1
|
Qian C, Chen S, Chen L, Zhang C, Yang L, Li Q, Kang B, Chen X, Mei P, Gu H, Liu Y, Liu Y. Tetrahedral DNA Nanostructure-Modified Nanocoating for Improved Bioaffinity and Osseointegration of Titanium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412747. [PMID: 40103513 DOI: 10.1002/smll.202412747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Titanium (Ti) is extensively used in the medical field because of its excellent biomechanical properties; however, how to precisely fabricate Ti surfaces at a nanoscale remains challenging. In this study, a DNA nanocoating system to functionalize Ti surfaces via a series of sequential reactions involving hydroxylation, silanization, and click chemistry is developed. Tetrahedral DNA nanostructures (TDNs) of two different sizes (≈7 and 30 nm) are assembled and characterized for subsequent surface attachment. In vitro and in vivo assays demonstrated significantly enhanced cell adhesion, spreading, proliferation, osteogenesis, and osseointegration on Ti surfaces modified with 30-nm TDNs, compared to slightly improved effects with 7-nm TDNs. Mechanistic studies showed that the focal adhesion pathway contributed to the enhanced bioaffinity of the 30-nm TDNs, as evidenced by the upregulated expression of vinculin and activation of the Akt signaling pathway. Moreover, under inflammatory or hypoxic conditions, Ti surfaces modified with 30-nm TDNs maintained excellent cellular performance comparable to that under normal conditions, suggesting a broader adaptability for DNA nanoparticles. Thus, better performance is achieved following modification with 30-nm TDNs. In summary, the proposed DNA-guided nanocoating system provides a novel and efficient strategy for the surface nanofabrication of Ti.
Collapse
Affiliation(s)
- Chenghui Qian
- Department of Multidisciplinary Consultant Center, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Si Chen
- Department of Multidisciplinary Consultant Center, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Liman Chen
- Fudan University Shanghai Cancer Center, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200433, China
| | - Chenyang Zhang
- Department of Oral Implantology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Lingyi Yang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qiaowei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Binbin Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Peter Mei
- Discipline of Orthodontics, Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Hongzhou Gu
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| |
Collapse
|
2
|
He W, Peng Y, Huang H, Hang L, Liu Z, Yu H, Zhang Y. Postmortem Changes of Desmin, Talin-2, Vinculin, and Integrin β1 in Chicken Breast and Their Effects on Tenderness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7393-7404. [PMID: 40071895 DOI: 10.1021/acs.jafc.4c13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Costameres are essential for maintaining the integrity of muscle fibers, which affects the meat tenderness. To explore the pattern of alteration in costameres after slaughter, this study investigated the distribution of costamere proteins (desmin, talin-2, vinculin, and integrin β1), their impact on tenderness, and the involved enzymes. Western blot analysis showed that talin-2 significantly degraded in postmortem, while integrin β1 significantly increased at 48 h (P < 0.05). Warner-Bratzler shear force was positively correlated with desmin, vinculin, and talin-2 expression and transcription levels of their genes but negatively correlated with pH, integrin β1 expression, and ITGB1 transcription level in terms of the overall trend. Multiplex immunohistochemistry revealed that these proteins were mainly distributed in the sarcolemma and cytoplasm, and the spatial interactions of them in the costameres began to weaken at 24 h. Caspase-3 and cathepsin B colocalized with these proteins at 3 and 24 h and may contribute to the degradation of costameres.
Collapse
Affiliation(s)
- Wanhong He
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingbo Peng
- College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Haixia Huang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Hang
- Nanjing Zhenke Testing Technology Co., LTD, Nanjing 210023, China
| | - Zheng Liu
- Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province, National Graphene Products Quality Inspection and Testing Center (Jiangsu), Yanxin road 330. Huishan, Wuxi 214174, China
| | - Haotian Yu
- Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province, National Graphene Products Quality Inspection and Testing Center (Jiangsu), Yanxin road 330. Huishan, Wuxi 214174, China
| | - Yawei Zhang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Kamal KY, Trombetta-Lima M. Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress. Int J Mol Sci 2025; 26:2802. [PMID: 40141444 PMCID: PMC11943188 DOI: 10.3390/ijms26062802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical unloading leads to profound musculoskeletal degeneration, muscle wasting, and weakness. Understanding the specific signaling pathways involved is essential for uncovering effective interventions. This review provides new perspectives on mechanotransduction pathways, focusing on the critical roles of focal adhesions (FAs) and oxidative stress in skeletal muscle atrophy under mechanical unloading. As pivotal mechanosensors, FAs integrate mechanical and biochemical signals to sustain muscle structural integrity. When disrupted, these complexes impair force transmission, activating proteolytic pathways (e.g., ubiquitin-proteasome system) that accelerate atrophy. Oxidative stress, driven by mitochondrial dysfunction and NADPH oxidase-2 (NOX2) hyperactivation, exacerbates muscle degeneration through excessive reactive oxygen species (ROS) production, impaired repair mechanisms, and dysregulated redox signaling. The interplay between FA dysfunction and oxidative stress underscores the complexity of muscle atrophy pathogenesis: FA destabilization heightens oxidative damage, while ROS overproduction further disrupts FA integrity, creating a self-amplifying vicious cycle. Therapeutic strategies, such as NOX2 inhibitors, mitochondrial-targeted antioxidants, and FAK-activating compounds, promise to mitigate muscle atrophy by preserving mechanotransduction signaling and restoring redox balance. By elucidating these pathways, this review advances the understanding of muscle degeneration during unloading and identifies promising synergistic therapeutic targets, emphasizing the need for combinatorial approaches to disrupt the FA-ROS feedback loop.
Collapse
Affiliation(s)
- Khaled Y. Kamal
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9700 Groningen, The Netherlands;
| |
Collapse
|
4
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
5
|
Katoh K. Integrin and Its Associated Proteins as a Mediator for Mechano-Signal Transduction. Biomolecules 2025; 15:166. [PMID: 40001469 PMCID: PMC11853369 DOI: 10.3390/biom15020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Mechano-signal transduction is a process in which cells perceive extracellular mechanical signals, convert them into intracellular biochemical signals, and produce a response. Integrins are cell surface receptors that sense the extracellular mechanical cues and bind to the extracellular matrix (ECM). This binding induces integrin clustering and activation. Cytoplasmic tails of activated integrins interact and induce cytoskeleton tensions via several adaptor proteins. Integrins monitor extracellular stiffness via cytoskeleton tensions and modulate ECM stiffness via downstream signaling pathways regulating the expression of genes of ECM components. Integrin-mediated mechano-transduction is very crucial for the cell as it regulates the cell physiology both in normal and diseased conditions according to extracellular mechanical cues. It regulates cell proliferation, survival, and migration. Abnormal mechanical cues such as extreme and prolonged mechanical stress result in pathological conditions including fibrosis, cancers, skin, and autoimmune disorders. This paper aims to explore the role of integrins and their associated proteins in mechano-signal transduction. It highlights the integrins and their associated proteins as targets for therapy development. Furthermore, it also presents the challenges to the targeted drug development, which can be drug resistance and cytotoxicity. It is concluded in this paper that research on integrin-mediated mechano-signal transduction and its relationship with cell physiology and pathologies will be an important step towards the development of effective therapies.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
6
|
Santos ARMP, Kirkpatrick BE, Kim M, Anseth KS, Park Y. 2D co-culture model reveals a biophysical interplay between activated fibroblasts and cancer cells. Acta Biomater 2024:S1742-7061(24)00623-8. [PMID: 39476995 DOI: 10.1016/j.actbio.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The tumor microenvironment (TME) comprises diverse cell types within an altered extracellular matrix (ECM) and plays a pivotal role in metastasis through intricate cell-cell and cell-ECM interactions. Fibroblasts, as key constituents of the TME, contribute significantly to cancer metastasis through their involvement in matrix deposition and remodeling mechanisms, modulated by their quiescent or activated states. Despite their recognized importance, the precise role of fibroblasts in cancer cell invasion remains incompletely understood. In this study, we investigated the impact of fibroblast activity on cancer cell progression using a 2D co-culture model. Michigan Cancer Foundation-7 (MCF7) breast cancer cells were co-cultured with normal human lung fibroblasts (NHLF), both with and without transforming growth factor β (TGFβ) treatment. Traction force microscopy (TFM) was employed to quantify traction and velocity forces associated with cellular migration. We observed that TGFβ-activated fibroblasts form a distinctive ring around cancer cells in co-culture, with increased traction and tension at the cell island boundary. This force distribution is associated with the localization of force-related proteins at these boundary regions, including vinculin and E-cadherin. Metabolic profiling revealed a strong OXPHOS signal specific to the activated fibroblasts, in contrast to normal fibroblasts, which primarily display migratory behavior and a more heterogeneous pattern of forces and metabolic activity in co-culture. Our findings offer valuable insights into the mechanical forces and metabolic dynamics governing cellular migration in the tumor microenvironment, where our co-culture model could complement in vivo studies and enable researchers to explore specific microenvironmental cues for a deeper understanding of TME mechanisms. STATEMENT OF SIGNIFICANCE: Cancer models mimicking the dynamics of tumor microenvironment (TME) are an ideal tool to study cancer mechanisms and treatment. However, the full understanding of how cancer cells interact with their surroundings and other cells is still unknown. To tackle this, we developed a simple yet effective 2D co-culture model that allows us to control the arrangement of cell cultures precisely and use various imaging techniques to study interactions between cancer cells and fibroblasts. Here we could measure cell movements, force distribution, metabolic activity, and protein localization and interplay those factors in vitro. Our model helps us observe the underlying mechanisms between cancer cells and fibroblasts, contributing to our understanding of the dynamics in the TME.
