1
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025:10.1007/s10787-025-01760-8. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
2
|
Romaniello D, Dall'Olio L, Mazzeschi M, Francia A, Pagano F, Gelfo V, D'Uva G, Giampieri E, Lauriola M. NF-kB oscillation profiles decode response to anti-EGFR monoclonal antibodies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100219. [PMID: 39892619 DOI: 10.1016/j.slasd.2025.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
A direct connection between an inflammatory environment and cancer has been extensively proven over the years. We previously reported that the presence of interleukin 1 (IL-1) is responsible for the lack of response to monoclonal antibody targeting epidermal growth factor receptor (EGFR) in colorectal cancer (CRC). Considering the driver role of NF-kB in controlling the expression of IL-1, herein, we investigate the dynamics of the oscillatory profile of the NF-kB response to monoclonal antibody, on the background of an inflammatory environment. NF-kB is a typical transcription factor that displays intrinsic oscillatory behavior, whose biological relevance in term for example of decoding response to monoclonal antibodies, remains unclear. Using live cell luciferase techniques, we recorded NF-kB activity over time in response to cetuximab (CTX) alone or in combination with IL-1 cytokines. Our results revealed an additive effect of these two agents on NF-kB activation, which was specific to CTX responsive cells. In contrast, CTX resistant cells did not display a significant change in the NF-kB profile under the IL-1 plus CTX combination. These results suggest an immediate interactive crosstalk between IL-1 and EGFR in the activation of NF-kB signaling pathway, which may lay the basis for the development of drug tolerant persister cells (DTP), leading to CTX resistance.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Lorenzo Dall'Olio
- Laboratory of Data Science and Bioinformatics, IRCSS Institute of Neurological Sciences, Bellaria Hospital, via Altura 3, 40139 Bologna, Italy
| | - Martina Mazzeschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Anna Francia
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Federica Pagano
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Valerio Gelfo
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Enrico Giampieri
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|
3
|
Kim K, Khazan N, McDowell JL, Snyder CWA, Miller JP, Singh RK, Whittum ME, Turner R, Moore RG. The NF-κB-HE4 axis: A novel regulator of HE4 secretion in ovarian cancer. PLoS One 2024; 19:e0314564. [PMID: 39621651 PMCID: PMC11611113 DOI: 10.1371/journal.pone.0314564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024] Open
Abstract
Ovarian cancer is the leading cause of death among gynecologic malignancies. Despite recent advancements in targeted therapies such as PARP inhibitors, recurrence is common and frequently resistant to existing therapies. A powerful diagnostic tool, coupled with a comprehensive understanding of its implications, is crucial. HE4, a clinical serum biomarker for ovarian cancer, has shown efficacy in monitoring malignant phenotypes, yet little is known about its biological role and regulatory mechanisms. Our research demonstrates that HE4 expression in ovarian cancer can be regulated by the NF-κB signaling pathway. We found that the activation of NF-κB signaling by tumor necrosis factor (TNF)-α, a cytokine found in ovarian cancer tumors and ascites, enhanced the secretion of HE4 while its inhibition suppressed HE4 levels. Nuclear translocation of the NF-κB component p65 was found to be critical for HE4 expression; induced NF-κB activation through p65 expression or constitutive IKK2 activity elevated HE4 expression, while p65 knockdown had the opposite effect. Furthermore, we observed that NF-κB mediated HE4 expression at the transcriptional level. Our data also suggests that there is a regulatory role for HE4 in the expression of α5-Integrin, a crucial adhesion molecule in ovarian cancer metastasis; HE4 knockdown corresponded with reduced α5-Integrin expression, cell migration and cell adhesion to fibronectin.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Negar Khazan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jamie L. McDowell
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Cameron W. A. Snyder
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - John P. Miller
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States of America
| | - Rakesh K. Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Michelle E. Whittum
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Rachael Turner
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Richard G. Moore
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
4
|
Chen Y, Johnson JD, Jayamohan S, He Y, Venkata PP, Jamwal D, Alejo S, Zou Y, Lai Z, Viswanadhapalli S, Vadlamudi RK, Kost E, Sareddy GR. KDM1A/LSD1 inhibition enhances chemotherapy response in ovarian cancer. Mol Carcinog 2024; 63:2026-2039. [PMID: 38990091 PMCID: PMC11421967 DOI: 10.1002/mc.23792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Ovarian cancer (OCa) is the deadliest of all gynecological cancers. The standard treatment for OCa is platinum-based chemotherapy, such as carboplatin or cisplatin in combination with paclitaxel. Most patients are initially responsive to these treatments; however, nearly 90% will develop recurrence and inevitably succumb to chemotherapy-resistant disease. Recent studies have revealed that the epigenetic modifier lysine-specific histone demethylase 1A (KDM1A/LSD1) is highly overexpressed in OCa. However, the role of KDM1A in chemoresistance and whether its inhibition enhances chemotherapy response in OCa remains uncertain. Analysis of TCGA datasets revealed that KDM1A expression is high in patients who poorly respond to chemotherapy. Western blot analysis show that treatment with chemotherapy drugs cisplatin, carboplatin, and paclitaxel increased KDM1A expression in OCa cells. KDM1A knockdown (KD) or treatment with KDM1A inhibitors NCD38 and SP2509 sensitized established and patient-derived OCa cells to chemotherapy drugs in reducing cell viability and clonogenic survival and inducing apoptosis. Moreover, knockdown of KDM1A sensitized carboplatin-resistant A2780-CP70 cells to carboplatin treatment and paclitaxel-resistant SKOV3-TR cells to paclitaxel. RNA-seq analysis revealed that a combination of KDM1A-KD and cisplatin treatment resulted in the downregulation of genes related to epithelial-mesenchymal transition (EMT). Interestingly, cisplatin treatment increased a subset of NF-κB pathway genes, and KDM1A-KD or KDM1A inhibition reversed this effect. Importantly, KDM1A-KD, in combination with cisplatin, significantly reduced tumor growth compared to a single treatment in an orthotopic intrabursal OCa xenograft model. Collectively, these findings suggest that combination of KDM1A inhibitors with chemotherapy could be a promising therapeutic approach for the treatment of OCa.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Yi He
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Prabhakar P Venkata
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Diksha Jamwal
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Edward Kost
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Szlachcikowska D, Tabęcka-Łonczyńska A, Holota S, Roman O, Shepeta Y, Lesyk R, Szychowski KA. Role of Ciminalum-4-thiazolidinone Hybrids in Molecular NF-κB Dependent Pathways. Int J Mol Sci 2024; 25:7329. [PMID: 39000436 PMCID: PMC11242080 DOI: 10.3390/ijms25137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
A range of hybrid molecules incorporating the ciminalum moiety in the thiazolidinone ring demonstrate significant anticancer and antimicrobial properties. Therefore, the aim of our study was to evaluate the properties and mechanism of action of two 4-thiazolidinone-based derivatives, i.e., 3-{5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}propanoic acid (Les-45) and 5-[2-chloro-3-(4-nitrophenyl)-2-propenylidene]-2-(3-hydroxyphenylamino)thiazol-4(5H)-one (Les-247). In our study, we analyzed the impact of Les-45 and Les-247 on metabolic activity, caspase-3 activity, and the expression of genes and proteins related to inflammatory and antioxidant defenses and cytoskeleton rearrangement in healthy human fibroblasts (BJ) and a human lung carcinoma cell line (A549). The cells were exposed to increasing concentrations (1 nM to 100 μM) of the studied compounds for 24 h and 48 h. A decrease in the metabolic activity in the BJ and A549 cell lines was induced by both compounds at a concentration range from 10 to 100 µM. Both compounds decreased the mRNA expression of NRF2 (nuclear factor erythroid 2-related factor 2) and β-actin in the BJ cells. Interestingly, a significant decrease in the level of NF-κB gene and protein expression was detected in the BJ cell line, suggesting a direct impact of the studied compounds on the inhibition of inflammation. However, more studies are needed due to the ability of Les-45 and Les-247 to interfere with the tubulin/actin cytoskeleton, i.e., a critical system existing in eukaryotic cells.
Collapse
Affiliation(s)
- Dominika Szlachcikowska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (D.S.); (R.L.); (K.A.S.)
| | - Anna Tabęcka-Łonczyńska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (D.S.); (R.L.); (K.A.S.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (O.R.)
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, Volya Avenue 13, 43025 Lutsk, Ukraine
| | - Olexandra Roman
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (O.R.)
| | - Yulia Shepeta
- Department of Pharmaceutical Chemistry, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsia, Ukraine;
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (D.S.); (R.L.); (K.A.S.)
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (O.R.)
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (D.S.); (R.L.); (K.A.S.)
| |
Collapse
|
6
|
Rahman MK, Umashankar B, Choucair H, Bourget K, Rawling T, Murray M. The inositol-requiring enzyme 1 (IRE1) endoplasmic reticulum stress pathway promotes MDA-MB-231 cell survival and renewal in response to the aryl-ureido fatty acid CTU. Int J Biochem Cell Biol 2024; 171:106571. [PMID: 38608921 DOI: 10.1016/j.biocel.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Current treatment options for triple-negative breast cancer (TNBC) are limited to toxic drug combinations of low efficacy. We recently identified an aryl-substituted fatty acid analogue, termed CTU, that effectively killed TNBC cells in vitro and in mouse xenograft models in vivo without producing toxicity. However, there was a residual cell population that survived treatment. The present study evaluated the mechanisms that underlie survival and renewal in CTU-treated MDA-MB-231 TNBC cells. RNA-seq profiling identified several pro-inflammatory signaling pathways that were activated in treated cells. Increased expression of cyclooxygenase-2 and the cytokines IL-6, IL-8 and GM-CSF was confirmed by real-time RT-PCR, ELISA and Western blot analysis. Increased self-renewal was confirmed using the non-adherent, in vitro colony-forming mammosphere assay. Neutralizing antibodies to IL-6, IL-8 and GM-CSF, as well as cyclooxygenase-2 inhibition suppressed the self-renewal of MDA-MB-231 cells post-CTU treatment. IPA network analysis identified major NF-κB and XBP1 gene networks that were activated by CTU; chemical inhibitors of these pathways and esiRNA knock-down decreased the production of pro-inflammatory mediators. NF-κB and XBP1 signaling was in turn activated by the endoplasmic reticulum (ER)-stress sensor inositol-requiring enzyme 1 (IRE1), which mediates the unfolded protein response. Co-treatment with an inhibitor of IRE1 kinase and RNase activities, decreased phospho-NF-κB and XBP1s expression and the production of pro-inflammatory mediators. Further, IRE1 inhibition also enhanced apoptotic cell death and prevented the activation of self-renewal by CTU. Taken together, the present findings indicate that the IRE1 ER-stress pathway is activated by the anti-cancer lipid analogue CTU, which then activates secondary self-renewal in TNBC cells.
