatry, "Umberto I" Hospital, "La Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
48
|
Foster AA, Marquardt LM, Heilshorn SC. The Diverse Roles of Hydrogel Mechanics in Injectable Stem Cell Transplantation. Curr Opin Chem Eng 2017; 15:15-23. [PMID: 29085771 PMCID: PMC5659597 DOI: 10.1016/j.coche.2016.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stem cell delivery by local injection has tremendous potential as a regenerative therapy but has seen limited clinical success. Several mechanical challenges hinder therapeutic efficacy throughout all stages of cell transplantation, including mechanical forces during injection and loss of mechanical support post-injection. Recent studies have begun exploring the use of biomaterials, in particular hydrogels, to enhance stem cell transplantation by addressing the often-conflicting mechanical requirements associated with each stage of the transplantation process. This review explores recent biomaterial approaches to improve the therapeutic efficacy of stem cells delivered through local injection, with a focus on strategies that specifically address the mechanical challenges that result in cell death and/or limit therapeutic function throughout the stages of transplantation.
Collapse
Affiliation(s)
- Abbygail A Foster
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
49
|
Sharifpanah F, Behr S, Wartenberg M, Sauer H. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3096-3105. [DOI: 10.1016/j.bbamcr.2016.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022]
|
50
|
Numerical Model of Streaming DEP for Stem Cell Sorting. MICROMACHINES 2016; 7:mi7120217. [PMID: 30404388 PMCID: PMC6190341 DOI: 10.3390/mi7120217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023]
Abstract
Neural stem cells are of special interest due to their potential in neurogenesis to treat spinal cord injuries and other nervous disorders. Flow cytometry, a common technique used for cell sorting, is limited due to the lack of antigens and labels that are specific enough to stem cells of interest. Dielectrophoresis (DEP) is a label-free separation technique that has been recently demonstrated for the enrichment of neural stem/progenitor cells. Here we use numerical simulation to investigate the use of streaming DEP for the continuous sorting of neural stem/progenitor cells. Streaming DEP refers to the focusing of cells into streams by equilibrating the dielectrophoresis and drag forces acting on them. The width of the stream should be maximized to increase throughput while the separation between streams must be widened to increase efficiency during retrieval. The aim is to understand how device geometry and experimental variables affect the throughput and efficiency of continuous sorting of SC27 stem cells, a neurogenic progenitor, from SC23 cells, an astrogenic progenitor. We define efficiency as the ratio between the number of SC27 cells over total number of cells retrieved in the streams, and throughput as the number of SC27 cells retrieved in the streams compared to their total number introduced to the device. The use of cylindrical electrodes as tall as the channel yields streams featuring >98% of SC27 cells and width up to 80 µm when using a flow rate of 10 µL/min and sample cell concentration up to 105 cells/mL.
Collapse
|