Collapse
Affiliation(s)
- Ana Rita M P Santos
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303. USA.
| | - Mirim Kim
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303. USA.
| | - Yongdoo Park
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Uesugi K, Obata S, Nagayama K. Micro tensile tester measurement of biomechanical properties and adhesion force of microtubule-polymerization-inhibited cancer cells. J Mech Behav Biomed Mater 2024; 156:106586. [PMID: 38805872 DOI: 10.1016/j.jmbbm.2024.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Both mechanical and adhesion properties of cancer cells are complex and reciprocally related to migration, invasion, and metastasis with large cell deformation. Therefore, we evaluated these properties for human cervical cancer cells (HeLa) simultaneously using our previously developed micro tensile tester system. For efficient evaluation, we developed image analysis software to modify the system. The software can analyze the tensile force in real time. The modified system can evaluate the tensile stiffness of cells to which a large deformation is applied, also evaluate the adhesion strength of cancer cells that adhered to a culture substrate and were cultured for several days with their adhesion maturation. We used the modified system to simultaneously evaluate the stiffness of the cancer cells to which a large deformation was applied and their adhesion strength. The obtained results revealed that the middle phase of tensile stiffness and adhesion force of the microtubule-depolymerized group treated with colchicine (an anti-cancer drug) (stiffness, 13.4 ± 7.5 nN/%; adhesion force, 460.6 ± 258.2 nN) were over two times larger than those of the control group (stiffness, 5.0 ± 3.5 nN/%; adhesion force, 168.2 ± 98.0 nN). Additionally, the same trend was confirmed with the detailed evaluation of cell surface stiffness using an atomic force microscope. Confocal fluorescence microscope observations showed that the stress fibers (SFs) of colchicine-treated cells were aligned in the same direction, and focal adhesions (FAs) of the cells developed around both ends of the SFs and aligned parallel to the developed direction of the SFs. There was a possibility that the microtubule depolymerization by the colchicine treatment induced the development of SFs and FAs and subsequently caused an increment of cell stiffness and adhesion force. From the above results, we concluded the modified system would be applicable to cancer detection and anti-cancer drug efficacy tests.
Collapse
Affiliation(s)
- Kaoru Uesugi
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| | - Shota Obata
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| | - Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan.
| |
Collapse
|
8
|
Cocom-Chan B, Khakzad H, Konate M, Aguilar DI, Bello C, Valencia-Gallardo C, Zarrouk Y, Fattaccioli J, Mauviel A, Javelaud D, Tran Van Nhieu G. IpaA reveals distinct modes of vinculin activation during Shigella invasion and cell-matrix adhesion. Life Sci Alliance 2024; 7:e202302418. [PMID: 38834194 PMCID: PMC11150655 DOI: 10.26508/lsa.202302418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Vinculin is a cytoskeletal linker strengthening cell adhesion. The Shigella IpaA invasion effector binds to vinculin to promote vinculin supra-activation associated with head-domain-mediated oligomerization. Our study investigates the impact of mutations of vinculin D1D2 subdomains' residues predicted to interact with IpaA VBS3. These mutations affected the rate of D1D2 trimer formation with distinct effects on monomer disappearance, consistent with structural modeling of a closed and open D1D2 conformer induced by IpaA. Notably, mutations targeting the closed D1D2 conformer significantly reduced Shigella invasion of host cells as opposed to mutations targeting the open D1D2 conformer and later stages of vinculin head-domain oligomerization. In contrast, all mutations affected the formation of focal adhesions (FAs), supporting the involvement of vinculin supra-activation in this process. Our findings suggest that IpaA-induced vinculin supra-activation primarily reinforces matrix adhesion in infected cells, rather than promoting bacterial invasion. Consistently, shear stress studies pointed to a key role for IpaA-induced vinculin supra-activation in accelerating and strengthening cell-matrix adhesion.
Collapse
Affiliation(s)
- Benjamin Cocom-Chan
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Hamed Khakzad
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| | - Mahamadou Konate
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Daniel Isui Aguilar
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Chakir Bello
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Cesar Valencia-Gallardo
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Yosra Zarrouk
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France
| | - Alain Mauviel
- Institut Curie, PSL Research University, INSERM U1021, CNRS UMR3347, Team "TGF-ß and Oncogenesis", Equipe Labellisée LIGUE 2016, Orsay, France
- Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 3347, Orsay, France
| | - Delphine Javelaud
- Institut Curie, PSL Research University, INSERM U1021, CNRS UMR3347, Team "TGF-ß and Oncogenesis", Equipe Labellisée LIGUE 2016, Orsay, France
- Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 3347, Orsay, France
| | - Guy Tran Van Nhieu
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| |
Collapse
|
9
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Berniak K, Ura DP, Piórkowski A, Stachewicz U. Cell-Material Interplay in Focal Adhesion Points. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9944-9955. [PMID: 38354103 PMCID: PMC10910443 DOI: 10.1021/acsami.3c19035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
The complex interplay between cells and materials is a key focus of this research, aiming to develop optimal scaffolds for regenerative medicine. The need for tissue regeneration underscores understanding cellular behavior on scaffolds, especially cell adhesion to polymer fibers forming focal adhesions. Key proteins, paxillin and vinculin, regulate cell signaling, migration, and mechanotransduction in response to the extracellular environment. This study utilizes advanced microscopy, specifically the AiryScan technique, along with advanced image analysis employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm, to investigate protein distribution during osteoblast cell adhesion to polymer fibers and glass substrates. During cell attachment to both glass and polymer fibers, a noticeable shift in the local maxima of paxillin and vinculin signals is observed at the adhesion sites. The focal adhesion sites on polymer fibers are smaller and elliptical but exhibit higher protein density than on the typical glass surface. The characteristics of focal adhesions, influenced by paxillin and vinculin, such as size and density, can potentially reflect the strength and stability of cell adhesion. Efficient adhesion correlates with well-organized, larger focal adhesions characterized by increased accumulation of paxillin and vinculin. These findings offer promising implications for enhancing scaffold design, evaluating adhesion to various substrates, and refining cellular interactions in biomedical applications.
Collapse
Affiliation(s)
- Krzysztof Berniak
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Daniel P. Ura
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Adam Piórkowski
- Department
of Biocybernetics and Biomedical Engineering, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| |
Collapse
|
12
|
Loncová B, Fabová Z, Mondočková V, Omelka R, Harrath AH, Sirotkin AV. Inhibition of vinculin activity has an adverse effect on porcine ovarian cells. Exp Cell Res 2024; 435:113950. [PMID: 38309674 DOI: 10.1016/j.yexcr.2024.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The existing knowledge of the involvement of vinculin (VCL) in the control of ovarian cell functions is insufficient. To understand the role of VCL in the control of basic porcine ovarian granulosa cell functions, we decreased VCL activity by small interfering RNA (VCL siRNA). The expression of VCL, accumulation of VCL protein, cell viability, proliferation (accumulation of PCNA and cyclin B1), proportion of proliferative active cells, apoptosis (accumulation of bax, caspase 3, p53, antiapoptotic marker bcl2, and bax/bcl-2 ratio), DNA fragmentation, and release of steroid hormones and IGF-I were analyzed by RT‒qPCR, Trypan blue exclusion test, quantitative immunocytochemistry, XTT assay, TUNEL assay, and ELISA. The suppression of VCL activity inhibited cell viability, the accumulation of the proliferation-related proteins PCNA and cyclin B1, the antiapoptotic protein bcl2, and the proportion of proliferative active cells. Moreover, VCL siRNA inhibited the release of progesterone, estradiol, and IGF-1. VCL siRNA increased the proportion of the proapoptotic proteins bax, caspase 3, p53, the proportion of DNA fragmented cells, and stimulated testosterone release. Taken together, the present study is the first evidence that inhibition of VCL suppresses porcine granulosa cell functions. Moreover, the results suggest that VCL can be a potent physiological stimulator of ovarian functions.