Collapse
Affiliation(s)
- Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Kirsi Bourget
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Vitali E, Valente G, Panzardi A, Laffi A, Zerbi A, Uccella S, Mazziotti G, Lania A. Pancreatic neuroendocrine tumor progression and resistance to everolimus: the crucial role of NF-kB and STAT3 interplay. J Endocrinol Invest 2024; 47:1101-1117. [PMID: 37882947 DOI: 10.1007/s40618-023-02221-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE The finding of mTOR overactivation in patients affected by pancreatic neuroendocrine tumors (Pa-NETs) led to their treatment with the mTOR inhibitor everolimus. Unfortunately, the efficacy of everolimus is restricted by the occurrence of resistance. The mechanisms leading to Pa-NETs' progression and resistance are not well understood. Notably, chronic inflammation is implicated in NET development. NF-kB is involved in inflammation and drug resistance mechanisms through the activation of several mediators, including STAT3. In this respect, NF-κB and STAT3 interaction is implicated in the crosstalk between inflammatory and tumor cells. METHODS We investigated the expression of NF-kB in different Pa-NETs by RT-qPCR and immunohistochemistry. Then, we studied the role of NF-κB and STAT3 interplay in QGP-1 cells. Subsequently, we assessed the impact of NF-κB and STAT3 inhibitors in QGP-1 cell proliferation and spheroids growth. Finally, we evaluated the implication of the NF-kB pathway in everolimus-resistant Pa-NET cells. RESULTS We found that the increased NF-kB expression correlates with a higher grade in Pa-NETs. The activation of the STAT3 pathway induced by TNFα is mediated by NF-kB p65. NF-kB p65 and STAT3 inhibitors decrease QGP-1 viability, spheroids growth, and Pa-NETs cell proliferation. These effects are maintained in everolimus-resistant QGP-1R cells. Interestingly, we found that NF-kB, STAT3, IL-8, and SOCS3 are overexpressed in QGP-1R compared to QGP-1. CONCLUSION Since the NF-kB pathway is implicated in Pa-NETs' progression and resistance to everolimus, these data could explain the potential use of NF-kB as a novel therapeutic target in Pa-NET patients.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - G Valente
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Panzardi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Laffi
- Oncology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Surgery Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - S Uccella
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, ilan, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| |
Collapse
|
8
|
Wan W, Miao Y, Niu Y, Zhu K, Ma Y, Pan M, Ma B, Wei Q. Human umbilical cord mesenchymal stem cells conditioned medium exerts anti-tumor effects on KGN cells in a cell density-dependent manner through activation of the Hippo pathway. Stem Cell Res Ther 2023; 14:46. [PMID: 36941685 PMCID: PMC10029233 DOI: 10.1186/s13287-023-03273-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The conditioned medium from human umbilical cord mesenchymal stem cells (UCMSCs-CM) provides a new cell-free therapy for tumors due to its unique secretome. However, there are many contradictory reports about the effect of UCMSCs-CM on tumor cells. The loss of contact inhibition is a common characteristic of tumor cells. A relationship between the effect of UCMSCs-CM on tumor cells and contact inhibition in tumor cells is rarely concerned. Whether the effect of UCMSCs-CM on tumor cells is affected by cell density? Here, we explored the effect of UCMSCs-CM on granulosa tumor cell line (KGN) cells at low or high density. METHODS Growth curve and CCK8 assay were used to assess cell proliferation and viability. Scratch wound and matrigel invasion assay were implicated to detect cell motility of KGN cells. UCMSCs-CM effects on cell cycle, apoptosis and pathway-related proteins were investigated by flow cytometry, TUNEL assay, western blot and immunofluorescence analysis respectively. RESULTS In growth curve analysis, before KGN cells proliferated into confluence, UCMSCs-CM had no effect on cell proliferation. However, once the cells proliferate to contact each other, UCMSCs-CM significantly inhibited proliferation. Meanwhile, when KGN cells were implanted at high density, UCMSCs-CM could induce cell cycle arrest at G1 phase, inhibit cell migration, invasion and promote apoptosis. While it had no similar effect on KGN cells implanted at low density. In mechanism, the UCMSCs-CM treatment activated the Hippo pathway when KGN cells were implanted at high density. Consistently, the MST1/2 inhibitor, XMU-MP-1, inhibited the activation of the Hippo pathway induced by UCMSCs-CM treatment and accordingly declined the anti-tumor effect of UCMSCs-CM on KGN cells. CONCLUSIONS The effect of UCMSCs-CM on tumor cells is affected by cell density. UCMSCs-CM exerted anti-tumor effect on KGN cells by activating Hippo pathway to restore contact inhibition. Our results suggest that UCMSCs-CM is a promising therapeutic candidate for GCT treatment.
Collapse
Affiliation(s)
- Wenjing Wan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Yuyang Miao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Yuwei Niu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Kunyuan Zhu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Yingwan Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China.
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Pixelated Microfluidics for Drug Screening on Tumour Spheroids and Ex Vivo Microdissected Tumour Explants. Cancers (Basel) 2023; 15:cancers15041060. [PMID: 36831403 PMCID: PMC9954565 DOI: 10.3390/cancers15041060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Anticancer drugs have the lowest success rate of approval in drug development programs. Thus, preclinical assays that closely predict the clinical responses to drugs are of utmost importance in both clinical oncology and pharmaceutical research. 3D tumour models preserve the tumoral architecture and are cost- and time-efficient. However, the short-term longevity, limited throughput, and limitations of live imaging of these models have so far driven researchers towards less realistic tumour models such as monolayer cell cultures. Here, we present an open-space microfluidic drug screening platform that enables the formation, culture, and multiplexed delivery of several reagents to various 3D tumour models, namely cancer cell line spheroids and ex vivo primary tumour fragments. Our platform utilizes a microfluidic pixelated chemical display that creates isolated adjacent flow sub-units of reagents, which we refer to as fluidic 'pixels', over tumour models in a contact-free fashion. Up to nine different treatment conditions can be tested over 144 samples in a single experiment. We provide a proof-of-concept application by staining fixed and live tumour models with multiple cellular dyes. Furthermore, we demonstrate that the response of the tumour models to biological stimuli can be assessed using the platform. Upscaling the microfluidic platform to larger areas can lead to higher throughputs, and thus will have a significant impact on developing treatments for cancer.
Collapse
|
10
|
Holmberg R, Robinson M, Gilbert SF, Lujano-Olazaba O, Waters JA, Kogan E, Velasquez CLR, Stevenson D, Cruz LS, Alexander LJ, Lara J, Mu EM, Camillo JR, Bitler BG, Huxford T, House CD. TWEAK-Fn14-RelB Signaling Cascade Promotes Stem Cell-like Features that Contribute to Post-Chemotherapy Ovarian Cancer Relapse. Mol Cancer Res 2023; 21:170-186. [PMID: 36214671 PMCID: PMC9890141 DOI: 10.1158/1541-7786.mcr-22-0486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 02/06/2023]
Abstract
Disease recurrence in high-grade serous ovarian cancer may be due to cancer stem-like cells (CSC) that are resistant to chemotherapy and capable of reestablishing heterogeneous tumors. The alternative NF-κB signaling pathway is implicated in this process; however, the mechanism is unknown. Here we show that TNF-like weak inducer of apoptosis (TWEAK) and its receptor, Fn14, are strong inducers of alternative NF-κB signaling and are enriched in ovarian tumors following chemotherapy treatment. We further show that TWEAK enhances spheroid formation ability, asymmetric division capacity, and expression of SOX2 and epithelial-to-mesenchymal transition genes VIM and ZEB1 in ovarian cancer cells, phenotypes that are enhanced when TWEAK is combined with carboplatin. Moreover, TWEAK in combination with chemotherapy induces expression of the CSC marker CD117 in CD117- cells. Blocking the TWEAK-Fn14-RelB signaling cascade with a small-molecule inhibitor of Fn14 prolongs survival following carboplatin chemotherapy in a mouse model of ovarian cancer. These data provide new insights into ovarian cancer CSC biology and highlight a signaling axis that should be explored for therapeutic development. IMPLICATIONS This study identifies a unique mechanism for the induction of ovarian cancer stem cells that may serve as a novel therapeutic target for preventing relapse.
Collapse
Affiliation(s)
- Ryne Holmberg
- Department of Chemistry, San Diego State University, San Diego, California
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California
| | - Samuel F. Gilbert
- Department of Biology, San Diego State University, San Diego, California
| | | | - Jennifer A. Waters
- Department of Biology, San Diego State University, San Diego, California
| | - Emily Kogan
- Department of Biology, San Diego State University, San Diego, California
| | | | - Denay Stevenson
- Department of Chemistry, San Diego State University, San Diego, California
| | - Luisjesus S. Cruz
- Department of Biology, San Diego State University, San Diego, California
| | - Logan J. Alexander
- Department of Biology, San Diego State University, San Diego, California
| | - Jacqueline Lara
- Department of Biology, San Diego State University, San Diego, California
| | - Emily M. Mu
- Department of Biology, San Diego State University, San Diego, California
| | | | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado
| | - Tom Huxford
- Department of Chemistry, San Diego State University, San Diego, California
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, California.,Moores Cancer Center, University of California San Diego, La Jolla, California.,Corresponding Author: Carrie D. House, Biology, San Diego State University, 5500 Campanile Drive, Shiley Bioscience Center 2104, San Diego, CA 92182. Phone: 619-594-3053; E-mail:
| |
Collapse
|
11
|
Das R, Mehta DK, Dhanawat M. Medicinal Plants in Cancer Treatment: Contribution of Nuclear Factor-Kappa B (NF-kB) Inhibitors. Mini Rev Med Chem 2022; 22:1938-1962. [PMID: 35260052 DOI: 10.2174/1389557522666220307170126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Nuclear factor-kappa B (NF-κB) is one of the principal inducible proteins that is a predominant transcription factor known to control the gene expression in mammals and plays a pivotal role in regulating cell signalling in the body under certain physiological and pathological conditions. In cancer cells, such as colon, breast, pancreatic, ovarian, melanoma, and lymphoma, the NF-κB pathway has been reported to be active. In cellular proliferation, promoting angiogenesis, invasion, metastasis of tumour cells and blocking apoptosis, the constitutive activity of NF-κB signalling has been reported. Therefore, immense attention has been given to developing drugs targeting NF-κB signalling pathways to treat many types of tumours. They are a desirable therapeutic target for drugs, and many studies concentrated on recognizing compounds. They may be able to reverse or standstill the growth and spread of tumours that selectively interfere with this pathway. Recently, numerous substances derived from plants have been evaluated as possible inhibitors of the NF-κB pathway. These include various compounds, such as flavonoids, lignans, diterpenes, sesquiterpenes, polyphenols, etc. A study supported by folk medicine demonstrated that plant-derived compounds could suppress NF-κB signalling. Taking this into account, the present review revealed the anticancer potential of naturally occurring compounds which have been verified both by inhibiting the NF-κB signalling and suppressing growth and spread of cancer and highlighting their mechanism of NF-κB inhibition.
Collapse
Affiliation(s)
- Rina Das
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Meenakshi Dhanawat
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
12
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
13
|
Michalak M, Lach MS, Borska S, Nowakowski B, Umezawa K, Suchorska WM. DHMEQ enhances the cytotoxic effect of cisplatin and carboplatin in ovarian cancer cell lines. Am J Cancer Res 2021; 11:6024-6041. [PMID: 35018240 PMCID: PMC8727817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/15/2021] [Indexed: 06/14/2023] Open
Abstract
Ovarian cancer (OvCa) is one of the most lethal gynaecological malignancies. It is diagnosed mostly in advanced stages. Due to a lack of appropriate early detection markers and non-ambiguous symptoms, the five-year survival rate is significantly reduced. Despite a primary good response to platinum-based therapy, approximately 70% of patients will develop a chemoresistance phenotype. The activation of the NF-κB signalling pathway plays a crucial role in this process. It is responsible for increasing cell viability, cell cycle progression and induces growth and migration of neoplastic cells. A few independent studies have yet suggested a high correlation between activation of NF-κB and poor outcome in OvCa patients. Thus, developing inhibitors of the NF-κB pathway has become a new target of cancer therapies. One of the promising compounds is DHMEQ (dehydroxymethylepoxyquinomicin). Our preliminary studies indicated that DHMEQ combined with cisplatin (CDDP) or carboplatin (CBP) enhanced apoptosis in the A2780 cell line and caused cell cycle arrest in the G2/M phase in the SKOV3 cell line, but not in the normal cell line MRC-5 pd19. Moreover, the combination of those agents caused decreased motility of cells, especially with the CBP. However, the invasion of cells was not changed significantly. The analysis of drug interactions using CompuSyn software has revealed that observed effect of the doses used in the study was antagonistic, but the DRI guidelines and in vitro observation of biological response indicate that a combination of DHMEQ with CDDP or CBP could be a novel proposal in ovarian cancer treatment.
Collapse
Affiliation(s)
- Marcin Michalak
- Surgical, Oncological and Endoscopic Gynaecology Department, Greater Poland Cancer CenterPoznan 61-866, Poland
| | - Michał S Lach
- Radiobiology Lab, Greater Poland Cancer CentrePoznan 61-866, Poland
- Department of Electroradiology, Poznan University of Medical SciencesPoznan 61-701, Poland
- Postgraduate School of Molecular Medicine, Warsaw University of Medical SciencesWarsaw 02-091, Poland
| | - Sylwia Borska
- Department of Histology and Embryology, Wroclaw Medical UniversityWroclaw 50-137, Poland
| | - Błażej Nowakowski
- Surgical, Oncological and Endoscopic Gynaecology Department, Greater Poland Cancer CenterPoznan 61-866, Poland
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical UniversityNagakute 480-1103, Japan
| | - Wiktoria M Suchorska
- Radiobiology Lab, Greater Poland Cancer CentrePoznan 61-866, Poland
- Department of Electroradiology, Poznan University of Medical SciencesPoznan 61-701, Poland
| |
Collapse
|
14
|
Shu Y, Zhang H, Li J, Shan Y. LINC00494 Promotes Ovarian Cancer Development and Progression by Modulating NFκB1 and FBXO32. Front Oncol 2021; 10:541410. [PMID: 33585183 PMCID: PMC7877250 DOI: 10.3389/fonc.2020.541410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ovarian cancer represents one of the most frequent gynecological cancers and is significant cause of death for women around the world. Long non-coding RNAs (lncRNAs) are recognized as critical governors of gene expression during carcinogenesis, but their effects on the occurrence and development of ovarian cancer require further investigation. In this report, we characterized LINC00494 as a novel oncogenic lncRNA in ovarian cancer. METHODS Bioinformatics analysis predicted potential interactions among LINC00494, NFκB1, and FBXO32 in ovarian cancer, which were tested by dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assay. Cancer cells were transfected with relevant treated plasmids, followed by scratch and Transwell assays. The treated cells were injected into nude mice to establish a xenograft model for testing effects of LINC00494 and its target gene in vivo. RESULTS LINC00494 and NFκB1 were highly expressed whereas FBXO32 had low expression in ovarian cancer cells and tissues. LINC00494 was found to bind NFκB1 and increase its activity, while NFκB1 was enriched at the FBXO32 promoter region, where it acted to reduce FBXO32 transcription. Overexpression of LINC00494 elevated NFκB1 expression and enhanced cell migration, invasion and tumorigenesis, but additional overexpression of FBXO32 interfered with the tumorgenicity of ovarian cancer cells in vitro and in vivo. CONCLUSION Our work demonstrated that LINC00494 promoted ovarian cancer progression by modulating FBXO32 via binding with the transcription factor NFκB1. These results provided new insight into the mechanism of ovarian cancer pathogenesis and suggested new therapeutic targets.
Collapse
Affiliation(s)
- Yang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - He Zhang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Jinqiu Li
- Department of Otolaryngology—Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40:6395-6405. [PMID: 34645978 PMCID: PMC8602037 DOI: 10.1038/s41388-021-02055-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Platinum-based chemotherapy, including cisplatin, carboplatin, and oxaliplatin, is prescribed to 10-20% of all cancer patients. Unfortunately, platinum resistance develops in a significant number of patients and is a determinant of clinical outcome. Extensive research has been conducted to understand and overcome platinum resistance, and mechanisms of resistance can be categorized into several broad biological processes, including (1) regulation of drug entry, exit, accumulation, sequestration, and detoxification, (2) enhanced repair and tolerance of platinum-induced DNA damage, (3) alterations in cell survival pathways, (4) alterations in pleiotropic processes and pathways, and (5) changes in the tumor microenvironment. As a resource to the cancer research community, we provide a comprehensive overview accompanied by a manually curated database of the >900 genes/proteins that have been associated with platinum resistance over the last 30 years of literature. The database is annotated with possible pathways through which the curated genes are related to platinum resistance, types of evidence, and hyperlinks to literature sources. The searchable, downloadable database is available online at http://ptrc-ddr.cptac-data-view.org .
Collapse
|
16
|
Silva RCDO, da Silva Júnior AHP, Gurgel APAD, Barros Junior MR, Santos DL, de Lima RDCP, Batista MVA, Pena LJ, Chagas BS, Freitas AC. Structural and functional impacts of E5 genetic variants of human papillomavirus type 31. Virus Res 2020; 290:198143. [PMID: 32871208 DOI: 10.1016/j.virusres.2020.198143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
Persistent infections caused by high-risk human papillomavirus (HR-HPV) are important, for the development of cervical lesions, but environmental and genetic factors are also related in the process of carcinogenesis. Among the genetic factors, the genetic variants of HR-HPV appear to be related to the risk of persistent infections. Therefore, the present study investigates variants of HPV31 E5 oncogene in cervical scraping samples from Brazilian women to assess their functional and structural effects, in order to identify possible repercussions of these variants on the infectious and carcinogenic process. Our results detected nucleotide changes previously described in the HPV31 E5 oncogene, which may play a critical role in the development of cancer due to its ability to promote cell proliferation and signal transmission. In our study, the interaction percentage of the 31E5 sequence generated by the Immune Epitope Server database and the Analysis Resource (IEDB) allowed us to include possible immunogenic epitopes with the MHC-I and MHC-II molecules, which may represent a possible relationship between protein suppression of the immune system. In the structural analysis of the HPV31 E5 oncoprotein, the N5D, I48 V, P56A, F80I and V64I polymorphisms can be found inserted within transmembrane regions. The P56A mutation has been predicted to be highly stabilizing and, therefore, can cause a change in protein function. Regarding the interaction of the E5 protein from HPV31 with the signaling of NF-kB pathway, we observed that in all variants of the E5 gene from HPV-31, the activity of the NF-kB pathway was increased compared to the prototype. Our study contributes to a more refined design of studies with the E5 gene from HPV31 and provides important data for a better understanding of how variants can be distinguished under their clinical consequences.
Collapse
Affiliation(s)
- Ruany C de O Silva
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Ana P A D Gurgel
- Department of Engineering and Environment, Federal University of Paraiba, Paraiba, Brazil
| | - Marconi R Barros Junior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Daffany L Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Rita de C P de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Marcus V A Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Federal University of Sergipe, Sergipe, Brazil
| | - Lindomar J Pena
- Department of Virology and Experimental Therapy, Research Center Aggeu Magalhães, Oswaldo Cruz Foundation, Pernambuco, Brazil
| | - Bárbara S Chagas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Antonio C Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil.
| |
Collapse
|
17
|
Hufnagel DH, Cozzi GD, Crispens MA, Beeghly-Fadiel A. Platelets, Thrombocytosis, and Ovarian Cancer Prognosis: Surveying the Landscape of the Literature. Int J Mol Sci 2020; 21:ijms21218169. [PMID: 33142915 PMCID: PMC7663176 DOI: 10.3390/ijms21218169] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are critical components of a number of physiologic processes, including tissue remodeling after injury, wound healing, and maintenance of vascular integrity. Increasing evidence suggests that platelets may also play important roles in cancer. In ovarian cancer, thrombocytosis, both at the time of initial diagnosis and at recurrence, has been associated with poorer prognosis. This review describes current evidence for associations between thrombocytosis and ovarian cancer prognosis and discusses the clinical relevance of platelet count thresholds and timing of assessment. In addition, we discuss several mechanisms from in vitro, in vivo, and clinical studies that may underlie these associations and recommend potential approaches for novel therapeutic targets for this lethal disease.
Collapse
Affiliation(s)
- Demetra H. Hufnagel
- Vanderbilt University School of Medicine, 2209 Garland Avenue, Nashville, TN 37240, USA; (D.H.H.); (G.D.C.)
| | - Gabriella D. Cozzi
- Vanderbilt University School of Medicine, 2209 Garland Avenue, Nashville, TN 37240, USA; (D.H.H.); (G.D.C.)
| | - Marta A. Crispens
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA;
- Vanderbilt-Ingram Cancer Center, 1301 Medical Center Drive, Nashville, TN 37232, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, 1301 Medical Center Drive, Nashville, TN 37232, USA
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA
- Correspondence:
| |
Collapse
|
18
|
van Lieshout L, van de Stolpe A, van der Ploeg P, Bowtell D, de Hullu J, Piek J. Signal Transduction Pathway Activity in High-Grade, Serous Ovarian Carcinoma Reveals a More Favorable Prognosis in Tumors with Low PI3K and High NF-κB Pathway Activity: A Novel Approach to a Long-Standing Enigma. Cancers (Basel) 2020; 12:cancers12092660. [PMID: 32961868 PMCID: PMC7564278 DOI: 10.3390/cancers12092660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary All cells have a complex internal network of ‘communication chains’ called signal transduction pathways (STPs). Through interaction of different proteins in STPs, they are partly responsible for the behavior of a cell. In our study, we investigated the activity of eight STPs in datasets with genetic information on 140 cancer samples. These samples were derived from the most common subtype of ovarian cancer: high grade serous ovarian carcinoma (HGSC). With a novel method, we determined which STPs were active and discerned two groups based on activity of the phosphoinositide 3-kinase (PI3K) and nuclear factor-kappa B (NF-kB) pathways. The group with low PI3K and high NF-kB activity had a better progression free and overall survival compared to the group with high PI3K and low NF-kB activity. This difference may indicate that the ‘better prognosis group’ had a more active immune system or that the cells divided at a slower rate. Abstract We investigated signal transduction pathway (STP) activity in high-grade serous ovarian carcinoma (HGSC) in relation to progression-free survival (PFS) and overall survival (OS). We made use of signal transduction pathway activity analysis (STA analysis), a novel method to quantify functional STP activity. Activity of the following pathways was measured: androgen receptor (AR), estrogen receptor (ER), phosphoinositide 3-kinase (PI3K), Hedgehog (Hh), Notch, nuclear factor-kappa B (NF-κB), transforming growth factor beta (TGF-β), and Wnt. We selected HGSC samples from publicly available datasets of ovarian cancer tissue, and used repeated k-means clustering to identify pathway activity clusters. PFS and OS of the clusters were analyzed. We used a subset of publicly available dataset GSE9891 (n = 140), where repeated k-means clustering based on PI3K and NF-κB pathway activity in HGSC samples resulted in two stable clusters. The cluster with low PI3K and high NF-κB pathway activity (n = 72) had a more favorable prognosis for both PFS (p = 0.004) and OS (p = 0.001) compared to the high-PI3K and low-NF-κB pathway activity cluster (n = 68). The low PI3K and high NF-κB pathway activity of the favorable prognosis cluster may indicate a more active immune response, while the high PI3K and low NF-κB pathway activity of the unfavorable prognosis cluster may indicate high cell division.