Collapse
Affiliation(s)
- Barbora Loncová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Slovakia.
| | - Zuzana Fabová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Slovakia
| | - Vladimíra Mondočková
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Slovakia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Alexander V Sirotkin
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Slovakia
| |
Collapse
|
13
|
Lu YT, Hung PT, Zeng K, Menzel M, Schmelzer CEH, Zhang K, Groth T. Sustained growth factor delivery from bioactive PNIPAM-grafted-chitosan/heparin multilayers as a tool to promote growth and migration of cells. BIOMATERIALS ADVANCES 2023; 154:213589. [PMID: 37598438 DOI: 10.1016/j.bioadv.2023.213589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Delivery of growth factors (GFs) is challenging for regulation of cell proliferation and differentiation due to their rapid inactivation under physiological conditions. Here, a bioactive polyelectrolyte multilayer (PEM) is engineered by the combination of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and glycosaminoglycans to be used as reservoir for GF storage. PNIPAM-grafted-chitosan (PChi) with two degrees of substitution (DS) are synthesized, namely LMW* (DS 0.14) and HMW (DS 0.03), by grafting low (2 kDa) and high (10 kDa) molecular weight of PNIPAM on the backbone of chitosan (Chi) to be employed as polycations to form PEM with the polyanion heparin (Hep) at pH 4. Subsequently, PEMs are chemically crosslinked to improve their stability at physiological pH 7.4. Resulting surface and mechanical properties indicate that PEM containing HMW is responsive to temperature at 20 °C and 37 °C, while LMW is not. More importantly, Hep as terminal layer combined with HMW allows not only a better retention of the adhesive protein vitronectin but also a sustained release of FGF-2 at 37 °C. With the synergistic effect of vitronectin and matrix-bound FGF-2, significant promotion on adhesion, proliferation, and migration of 3T3 mouse embryonic fibroblasts is achieved on HMW-containing PEM compared to Chi-containing PEM and exogenously added FGF-2. Thus, PEM containing PNIPAM in combination with bioactive glycosaminoglycans like Hep represents a versatile approach to fabricate a GF delivery system for efficient cell culture, which can be potentially served as cell culture substrate for production of (stem) cells and bioactive wound dressing for tissue regeneration.
Collapse
Affiliation(s)
- Yi-Tung Lu
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle, Saale, Germany
| | - Pei-Tzu Hung
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle, Saale, Germany
| | - Kui Zeng
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Matthias Menzel
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Str. 1, 06120 Halle, Saale, Germany
| | - Christian E H Schmelzer
- Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse, 06120 Halle, Saale, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle, Saale, Germany; Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse, 06120 Halle, Saale, Germany.
| |
Collapse
|
14
|
Splitt RL, DeMali KA. Metabolic reprogramming in response to cell mechanics. Biol Cell 2023; 115:e202200108. [PMID: 36807920 PMCID: PMC10192020 DOI: 10.1111/boc.202200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/20/2023]
Abstract
Much attention has been dedicated to understanding how cells sense and respond to mechanical forces. The types of forces cells experience as well as the repertoire of cell surface receptors that sense these forces have been identified. Key mechanisms for transmitting that force to the cell interior have also emerged. Yet, how cells process mechanical information and integrate it with other cellular events remains largely unexplored. Here we review the mechanisms underlying mechanotransduction at cell-cell and cell-matrix adhesions, and we summarize the current understanding of how cells integrate information from the distinct adhesion complexes with cell metabolism.
Collapse
Affiliation(s)
- Rebecca L. Splitt
- Department of Biochemistry and Molecular Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242
| | - Kris A. DeMali
- Department of Biochemistry and Molecular Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
15
|
Cardiac Differentiation Promotes Focal Adhesions Assembly through Vinculin Recruitment. Int J Mol Sci 2023; 24:ijms24032444. [PMID: 36768766 PMCID: PMC9916732 DOI: 10.3390/ijms24032444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Cells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation. In particular, vinculin and focal adhesion kinase (FAK) family, which are known to be involved in cardiac differentiation, were studied. Results revealed that differentiation conditions induce an upregulation of both FAK-Tyr397 and vinculin, resulting also in the translocation to the cell membrane. Moreover, the role of mechanical stress in contractile phenotype expression was investigated by applying a uniaxial mechanical stretching (5% substrate deformation, 1 Hz frequency). Morphological evaluation revealed that the cell shape showed a spindle shape and reoriented following the stretching direction. Substrate deformation resulted also in modification of the length and the number of vinculin-positive FAs. We can, therefore, suggest that mechanotransductive pathways, activated through FAs, are highly involved in cardiomyocyte differentiation, thus confirming their role during cytoskeleton rearrangement and cardiac myofilament maturation.
Collapse
|
16
|
Yao M, Tijore A, Cheng D, Li JV, Hariharan A, Martinac B, Tran Van Nhieu G, Cox CD, Sheetz M. Force- and cell state-dependent recruitment of Piezo1 drives focal adhesion dynamics and calcium entry. SCIENCE ADVANCES 2022; 8:eabo1461. [PMID: 36351022 PMCID: PMC9645726 DOI: 10.1126/sciadv.abo1461] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Mechanosensing is an integral part of many physiological processes including stem cell differentiation, fibrosis, and cancer progression. Two major mechanosensing systems-focal adhesions and mechanosensitive ion channels-can convert mechanical features of the microenvironment into biochemical signals. We report here unexpectedly that the mechanosensitive calcium-permeable channel Piezo1, previously perceived to be diffusive on plasma membranes, binds to matrix adhesions in a force-dependent manner, promoting cell spreading, adhesion dynamics, and calcium entry in normal but not in most cancer cells tested except some glioblastoma lines. A linker domain in Piezo1 is needed for binding to adhesions, and overexpression of the domain blocks Piezo1 binding to adhesions, decreasing adhesion size and cell spread area. Thus, we suggest that Piezo1 is a previously unidentified component of focal adhesions in nontransformed cells that catalyzes adhesion maturation and growth through force-dependent calcium signaling, but this function is absent in most cancer cells.
Collapse
Affiliation(s)
- Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Corresponding author. (M.Y); (C.C.); (M.S.)
| | - Ajay Tijore
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Delfine Cheng
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Jinyuan Vero Li
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Anushya Hariharan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Guy Tran Van Nhieu
- Ecole Normale Supérieure Paris-Saclay Gif-sur-Yvette, France
- Team Ca Signaling and Microbial Infections, Institute for Integrative Biology of the Cell–CNRS UMR9198–Inserm U1280, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Charles D. Cox
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
- Corresponding author. (M.Y); (C.C.); (M.S.)