Collapse
Affiliation(s)
- Laura van Lieshout
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, 5602ZA Eindhoven, The Netherlands; (P.v.d.P.); (J.P.)
- Radboud Institute for Health Sciences, Department of Obstetrics and Gynecology, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands;
- Correspondence: ; Tel.: +31-6-2211-9850
| | - Anja van de Stolpe
- Precision Diagnostics, Philips Research, 5656AE Eindhoven, The Netherlands;
| | - Phyllis van der Ploeg
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, 5602ZA Eindhoven, The Netherlands; (P.v.d.P.); (J.P.)
| | - David Bowtell
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne 3000, Australia;
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Joanne de Hullu
- Radboud Institute for Health Sciences, Department of Obstetrics and Gynecology, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands;
| | - Jurgen Piek
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, 5602ZA Eindhoven, The Netherlands; (P.v.d.P.); (J.P.)
| |
Collapse
|
19
|
Hufnagel DH, Wilson AJ, Saxon J, Blackwell TS, Watkins J, Khabele D, Crispens MA, Yull FE, Beeghly-Fadiel A. Expression of p52, a non-canonical NF-kappaB transcription factor, is associated with poor ovarian cancer prognosis. Biomark Res 2020; 8:45. [PMID: 32974032 PMCID: PMC7493985 DOI: 10.1186/s40364-020-00227-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The canonical and non-canonical nuclear factor-kappaB (NF-κB) signaling pathways have key roles in cancer, but studies have previously evaluated only the association of canonical transcription factors and ovarian cancer survival. Although a number of in vitro and in vivo studies have demonstrated mechanisms by which non-canonical NF-κB signaling potentially contributes to ovarian cancer progression, a prognostic association has yet to be shown in the clinical context. METHODS We assayed p65 and p52 (major components of the canonical and non-canonical NF-κB pathways) by immunohistochemistry in epithelial ovarian tumor samples; nuclear and cytoplasmic staining were semi-quantified by H-scores and dichotomized at median values. Associations of p65 and p52 with progression-free survival (PFS) and overall survival (OS) were quantified by Hazard Ratios (HR) from proportional-hazards regression. RESULTS Among 196 cases, median p52 and p65 H-scores were higher in high-grade serous cancers. Multivariable regression models indicated that higher p52 was associated with higher hazards of disease progression (cytoplasmic HR: 1.54; nuclear HR: 1.67) and death (cytoplasmic HR: 1.53; nuclear HR: 1.49), while higher nuclear p65 was associated with only a higher hazard of disease progression (HR: 1.40) in unadjusted models. When cytoplasmic and nuclear staining were combined, p52 remained significantly associated with increased hazards of disease progression (HR: 1.91, p = 0.004) and death (HR: 1.70, p = 0.021), even after adjustment for p65 and in analyses among only high-grade serous tumors. CONCLUSIONS This is the first study to demonstrate that p52, a major component of non-canonical NF-κB signaling, may be an independent prognostic factor for epithelial ovarian cancer, particularly high-grade serous ovarian cancer. Approaches to inhibit non-canonical NF-κB signaling should be explored as novel ovarian cancer therapies are needed.
Collapse
Affiliation(s)
| | - Andrew J. Wilson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
| | - Jamie Saxon
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Timothy S. Blackwell
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Jaclyn Watkins
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63130 USA
| | - Marta A. Crispens
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
| | - Fiona E. Yull
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| |
Collapse
|
20
|
Serum deprivation initiates adaptation and survival to oxidative stress in prostate cancer cells. Sci Rep 2020; 10:12505. [PMID: 32719369 PMCID: PMC7385110 DOI: 10.1038/s41598-020-68668-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Inadequate nutrient intake leads to oxidative stress disrupting homeostasis, activating signaling, and altering metabolism. Oxidative stress serves as a hallmark in developing prostate lesions, and an aggressive cancer phenotype activating mechanisms allowing cancer cells to adapt and survive. It is unclear how adaptation and survival are facilitated; however, literature across several organisms demonstrates that a reversible cellular growth arrest and the transcription factor, nuclear factor-kappaB (NF-κB), contribute to cancer cell survival and therapeutic resistance under oxidative stress. We examined adaptability and survival to oxidative stress following nutrient deprivation in three prostate cancer models displaying varying degrees of tumorigenicity. We observed that reducing serum (starved) induced reactive oxygen species which provided an early oxidative stress environment and allowed cells to confer adaptability to increased oxidative stress (H2O2). Measurement of cell viability demonstrated a low death profile in stressed cells (starved + H2O2), while cell proliferation was stagnant. Quantitative measurement of apoptosis showed no significant cell death in stressed cells suggesting an adaptive mechanism to tolerate oxidative stress. Stressed cells also presented a quiescent phenotype, correlating with NF-κB nuclear translocation, suggesting a mechanism of tolerance. Our data suggests that nutrient deprivation primes prostate cancer cells for adaptability to oxidative stress and/or a general survival mechanism to anti-tumorigenic agents.
Collapse
|
21
|
Lam T, Aguirre‐Ghiso JA, Geller MA, Aksan A, Azarin SM. Immobilization rapidly selects for chemoresistant ovarian cancer cells with enhanced ability to enter dormancy. Biotechnol Bioeng 2020; 117:3066-3080. [DOI: 10.1002/bit.27479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Tiffany Lam
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| | - Julio A. Aguirre‐Ghiso
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Precision Immunology Institute Icahn School of Medicine at Mount Sinai New York New York
| | - Melissa A. Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology University of Minnesota Minneapolis Minnesota
| | - Alptekin Aksan
- Department of Mechanical Engineering University of Minnesota Minneapolis Minnesota
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| |
Collapse
|
22
|
Labbozzetta M, Notarbartolo M, Poma P. Can NF-κB Be Considered a Valid Drug Target in Neoplastic Diseases? Our Point of View. Int J Mol Sci 2020; 21:ijms21093070. [PMID: 32349210 PMCID: PMC7246796 DOI: 10.3390/ijms21093070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR), of the innate and acquired types, is one of major problems in treating tumor diseases with a good chance of success. In this review, we examine the key role of nuclear factor-kappa B (NF-κB) to induce MDR in three tumor models characterized precisely by innate or acquired MDR, in particular triple negative breast cancer (TNBC), hepatocellular carcinoma (HCC), and acute myeloid leukemia (AML). We also present different pharmacological approaches that our group have employed to reduce the expression/activation of this transcriptional factor and thus to restore chemo-sensitivity. Finally, we examine the latest scientific evidence found by other groups, the most significant clinical trials regarding NF-κB, and new perspectives on the possibility to consider this transcriptional factor a valid drug target in neoplastic diseases.
Collapse
|
23
|
Khaleel EF, Badi RM, Satti HH, Mostafa DG. Exendin-4 exhibits a tumour suppressor effect in SKOVR-3 and OVACR-3 ovarian cancer cells lines by the activation of SIRT1 and inhibition of NF-κB. Clin Exp Pharmacol Physiol 2020; 47:1092-1102. [PMID: 32072679 DOI: 10.1111/1440-1681.13288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
Abstract
This study investigated if EX-527 has an anti-tumour effect in SKOV-3 and OVCAR-3 ovarian cancer (OC) cell lines and if this effect involves the SIRT1/NF-κB axis. Cells were cultured in the presence or absence of EX-527, a selective SIRT-1 inhibitor. Exendin-4 significantly induced cell death in both cell lines and inhibited cell migration and invasion. Also, it decreased protein levels of Bcl-2, MMP-9, and ICAM-1 and increased those of Bax, cyclin D1 and cleaved caspase-3. Mechanistically, Exendin-4 increased the activity and nuclear accumulation of SIRT1 and decreased nuclear levels of NF-κB p65; acetylated levels of NF-κB p65, and cytoplasmic levels of p-IKKα and p-IκBα. EX-527 partially ameliorated the effect of Exendin-4 on cell death, migration, and invasion, as well as on the expression of Bcl-2, MMP-9, Bax, cleaved caspase-3 and ICAM-1. In addition, EX-527 did not affect the levels of nuclear p65 and p-p65 (Ser536); p-IκBα (Ser32) and p-IKKαβ. In conclusion, Exendin-4 can suppress OC by inhibiting NF-kB through SIRT1 dependent and independent mechanisms.
Collapse
Affiliation(s)
- Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Cairo University, Cairo, Egypt
| | - Rehab M Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Department of Physiology, University of Khartoum, Khartoum, Sudan
| | - Huda H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Department of Pathology, University of Khartoum, Khartoum, Sudan
| | - Dalia G Mostafa
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| |
Collapse
|
24
|
Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer 2020; 1873:188357. [PMID: 32147543 DOI: 10.1016/j.bbcan.2020.188357] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is a cysteine - aspartate specific protease that classically triggers the extrinsic apoptotic pathway, in response to the activation of cell surface Death Receptors (DRs) like FAS, TRAIL-R and TNF-R. Besides it's roles in triggering death receptor-mediated apoptosis, Caspase-8 has also been implicated in the onsets of anoikis, autophagy and pyroptosis. Furthermore, Caspase-8 also plays a crucial pro-survival function by inhibiting an alternative form of programmed cell death called necroptosis. Low expression levels of pro-Caspase-8 is therefore associated with the malignant transformation of cancers. However, the long-held notion that pro-Caspase-8 expression/activity is generally lost in most cancers, thereby contributing to apoptotic escape and enhanced resistance to anti-cancer therapeutics, has been found to be true for only a minority of cancers types. In the majority of cases, pro-Caspase-8 expression is maintained and sometimes elevated, while it's apoptotic activity is regulated through different mechanisms. This supports the notion that the non-apoptotic functions of Caspase-8 offer growth advantage in these cancer types and have, therefore, gained renewed interest in the recent years. In light of these reasons, a number of therapeutic approaches have been employed, with the intent of targeting pro-Caspase-8 in cancer cells. In this review, we would attempt to discuss - the classic roles of Caspase-8 in initiating apoptosis; it's non-apoptotic functions; it's the clinical significance in different cancer types; and the therapeutic applications exploiting the ability of pro-Caspase-8 to regulate various cellular functions.
Collapse
|
25
|
Toll-Like Receptors Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:81-97. [PMID: 32030686 DOI: 10.1007/978-3-030-35582-1_5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The involvement of inflammation in cancer progression is well-established. The immune system can play both tumor-promoting and -suppressive roles, and efforts to harness the immune system to help fight tumor growth are at the forefront of research. Of particular importance is the inflammatory profile at the site of the tumor, with respect to both the leukocyte population numbers, the phenotype of these cells, as well as the contribution of the tumor cells themselves. In this regard, the pro-inflammatory effects of pattern recognition receptor expression and activation in the tumor microenvironment have emerged as a relevant issue both for therapy and to understand tumor development.Pattern recognition receptors (PRRs) were originally recognized as components of immune cells, particularly innate immune cells, as detectors of pathogens. PRR signaling in immune cells activates them, inducing robust antimicrobial responses. In particular, toll-like receptors (TLRs) constitute a family of membrane-bound PRRs which can recognize pathogen-associated molecular patterns (PAMPs) carried by bacteria, virus, and fungi. In addition, PRRs can recognize products generated by stressed cells or damaged tissues, namely damage-associated molecular patterns or DAMPS. Taking into account the role of the immune system in fighting tumors together with the presence of immune cells in the microenvironment of different types of tumors, strategies to activate immune cells via PRR ligands have been envisioned as an anticancer therapeutic approach.In the last decades, it has been determined that PRRs are present and functional on nonimmune cells and that their activation in these cells contributes to the inflammation in the tumor microenvironment. Both tumor-promoting and antitumor effects have been observed when tumor cell PRRs are activated. This argues against nonspecific activation of PRR ligands in the tumor microenvironment as a therapeutic approach. Therefore, the use of PRR ligands for anticancer therapy might benefit from strategies that specifically deliver these ligands to immune cells, thus avoiding tumor cells in some settings. This review focuses on these aspects of TLR signaling in the tumor microenvironment.
Collapse
|
26
|
Ghoneum A, Abdulfattah AY, Said N. Targeting the PI3K/AKT/mTOR/NFκB Axis in Ovarian Cancer. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:68-73. [PMID: 32395722 PMCID: PMC7213295 DOI: 10.33696/immunology.1.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ovarian cancer stands as the most lethal gynecologic malignancy and remains the fifth most common gynecologic cancer. Poor prognosis and low five-year survival rate are attributed to nonspecific symptoms at early phases along with a lack of effective treatment at advanced stages. It is thus paramount, that ovarian carcinoma be viewed through several lenses in order to gain a thorough comprehension of its molecular pathogenesis, epidemiology, histological subtypes, hereditary factors, diagnostic approaches, and methods of treatment. Above all, it is crucial to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This short communication seeks to underscore several important aspects of the PI3K/AKT/mTOR/NFκB pathway in the context of ovarian cancer and discuss recent advances in targeting this pathway.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Ammar Yasser Abdulfattah
- Department of Cancer Biology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
- Department of Pathology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
- Department of Urology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
- Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| |
Collapse
|
27
|
Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of the NF-κB signaling pathway in the pathogenesis of colorectal cancer. Gene 2019; 726:144132. [PMID: 31669643 DOI: 10.1016/j.gene.2019.144132] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The NF-κB signaling pathway is a key regulator of CRC cell proliferation, apoptosis, angiogenesis, inflammation, metastasis, and drug resistance. Over-activation of the NF-κB pathway is a feature of colorectal cancer (CRC). While new combinatorial treatments have improved overall patient outcome; quality of life, cost of care, and patient survival rate have seen little improvement. Suppression of the NF-κB signaling pathway using biological or specific pharmacological inhibitors is a potential therapeutic approach in the treatment of colon cancer. This review summarizes the regulatory role of NF-κB signaling pathway in the pathogenesis of CRC for a better understanding and hence a better management of the disease.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Abakumova T, Antoneeva I, Gening S, Dolgova D, Gening T. The role of circulating neutrophils in the regulation of neoangiogenesis in ovarian cancer. Ann Oncol 2019. [DOI: 10.1093/annonc/mdz447.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
El-Kott AF, Shati AA, Ali Al-Kahtani M, Alharbi SA. The apoptotic effect of resveratrol in ovarian cancer cells is associated with downregulation of galectin-3 and stimulating miR-424-3p transcription. J Food Biochem 2019; 43:e13072. [PMID: 31603261 DOI: 10.1111/jfbc.13072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 01/21/2023]
Abstract
This study investigated if the well-reported anti-tumor effects of resveratrol (RES) is mediated by modulation levels of galectin-3 (GAL-3), an anti-apoptotic lectin that is highly overexpressed in ovarian cancer cells. SKOV3 and OVCAR-3 OC cells were untreated or incubated with DMOS or increasing concentrations of RES (25, 50, 100 μM) for 72 hr. RES, in a dose-dependent manner and in both cell lines, induced cell death and inhibited cell migration and invasion It also downregulated Bcl-2 levels, increased cleaved caspase-3, and GAL-3 protein (but not mRNA) levels, suggesting increased breakdown. These effects were associated with reduced levels of p-NF-κB P65, p-IKKα/β, and p-Akt, major targets of Gal-3. Further investigation showed that RES enhanced levels of miR-424-3p which is able to degrade GAL-3. Conclusion: Findings of this study suggest that RES induced apoptosis in cancerous cells is associated with increased levels of miR-424-3p and reduced levels of GAL-3. PRACTICAL APPLICATIONS: This study highlights a possible mechanism by which RES could enhance cell death in OC cells and enhances their sensitivity to cisplatin. RES apoptotic effect and enhancement of OC cells to chemotherapy were associated with decreased abundance of GAL-3, a common cell survival molecule that promotes tumorigenesis and increased transcription of miR-424-3p that has the ability to degrade cellular GAL-3. These findings add a possible new mechanism by which RES acts and opens a window for further research to understand its mechanism of action.
Collapse
Affiliation(s)
- Attalla Farag El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Samah A Alharbi
- Department of Physiology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
30
|
Kumar S, Oien DB, Khurana A, Cliby W, Hartmann L, Chien J, Shridhar V. Coiled-Coil and C2 Domain-Containing Protein 1A (CC2D1A) Promotes Chemotherapy Resistance in Ovarian Cancer. Front Oncol 2019; 9:986. [PMID: 31632917 PMCID: PMC6779793 DOI: 10.3389/fonc.2019.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Recurrence within 6 months of the last round of chemotherapy is clinically defined as platinum-resistant ovarian cancer. Gene expression associated with early recurrence may provide insights into platinum resistant recurrence. Prior studies identified a 14-gene model that accurately predicted early or late recurrence in 86% of patients. One of the genes identified was CC2D1A (encoding coiled-coil and C2 domain containing 1A), which showed higher expression in tumors from patients with early recurrence. Here, we show that CC2D1A protein expression was higher in cisplatin-resistant ovarian cancer cell lines compared to cisplatin-sensitive cell lines. In addition, immunohistochemical analysis of patient tumors on a tissue microarray (n = 146) showed that high levels of CC2D1A were associated with a significantly worse overall and progression-free survival (p = 0.0002 and p = 0.006, respectively). To understand the contribution of CC2D1A in chemoresistance, we generated shRNA-mediated knockdown of CC2D1A in SKOV3ip and PEO4 cell lines. Cell death and clonogenic assays of these isogenic clonal lines clearly showed that downregulation of CC2D1A resulted in increased sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Moreover, nude mice bearing SKOV3ip xenografts with stably downregulated CC2D1A were more sensitive to chemotherapy as evidenced by a significantly longer survival time compared to xenografts derived from cells stably transduced with non-targeting shRNA. These results suggest CC2D1A promotes chemotherapy resistance in ovarian cancer.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ashwani Khurana
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - William Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Lynn Hartmann
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
31
|
Harrington BS, Annunziata CM. NF-κB Signaling in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081182. [PMID: 31443240 PMCID: PMC6721592 DOI: 10.3390/cancers11081182] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
The NF-κB signaling pathway is a master and commander in ovarian cancer (OC) that promotes chemoresistance, cancer stem cell maintenance, metastasis and immune evasion. Many signaling pathways are dysregulated in OC and can activate NF-κB signaling through canonical or non-canonical pathways which have both overlapping and distinct roles in tumor progression. The activation of canonical NF-κB signaling has been well established for anti-apoptotic and immunomodulatory functions in response to the tumor microenvironment and the non-canonical pathway in cancer stem cell maintenance and tumor re-initiation. NF-κB activity in OC cells helps to create an immune-evasive environment and to attract infiltrating immune cells with tumor-promoting phenotypes, which in turn, drive constitutive NF-κB activation in OC cells to promote cell survival and metastasis. For these reasons, NF-κB is an attractive target in OC, but current strategies are limited and broad inhibition of this major signaling pathway in normal physiological and immunological functions may produce unwanted side effects. There are some promising pre-clinical outcomes from developing research to target and inhibit NF-κB only in the tumor-reinitiating cancer cell population of OC and concurrently activate canonical NF-κB signaling in immune cells to promote anti-tumor immunity.
Collapse
|
32
|
Acylated Ghrelin Renders Chemosensitive Ovarian Cancer Cells Resistant to Cisplatin Chemotherapy via Activation of the PI3K/Akt/mTOR Survival Pathway. Anal Cell Pathol (Amst) 2019; 2019:9627810. [PMID: 31360627 PMCID: PMC6644235 DOI: 10.1155/2019/9627810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated the effect of acylated synthetic ghrelin (AG) on the survival and proliferation of human chemosensitive ovarian cancer cells (A2780) and explored some mechanisms of action with a focus on the p53 apoptotic pathway and PI3K/Akt and NF-κB survival pathways. Human A2780 ovarian cancer cells were cultured with or without AG treatment in the presence or absence of cisplatin. In some cases, cisplatin+AG-treated cells were pre-incubated either with [D-Lys3]-GHRP-6, a ghrelin receptor antagonist, or with LY294002, a PI3K inhibitor. mRNA of ghrelin receptors(GHS-R1a and GHS-R1b), as well as, protein levels of GHS-R1a, were expressed abundantly in A2780 cells. AG treatment did not affect the mRNA and protein levels of GHS-R1a and GHS-R1b in both control and Cis-treated cells. However, while AG treatment had no effect on control cell viability, it significantly increased cell viability and proliferation and inhibited cell death in Cis-treated cells. In both control and Cis-treated cells, AG treatment significantly increased PI3K/Akt/mTOR signaling and enhanced the nuclear accumulation of NF-κB. Concomitantly, in both control and Cis-treated cells, AG significantly lowered the protein levels of p53, p-p53 (Ser16), PUMA, cytochrome C, and cleaved caspase-3. Interestingly, pre-incubating the cells with either [D-Lys3]-GHRP-6 or LY294002 completely abolished the above-mentioned effect of AG in both control and Cis-treated cells. In conclusion, the findings of this study show that AG promotes cell survival of the OC cells and renders them resistat to Cis therapy, an effect that is mediated by the activation of PI3K/Akt/mTOR and activation of NF-κB, and requires GHS-R1a.