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Molecular MechanoMedicine Program, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Corresponding author. (M.Y); (C.C.); (M.S.)
| |
Collapse
|
17
|
Zhao Y, Lykov N, Tzeng C. Talin‑1 interaction network in cellular mechanotransduction (Review). Int J Mol Med 2022; 49:60. [PMID: 35266014 PMCID: PMC8930095 DOI: 10.3892/ijmm.2022.5116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanical signals within the extracellular matrix (ECM) regulate cell growth, proliferation and differentiation, and integrins function as the hub between the ECM and cellular actin. Focal adhesions (FAs) are multi‑protein, integrin‑containing complexes, acting as tension‑sensing anchoring points that bond cells to the extracellular microenvironment. Talin‑1 serves as the central protein of FAs that participates in the activation of integrins and connects them with the actin cytoskeleton. As a cytoplasmic protein, Talin‑1 consists of a globular head domain and a long rod comprised of a series of α‑helical bundles. The unique structure of the Talin‑1 rod domain permits folding and unfolding in response to the mechanical stress, revealing various binding sites. Thus, conformation changes of the Talin‑1 rod domain enable the cell to convert mechanical signals into chemical through multiple signaling pathways. The present review discusses the binding partners of Talin‑1, their interactions, effects on the cellular processes, and their possible roles in diseases.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China
| | - Nikita Lykov
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China
| | - Chimeng Tzeng
- Translational Medicine Research Center-Key Laboratory for Cancer T-Cell Theragnostic and Clinical Translation, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
- Xiamen Chang Gung Hospital Medical Research Center, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
18
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
19
|
Xie T, St Pierre SR, Olaranont N, Brown LE, Wu M, Sun Y. Condensation tendency and planar isotropic actin gradient induce radial alignment in confined monolayers. eLife 2021; 10:e60381. [PMID: 34542405 PMCID: PMC8478414 DOI: 10.7554/elife.60381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2021] [Indexed: 02/01/2023] Open
Abstract
A monolayer of highly motile cells can establish long-range orientational order, which can be explained by hydrodynamic theory of active gels and fluids. However, it is less clear how cell shape changes and rearrangement are governed when the monolayer is in mechanical equilibrium states when cell motility diminishes. In this work, we report that rat embryonic fibroblasts (REF), when confined in circular mesoscale patterns on rigid substrates, can transition from the spindle shapes to more compact morphologies. Cells align radially only at the pattern boundary when they are in the mechanical equilibrium. This radial alignment disappears when cell contractility or cell-cell adhesion is reduced. Unlike monolayers of spindle-like cells such as NIH-3T3 fibroblasts with minimal intercellular interactions or epithelial cells like Madin-Darby canine kidney (MDCK) with strong cortical actin network, confined REF monolayers present an actin gradient with isotropic meshwork, suggesting the existence of a stiffness gradient. In addition, the REF cells tend to condense on soft substrates, a collective cell behavior we refer to as the 'condensation tendency'. This condensation tendency, together with geometrical confinement, induces tensile prestretch (i.e. an isotropic stretch that causes tissue to contract when released) to the confined monolayer. By developing a Voronoi-cell model, we demonstrate that the combined global tissue prestretch and cell stiffness differential between the inner and boundary cells can sufficiently define the cell radial alignment at the pattern boundary.
Collapse
Affiliation(s)
- Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
| | - Sarah R St Pierre
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
| | - Nonthakorn Olaranont
- Department of Mathematical Sciences, Worcester Polytechnic InstituteWorcesterUnited States
| | - Lauren E Brown
- Department of Biomedical Engineering, University of MassachusettsAmherstUnited States
| | - Min Wu
- Department of Mathematical Sciences, Worcester Polytechnic InstituteWorcesterUnited States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
- Department of Biomedical Engineering, University of MassachusettsAmherstUnited States
- Department of Chemical Engineering, University of MassachusettsAmherstUnited States
| |
Collapse
|
20
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
21
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
22
|
Hernández-Bule ML, Toledano-Macías E, Naranjo A, de Andrés-Zamora M, Úbeda A. In vitro stimulation with radiofrequency currents promotes proliferation and migration in human keratinocytes and fibroblasts. Electromagn Biol Med 2021; 40:338-352. [PMID: 34315307 DOI: 10.1080/15368378.2021.1938113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Capacitive-resistive electric transfer (CRET) therapies have been proposed as strategies for regeneration of cutaneous tissue lesions. Previous studies by our group have shown that intermittent stimulation with 448 kHz CRET currents at subthermal densities promotes in vitro proliferation of human stem cells involved in tissue regeneration. The present study investigates the effects of the in vitro exposure to these radiofrequency (RF) currents on the proliferation and migration of keratinocytes and fibroblasts, the main cell types involved in skin regeneration. The effects of the electric stimulation on cell proliferation and migration were studied through XTT and wound closure assays, respectively. The CRET effects on the expression and location of proteins involved in proliferation and migration were assessed by immunoblot and immunofluorescence. The obtained results reveal that electrostimulation promotes proliferation and/or migration in keratinocytes and fibroblasts. These effects would be mediated by changes observed in the expression and location of intercellular adhesion proteins such as β-catenin and E-cadherin, of proteins involved in cell-to-substrate adhesion such as vinculin, p-FAK and the metalloproteinase MMP-9, and of other proteins that control both processes: MAP kinases p-p38, p-JUNK and p-ERK1/2. These responses could represent a mechanism underlying the promotion of normotrophic wound regeneration induced by CRET. Indeed, electric stimulation would favor completion of granulation tissue formation prior to the closure of the outer tissue layers, thus preventing abnormal wound cicatrization or chronification.
Collapse
Affiliation(s)
| | - Elena Toledano-Macías
- Servicio de Bioelectromagnetismo, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Aida Naranjo
- Departamento de Ingeniería Eléctrica, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marina de Andrés-Zamora
- Departamento de Ingeniería Eléctrica, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alejandro Úbeda
- Servicio de Bioelectromagnetismo, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| |
Collapse
|
23
|
Stiffness Regulates the Morphology, Adhesion, Proliferation, and Osteogenic Differentiation of Maxillary Schneiderian Sinus Membrane-Derived Stem Cells. Stem Cells Int 2021; 2021:8868004. [PMID: 34306097 PMCID: PMC8285206 DOI: 10.1155/2021/8868004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Recent studies, which aim to optimize maxillary sinus augmentation, have paid significant attention exploring osteogenic potential of maxillary Schneiderian sinus membrane-derived cells (MSSM-derived cells). However, it remains unclear that how MSSM-derived cells could respond to niche's biomechanical properties. Herein, this study investigated the possible effects of substrate stiffness on rMSSM-derived stem cell fate. Initially, rMSSM-derived stem cells with multiple differentiation potential were successfully obtained. We then fabricated polyacrylamide substrates with varied stiffness ranging from 13 to 68 kPa to modulate the mechanical environment of rMSSM-derived stem cells. A larger cell spreading area and increased proliferation of rMSSM-derived stem cells were found on the stiffer substrates. Similarly, cells became more adhesive as their stiffness increased. Furthermore, the higher stiffness facilitated osteogenic differentiation of rMSSM-derived stem cells. Overall, our results indicated that increase in stiffness could mediate behaviors of rMSSM-derived stem cells, which may serve as a guide in future research to design novel biomaterials for maxillary sinus augmentation.
Collapse
|
24
|
Gao Q, Hou Y, Li Z, Hu J, Huo D, Zheng H, Zhang J, Yao X, Gao R, Wu X, Sui L. mTORC2 regulates hierarchical micro/nano topography-induced osteogenic differentiation via promoting cell adhesion and cytoskeletal polymerization. J Cell Mol Med 2021; 25:6695-6708. [PMID: 34114337 PMCID: PMC8278073 DOI: 10.1111/jcmm.16672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Surface topography acts as an irreplaceable role in the long‐term success of intraosseous implants. In this study, we prepared the hierarchical micro/nano topography using selective laser melting combined with alkali heat treatment (SLM‐AHT) and explored the underlying mechanism of SLM‐AHT surface‐elicited osteogenesis. Our results show that cells cultured on SLM‐AHT surface possess the largest number of mature FAs and exhibit a cytoskeleton reorganization compared with control groups. SLM‐AHT surface could also significantly upregulate the expression of the cell adhesion‐related molecule p‐FAK, the osteogenic differentiation‐related molecules RUNX2 and OCN as well as the mTORC2 signalling pathway key molecule Rictor. Notably, after the knocked‐down of Rictor, there were no longer significant differences in the gene expression levels of the cell adhesion‐related molecules and osteogenic differentiation‐related molecules among the three titanium surfaces, and the cells on SLM‐AHT surface failed to trigger cytoskeleton reorganization. In conclusion, the results suggest that mTORC2 can regulate the hierarchical micro/nano topography‐mediated osteogenesis via cell adhesion and cytoskeletal reorganization.