Collapse
|
33
|
PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 2019; 11:cancers11070949. [PMID: 31284467 PMCID: PMC6679095 DOI: 10.3390/cancers11070949] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States, with an estimated 22,530 new cases and 13,980 deaths in 2019. Recent studies have indicated that the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), as well as the nuclear factor-κ light chain enhancer of activated B cells (NFκB) pathways are highly mutated and/or hyper-activated in a majority of ovarian cancer patients, and are associated with advanced grade and stage disease and poor prognosis. In this review, we will investigate PI3K/AKT/mTOR and their interconnection with NFκB pathway in ovarian cancer cells.
Collapse
|
34
|
Effects of Dual Peroxisome Proliferator-Activated Receptors α and γ Activation in Two Rat Models of Neuropathic Pain. PPAR Res 2019; 2019:2630232. [PMID: 31139213 PMCID: PMC6500665 DOI: 10.1155/2019/2630232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain is a growing healthcare problem causing a global burden. Currently used analgesics such as opioids are associated with adverse effects; urging the need for safer alternatives. Here we aimed to investigate the potential analgesic effects of tesaglitazar; dual peroxisome proliferator-activated receptors α and γ (PPARα and γ) agonist in rat models of neuropathic pain. This study also aimed to investigate the modulation of the transient receptor potential vanilloid 1 (TRPV1) receptor activity by tesaglitazar which could provide a potential mechanism that underlie tesaglitazar antinociceptive effects. Von Frey filaments were used to determine the paw withdrawal threshold (PWT) in adult male Sprague Dawley rats (180-250g) following i.p. injection of streptozotocin (STZ) or cisplatin, which were used as models of neuropathic pain. Antinociceptive effects of tesaglitazar were determined 6 hours after drug administration. Cobalt influx assays in cultured dorsal root ganglia (DRG) neurons were used to study the effects of tesaglitazar preincubation on capsaicin-evoked cobalt influx. Both cisplatin and STZ produced a significant decrease in PWT. The higher dose of tesaglitazar (20μg/kg) significantly restored PWT in both neuropathic pain models (P<0.05). 10μM capsaicin produced a robust cobalt response in DRG neurons. Preincubation of DRG neurones with tesaglitazar 6 hours prior to stimulation with capsaicin significantly reduce capsaicin-evoked cobalt responses in a PPARα and PPARγ dependent fashion (P<0.05). In conclusion, tesaglitazar produced significant analgesic effects in STZ and cisplatin-induced neuropathy, possibly by modulating TRPV1 receptor activity. This may be of potential benefit in clinical practice dealing with peripheral neuropathy.
Collapse
|
35
|
Li S, Lv M, Qiu S, Meng J, Liu W, Zuo J, Yang L. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin. J Cell Mol Med 2019; 23:4338-4348. [PMID: 30983127 PMCID: PMC6533498 DOI: 10.1111/jcmm.14325] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
Previous studies show that mortalin, a HSP70 family member, contributes to the development and progression of ovarian cancer. However, details of the transcriptional regulation of mortalin remain unknown. We aimed to determine whether NF‐κB p65 participates in the regulation of mortalin expression in ovarian cancer cells and to elucidate the underlying mechanism. Chromatin immunoprecipitation and luciferase reporter assay were used to identify mortalin gene sequences, to which NF‐κB p65 binds. Results indicated that NF‐κB p65 binds to the mortalin promoter at a site with the sequence ‘CGGGGTTTCA’. Using lentiviral pLVX‐NF‐κB‐puro and Lentivirus‐delivered NF‐κB short hairpin RNA (shRNA), we created ovarian cancer cell lines in which NF‐κB p65 was stably up‐regulated and down‐regulated. Using these cells, we found that downregulation of NF‐κB p65 inhibits the growth and migration of ovarian cancer cells. Further experimental evidence indicated that downregulation of NF‐κB p65 reduced mortalin, and upregulation of mortalin rescued the proliferation and migration of ovarian cancer cells reduced by NF‐κB p65 knockdown. In conclusion, NF‐κB p65 binds to the mortalin promoter and promotes ovarian cancer cells proliferation and migration via regulating mortalin.
Collapse
Affiliation(s)
- Shan Li
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyuan Lv
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shi Qiu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaqi Meng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Sahin K, Yenice E, Bilir B, Orhan C, Tuzcu M, Sahin N, Ozercan IH, Kabil N, Ozpolat B, Kucuk O. Genistein Prevents Development of Spontaneous Ovarian Cancer and Inhibits Tumor Growth in Hen Model. Cancer Prev Res (Phila) 2019; 12:135-146. [PMID: 30651293 DOI: 10.1158/1940-6207.capr-17-0289] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 07/30/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
Genistein, the major isoflavone in soybean, has been reported to exert anticancer effects on various types of cancer including ovarian cancer; however, its chemopreventive effects and mechanisms of action in ovarian cancer have not been fully elucidated in spontaneously developing ovarian cancer models. In this study, we demonstrated the preventive effects and mechanisms of genistein in the laying hen model that develops spontaneous ovarian cancer at high incidence rates. Laying hens were randomized to three groups: control (3.01 mg/hen, n = 100), low (52.48 mg/hen n = 100), and high genistein supplementation (106.26 mg/hen/day; per group). At the end of 78 weeks, hens were euthanized and ovarian tumors were collected and analyzed. We observed that genistein supplementation significantly reduced the ovarian tumor incidence (P = 0.002), as well as the number and size of the tumors (P = 0.0001). Molecular analysis of the ovarian tumors revealed that genistein downregulated serum malondialdehyde, a marker for oxidative stress and the expression of NFκB and Bcl-2, whereas it upregulated Nrf2, HO-1, and Bax expression at protein level in ovarian tissues. Moreover, genistein intake decreased the activity of mTOR pathway as evidenced by reduced phosphorylation of mTOR, p70S6K1, and 4E-BP1. Taken together, our findings strongly support the potential of genistein in the chemoprevention of ovarian cancer and highlight the effects of the genistein on the molecular pathways involved in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | | | - Birdal Bilir
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Ibrahim H Ozercan
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nashwa Kabil
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia. .,Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
37
|
EL-Hajjar L, Jalaleddine N, Shaito A, Zibara K, Kazan JM, El-Saghir J, El-Sabban M. Bevacizumab induces inflammation in MDA-MB-231 breast cancer cell line and in a mouse model. Cell Signal 2019; 53:400-412. [DOI: 10.1016/j.cellsig.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
|
38
|
FENG S, WANG J, XU X, CHEN X, LUAN J, SU Q, LUAN M, WANG H, ZHAO C. The Expression of SOCS and NF-ϰB p65 in Hypopharyngeal Carcinoma. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1874-1882. [PMID: 30788302 PMCID: PMC6379622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hypopharyngeal carcinoma is one of the most common types of head and neck tumors. Suppressers of cytokine signalling (SOCS) family members are key regulators of cytokine homeostasis, they play important roles in the process of cell proliferation, differentiation, maturation and apoptosis, and participate in the occurrence and development of tumor. The abnormal activation of NF-ϰB is an important feature of the tumor. The aim of this study was to investigate the relationships among SOCS, NF-ϰB p65 and hypopharyngeal carcinoma development.C. METHODS We included 72 hypopharyngeal cancer patients and 9 swallow cyst patients. The patients were recruited at The Second Hospital of Shandong University (Jinan, China) between 2014 and 2016. The mRNA and protein expression levels of SOCS-1, SOCS-3 and NF-ϰB p65 in hypopharyngeal carcinoma tissues, para-cancerous tissues and control tissues were detected by RT-PCR and Western blot analysis, respectively. RESULTS Hypopharyngeal carcinoma tissues had lower level expression of SOCS-1 and SOCS-3 than pericarcinoma tissues, but there was no significant difference, while cancer tissues had significantly higher level expression of NF-ϰB p65 than that of pericarcinoma tissues (0.412±0.266, 0.281±0.231, t=2.969, P=0.004). The early stage patients had striking higher level expression of SOCS-1 and SOCS-3 than that in advanced stages (F=16.202, P<0.001; F=52.295, P<0.001), while the expression of NF-ϰB p65 in early stages had lower level than that in advanced stages (F=3.383, P=0.04). CONCLUSION SOCS-1, SOCS-3 may be protective factors while NF-ϰB p65 could be a harmful factor in hypopharyngeal carcinoma.
Collapse
Affiliation(s)
- Shu FENG
- Dept. of Clinical Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Junfu WANG
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoqun XU
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuemei CHEN
- Dept. of Otolaryngology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Junwen LUAN
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qinghong SU
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng LUAN
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Huali WANG
- Dept. of Gynaecology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Changsheng ZHAO
- Dept. of Nutriology, The Second Hospital of Shandong University, Jinan, Shandong, China,Corresponding Author:
| |
Collapse
|
39
|
Muccioli M, Nandigam H, Loftus T, Singh M, Venkatesh A, Wright J, Pate M, McCall K, Benencia F. Modulation of double-stranded RNA pattern recognition receptor signaling in ovarian cancer cells promotes inflammatory queues. Oncotarget 2018; 9:36666-36683. [PMID: 30613350 PMCID: PMC6291178 DOI: 10.18632/oncotarget.26378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation and cancer are inter-related, and both pro- and anti-tumorigenic effects are possible in different contexts, highlighting the importance of characterizing specific inflammatory pathways in distinct tumor types. Malignant cells and non-cancerous cells such as fibroblasts, infiltrating leukocytes (i.e., dendritic cells [DC], macrophages, or lymphocytes) and endothelial cells, in combination with the extracellular matrix, constitute the tumor microenvironment (TME). In the last decades, the role of the TME in cancer progression has gained increased attention and efforts directed at abrogating its deleterious effects on anti-cancer therapies have been ongoing. In this context, we investigated the potential of mouse and human ovarian cancer cells to produce inflammatory factors in response to pathogen recognition receptor (PRR) signaling, which might help to shape the biology of the TME. We determined that mouse ovarian tumors generate chemokines that are able to interact with receptors harbored by tumor-associated DCs. We also found that dsRNA triggers significant pro-inflammatory cytokine up-regulation in both human and mouse ovarian tumor cell lines, and that several PRR can simultaneously contribute to the stimulated inflammatory response displayed by these cells. Thus, dsRNA-activated PRRs may not only constitute potentially relevant drug targets for therapies aiming to prevent inflammation associated with leukocyte recruitment, or as co-adjuvants of therapeutic treatments, but also might have a role in development of nascent tumors, for example via activation of cancer cells by microbial molecules associated to pathogens, or with those appearing in circulation due to dysbiosis.
Collapse
Affiliation(s)
- Maria Muccioli
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Harika Nandigam
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Tiffany Loftus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Manindra Singh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Amritha Venkatesh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Julia Wright
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Kelly McCall
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| | - Fabian Benencia
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
40
|
Liu Q, Tan W, Che J, Yuan D, Zhang L, Sun Y, Yue X, Xiao L, Jin Y. 12-HETE facilitates cell survival by activating the integrin-linked kinase/NF-κB pathway in ovarian cancer. Cancer Manag Res 2018; 10:5825-5838. [PMID: 30510451 PMCID: PMC6248369 DOI: 10.2147/cmar.s180334] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background The dysfunction of cell apoptosis is an important event in the progression of cancer, and the growth of cancer cells is negatively regulated by cell apoptosis. In different types of cancers, inhibition of cellular apoptosis is often observed in the cancerous tissue, and increased resistance to apoptosis is a hallmark of cancer. Although previous studies have shown that 12-lipoxygenase (12-LOX)/12-hydroxyeicosatetraenoic acid (12-HETE) is activated and upregulated in different types of cancers, the consequences of 12-LOX/12-HETE upregulation and its precise roles in the survival of ovarian carcinoma cells are still unknown. Methods MTT assays, caspase activity assays, lactate dehydrogenase (LDH) assays, and Western blot analysis were the methods used in this study. Results In our study, we found that 12-HETE, a major metabolic product of arachidonic acid using 12-LOX catalysis, inhibited cell apoptosis in a dose-dependent manner and that the effects of 12-HETE on cell apoptosis were mediated by the integrin-linked kinase (ILK) pathway. Moreover, the downstream target of 12-HETE-activated ILK was nuclear factor kappa-B (NF-κB) in ovarian carcinoma. The inhibitory effects of 12-HETE on cell apoptosis were attenuated by the inhibition of the NF-κB pathway. Conclusion These results indicate that 12-HETE participates in the inhibition of cell apoptosis by activating the ILK/NF-κB pathway, implying an important underlying mechanism that promotes the survival of ovarian cancer cells.
Collapse
Affiliation(s)
- Qian Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Wenhua Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Jianhua Che
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Dandan Yuan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Liying Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Yuhong Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| | - Xiaolong Yue
- Department of Medical Oncology, Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lei Xiao
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuxia Jin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China, ;
| |
Collapse
|
41
|
Mohan CD, Bharathkumar H, Dukanya, Rangappa S, Shanmugam MK, Chinnathambi A, Alharbi SA, Alahmadi TA, Bhattacharjee A, Lobie PE, Deivasigamani A, Hui KM, Sethi G, Basappa, Rangappa KS, Kumar AP. N-Substituted Pyrido-1,4-Oxazin-3-Ones Induce Apoptosis of Hepatocellular Carcinoma Cells by Targeting NF-κB Signaling Pathway. Front Pharmacol 2018; 9:1125. [PMID: 30455641 PMCID: PMC6230568 DOI: 10.3389/fphar.2018.01125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/14/2018] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease and ranked fifth in cancer related mortality. Persistent activation of NF-κB is responsible for the oncogenesis, metastasis, tumor evasion, anti-apoptosis, angiogenesis and proliferation in HCC. Therefore, designing of chemically novel, biologically potent small molecules that target NF-κB signaling cascade have gained prominent clinical interest. Herein we synthesized a novel class of 4-(substituted)-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one by reacting 2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one with various alkyl halides by using combustion derived bismuth oxide. We evaluated the antiproliferative efficacy of newly synthesized compounds against HCC cells and identified 4-(4-nitrobenzyl)-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one (NPO) as lead anticancer agent. In addition, we investigated the effect of NPO on the DNA binding ability of NF-κB and NF-κB regulated luciferase expression in HCC cells. The results demonstrated that NPO can induce significant growth inhibitory effects in HepG2, HCCLM3 and Huh-7 cells in dose and time-dependent manner. Interestingly, NPO induced significant downregulation in p65 DNA binding ability, p65 phosphorylation and subsequent expression of NF-κB dependent luciferase gene expression in diverse HCC cell lines. Further, in silico docking analysis suggested that NPO can show direct physical interaction with NF-κB. Finally, NPO was found to significantly abrogate tumor growth at a dose of 50 mg/kg in an orthotopic mouse model. Thus, we report the potential anticancer effects of NPO as a novel inhibitor of NF-κB signaling pathway in HCC.
Collapse
Affiliation(s)
| | | | - Dukanya
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Mandya, India
| | - Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Atanu Bhattacharjee
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong, India
| | - Peter E. Lobie
- Tsinghua Berkeley Shenzhen Institute and Division of Life Science and Health, Tsinghua University Graduate School, Shenzhen, China
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Bangalore, India
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cancer Program, Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
42
|
Farhood B, Mortezaee K, Goradel NH, Khanlarkhani N, Salehi E, Nashtaei MS, Najafi M, Sahebkar A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J Cell Physiol 2018; 234:5728-5740. [PMID: 30317564 DOI: 10.1002/jcp.27442] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Cancer is the second cause of death worldwide. Chemotherapy and radiotherapy are the most common modalities for the treatment of cancer. Experimental studies have shown that inflammation plays a central role in tumor resistance and the incidence of several side effects following both chemotherapy and radiotherapy. Inflammation resulting from radiotherapy and chemotherapy is responsible for adverse events such as dermatitis, mucositis, pneumonitis, fibrosis, and bone marrow toxicity. Chronic inflammation may also lead to the development of second cancer during years after treatment. A number of anti-inflammatory drugs such as nonsteroidal anti-inflammatory agents have been proposed to alleviate chronic inflammatory reactions after radiotherapy or chemotherapy. Curcumin is a well-documented herbal anti-inflammatory agents. Studies have proposed that curcumin can help management of inflammation during and after radiotherapy and chemotherapy. Curcumin targets various inflammatory mediators such as cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor κB (NF-κB), thereby attenuating the release of proinflammatory and profibrotic cytokines, and suppressing chronic production of free radicals, which culminates in the amelioration of tissue toxicity. Through modulation of NF-κB and its downstream signaling cascade, curcumin can also reduce angiogenesis, tumor growth, and metastasis. Low toxicity of curcumin is linked to its cytoprotective effects in normal tissues. This protective action along with the capacity of this phytochemical to sensitize tumor cells to radiotherapy and chemotherapy makes it a potential candidate for use as an adjuvant in cancer therapy. There is also evidence from clinical trials suggesting the potential utility of curcumin for acute inflammatory reactions during radiotherapy such as dermatitis and mucositis.
Collapse
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Lin Z, Li D, Cheng W, Wu J, Wang K, Hu Y. MicroRNA-181 Functions as an Antioncogene and Mediates NF-κB Pathway by Targeting RTKN2 in Ovarian Cancers. Reprod Sci 2018; 26:1071-1081. [PMID: 30309296 DOI: 10.1177/1933719118805865] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNA (miR)-181 has been reported to participate in carcinogenesis and tumor progression in several malignant cancers, but its expression and biological functions in ovarian cancer have remained largely unclarified. Here, we first measured miR-181 expression in clinical ovarian cancers and found the expression levels of miR-181 were significantly lower in ovarian cancer tissues than that in adjacent tissues. Next, we screened and identified a direct miR-181 target, Rhotekin2 (RTKN2). A correlation between miR-181 and RTKN2 expression was also confirmed in clinical samples of ovarian cancers. Upregulation of miR-181 would specifically and markedly suppress RTKN2 expression. The miR-181-overexpressing subclones showed significant cell growth inhibition by cell apoptosis induction and significant impairment of cell invasiveness in SKOV3 and HO8910 ovarian cancer cells. To identify the mechanisms, we investigated the NF-κB pathway and found that nuclear factor-kappa B (NF-κB), B-cell lymphoma-2 (Bcl-2), and vascular endothelial growth factor (VEGF) were suppressed, whereas IκBα was promoted in miR-181-overexpressing cells. These findings indicate that miR-181 functions as a tumor suppressor and plays a substantial role in inhibiting the tumorigenesis and reversing the metastasis of ovarian cancer through RTKN2-NF-κB signaling pathway in vitro. Taken together, we believe that miR-181 may be a promising therapeutic target for treating malignant ovarian cancers.
Collapse
Affiliation(s)
- Zilin Lin
- 1 Medical Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Dehao Li
- 1 Medical Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Wenjia Cheng
- 2 Surgery of Nanlou Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Jiajia Wu
- 1 Medical Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Kun Wang
- 1 Medical Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Yi Hu
- 3 Department of Oncology, General Hospital of the People's Liberation Army, Beijing, China
| |
Collapse
|
44
|
Durairajan S, Jebaraj Walter CE, Samuel MD, Palani D, G DJD, C GPD, Pasupati S, Johnson T. Differential expression of NF-κB heterodimer RelA/p50 in human urothelial carcinoma. PeerJ 2018; 6:e5563. [PMID: 30225173 PMCID: PMC6139250 DOI: 10.7717/peerj.5563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/11/2018] [Indexed: 12/30/2022] Open
Abstract
Background Urothelial carcinoma (UC) is the fifth most common malignancy that accounts for 5% of all cancers. Diagnostic markers that predict UC progressions are inadequate. NF-κB contributes towards disease progression upon constitutive activation in many solid tumors. The nuclear localization of NF-κB indicates increased transcriptional activity while cytoplasmic localization indicates the inactive protein repository that can be utilized readily by a malignant cell. This study delineates the nuclear and cytoplasmic differential expression of NF-κB heterodimers in UC progression. Methods The involvement of the NF-κB proteins in UC was analyzed in silico using cytoscape. The expression of NF-κB heterodimers was analyzed by immunohistochemistry. Results PINA4MS app in cytoscape revealed over expression of RelA and suppression of NF-κB1 (p50 precursor) in UC whereas the expression of NF-κB target proteins remained unhindered. Immunohistochemical localization showed nuclear RelA/p50 in low grade UC whereas in high grade only RelA expression was observed. Conversely, cytoplasmic expression of RelA/p50 remained extensive across high and low grade UC tissues (p < 0.005). RelA nuclear and cytoplasmic expression (p < 0.005) was directly proportional to the disease progression. In our study, some of the high-grade UC tissues with squamous differentiation and muscle invasion had extensive nuclear p50 localization. The phenomenon of RelA/p50 expression seen increased in low-grade UC than high grade UC might be due to their interaction with other members of NF-κB family of proteins. Thus, NF-κB RelA/p50 differential expression may play a unique role in UC pathogenesis and can serve as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Sankari Durairajan
- Department of Biotechnology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | | | - Mary Divya Samuel
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (formerly Manipal University), Manipal, India
| | - Dinesh Palani
- Department of Biotechnology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Dicky John Davis G
- Department of Bioinformatics, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Sneha Pasupati
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Thanka Johnson
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Chennai, India
| |
Collapse
|
45
|
Li M, Wang W, Zhu Y, Lu Y, Wan P, Yang K, Zhang Y, Mao C. Molecular and cellular mechanisms for zoledronic acid-loaded magnesium-strontium alloys to inhibit giant cell tumors of bone. Acta Biomater 2018; 77:365-379. [PMID: 30030174 DOI: 10.1016/j.actbio.2018.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 12/12/2022]
Abstract
Giant Cell Tumors of Bone (GCTB) are benign but aggressive and metastatic tumors. Surgical removal cannot eradicate GCTB due to the subsequent recurrence and osteolysis. Here we developed Zoledronic acid (ZA)-loaded magnesium-strontium (Mg-Sr) alloys that can inhibit GCTB and studied the molecular and cellular mechanisms of such inhibition. We first formed a calcium phosphate (CaP) coating on the Mg-1.5 wt%Sr implants by coprecipitation and then loaded ZA on the CaP coating. We examined the response of GCTB cells to the ZA-loaded alloys. At the cellular level, the alloys not only induced apoptosis and oxidative stress of GCTB cells, and suppressed their resultant pre-osteoclast recruitment, but also inhibited their migration. At the molecular level, the alloys could significantly activate the mitochondrial pathway and inhibit the NF-κB pathway in the GCTB cells. These collectively enable the ZA-loaded alloys to suppress GCTB cell growth and osteolysis, and thus improve our understanding of the materials-induced tumor inhibition. Our study shows that ZA-loaded alloys could be a potential implant in repairing the bone defects after tumor removal in GCTB therapy. STATEMENT OF SIGNIFICANCE In clinics, giant cell tumors of bone (GCTB) are removed by surgery. However, the resultant defects in bone still contain aggressive and metastatic GCTB cells that can recruit osteoclasts to damage bone, leading to new GCTB tumor growth and bone damage after tumor surgery. Hence, it is of high demand in developing a material that can not only fill the bone defects as an implant but also inhibit GCTB in the defect area as a therapeutic agent. More importantly, the molecular and cellular mechanism by which such a material inhibits GCTB growth has never been explored. To solve these two problems, we prepared a new biomaterial, the Mg-Sr alloys that were first coated with calcium phosphate and then loaded with a tumor-inhibiting molecule (Zoledronic acid, ZA). Then, by using a variety of molecular and cellular biological assays, we studied how the ZA-loaded alloys induced the death of GCTB cells (derived from patients) and inhibited their growth at the molecular and cellular level. At the cellular level, our results showed that ZA-loaded Mg-Sr alloys not only induced apoptosis and oxidative stress of GCTB cells, and suppressed their induced pre-osteoclast recruitment, but also inhibited their migration. At the molecular level, our data showed that ZA released from the ZA-loaded Mg-Sr alloys could significantly activate the mitochondrial pathway and inhibit the NF-κB pathway in the GCTB cells. Both mechanisms collectively induced GCTB cell death and inhibited GCTB cell growth. This work showed how a biomaterial inhibit tumor growth at the molecular and cellular level, increasing our understanding in the fundamental principle of materials-induced cancer therapy. This work will be interesting to readers in the fields of metallic materials, inorganic materials, biomaterials and cancer therapy.