Collapse
Affiliation(s)
- Qian Gao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuying Hou
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhe Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Jinyang Hu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Huo
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Huimin Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Junjiang Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Xiaoyu Yao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Rui Gao
- International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Wu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
25
|
Sala S, Oakes PW. Stress fiber strain recognition by the LIM protein testin is cryptic and mediated by RhoA. Mol Biol Cell 2021; 32:1758-1771. [PMID: 34038160 PMCID: PMC8684727 DOI: 10.1091/mbc.e21-03-0156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin’s mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton’s mechanical state.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| |
Collapse
|
26
|
Rac1/Wave2/Arp3 Pathway Mediates Rat Blood-Brain Barrier Dysfunction under Simulated Microgravity Based on Proteomics Strategy. Int J Mol Sci 2021; 22:ijms22105165. [PMID: 34068233 PMCID: PMC8153163 DOI: 10.3390/ijms22105165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
The blood-brain barrier (BBB) is critical to maintaining central nervous system (CNS) homeostasis. However, the effects of microgravity (MG) on the BBB remain unclear. This study aimed to investigate the influence of simulated MG (SMG) on the BBB and explore its potential mechanism using a proteomic approach. Rats were tail-suspended to simulate MG for 21 days. SMG could disrupt the BBB, including increased oxidative stress levels, proinflammatory cytokine levels, and permeability, damaged BBB ultrastructure, and downregulated tight junctions (TJs) and adherens junctions (AJs) protein expression in the rat brain. A total of 554 differentially expressed proteins (DEPs) induced by SMG were determined based on the label-free quantitative proteomic strategy. The bioinformatics analysis suggested that DEPs were mainly enriched in regulating the cell–cell junction and cell–extracellular matrix biological pathways. The inhibited Ras-related C3 botulinum toxin substrate 1 (Rac1)/Wiskott–Aldrich syndrome protein family verprolin-homologous protein 2 (Wave2)/actin-related protein 3 (Arp3) pathway and the decreased ratio of filamentous actin (F-actin) to globular actin contributed to BBB dysfunction induced by SMG. In the human brain microvascular endothelial cell (HBMECs), SMG increased the oxidative stress levels and proinflammatory cytokine levels, promoted apoptosis, and arrested the cell cycle phase. Expression of TJs and AJs proteins were downregulated and the distribution of F-actin was altered in SMG-treated HBMECs. The key role of the Rac1/Wave2/Arp3 pathway in BBB dysfunction was confirmed in HBMECs with a specific Rac1 agonist. This study demonstrated that SMG induced BBB dysfunction and revealed that Rac1/Wave2/Arp3 could be a potential signaling pathway responsible for BBB disruption under SMG. These results might shed a novel light on maintaining astronaut CNS homeostasis during space travel.
Collapse
|
27
|
Deckwirth V, Rajakylä EK, Cattavarayane S, Acheva A, Schaible N, Krishnan R, Valle-Delgado JJ, Österberg M, Björkenheim P, Sukura A, Tojkander S. Cytokeratin 5 determines maturation of the mammary myoepithelium. iScience 2021; 24:102413. [PMID: 34007958 PMCID: PMC8111680 DOI: 10.1016/j.isci.2021.102413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/06/2020] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
At invasion, transformed mammary epithelial cells expand into the stroma through a disrupted myoepithelial (ME) cell layer and basement membrane (BM). The intact ME cell layer has thus been suggested to act as a barrier against invasion. Here, we investigate the mechanisms behind the disruption of ME cell layer. We show that the expression of basal/ME proteins CK5, CK14, and α-SMA altered along increasing grade of malignancy, and their loss affected the maintenance of organotypic 3D mammary architecture. Furthermore, our data suggests that loss of CK5 prior to invasive stage causes decreased levels of Zinc finger protein SNAI2 (SLUG), a key regulator of the mammary epithelial cell lineage determination. Consequently, a differentiation bias toward luminal epithelial cell type was detected with loss of mature, α-SMA-expressing ME cells and reduced deposition of basement membrane protein laminin-5. Therefore, our data discloses the central role of CK5 in mammary epithelial differentiation and maintenance of normal ME layer.
Collapse
Affiliation(s)
- Vivi Deckwirth
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Sandhanakrishnan Cattavarayane
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Niccole Schaible
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Pia Björkenheim
- Veterinary Teaching Hospital, University of Helsinki, Helsinki 00014, Finland
| | - Antti Sukura
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| |
Collapse
|
28
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
29
|
Biswas R, Banerjee A, Lembo S, Zhao Z, Lakshmanan V, Lim R, Le S, Nakasaki M, Kutyavin V, Wright G, Palakodeti D, Ross RS, Jamora C, Vasioukhin V, Jie Y, Raghavan S. Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells. Dev Cell 2021; 56:761-780.e7. [PMID: 33725480 DOI: 10.1016/j.devcel.2021.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/24/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Vinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin. Mechanistically, we demonstrate that vinculin functions by keeping α-catenin in a stretched/open conformation, which in turn regulates the retention of YAP1, another potent mechanotransducer and regulator of cell proliferation, at the AJs. Altogether, our data provide mechanistic insights into the hitherto-unexplored regulatory link between the mechanical stability of cell junctions and contact-inhibition-mediated maintenance of BuSC quiescence.
Collapse
Affiliation(s)
- Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Avinanda Banerjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Sergio Lembo
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | - Zhihai Zhao
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Vairavan Lakshmanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Ryan Lim
- Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | | | | | - Graham Wright
- A∗STAR Microscopy Platform, Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | - Robert S Ross
- University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin Jamora
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | | | - Yan Jie
- Department of Physics, National University of Singapore, Singapore 117542, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore.
| |
Collapse
|
30
|
Zheng JM, Wang SS, Tian X, Che DJ. Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Mol Med Rep 2020; 22:5326-5338. [PMID: 33174024 PMCID: PMC7646996 DOI: 10.3892/mmr.2020.11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
The C3a receptor (C3aR) has been reported to be involved in various physiological and pathological processes, including the regulation of cellular structure development. Expression of C3aR has been reported in podocytes; however, data concerning the role of C3aR in podocyte morphology is scarce. The aim of the present study was to examine the effect of C3aR activation on the architectural development of podocytes. An immortal human podocyte line (HPC) was transfected with a C3a expression lentivirus vector or recombinant C3a. SB290157 was used to block the activation of C3aR. The expression of C3a in HPC cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and ELISAs. Phase contrast and fluorescence microscopy were used to observe the morphology of the podocytes. The adhesive ability of HPC cells was analyzed using an attachment assay. RT-qPCR, cyto-immunofluorescence and western blotting were used to determine the expression levels of the adhesion-associated genes. The expression levels of carboxypeptidases in HPC cells was also detected by RT-qPCR. Compared with the untransfected and control virus-transfected HPC cells, the C3a-overexpressing cells (HPC-C3a) failed to expand their cell bodies and develop an arborized appearance in the process of maturation, which the control cells exhibited. In addition, HPC-C3a cells presented with decreased adhesive capacity, altered focal adhesion (FA) plaques and decreased expression of FA-associated genes. These effects were blocked by a C3aR antagonist; however, the addition of purified C3a could not completely mimic the effects of C3a overexpression. Furthermore, HPC cells expressed carboxypeptidases, which have been reported to be able to inactivate C3a. In summary, the results demonstrated that sustained C3aR activation impaired the morphological maturation of HPC cells, which may be associated with the altered expression of FA-associated genes and impaired FA. Since chronic complement activation has been reported in renal diseases, which indicate sustained C3aR activation in renal cells, including podocytes and podocyte progenitors, the possible role of C3aR in the dysregulation of podocyte architecture and podocyte regeneration requires further research.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Sha-Sha Wang
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xiong Tian
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - De-Jun Che
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
31
|
In Vitro Evidences of Different Fibroblast Morpho-Functional Responses to Red, Near-Infrared and Violet-Blue Photobiomodulation: Clues for Addressing Wound Healing. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although photobiomodulation (PBM) has proven promising to treat wounds, the lack of univocal guidelines and of a thorough understanding of light–tissue interactions hampers its mainstream adoption for wound healing promotion. This study compared murine and human fibroblast responses to PBM by red (635 ± 5 nm), near-infrared (NIR, 808 ± 1 nm), and violet-blue (405 ± 5 nm) light (0.4 J/cm2 energy density, 13 mW/cm2 power density). Cell viability was not altered by PBM treatments. Light and confocal laser scanning microscopy and biochemical analyses showed, in red PBM irradiated cells: F-actin assembly reduction, up-regulated expression of Ki67 proliferation marker and of vinculin in focal adhesions, type-1 collagen down-regulation, matrix metalloproteinase-2 and metalloproteinase-9 expression/functionality increase concomitant to their inhibitors (TIMP-1 and TIMP-2) decrease. Violet-blue and even more NIR PBM stimulated collagen expression/deposition and, likely, cell differentiation towards (proto)myofibroblast phenotype. Indeed, these cells exhibited a higher polygonal surface area, stress fiber-like structures, increased vinculin- and phospho-focal adhesion kinase-rich clusters and α-smooth muscle actin. This study may provide the experimental groundwork to support red, NIR, and violet-blue PBM as potential options to promote proliferative and matrix remodeling/maturation phases of wound healing, targeting fibroblasts, and to suggest the use of combined PBM treatments in the wound management setting.