Collapse
|
46
|
Zou Y, Uddin MM, Padmanabhan S, Zhu Y, Bu P, Vancura A, Vancurova I. The proto-oncogene Bcl3 induces immune checkpoint PD-L1 expression, mediating proliferation of ovarian cancer cells. J Biol Chem 2018; 293:15483-15496. [PMID: 30135206 DOI: 10.1074/jbc.ra118.004084] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
The proto-oncogene Bcl3 induces survival and proliferation in cancer cells; however, its function and regulation in ovarian cancer (OC) remain unknown. Here, we show that Bcl3 expression is increased in human OC tissues. Surprisingly, however, we found that in addition to promoting survival, proliferation, and migration of OC cells, Bcl3 promotes both constitutive and interferon-γ (IFN)-induced expression of the immune checkpoint molecule PD-L1. The Bcl3 expression in OC cells is further increased by IFN, resulting in increased PD-L1 transcription. The mechanism consists of an IFN-induced, Bcl3- and p300-dependent PD-L1 promoter occupancy by Lys-314/315 acetylated p65 NF-κB. Blocking PD-L1 by neutralizing antibody reduces proliferation of OC cells overexpressing Bcl3, suggesting that the pro-proliferative effect of Bcl3 in OC cells is partly mediated by PD-L1. Together, this work identifies PD-L1 as a novel target of Bcl3, and links Bcl3 to IFNγ signaling and PD-L1-mediated immune escape.
Collapse
Affiliation(s)
- Yue Zou
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Mohammad M Uddin
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Sveta Padmanabhan
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Yan Zhu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Pengli Bu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ales Vancura
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ivana Vancurova
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| |
Collapse
|
47
|
Yousefi H, Momeny M, Ghaffari SH, Parsanejad N, Poursheikhani A, Javadikooshesh S, Zarrinrad G, Esmaeili F, Alishahi Z, Sabourinejad Z, Sankanian G, Shamsaiegahkani S, Bashash D, Shahsavani N, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. TUMORI JOURNAL 2018; 105:84-91. [DOI: 10.1177/0300891618784790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy worldwide and despite an initial response to therapeutic agents, the majority of patients have chemoresistant disease. There is no treatment strategy with proven efficacy against chemoresistant EOC and in this setting, overcoming therapy resistance is the key to successful treatment. Methods: This study aimed to investigate expression of interleukin-6 (IL-6) (IL-6) and IL-6 receptor (IL-6R) in a panel of the EOC cell lines. To achieve this, the expression of IL-6 and its receptor were compared in the EOC cells using quantitative reverse transcription polymerase chain reaction. MTT assay was performed to obtain chemosensitivity of the EOC cells. Results: In this report, we show that expressions of IL6 and IL6R are higher in therapy-resistant EOC cells compared to sensitive ones. Higher expression of IL6 and its receptor correlated with resistance to certain chemotherapeutic agents. Moreover, our findings showed that combination of tocilizumab (Actemra; Roche), an anti-IL-6R monoclonal antibody, with carboplatin synergistically inhibited growth and proliferation of the EOC cells and the most direct axis for IL-6 gene expression was NF-κB pathway. Conclusion: Collectively, our findings suggest that blockade of the IL-6 signaling pathway with anti-IL-6 receptor antibody tocilizumab might resensitize the chemoresistant cells to the current chemotherapeutics.
Collapse
Affiliation(s)
- Hassan Yousefi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H. Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Poursheikhani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepehr Javadikooshesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Ghazaleh Zarrinrad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zivar Alishahi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sabourinejad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Sankanian
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjes Shahsavani
- Department of Physiology and Pathophysiology, Spinal Cord Research Center, University of Manitoba, Winnipeg, Canada
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Momeny M, Yousefi H, Eyvani H, Moghaddaskho F, Salehi A, Esmaeili F, Alishahi Z, Barghi F, Vaezijoze S, Shamsaiegahkani S, Zarrinrad G, Sankanian G, Sabourinejad Z, Hamzehlou S, Bashash D, Aboutorabi ES, Ghaffari P, Dehpour AR, Tavangar SM, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Blockade of nuclear factor-κB (NF-κB) pathway inhibits growth and induces apoptosis in chemoresistant ovarian carcinoma cells. Int J Biochem Cell Biol 2018; 99:1-9. [DOI: 10.1016/j.biocel.2018.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/18/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
|
49
|
House CD, Grajales V, Ozaki M, Jordan E, Wubneh H, Kimble DC, James JM, Kim MK, Annunziata CM. IΚΚε cooperates with either MEK or non-canonical NF-kB driving growth of triple-negative breast cancer cells in different contexts. BMC Cancer 2018; 18:595. [PMID: 29801480 PMCID: PMC5970439 DOI: 10.1186/s12885-018-4507-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metastatic breast cancer carries a poor prognosis despite the success of newly targeted therapies. Treatment options remain especially limited for the subtype of triple negative breast cancer (TNBC). Several signaling pathways, including NF-κB, are altered in TNBC, and the complexity of this disease implies multi-faceted pathway interactions. Given that IKKε behaves as an oncogene in breast cancer, we hypothesized that IKKε regulates NF-κB signaling to control diverse oncogenic functions in TNBC. METHODS Vector expression and RNA interference were used to investigate the functional role of IKKε in triple-negative breast cancer cells. Viability, protein expression, NF-κB binding activity, invasion, anoikis, and spheroid formation were examined in cells expressing high or low levels of IKKε, in conjunction with p52 RNA interference or MEK inhibition. RESULTS This study found that non-canonical NF-κB p52 levels are inversely proportional to ΙΚΚε, and growth of TNBC cells in anchorage supportive, high-attachment conditions requires IKKε and activated MEK. Growth of these cells in anchorage resistant conditions requires IKKε and activated MEK or p52. In this model, IKKε and MEK cooperate to support overall viability whereas the p52 transcription factor is only required for viability in low attachment conditions, underscoring the contrasting roles of these proteins. CONCLUSIONS This study illustrates the diverse functions of IKKε in TNBC and highlights the adaptability of NF-κB signaling in maintaining cancer cell survival under different growth conditions. A better understanding of the diversity of NF-κB signaling may ultimately improve the development of novel therapeutic regimens for TNBC.
Collapse
Affiliation(s)
- Carrie D House
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Valentina Grajales
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Michelle Ozaki
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Elizabeth Jordan
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Helmae Wubneh
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Danielle C Kimble
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jana M James
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Marianne K Kim
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
50
|
Boscutti G, Nardon C, Marchiò L, Crisma M, Biondi B, Dalzoppo D, Dalla Via L, Formaggio F, Casini A, Fregona D. Anticancer Gold(III) Peptidomimetics: From Synthesis to in vitro and ex vivo Biological Evaluations. ChemMedChem 2018; 13:1131-1145. [PMID: 29570944 DOI: 10.1002/cmdc.201800098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Five new AuIII -peptidodithiocarbamato complexes of the type [AuIII Br2 (dtc-AA1 -AA2 -OR] (in which AA1 =N-methylglycine (Sar), l/d-Pro; AA2 =l/d-Ala, α-aminoisobutyric acid (Aib); R=OtBu, triethylene glycol methyl ether), differing with regard to the amino acid sequence and/or the chiral amino acid configuration, were designed to enhance tumor selectivity and bioavailability. The gold(III)-based moiety was functionalized to exploit the targeting properties of the peptidomimetic ligand toward two peptide transporters (namely PEPT1 and PEPT2), which are upregulated in several tumor cells. The compounds were synthesized and fully characterized, mainly by means of elemental analysis, one- and two-dimensional NMR spectroscopy, FT-IR, and UV/Vis spectrophotometry. The crystal structures of three compounds were also solved by X-ray diffraction. In vitro cytotoxicity studies using a panel of human tumor cell lines (A549 [non-small-cell lung carcinoma], MCF-7 [breast cancer], A2780 [ovarian carcinoma], H1975 [non-small-cell lung carcinoma], H460 [large-cell lung carcinoma], and A431 [human epidermoid carcinoma]) showed the dtc-Pro-Aib-OtBu derivative to be very effective, with GI50 values much lower than those of cisplatin. This complex was thus selected for evaluating stability under physiological conditions and possible interactions with serum albumin, as well in PARP-1 enzyme inhibition assays and preliminary ex vivo toxicity experiments on healthy rat tissues.
Collapse
Affiliation(s)
- Giulia Boscutti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Chiara Nardon
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Luciano Marchiò
- SCVSA Department, University of Parma, Parco Area delle Scienze 17/A, 43121, Parma, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Daniele Dalzoppo
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.,Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.,Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 GV, Groningen, The Netherlands
| | - Dolores Fregona
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|