Collapse
|
32
|
Luzi F, Tortorella I, Di Michele A, Dominici F, Argentati C, Morena F, Torre L, Puglia D, Martino S. Novel Nanocomposite PLA Films with Lignin/Zinc Oxide Hybrids: Design, Characterization, Interaction with Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2176. [PMID: 33142867 PMCID: PMC7692172 DOI: 10.3390/nano10112176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Herein we present the production of novel nanocomposite films consisting of polylactic acid (PLA) polymer and the inclusion of nanoparticles of lignin (LNP), ZnO and hybrid ZnO@LNP (ZnO, 3.5% wt, ICP), characterized by similar regular shapes and different diameter distribution (30-70 nm and 100-150 nm, respectively). The obtained set of binary, ternary and quaternary systems were similar in surface wettability and morphology but different in the tensile performance: while the presence of LNP and ZnO in PLA caused a reduction of elastic modulus, stress and deformation at break, the inclusion of ZnO@LNP increased the stiffness and tensile strength (σb = 65.9 MPa and EYoung = 3030 MPa) with respect to neat PLA (σb = 37.4 MPa and EYoung = 2280 MPa). Neat and nanocomposite PLA-derived films were suitable for adult human bone marrow-mesenchymal stem cells and adipose stem cell cultures, as showed by their viability and behavior comparable to control conditions. Both stem cell types adhered to the films' surface by vinculin focal adhesion spots and responded to the films' mechanical properties by orchestrating the F-actin-filamin A interaction. Collectively, our results support the biomedical application of neat- and nanocomposite-PLA films and, based on the absence of toxicity in seeded stem cells, provide a proof of principle of their safety for food packaging purposes.
Collapse
Affiliation(s)
- Francesca Luzi
- Department of Civil and Environmental Engineering, Materials Engineering Center, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (F.L.); (F.D.); (L.T.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (I.T.); (C.A.); (F.M.)
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 1, 06123 Perugia, Italy;
| | - Franco Dominici
- Department of Civil and Environmental Engineering, Materials Engineering Center, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (F.L.); (F.D.); (L.T.)
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (I.T.); (C.A.); (F.M.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (I.T.); (C.A.); (F.M.)
| | - Luigi Torre
- Department of Civil and Environmental Engineering, Materials Engineering Center, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (F.L.); (F.D.); (L.T.)
| | - Debora Puglia
- Department of Civil and Environmental Engineering, Materials Engineering Center, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (F.L.); (F.D.); (L.T.)
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (I.T.); (C.A.); (F.M.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
33
|
Bisphenol A impaired cell adhesion by altering the expression of adhesion and cytoskeleton proteins on human podocytes. Sci Rep 2020; 10:16638. [PMID: 33024228 PMCID: PMC7538920 DOI: 10.1038/s41598-020-73636-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a chemical -xenoestrogen- used in food containers is present in the urine of almost the entire population. Recently, several extensive population studies have proven a significant association between urinary excretion of BPA and albuminuria. The alteration of glomerular podocytes or "podocytopathy" is a common event in chronic albuminuric conditions. Since many podocytes recovered from patients' urine are viable, we hypothesized that BPA could impair podocyte adhesion capabilities. Using an in vitro adhesion assay, we observed that BPA impaired podocyte adhesion, an effect that was abrogated by Tamoxifen (an estrogen receptor blocker). Genomic and proteomic analyses revealed that BPA affected the expression of several podocyte cytoskeleton and adhesion proteins. Western blot and immunocytochemistry confirmed the alteration in the protein expression of tubulin, vimentin, podocin, cofilin-1, vinculin, E-cadherin, nephrin, VCAM-1, tenascin-C, and β-catenin. Moreover, we also found that BPA, while decreased podocyte nitric oxide production, it lead to overproduction of ion superoxide. In conclusion, our data show that BPA induced a novel type of podocytopathy characterizes by an impairment of podocyte adhesion, by altering the expression of adhesion and cytoskeleton proteins. Moreover, BPA diminished production of podocyte nitric oxide and induced the overproduction of oxygen-free metabolites. These data provide a mechanism by which BPA could participate in the pathogenesis and progression of renal diseases.
Collapse
|
34
|
Abstract
Keratin-based biomaterials represent an attractive opportunity in the fields of wound healing and tissue regeneration, not only for their chemical and physical properties, but also for their ability to act as a delivery system for a variety of payloads. Importantly, keratins are the only natural biomaterial that is not targeted by specific tissue turnover-related enzymes, giving it potential stability advantages and greater control over degradation after implantation. However, in-situ polymerization chemistry in some keratin systems are not compatible with cells, and incorporation within constructs such as hydrogels may lead to hypoxia and cell death. To address these challenges, we envisioned a pre-formed keratin microparticle on which cells could be seeded, while other payloads (e.g. drugs, growth factors or other biologic compounds) could be contained within, although studies investigating the potential partitioning between phases during emulsion polymerization would need to be conducted. This study employs well-established water-in-oil emulsion procedures as well as a suspension culture method to load keratin-based microparticles with bone marrow-derived mesenchymal stem cells. Fabricated microparticles were characterized for size, porosity and surface structure and further analyzed to investigate their ability to form gels upon hydration. The suspension culture technique was validated based on the ability for loaded cells to maintain their viability and express actin and vinculin proteins, which are key indicators of cell attachment and growth. Maintenance of expression of markers associated with cell plasticity was also investigated. As a comparative model, a collagen-coated microparticle (Sigma) of similar size was used. Results showed that an oxidized form of keratin ("keratose" or "KOS") formed unique microparticle structures of various size that appeared to contain a fibrous sub-structure. Cell adhesion and viability was greater on keratin microparticles compared to collagen-coated microparticles, while marker expression was retained on both.
Collapse
Affiliation(s)
- Marc Thompson
- US Army Institute of Surgical Research, Burn and Soft Tissue Research Division, Fort Sam Houston, TX, USA
| | - Aaron Giuffre
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Claire McClenny
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
35
|
Zhang Y, Yan Z, Xia X, Lin Y. A Novel Electroporation System for Living Cell Staining and Membrane Dynamics Interrogation. MICROMACHINES 2020; 11:E767. [PMID: 32796554 PMCID: PMC7466103 DOI: 10.3390/mi11080767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
A novel electroporation system was developed to introduce transient membrane pores to cells in a spatially and temporally controlled manner, allowing us to achieve fast electrotransfection and live cell staining as well as to systematically interrogate the dynamics of the cell membrane. Specifically, using this platform, we showed that both reversible and irreversible electroporation could be induced in the cell population, with nano-sized membrane pores in the former case being able to self-reseal in ~10 min. In addition, green fluorescent protein(GFP)-vinculin plasmid and 543 phalloidin have been delivered successively into fibroblast cells, which enables us to monitor the distinct roles of vinculin and F-actin in cell adhesion and migration as well as their possible interplay during these processes. Compared to conventional bulk electroporation and staining methods, the new system offers advantages such as low-voltage operation, cellular level manipulation and testing, fast and adjustable transfection/staining and real-time monitoring; the new system therefore could be useful in different biophysical studies in the future.
Collapse
Affiliation(s)
- Yuanjun Zhang
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Guangdong 518057, China; (Y.Z.); (Z.Y.); (X.X.)
| | - Zishen Yan
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Guangdong 518057, China; (Y.Z.); (Z.Y.); (X.X.)
| | - Xingyu Xia
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Guangdong 518057, China; (Y.Z.); (Z.Y.); (X.X.)
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
36
|
Patel KD, Kim TH, Mandakhbayar N, Singh RK, Jang JH, Lee JH, Kim HW. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomater 2020; 108:97-110. [PMID: 32165193 DOI: 10.1016/j.actbio.2020.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Tailoring the surface of biomaterial scaffolds has been a key strategy to modulate the cellular interactions that are helpful for tissue healing process. In particular, nanotopological surfaces have been demonstrated to regulate diverse behaviors of stem cells, such as initial adhesion, spreading and lineage specification. Here, we tailor the surface of biopolymer nanofibers with carbon nanotubes (CNTs) to create a unique bi-modal nanoscale topography (500 nm nanofiber with 25 nm nanotubes) and report the performance in modulating diverse in vivo responses including inflammation, angiogenesis, and bone regeneration. When administered to a rat subcutaneous site, the CNT-coated nanofiber exhibited significantly reduced inflammatory signs (down-regulated pro-inflammatory cytokines and macrophages gathering). Moreover, the CNT-coated nanofibers showed substantially promoted angiogenic responses, with enhanced neoblood vessel formation and angiogenic marker expression. Such stimulated tissue healing events by the CNT interfacing were evidenced in a calvarium bone defect model. The in vivo bone regeneration of the CNT- coated nanofibers was significantly accelerated, with higher bone mineral density and up-regulated osteogenic signs (OPN, OCN, BMP2) of in vivo bone forming cells. The in vitro studies using MSCs could demonstrate accelerated adhesion and osteogenic differentiation and mineralization, supporting the osteo-promoting mechanism behind the in vivo bone forming event. These findings highlight that the CNTs interfacing of biopolymer nanofibers is highly effective in reducing inflammation, promoting angiogenesis, and driving adhesion and osteogenesis of MSCs, which eventually orchestrate to accelerate tissue healing and bone regeneration process. STATEMENT OF SIGNIFICANCE: Here we demonstrate that the interfacing of biopolymer nanofibers with carbon nanotubes (CNTs) could modulate multiple interactions of cells and tissues that are ultimately helpful for the tissue healing and bone regeneration process. The CNT-coated scaffolds significantly reduced the pro-inflammatory signals while stimulating the angiogenic marker expressions. Furthermore, the CNT-coated scaffolds increased the bone matrix production of bone forming cells in vivo as well as accelerated the adhesion and osteogenic differentiation of MSCs in vitro. These collective findings highlight that the CNTs coated on the biopolymer nanofibers allow the creation of a promising platform for nanoscale engineering of biomaterial surface that can favor tissue healing and bone regeneration process, through a series of orchestrated events in anti-inflammation, pro-angiogenesis, and stem cell stimulation.
Collapse
Affiliation(s)
- Kapil D Patel
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae-Hyun Kim
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University, Incheon, Republic of Korea
| | - Jung-Hwan Lee
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
37
|
Kluger C, Braun L, Sedlak SM, Pippig DA, Bauer MS, Miller K, Milles LF, Gaub HE, Vogel V. Different Vinculin Binding Sites Use the Same Mechanism to Regulate Directional Force Transduction. Biophys J 2020; 118:1344-1356. [PMID: 32109366 PMCID: PMC7091509 DOI: 10.1016/j.bpj.2019.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Vinculin is a universal adaptor protein that transiently reinforces the mechanical stability of adhesion complexes. It stabilizes mechanical connections that cells establish between the actomyosin cytoskeleton and the extracellular matrix via integrins or to neighboring cells via cadherins, yet little is known regarding its mechanical design. Vinculin binding sites (VBSs) from different nonhomologous actin-binding proteins use conserved helical motifs to associate with the vinculin head domain. We studied the mechanical stability of such complexes by pulling VBS peptides derived from talin, α-actinin, and Shigella IpaA out of the vinculin head domain. Experimental data from atomic force microscopy single-molecule force spectroscopy and steered molecular dynamics (SMD) simulations both revealed greater mechanical stability of the complex for shear-like than for zipper-like pulling configurations. This suggests that reinforcement occurs along preferential force directions, thus stabilizing those cytoskeletal filament architectures that result in shear-like pulling geometries. Large force-induced conformational changes in the vinculin head domain, as well as protein-specific fine-tuning of the VBS sequence, including sequence inversion, allow for an even more nuanced force response.
Collapse
Affiliation(s)
- Carleen Kluger
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Braun
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Steffen M Sedlak
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diana A Pippig
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magnus S Bauer
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ken Miller
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
39
|
Wang Y, Wang H, Tran MV, Algar WR, Li H. Yellow fluorescent protein-based label-free tension sensors for monitoring integrin tension. Chem Commun (Camb) 2020; 56:5556-5559. [DOI: 10.1039/d0cc01635g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yellow fluorescent protein serves as a label-free tension sensor to monitor integrin tension.
Collapse
Affiliation(s)
- Yongliang Wang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Han Wang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Michael V. Tran
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - W. Russ Algar
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Hongbin Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
40
|
The planarian Vinculin is required for the regeneration of GABAergic neurons in Dugesia japonica. Exp Cell Res 2019; 383:111540. [PMID: 31369753 DOI: 10.1016/j.yexcr.2019.111540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
Vinculin is a cytoskeletal protein associated with cell-cell and cell-matrix junctions, playing an important role in linkage of integrin adhesion molecules to the actin cytoskeleton. The planarian nervous system is a fascinating system for studying the organogenesis during regeneration. In this paper, a homolog gene of Vinculin, DjVinculin, was identified and characterized in Dugesia japonica. The DjVinculin sequence analysis revealed that it contains an opening reading frame encoding a putative protein of 975 amino acids with functionally domains that are highly conserved, including eight anti-parallel α-helical bundles organized into five distinct domains. Whole mount in situ hybridization showed that DjVinculin was predominantly expressed in the brain of intact and regenerating planarians. RNA interference of DjVinculin caused distinct defects in brain morphogenesis and influences the regeneration of planarian GABAergic neurons. The expression level of DjGAD protein was decreased in the DjVinculin-knockdown planarians. These findings suggest that DjVinculin is required for GABAergic neurons regeneration.
Collapse
|
41
|
Necula MG, Mazare A, Ion RN, Ozkan S, Park J, Schmuki P, Cimpean A. Lateral Spacing of TiO 2 Nanotubes Modulates Osteoblast Behavior. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2956. [PMID: 31547276 PMCID: PMC6766216 DOI: 10.3390/ma12182956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/06/2023]
Abstract
Titanium dioxide (TiO2) nanotube coated substrates have revolutionized the concept of implant in a number of ways, being endowed with superior osseointegration properties and local drug delivery capacity. While accumulating reports describe the influence of nanotube diameter on cell behavior, little is known about the effects of nanotube lateral spacing on cells involved in bone regeneration. In this context, in the present study the MC3T3-E1 murine pre-osteoblast cells behavior has been investigated by using TiO2 nanotubes of ~78 nm diameter and lateral spacing of 18 nm and 80 nm, respectively. Both nanostructured surfaces supported cell viability and proliferation in approximately equal extent. However, obvious differences in the cell spreading areas, morphologies, the organization of the actin cytoskeleton and the pattern of the focal adhesions were noticed. Furthermore, investigation of the pre-osteoblast differentiation potential indicated a higher capacity of larger spacing nanostructure to enhance the expression of the alkaline phosphatase, osteopontin and osteocalcin osteoblast specific markers inducing osteogenic differentiation. These findings provide the proof that lateral spacing of the TiO2 nanotube coated titanium (Ti) surfaces has to be considered in designing bone implants with improved biological performance.
Collapse
Affiliation(s)
- Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Raluca Nicoleta Ion
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Selda Ozkan
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany.
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
42
|
Hong KO, Ahn CH, Yang IH, Han JM, Shin JA, Cho SD, Hong SD. Norcantharidin Suppresses YD-15 Cell Invasion Through Inhibition of FAK/Paxillin and F-Actin Reorganization. Molecules 2019; 24:molecules24101928. [PMID: 31109130 PMCID: PMC6572169 DOI: 10.3390/molecules24101928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Norcantharidin (NCTD), a demethylated derivative of cantharidin, has been reported to exhibit activity against various types of cancers. However, the anti-invasive effects of NCTD and its molecular mechanism in human mucoepidermoid carcinoma (MEC) remain incompletely elucidated. Clonogenic, wound healing, invasion, zymography, western blotting and immunocytochemistry assays were performed in YD-15 cells to investigate the anti-invasive effect of NCTD and its molecular mechanism of action. The inhibitory effects of NCTD on invasiveness were compared with those of a novel focal adhesion kinase (FAK) kinase inhibitor, PF-562271. NCTD markedly suppressed the colony formation, migration, and invasion of YD-15 cells as well as the activities of MMP-2 and MMP-9. It disrupted F-actin reorganization through suppressing the FAK/Paxillin axis. Moreover, NCTD exhibited a powerful anti-invasive effect compared with that of PF-562271 in YD-15 cells. Collectively, these results suggest that NCTD has a potential anti-invasive activity against YD-15 cells. This study may clarify the impact of NCTD on migration and invasion of human MEC cells.
Collapse
Affiliation(s)
- Kyoung-Ok Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| | - Chi-Hyun Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| | - Jung-Min Han
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| | - Seong Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
43
|
Shiki A, Inoh Y, Yokawa S, Furuno T. Inhibition of degranulation in mast cells attached to a hydrogel through defective microtubule tracts. Exp Cell Res 2019; 381:248-255. [PMID: 31112735 DOI: 10.1016/j.yexcr.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
Abstract
Mast cells (MCs) are important effectors of the immediate allergic response. MCs are distributed throughout various tissues and organs, and adhere to extracellular matrix (ECM) with broad stiffness in the body. Here we compared cellular responses following antigen stimulation in MCs on glass-base dishes with and without a hydrogel. We found that an antigen-induced increase in intracellular Ca2+ concentration was suppressed slightly in cells on hydrogel-coated dishes compared with those on non-coated dishes, whereas their subsequent degranulation was largely inhibited in cells adherent to the hydrogel. Focusing on focal adhesions (FAs), vinculin was distributed in a dot-like manner at the bottom of resting cells on non-coated dishes but not on hydrogel-coated dishes. According to antigen stimulation, phosphorylation of focal adhesion kinase and additive vinculin accumulation to FAs were promoted in cells on non-coated dishes, but were diminished on hydrogel-coated dishes. Moreover, microtubule reorganization and acetylation (which have important roles in MC degranulation) were also suppressed in activated MCs adherent to the hydrogel. These findings suggest that adhesion to a hydrogel led to failure of composition of functional FAs and microtubule tracts, which resulted in suppression of MC degranulation following antigen stimulation.
Collapse
Affiliation(s)
- Atsushi Shiki
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan.
| |
Collapse
|
44
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
45
|
Yu Q, Xu L, Chen L, Sun B, Yang Z, Lu K, Yang Z. Vinculin expression in non-small cell lung cancer. J Int Med Res 2019; 48:300060519839523. [PMID: 30947597 PMCID: PMC7140223 DOI: 10.1177/0300060519839523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qiuli Yu
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China.,Qiuli Yu and Liqin Xu contributed equally to this work
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Qiuli Yu and Liqin Xu contributed equally to this work
| | - Long Chen
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Baier Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiyun Yang
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Kunqin Lu
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Zhiyong Yang
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| |
Collapse
|
46
|
Cao J, Schnittler H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 2019; 132:132/1/jcs222893. [DOI: 10.1242/jcs.222893] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
47
|
Thottacherry JJ, Kosmalska AJ, Kumar A, Vishen AS, Elosegui-Artola A, Pradhan S, Sharma S, Singh PP, Guadamillas MC, Chaudhary N, Vishwakarma R, Trepat X, Del Pozo MA, Parton RG, Rao M, Pullarkat P, Roca-Cusachs P, Mayor S. Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat Commun 2018; 9:4217. [PMID: 30310066 PMCID: PMC6181995 DOI: 10.1038/s41467-018-06738-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Plasma membrane tension regulates many key cellular processes. It is modulated by, and can modulate, membrane trafficking. However, the cellular pathway(s) involved in this interplay is poorly understood. Here we find that, among a number of endocytic processes operating simultaneously at the cell surface, a dynamin independent pathway, the CLIC/GEEC (CG) pathway, is rapidly and specifically upregulated upon a sudden reduction of tension. Moreover, inhibition (activation) of the CG pathway results in lower (higher) membrane tension. However, alteration in membrane tension does not directly modulate CG endocytosis. This requires vinculin, a mechano-transducer recruited to focal adhesion in adherent cells. Vinculin acts by controlling the levels of a key regulator of the CG pathway, GBF1, at the plasma membrane. Thus, the CG pathway directly regulates membrane tension and is in turn controlled via a mechano-chemical feedback inhibition, potentially leading to homeostatic regulation of membrane tension in adherent cells. Plasma membrane tension is an important factor that regulates many key cellular processes. Here authors show that a specific dynamin-independent endocytic pathway is modulated by changes in tension via the mechano-transducer vinculin.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India
| | - Anita Joanna Kosmalska
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain
| | - Amit Kumar
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Amit Singh Vishen
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India.,Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (NCBS), Bengaluru, 560065, India
| | | | - Susav Pradhan
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Sumit Sharma
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Parvinder P Singh
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Marta C Guadamillas
- Integrin Signalling Lab, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Natasha Chaudhary
- University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St Lucia, QLD, 4072, Australia.,Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ram Vishwakarma
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Miguel A Del Pozo
- Integrin Signalling Lab, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Robert G Parton
- University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St Lucia, QLD, 4072, Australia
| | - Madan Rao
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India.,Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (NCBS), Bengaluru, 560065, India
| | - Pramod Pullarkat
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain
| | - Satyajit Mayor
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India. .,Institute for Stem Cell Biology and Regenerative Medicine, Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India.
| |
Collapse
|
48
|
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018; 19:ijms19071946. [PMID: 29970828 PMCID: PMC6073131 DOI: 10.3390/ijms19071946] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm2 energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
Collapse
Affiliation(s)
- Alessia Tani
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, via dell' Olivuzzo 162, 50143 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
49
|
Johnson CD, D'Amato AR, Puhl DL, Wich DM, Vesperman A, Gilbert RJ. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth. ACTA ACUST UNITED AC 2018; 13:054101. [PMID: 29762127 DOI: 10.1088/1748-605x/aac4de] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aligned, electrospun fiber scaffolds provide topographical guidance for regenerating neurons and glia after central nervous system injury. To date, no study has explored how fiber surface nanotopography affects astrocyte response to fibrous scaffolds. Astrocytes play important roles in the glial scar, the blood brain barrier, and in maintaining homeostasis in the central nervous system. In this study, electrospun poly L-lactic acid fibers were engineered with smooth, pitted, or divoted surface nanotopography. Cortical or spinal cord primary rat astrocytes were cultured on the surfaces for either 1 or 3 d to examine the astrocyte response over time. The results showed that cortical astrocytes were significantly shorter and broader on the pitted and divoted fibers compared to those on smooth fibers. However, spinal cord astrocyte morphology was not significantly altered by the surface features. These findings indicate that astrocytes from unique anatomical locations respond differently to the presence of nanotopography. Western blot results show that the differences in morphology were not associated with significant changes in glial fibrillary acidicprotein (GFAP) or vinculin in either astrocyte population, suggesting that surface pits and divots do not induce a reactive phenotype in either cortical or spinal cord astrocytes. Finally, astrocytes were co-cultured with dorsal root ganglia to determine how the surfaces affected astrocyte-mediated neurite outgrowth. Astrocytes cultured on the fibers for shorter periods of time (1 d) generally supported longer neurite outgrowth. Pitted and divoted fibers restricted spinal cord astrocyte-mediated neurite outgrowth, while smooth fibers increased 3 d spinal cord astrocyte-mediated neurite outgrowth. In total, fiber surface nanotopography can influence astrocyte elongation and influence the capability of astrocytes to direct neurites. Therefore, fiber surface characteristics should be carefully controlled to optimize astrocyte-mediated axonal regeneration.
Collapse
Affiliation(s)
- Christopher D Johnson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, United States of America. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, United States of America
| | | | | | | | | | | |
Collapse
|
50
|
Goldmann WH. Molecular interactions between vinculin and phospholipids. Cell Biol Int 2018; 42:1076-1078. [PMID: 29696730 DOI: 10.1002/cbin.10978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/21/2018] [Indexed: 01/13/2023]
Abstract
The focal adhesion protein vinculin has been implicated in associating with soluble and membranous phospholipids. Detailed investigations over the past ten years describe the intermolecular interactions of the vinculin tail domain with soluble and membrane phospholipids. Previous studies have implied that the tail's unstructured C-terminal region affects the mechanical behavior of cells and that the same region, at the molecular level, has bi-stable behavior sensitive to different protonation states. The aim of this short communication is to discuss whether the C-terminal vinculin tail (Vt) domain interacts favorably with membrane-embedded phospholipids such as PIP2 and that the region is also an anchor for lipid membranes.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Physics, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, D-91052, Erlangen, Germany
| |
Collapse
|